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Abstract. A class of non-stationary surface gravity waves propagating in the
zonal direction in the equatorial region is described in the f -plane approx-

imation. These waves are described by exact solutions of the equations of

hydrodynamics in Lagrangian formulation and are generalizations of Gerstner
waves. The wave shape and non-uniform pressure distribution on a free sur-

face depend on two arbitrary functions. The trajectories of fluid particles are

circumferences. The solutions admit a variable meridional current. The dy-
namics of a single breather on the background of a Gerstner wave is studied as

an example.

1. Introduction. Gerstner waves are trochoidal vortex gravity waves on deep wa-
ter described by an exact solution to equations of a perfect incompressible fluid
[16, 24]. That solution was later rediscovered by Froude [15], Rankine [30] and
Reech [31] and found various applications in geophysics. Dubreil-Jacotin showed
that Gerstner’s solution also describes free surface waves on a fluid of arbitrary
internal stratification [13]. Yih applied it to the edge waves along a sloping bound-
ary [39] (see also discussions in [6, 26, 35, 36]). Pollard [29] and Mollo-Christensen
[25, 27] modified Gerstner’s solution to describe surface waves in deep water in a
rotating fluid and gravitational billows on an interface between two fluids (or air
masses) accordingly. Constantin obtained the three-dimensional solution for equa-
torial trapped waves generalizing the Gerstner wave in the β-plane approximation
[9, 10, 11]. Henry extended this exact solution by allowing for a uniform current in
the direction of propagation [20, 21]. Godin considered an extension of the Gerst-
ner wave to waves in compressible three-dimensionally inhomogeneous moving fluids
[17, 18].

All the mentioned theoretical studies were carried out assuming constant pressure
on a free fluid surface. We generalize the Gerstner solution to the case of variable
and non-uniform pressure, which can model the effect of wind blowing over a free
surface.

In the present paper we consider waves in an equatorial region. We neglect the
variations of Coriolis parameter and use the f -plane approximation. We study plane
waves propagating in zonal direction. Their motion is investigated in Lagrangian
formulation. Gerstner’s solution with constant pressure on the profile gives one of
exact solutions [9]. The incorporation of a constant underlying zonal current for
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Gerstner waves was achieved by Henry [20]. Kluczek studied the analogous three-
dimensional flow taking into account a variable meridional current [23]. We present
a class of exact solutions in the f -plane approximation generalizing Gerstner waves.
The trajectories of the fluid particles are epicycloids (hypocycloids). These solutions
were obtained earlier for a non-rotating fluid and were named Ptolemaic [1].

Gerstner wave is a particular case of Ptolemaic flows. Fluid particles in a Ger-
stner wave move around circumferences with radii decreasing exponentially with
depth. Following Constantin and Monismith [12], waves in which the particle tra-
jectories are closed will be called Gerstner-type waves. They include, in particular,
equatorial [9, 10, 11] and interfacial [38] trapped waves. There also exists a subclass
of Gerstner-type waves that possess the following properties: a) the fluid particles
rotate around a circumference but the dependence of the radius of rotation on La-
grangian coordinates is different from the Gerstner one; b) the asymptotic behavior
of wave shape is described by Gerstner’s solution on both infinities. Consequently,
the dynamics of our Gerstner-type waves differs from Gerstner’s solution only on a
limited section of a free surface. Pressure on this section is variable and we attribute
this to the action of wind. The profile and pressure in Gerstner-type waves depend
on two arbitrary analytical functions, so the obtained solution may describe a broad
variety of initial wave shapes and pressure distributions. We propose a classification
of Gerstner-type waves based on the form of these functions.

The rest of this paper is organized as follows. In Section 2 we consider the math-
ematical formulation of the problem in Lagrangian coordinates. The expressions for
the integrals of motion in a uniformly rotating fluid extending the Cauchy invariants
to a non-rotating fluid [24] are found in Section III. Section IV concerns Ptolemaic
flows. It is shown that, if an arbitrary meridional current is superimposed on Ptole-
maic motion, then the resulting flow will also be described by an exact solution
of the equations of hydrodynamics. The expressions for vorticity and invariants of
such a 3D flow are presented. The properties of a homogeneous (stationary) Ger-
stner wave are discussed in Section V. It is shown that it may be generated by a
traveling harmonic pressure wave. Gerstner-type waves generated by the region of
non-stationary and non-uniform pressure are studied in Section VI. Inhomogeneous
Gerstner waves and modulated Gerstner waves are classed as separate families of
possible types of motions. A vortex breather oscillating on the background of a
homogeneous Gerstner wave is considered as an example of arbitrary Gerstner-type
waves.

2. Lagrangian formulation of governing equations in rotating reference
frame. Consider the motion of a homogeneous incompressible fluid in the reference

frame moving with constant angular velocity ~Ω. The equations of hydrodynamics
in Euler variables are written in the following form

div ~Rt = 0, (1)

~Rtt + 2 ~Ω × ~Rt = −1

ρ
∇p−∇Φ− ~Ω ×

(
~Ω × ~R

)
. (2)

Here, ~R (X,Y, Z) is the radius vector of elementary liquid volume (X,Y, Z are Carte-

sian coordinates), ~Rt is its velocity and ~Rtt acceleration, t is time, ρ is density, p
is pressure, and Φ is the potential of external forces. Expression (1) is a continuity
equation. The vector momentum equation (2) is the record of Newton’s second law
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with allowance for the action on the fluid of Coriolis and centrifugal forces. The
latter has a gradient character, so Eq. (2) can be written as

~Rtt + 2 ~Ω × ~Rt = −∇H ;

H =
p

ρ
+ Φ + Φc, ∇Φc = − 1

2
∇
(
~Ω× ~R

)2
,

(3)

where Φc is the potential of the centrifugal forces.
Let us find representation of Eqs. (1), (3) in terms of the Lagrangian variables

{ai} = {a, b, c}. We consider vector ~R as a function of these variables, so this vector
determines the position of an individual liquid particle. The continuity equation in
these variables has a form of time-independent Jacobian transition from Euler to
Lagrangian variables that can be written in the form

D (X,Y, Z)

D (a, b, c)
= S0 (a, b, c) . (4)

If the initial positions of the fluid particles are equal to Lagrangian variables

X0 = a, Y0 = b, Z0 = c, (5)

S0 = 1. In a general case, it is a function of Lagrangian variables. For one-to-one
correspondence between the fluid particle coordinates X,Y, Z and their labels a, b, c
this function should not turn to zero in the flow region. This is an important prop-
erty of the Lagrangian flow description. We note that for both, the two-dimensional
Gerstners wave [7, 19] and a number of three-dimensional generalizations [32, 33, 34],
a mixture of analytical and topological methods can be applied to prove that the
Lagrangian flow-map describing these exact solutions is a global diffeomorphism,
with the result that the flow is globally dynamically possible.

In Eq. (3) the function H is differentiated by Euler variables X,Y, Z. To go to
the derivatives with respect to the Lagrangian variables, we perform scalar multi-

plication of this equation by the vector ~Rai :

~Rtt ~Rai + 2
(
~Ω ~Rt ~Rai

)
= −Hai , i = 1, 2, 3. (6)

Equations (4), (6) make up a system of hydrodynamic equations of a perfect
incompressible fluid in Lagrangian variables in rotating reference frame.

3. Lagrangian invariants. We will omit from Eqs. (6) the gradient term by taking
its cross derivatives and calculating their difference:

~Rttaj
~Rai − ~Rttai

~Raj + 2
(
~Ω ~Rtaj

~Rai

)
− 2

(
~Ω ~Rtai

~Raj

)
= 0. (7)

With allowance for

~Rttaj
~Rai − ~Rttai

~Raj =
(
~Rtaj

~Rai − ~Rtai
~Raj

)
t
,(

~Ω ~Rtaj
~Rai

)
−
(
~Ω ~Rtai

~Raj

)
=
(
~Ω ~Raj

~Rai

)
t
.

Eq. (7) is rewritten in the form

∂

∂ t

(
~Rtaj

~Rai − ~Rtai
~Raj + 2

(
~Ω ~Raj

~Rai

))
= 0,

that is equivalent to the conditions of conservation of three invariants S1, S2, S3:

~Rtb ~Rc − ~Rtc ~Rb + 2
(
~Ω ~Rb ~Rc

)
= S1 (a, b, c) , (8)
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~Rtc ~Ra − ~Rta ~Rc + 2
(
~Ω ~Rc ~Ra

)
= S2 (a, b, c) , (9)

~Rta ~Rb − ~Rtb ~Ra + 2
(
~Ω ~Ra ~Rb

)
= S3 (a, b, c) , (10)

which are functions of Lagrangian coordinates only. Equations (8)–(10) follow from
the momentum equations. Together with the continuity equation (4) they make up
a system of hydrodynamic equations of a perfect incompressible fluid in a rotating
frame of reference.

For ~Ω = 0, expressions (8)–(10) take on the following form

~Rtb ~Rc − ~Rtc ~Rb = S10 (a, b, c) , (11)

~Rtc ~Ra − ~Rta ~Rc = S20 (a, b, c) , (12)

~Rta ~Rb − ~Rtb ~Ra = S30 (a, b, c) . (13)

Here, the index “0” denotes the motion in a non-rotating reference frame. These
expressions were derived by Cauchy back in 1815 and were referred to by Lamb in his
book [24]. The functions S10, S20, S30 are named the Cauchy invariants [2, 5, 14, 40].
They are equal to the circulation around each of the three infinitely small closed
curves whose planes were originally normal to the coordinate axes [24]. Formulas
(8)–(10) generalize the Cauchy invariants (11)–(13) for motions in a rotating frame
of reference.

If the condition (5) is valid, then from (8)–(10) follows

S1 =
(
~ω0 + 2~Ω, ~X∗

)
, S2 =

(
~ω0 + 2~Ω, ~Y∗

)
, S3 =

(
~ω0 + 2~Ω, ~Z∗

)
,

where ~ω0 (ωX0, ωY 0, ωZ0) is the vorticity vector at the initial moment of time,

and ~X∗, ~Y∗, ~Z∗ are the unit vectors in the direction of the corresponding axes. In a
general case, the relationship between the vector of invariants and absolute vorticity

~ω + 2~Ω is written in a more complicated form.

4. Inertial Ptolemaic flows. Let us consider the wave motion of a fluid in an
equatorial region. Choose a rotating framework with the origin at a point on the
Earth’s surface with the spatial variable X corresponding to longitude, the variable
Y to latitude, and the variable Z to the local vertical, respectively. For waves
located close to the equator, the Coriolis parameter can be considered constant [8]

(the so-called f -plane approximation). The angular velocity vector ~Ω is directed
along the Y axis and Eqs. (8)–(10) take on the form

D (Xt, X)

D (b, c)
+
D (Yt, Y )

D (b, c)
+
D (Zt, Z)

D (b, c)
+ 2Ω

D (Z,X)

D (b, c)
= S1 (a, b, c) , (14)

D (Xt, X)

D (c, a)
+
D (Yt, Y )

D (c, a)
+
D (Zt, Z)

D (c, a)
+ 2Ω

D (Z,X)

D (c, a)
= S2 (a, b, c) , (15)

D (Xt, X)

D (a, b)
+
D (Yt, Y )

D (a, b)
+
D (Zt, Z)

D (a, b)
+ 2Ω

D (Z,X)

D (a, b)
= S3 (a, b, c) , (16)

where Ω =
∣∣∣~Ω∣∣∣. Assume that the wavelength is rather small compared to the fluid

depth, then the deep water approximation may be used. The speed at the bottom
(c = −∞) turns to zero and the boundary condition for pressure on a free surface
(c = 0):

p| c=0 = p∗ (a, t) (17)
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is fulfilled. We do not detail the form of pressure distribution and assume that it
may vary depending on wind. For the free waves p∗ = const, and for the plane
waves p∗ = p∗ (a, t). The non-uniform and non-stationary law of pressure variation
is interpreted as the action of wind. In this sense, we will seek for a rather wide
class of exact solutions that would meet the boundary condition (17).

Consider a particular solution of the form

X = X (a, c, t) , Y = b+ σ (a, c) t, Z = Z (a, c, t) . (18)

It is a superposition of a meridional current having profile σ (a, c) on a non-
stationary flow in the X,Z plane. The incorporation of such a flow into exact
solutions to f -plane equations was first presented in [22, 24]. From the equation of
incompressibility (4) follows

D (X,Z)

D (a, c)
= S0 (a, c) , (19)

but Eqs. (14)–(16) give

D (Xt, X)

D (a, c)
+
D (Zt, Z)

D (a, c)
= −S2 (a, c)− 2ΩS0 (a, c) , (20)

S1 = −σ
′

c (a, c) , S3 = σ
′

a (a, c) .

The invariants S1, S3 are determined only by the form of the meridional current.
The invariant S2, on the contrary, is determined by solving Eqs. (19), (20). It
depends on the motion of liquid particles in the X,Z plane and on the magnitude
of the angular velocity.

Equations (19), (20) define a plane non-stationary flow. We introduce a complex
coordinate of a fluid particle trajectory:

W = X + iZ, W = X − iZ,

where the overline “–” means complex conjugation, i is the imaginary unit, and
complex Lagrangian coordinates are

χ = a+ ic, χ = a− ic.

In the new variables, Eqs. (19), (20) are written as [1]:

D
(
W,W

)
D (χ, χ)

= S0, (21)

D
(
Wt,W

)
D (χ, χ)

= −i
(
S2

2
+ ΩS0

)
. (22)

Equation (22) is written taking into consideration that the time derivative of
Eq. (21) is equal to zero. The system of equations (21), (22) possesses an interesting
property noted by Aleman and Constantin [4]: If an unknown function W satisfies
Eq. (22), it will always be a solution to Eq. (21).

Equations (21), (22) have an exact solution [1]:

W = G (χ) exp (iδ1 t) + F (χ̄) exp (iδ2 t) , (23)

where F , G are analytic functions, and δ1, δ2 are real constants. The trajectories of
the fluid particles in the X, Z plane are epicycloids (hypocycloids) as planet orbits
in the Ptolemaic system of the world, so the flows (23) were named Ptolemaic [1]. In
the most general case, when an inertial meridional current σ (a, c) is superimposed



4448 ANATOLY ABRASHKIN

on the Ptolemaic motion (23), the liquid particles gyrate. The flows (18), (23) may
be called inertially Ptolemaic.

We will study a particular case δ1 = 0 :

W = G (χ) + F (χ) exp (−iµ t) , (24)

when the fluid particles move clockwise in the X,Z plane (µ = −δ2 > 0). The
flow region corresponds to the c = Imχ ≤ 0 domain. The fluid is motionless at the
bottom, so |F | → 0 as Imχ→ −∞. The function G should be bijective, so G′ 6= 0
in the flow region. One more requirement to the functions F,G is to maintain the

sign of S0 = |G′|2 − |F ′|2, i.e. S0 6= 0 in the fluid region. It is the condition of
bijection between the Euler and Lagrangian variables. Let for simplicity

|G′|2 − |F ′|2 > 0. (25)

The invariant S2 is defined by

S2 = 2
[
(Ω− µ) |F ′|2 − Ω |G′|2

]
. (26)

The vorticity of the flow (18), (23) is written as

ωX =
∂Zt
∂Y
− ∂Yt
∂Z

=
1

S0

[
D (Zt, Z,X)

D (a, b, c)
+
D (Yt, Y,X)

D (a, b, c)

]
=

1

S0

D (σ, ReW )

D (a, c)
,

ωY =
∂Xt

∂Z
− ∂Zt
∂X

=
1

S0

[
D (Zt, Z, Y )

D (a, b, c)
+
D (Xt, X, Y )

D (a, b, c)

]
= − 2µ |F ′|2

|G′|2 − |F ′|2
, (27)

ωZ =
∂Yt
∂X
− ∂Xt

∂Y
=

1

S0

[
D (Yt, Y, Z)

D (a, b, c)
+
D (Xt, X, Z)

D (a, b, c)

]
=

1

S0

D (σ, ImW )

D (a, c)
.

Two vorticity components, ωX and ωZ , depend harmonically on time. The com-
ponent ωY is an invariant of the flow that does not depend on meridional current
σ (a, c).

The expression for the pressure differential is found from Eqs. (6):

dp = −ρRe (Wtt − 2iΩWt + ig) dW,

where the centrifugal force potential is neglected. The substitution into this equality
of expression (24) and integration gives

p− p0
ρ

= gImG +
µ (µ+ 2Ω)

2
|F |2 + Re

[∫
µ (µ+ 2Ω)FG

′

dχ+ igF

]
exp (iµ t) ,

(28)
where p0 is a constant. The pressure is a sum of a stationary component (the first
two terms in (29)) and a non-stationary component varying harmonically with time.
Depending on the choice of the functions G and F , the form of the non-uniform
pressure distribution on the free surface p (a, c = 0, t) may be arbitrary to a large
degree.

Liquid particles do not drift in zonal direction in the waves described by (24).
The substitution W → W − U0t in expression (24), where U0 is a real constant,
allows considering the dynamics of wave perturbations against the background of a
uniform underlying current. The region of non-uniform pressure on a free surface
will, apparently, move with the same speed in zonal direction.
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5. Gerstner wave generated by a running harmonic pressure wave. We
choose a complex trajectory of the particles in the form

W = χ+ iA exp i (kχ− µ t) , Imχ ≤ 0. (29)

This expression describes a Gerstner wave having amplitude A, wave number
k, and frequency µ [24]. A trochoidally shaped stationary wave is traveling to the
right with speed U = µk−1. The motion of a fluid is known to be stationary, if
Lagrangian values are invariant under time translation [5]. The wave motion (29)
is the only Ptolemaic flow (24) that has a stationary profile on a free surface.

The invariant S2 for the Gerstner wave is

S2 = 2
[
(Ω− µ) k2A2e2kc − Ω

]
.

The pressure on the wave profile (Imχ = 0) is found by substituting expression (29)
into (28):

p− p0
ρ

=
µ (µ+ 2Ω)

2
A2 +

[
µ (µ+ 2Ω) k−1 − g

]
A cos (ka− µ t) . (30)

For waves of the form (29), the traditionally imposed boundary condition is constant
pressure on the free surface. Hence, zeroing the multiplier of cosine in expression
(30) yields a dispersion wave equation [23].

It may be assumed, however, that under the action of wind, pressure distribution
in the form of a harmonic traveling wave is maintained on the free surface:

p∗ = p1 + p2 cos (ka− µ t) , (31)

where p1, p2 are constant values satisfying the relations

p1 = p0 +
µ (µ+ 2Ω)

2
ρA2, p2 = ρ

[
µ (µ+ 2Ω) k−1 − g

]
A. (32)

When these conditions are met, we can say that the exact solution (29) corresponds
to the stationary trochoidal waves on a fluid surface maintained by the external
pressure (31). If µ and k are known, we can find wave amplitude A from the second
relation of system (32) and p0 from the first one. The elevation of the free surface
is defined by Y = A cos (ka− µ t); hence, for positive values of p2, the pressure
changes in phase with the profile, and for negative p2 in antiphase. The case p2 = 0
corresponds to a Gerstner wave with constant pressure on the profile. Solving the
quadratic equation (32) for µ leads us directly to the dispersion relation

µ = ±

√
Ω2 +

(
g +

p2
ρA

)
k − Ω. (33)

We consider (g + p2/ρA) > 0. Taking the plus sign in (33) we obtain waves propa-
gating eastwards. Taking the minus sign we get a wave propagating westwards. The
plus or minus choice is not allowed in the β-plane [9] where the waves propagate
eastwards only. The freedom in the sign of the phase speed is a consequence of the
f -plane approximation. It is interesting to compare expression (33) with the dis-
persion relation of equatorial waves with an underlying current [23]. The quantity
p2

2ρAΩ
is analogous to the speed of the underlying current. Thus, depending on the

p2 sign, the wind either accelerates or slows down the waves.
The generation of Gerstner waves in laboratory conditions or in the real ocean has

been actively discussed in the literature [12, 28, 37]. As follows from our analysis,
wind may be a possible mechanism of their generation.
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6. Non-stationary waves. Now consider the class of Ptolemaic waves (24) dif-
ferent from the Gerstner wave. As was mentioned above, such waves are non-
stationary. We will assume for simplicity that there is no meridional current, and
the flow is two-dimensional. Let the wind act only on a certain limited section of
the free surface, outside which the pressure is constant and Gerstner’s solution (29)
is valid. Then, the asymptotic behavior

G (χ)→ χ, F (χ)→ iA exp (ikχ) , if Reχ→ ±∞ (34)

is valid for the functions G and F , and the wave frequency is defined by

µ = ±
√

Ω2 + gk − Ω. (35)

These waves may be classified as follows:
a) Inhomogeneous Gerstner waves: G (χ) 6= χ, F (χ) = iA exp (ikχ).

Fluid particles on Lagrangian horizon Imχ = const rotate about circumferences of
the same radius relative to the non-horizontal average level.

b) Modulated Gerstner waves: G (χ) = χ, F (χ) 6= iA exp (ikχ). Fluid
particles on Lagrangian horizon rotate about circumferences of different radii rel-
ative to the average level of oscillations Z = const. The non-stationary pressure
component is determined only by the form of the function F .

c) Arbitrary Gerstner-type waves: G (χ) 6= χ, F (χ) 6= iA exp (ikχ).
Fluid particles on a free surface rotate about circumferences of radius |F |, the
average level of surface oscillations Z (X) is determined in parametric form by
X (a) = Re G|c=0 , Z (a) = Im G|c=0. The pressure distribution on the free
surface depends on two arbitrary complex functions.

Following the paper [3], we will study as an example arbitrary Gerstner-type
waves. Consider the solution

W = χ− iγ

(χ− iα)
2 +

[
iAei(kχ+ϕ0) +

iγ

(χ+ iα)
2

]
e−iµ t. (36)

Here A, k, µ, α, γ are positive parameters, ϕ0 is phase shift. When γ = 0, expression
(36) describes a Gerstner wave. For Ptolemaic flows the superposition principle
holds true. If the function F is a sum of functions, the resulting profile qualitatively
corresponds to the superposition of the profiles defined by these functions. The
terms in G,F (cf. (36) and (24)) have one pole of order 2, which corresponds to
c = α > 0, so it is outside the fluid region. The term with the pole in the function
F describes a periodically appearing peak. The term with the pole in the function
G compensates the peak of the wave profile at the initial moment of time. So,
expression (36) corresponds to the peak standing out in the field of a Gerstner
wave.

In solution (36) A is amplitude, µ is frequency, and k is the wave number of
a Gerstner wave, kA ≤ 1; kA = 1 corresponds to the wave with sharp crests on
the profile; µ and k are related by the dispersion relation (35). The parameter
ϕ0 characterizes the phase shift between the crests of the Gerstner wave and the
perturbation of its profile (vortex breather). If ϕ0 = π, then their crests coincide
and the amplitudes are summed. If ϕ0 = 0, then the breather crest coincides
with the trough of the Gerstner wave and their amplitudes are subtracted. This
behavior of the solution can be interpreted as wave interference. According to (25)
there is a constraint on the value of γ. A sufficient condition is formulated as
γ ≤ (1− kA)α3

/
4. The parameter α characterizes the peak width. We will restrict
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our consideration to the case when the horizontal scale of the breather is less than
the wavelength (α < 2π/k).

Let ϕ0 = π. At the time instant t = 0, there is no peak and the wave profile
corresponds to the Gerstner wave exactly. Next, there appears a peak that rises
up to a maximum value at the moment of time t = π/µ, and then it decreases and
eventually disappears (see the picture and more detailed analysis in [3]). The motion
is periodic. Depending on external pressure, the peak height can be essentially
greater than the amplitude of the Gerstner wave. The pressure distribution (28) on
a free surface shall be calculated numerically. It is, actually, a trough in the center
of the breather and two peaks on its edges relative to the level of constant pressure
p0 (see [3]).

The wave vorticity and the invariant S2 are defined by (26), (27), where

|G′|2 = 1 +
4γ
[
γ − (α−A)

(
3a2 + (A− α)

2
)]

[
a2 + (A− α)

2
]3 ,

|F ′|2 = k2A2e2kc +
4γ I[

a2 + (A− α)
2
]3 ,

I = γ − kAekc
{

(c− α)
[
3a2 − (c− α)

2
]

cos (ka+ ϕ0)−

−a
[
a2 − 3 (α− c)2

]
sin (ka+ ϕ0)

}
.

When a meridional current σ (a, c) is superimposed on the plane wave (36), the
motion will be three-dimensional. The vorticity component ωY and the invariant
S2 will not change in this case.

7. Conclusions. We have obtained an exact analytical description of the class of
non-linear vortex waves propagating in the zonal direction in an equatorial region.
They generalize the Gerstner wave and are called Gerstner-type waves. The pressure
on the wave profile is variable. A distinguishing feature of the Gerstner-type waves
is absence of fluid particle drift in the direction of wave propagation, which is a
stringent restriction. At the same time, the considered waves describe a wide class
of possible pressure distributions on a free surface. Consequently, it is reasonable
to conjecture that the studied wave regimes may be implemented in real conditions,
including the case when free surface oscillations are strongly non-linear.
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[31] F. Reech, Sur la théorie des ondes liquids périodiques, C. R. Acad. Sci. Paris, 68 (1869),

1099–1101.
[32] A. Rodrgues-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map defining

equatorially-trapped internal water waves, Nonl. Anal., 149 (2017), 156–164.

[33] A. Rodrgues-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Pollard-like
solutions, Ann. Mat. Pura Appl., 197 (2018), 1787–1797.

[34] S. Sastre-Gomez, Global diffeomorphism of the Lagrangian flow-map defining Equatorially

trapped water waves, Nonl. Anal., 125 (2015), 725–731.
[35] R. Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math.

Phys., 18 (2011), 127–137.

http://www.ams.org/mathscinet-getitem?mr=MR2909907&return=pdf
http://dx.doi.org/10.1007/s00205-011-0483-2
http://www.ams.org/mathscinet-getitem?mr=MR2220256&return=pdf
http://dx.doi.org/10.1017/CBO9780511734939
http://www.ams.org/mathscinet-getitem?mr=MR1876166&return=pdf
http://dx.doi.org/10.1088/0305-4470/34/45/311
http://www.ams.org/mathscinet-getitem?mr=MR2867413&return=pdf
http://dx.doi.org/10.1137/1.9781611971873
http://dx.doi.org/10.1137/1.9781611971873
http://dx.doi.org/10.1029/2012GL051169
http://dx.doi.org/10.1029/2012JC007879
http://dx.doi.org/10.1175/JPO-D-12-062.1
http://dx.doi.org/10.1175/JPO-D-13-0174.1
http://dx.doi.org/10.1175/JPO-D-13-0174.1
http://www.ams.org/mathscinet-getitem?mr=MR3659720&return=pdf
http://dx.doi.org/10.1017/jfm.2017.223
http://dx.doi.org/10.1017/jfm.2017.223
http://dx.doi.org/10.1140/epjh/e2014-50016-6
http://dx.doi.org/10.1140/epjh/e2014-50016-6
http://dx.doi.org/10.1103/PhysRevLett.108.194501
http://www.ams.org/mathscinet-getitem?mr=MR3312256&return=pdf
http://dx.doi.org/10.1017/jfm.2015.40
http://www.ams.org/mathscinet-getitem?mr=MR2434727&return=pdf
http://dx.doi.org/10.2991/jnmp.2008.15.S2.7
http://www.ams.org/mathscinet-getitem?mr=MR3009060&return=pdf
http://dx.doi.org/10.1016/j.euromechflu.2012.10.001
http://www.ams.org/mathscinet-getitem?mr=MR3542902&return=pdf
http://dx.doi.org/10.1017/jfm.2016.544
http://dx.doi.org/10.1017/jfm.2016.544
http://www.ams.org/mathscinet-getitem?mr=MR3422825&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2015.10.003
http://dx.doi.org/10.1016/j.nonrwa.2015.10.003
http://www.ams.org/mathscinet-getitem?mr=MR3832172&return=pdf
http://dx.doi.org/10.1080/00036811.2017.1343466
http://dx.doi.org/10.1175/1520-0469(1978)035<1395:GAGBSE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1979)009<0226:EWIARS>2.0.CO;2
http://www.ams.org/mathscinet-getitem?mr=MR658268&return=pdf
http://dx.doi.org/10.1063/1.863802
http://dx.doi.org/10.1017/S0022112006003594
http://dx.doi.org/10.1017/S0022112006003594
http://dx.doi.org/10.1029/JC075i030p05895
http://www.ams.org/mathscinet-getitem?mr=MR3575105&return=pdf
http://dx.doi.org/10.1016/j.na.2016.10.022
http://dx.doi.org/10.1016/j.na.2016.10.022
http://www.ams.org/mathscinet-getitem?mr=MR3855412&return=pdf
http://dx.doi.org/10.1007/s10231-018-0749-5
http://dx.doi.org/10.1007/s10231-018-0749-5
http://www.ams.org/mathscinet-getitem?mr=MR3373609&return=pdf
http://dx.doi.org/10.1016/j.na.2015.06.017
http://dx.doi.org/10.1016/j.na.2015.06.017
http://www.ams.org/mathscinet-getitem?mr=MR2786939&return=pdf
http://dx.doi.org/10.1142/S1402925111001210


WIND GENERATED EQUATORIAL GERSTNER-TYPE WAVES 4453

[36] J. E. H. Weber, A note on trapped Gerstner waves, J. Geophys. Res., 117 (2011), C03048.
[37] J. E. H. Weber, Do we observe Gerstner waves in wave tank experiments?, Wave motion, 48

(2011), 301–309.

[38] J. E. H. Weber, An interfacial Gerstner-type trapped wave, Wave Motion, 77 (2018), 186–194.
[39] C.-S. Yih, Note on edge waves in a stratified fluid, Advanced Series on Fluid Mechanics,

(1991), 108–110.
[40] V. E. Zakharov and E. A. Kuznetsov, Hamiltonian formalism for nonlinear waves, Phys.-Usp.,

40 (1997), 1087–1116.

Received July 2018; revised December 2018.

E-mail address: aabrashkin@hse.ru

http://www.ams.org/mathscinet-getitem?mr=MR2781797&return=pdf
http://dx.doi.org/10.1016/j.wavemoti.2010.11.005
http://www.ams.org/mathscinet-getitem?mr=MR3754448&return=pdf
http://dx.doi.org/10.1016/j.wavemoti.2017.12.002
http://dx.doi.org/10.1142/9789812813084_0010
mailto:aabrashkin@hse.ru

	1. Introduction
	2. Lagrangian formulation of governing equations in rotating reference frame 
	3. Lagrangian invariants.
	4. Inertial Ptolemaic flows
	5. Gerstner wave generated by a running harmonic pressure wave
	6. Non-stationary waves
	7. Conclusions
	Acknowledgments
	REFERENCES

