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Abstract We test the performance of myopic and farsighted stability concepts
in a network formation experiment with a stream of payoffs and relatively un-
structured link formation process. A subtle treatment variation demonstrates
clearly the power of myopic stability concepts in precisely identifying the set
of the most stable networks. However, we also find support for the predictions
of farsighted concepts of stability, especially those that assume players’ pes-
simism about the eventual outcome of a deviation. This is the first study to
demonstrate that there exist environments where farsighted stability concepts
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cepts. Thus, myopic stability concepts are not necessarily sufficient to predict
all stable outcomes in empirical applications.
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1 Introduction

Network interactions involving a regular flow of payoffs feature in many social
and economic environments. For example, the export profits of a firm, a bank’s
risk exposure and associated returns, and the number of papers published by
academic researchers depend respectively on the network of trade partners
(Chaney, 2014), the credit and debit relationships among banks (Iori et al.,
2008; Martinez-Jaramillo et al., 2014), and the constellation of co-authors
(Liu et al., 2011; Ozel, 2012) in place at a given point in time. The importance
attached to social and professional networks is shown by the popularity of
websites such as LinkedIn, Xing, and ResearchGate. The prevalence of situ-
ations in which people and firms are concerned with benefits and losses that
they derive from their ongoing relationships makes it desirable to understand
which network structures in these environments are stable and thus likely to
be observed.

Many theories have been proposed to predict the stable outcomes of net-
work formation games. As the relationships we are interested in are those
where “it takes two to tango”, we restrict attention to theories that assume
bilateral, or pairwise link formation, where links require the consent of both
parties to form, and can be broken unilaterally. Within this approach we fo-
cus on the large and prominent group of cooperative stability concepts, which
analyze network stability by describing the conditions that stable networks
should satisfy and do not rely on a particular network formation protocol.
As we describe in more detail later, these stability concepts can be broadly
divided into three classes, assuming myopic, farsighted, or cautious farsighted
behaviour. The purpose of this study is to identify which of these classes of
concepts best describes the outcomes of network formation in an environment
with a flow of payoffs, focusing on the empirical relevance of farsighted and
cautious farsighted concepts.1

We compare the predictive power of pairwise myopic, farsighted and cau-
tious farsighted stability concepts in a laboratory experiment, implementing
two different three-player network formation games. The experiment has three
important features. First, it is novel in that it enables the clear identification of
farsighted behaviour by having networks which are predicted to be farsightedly
but not myopically stable. Secondly, reflecting the real-world applications men-
tioned above, subjects in our experiment are paid for all intermediate steps of
network formation rather than only for the final network. Finally, our subjects
interact in an essentially unstructured manner. In particular, they are able to
suggest and agree to links at any point in time. This is both a closer represen-
tation of the situations we are interested in, which do not involve strict timing
or ordering of actions, and more in the spirit of the cooperative concepts we
focus on. Allowing continuous adjustment of links also prevents players from

1 Note that many of the theoretical concepts we consider are formally defined for envi-
ronments where only the final network is payoff-relevant. As we discuss later in this section,
rather than testing the general validity of these theories, we are using them to generate
predictions in the repeated payoff setting we are interested in.
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failing to reach a desired network simply because of the miscoordination that
may arise from more structured approaches.

Overall, our experimental results suggest that if one is concerned with only
the most stable networks, myopic concepts perform best in our environment,
however, if one wishes to identify all networks which have the potential to
be stable, then cautious farsighted concepts should be considered. We now
describe these findings in more detail.

The most stable networks are those predicted by myopic stability concepts,
that is, concepts in which players are assumed to consider only the immediate
payoff consequences of adding or deleting a link they may be involved in and
do not take into account possible chains of other players’ reactions.2 Networks
that are identified as myopically stable exhibit strong empirical stability ac-
cording to two measures: they often lasted the full duration of a game, and
once they were in place, on average they remained in place for at least one
more time period with very high probability.

We also find clear evidence of the stability of networks identified by con-
cepts that assume farsighted behaviour. Farsightedness means that players
take into account the chains of reactions that might follow after their own
initial deviation.3 The most stable networks, discussed above, are not only
myopically but also farsightedly stable (for convenience we will refer to these
networks as myopically stable, but one should bear in mind that they are also
farsightedly stable). However, farsighted stability concepts predict additional
networks. Although these additional networks do not exhibit as high a degree
of stability as those identified by myopic concepts, they are the only other
networks that were regularly observed to last entire games, and once in place,
to be significantly more likely to remain than not.

Theoretical concepts can make two types of errors: failing to predict a net-
work which turns out to be stable, and predicting networks which are not
empirically stable. Thus, we can further compare the value of myopic and
farsighted concepts by studying which concepts predict exactly the set of em-
pirically stable networks. We find that this depends on the strictness of one’s
definition of empirical stability. We define the strictness of a stability defini-
tion according to the minimum probability with which a type of network must
remain in place in order to be classified as stable. We find a range of prob-
abilities where myopic concepts precisely identify the set of stable networks,
however, for a range of lower probabilities, it is two of the cautious farsighted
concepts – the largest farsightedly consistent set (Page Jr et al., 2005) and
the cautious path stable set (Teteryatnikova, 2018) – that predict exactly the
empirically stable networks. Cautious farsighted concepts assume that players

2 The myopic stability concepts we consider are pairwise stability (Jackson and Wolinsky,
1996) and the pairwise myopically stable set (Herings et al., 2009).

3 Theoretically, farsighted behavior is identified by such concepts of stability as the pair-
wise farsightedly stable set, von Neumann-Morgenstern pairwise farsightedly stable set,
largest pairwise consistent set (Herings et al. (2009), von Neumann and Morgenstern (1944),
Chwe (1994)), largest farsightedly consistent set (Page Jr et al., 2005) and cautious path
stable set (Teteryatnikova, 2018).
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will not add or delete a link if there is any possibility of eventually ending up
worse off than in the status quo. All other considered stability concepts either
predicted stability for networks that were not empirically stable, or classed as
unstable networks that were, in fact, empirically stable. Thus, if one wants to
identify only networks which have a high likelihood of showing strong stability
in a repeated payoff setting, myopic concepts are best, but if one wishes to
identify all networks which have the potential to be stable, cautious farsighted
concepts are preferable.

The relatively stronger stability of myopically stable networks is high-
lighted by a subtle difference between the two network formation games used
in the experiment. In the first game, the complete network is, in theory, my-
opically stable, while the one-link networks are farsightedly but not myopically
stable.4 In the second game, we change only the payoffs of the unstable two-link
networks, but in such a way that the one-link networks become myopically sta-
ble and the complete network only (cautious) farsightedly stable. This change
in payoffs of an unstable intermediate network leads to a complete reversal
in observed stability: the vast majority of stable networks in the first game
are complete networks, with a small but non-negligible number of stable one-
link networks; in the second game, the bulk of stable outcomes are one-link
networks, with relatively few stable complete networks.

Interestingly, the difference in stability between farsightedly and myopically
stable networks becomes smaller as subjects become more experienced. While
all theoretically stable types of networks become more stable in later rounds,
this effect is stronger for the farsightedly stable networks. This may reflect the
greater difficulty in understanding the benefits of remaining in such networks.

The primary advantage of using a lab experiment rather than a field study
is that we know the precise payoffs associated with each network; in an em-
pirical study, it may be difficult to observe not only payoffs, but even which
networks are in place at a given time. Furthermore, our relatively simple ex-
perimental setting gives the best chance of observing farsighted behaviour by
maximising the possibility for subjects to fully understand the environment
and the likely consequences of their actions. Although external validity may be
questioned, testing theoretical predictions in such a simplified setting is useful
as the stability concepts we consider are general, and should apply equally in
the laboratory as in the outside world. Thus, if a concept is not useful in ex-
plaining behaviour in the simplified laboratory environment, it is also unlikely
to have predictive power in more complex “real life” applications. Conversely,
the findings regarding farsighted stability in our experiment reveal that myopic
concepts will not in general capture all empirically stable networks.

There is a small but growing experimental literature on “pure” network for-
mation games such as ours, where payoffs are derived directly from the network

4 When we say a network is theoretically stable, we are referring to theoretic stability in
the abstract network formation games which form the basis of our experiment, rather than
in our dynamic implementation, for which the theory is not formally defined.
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structure rather than from further interactions between linked players.5 These
kinds of games are used to focus on network stability and not risk confounds
with behaviour in unrelated interactions. Among these, the most similar to
ours in terms of design are Burger and Buskens (2009) and Van Dolder and
Buskens (2014), both of which involve payments at regular intervals and link
formation in continuous time.6 Both papers consider only myopic pairwise sta-
bility, which they find to be predictive in the network games they implement.
The latter paper also identifies farsighted behaviour in the sense that groups
often move from a myopically stable network if a more efficient myopically
stable network can eventually be formed. Moreover, in line with our results,
they find that fairness concerns do not significantly influence behaviour.

Other experiments examining cooperative pairwise stability in pure net-
work formation games include Pantz (2006), Carrillo and Gaduh (2012) and
Kirchsteiger et al. (2016).7 Unlike our experiment, in all of these only one
final network is paid, and the games are played with a strict timing of moves.
Only Kirchsteiger et al. (2016) explicitly considers farsighted stability. They
find that farsightedly stable networks tend to arise, but only if not too great
a degree of farsightedness is required. Because in the games we implement
stable networks are at most two steps apart, we are unable to comment on
the limited farsightness they identify. Our design, however, more clearly shows
the importance of farsighted stability concepts for two reasons. Firstly, for
the particular definition of farsightedness in Kirchsteiger et al. (2016), all far-
sightedly stable networks are also myopically stable. In contrast, the broader
range of stability concepts we consider allowed us to have networks that are
only farsightedly stable. Secondly, their farsightedly stable networks are also
Pareto dominant amongst all stable networks, while our theoretically stable
networks are all equally efficient.

In our experiment we use cooperative theories to provide predictions about
which networks will exhibit stability. We are aware that many of these theories
are not formally defined for environments with dynamic payoffs, and we do
not claim that our experiment is a strict test of any theory. However we argue
that it is reasonable to use them for generating hypotheses in our setting, as
the intuition underlying most of these concepts tends to be dynamic in na-
ture. For example, networks that are pairwise (myopically) stable according to
Jackson and Wolinsky (1996) are justified as being stable because any devia-
tion would incur an immediate cost, and networks that are farsightedly stable

5 Experiments where payoffs are derived from games played between individuals who had
chosen to form a link in an earlier stage include Hauk and Nagel (2001) and Corbae and
Duffy (2008).

6 Berninghaus et al. (2006) also implement an experiment with free-timing of moves and
a flow of payoffs, but with unilateral link formation. Callander and Plott (2005) have treat-
ments with free timing of moves, but again in a unilateral link formation game. Their mo-
tivation was to overcome coordination problems that arise from the non-cooperative game
they implement.

7 Experiments testing (Nash) stability of networks in a non-cooperative framework include
Goeree et al. (2009), Falk and Kosfeld (2012), Callander and Plott (2005), Berninghaus et al.
(2006).
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are such because chains of deviations may incur costs. A further reason for
using cooperative concepts in a repeated payoff environment is given by Nash
et al. (2012) who follow the same approach for a repeated multilateral bar-
gaining game: in their game, as in ours, almost any outcome can be supported
as a subgame-perfect Nash equilibrium, so cooperative theories are required
to make useful predictions.8 Other recent papers using a similar methodology
include Berninghaus et al. (2006), Burger and Buskens (2009), Tremewan and
Vanberg (2016), and Van Dolder and Buskens (2014).9

The paper proceeds as follows: Section 2 discusses the theoretical stabil-
ity concepts we consider and their predictions for the two network formation
games we implement in the experiment; Sections 3 and 4 describe our labora-
tory experiment and the results; finally, Section 5 concludes. Additional tables,
formal theoretical definitions and experiment instructions are provided in the
Appendix.

2 Experimental Games and Theoretical Stability Concepts

In this section we first describe the two network formation games played in
the experiment. We then introduce the relevant theoretical stability concepts,
and explain their different predictions in the experimental games. Because we
discuss a large number of concepts, some of which involve lengthy technical
definitions, in the main text we provide only a rough intuition of why each pre-
diction arises. Formal definitions are provided in the Appendix. We emphasize
here that the purpose of this experiment is not to differentiate between each
of the myriad theoretical stability concepts that have been proposed in the
literature – this would require a huge number of treatments given the number
of concepts and the overlap in many of their predictions. We attempt only to
differentiate between three broad classes of concepts, namely those based on
myopic, farsighted, and cautious farsighted behaviour. We have a particular
interest in the last two classes, which have received the least attention in the
empirical literature.

The network formation games we implement in our experiment are shown
in Figure 1. Each game consists of the set of all possible networks for the
three-player case. These are the empty network (where no links have formed),
three one-link networks, three two-link networks, and the complete network
(where all three links are formed). For convenience of exposition, we define Gi

j

as the network, or set of networks, in Game i with j links, for i ∈ {I, II} and
j ∈ {0, ..., 3}. Nodes of a network represent players and links indicate bilateral
relationships between players. The payoff of a player in each network is rep-
resented by a number next to the corresponding node. In both games these
payoffs are anonymous, in the sense that all players in a symmetric position

8 In the Appendix C we show that all networks in both games can arise as subgame-perfect
Nash equilibria of a non-cooperative game.

9 Also related to our study are recent experiments in continuous time, such as the pris-
oners’ dilemma games in Friedman and Oprea (2012) and Bigoni et al. (2015).
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receive the same payoff – both within each network and across networks of the
same type. Given this feature, Figure 1 shows just one representative one-link
network and one representative two-link network. Moreover, in all networks,
apart from the empty network, the sum of players’ payoffs is identical, which
makes these networks equally efficient and hence, rules out efficiency concerns
as an explanation of behaviour.10

We chose this setting with three players and anonymous allocation of pay-
offs to keep things as simple as possible and maximize the chances that sub-
jects in our experiment fully understand the environment. This is particu-
larly important in view of our interest in testing for the possible existence of
farsighted behaviour in network formation, which requires subjects to under-
stand not only the payoff structure of the games, but also chains of others’
reactions. We recognize that identifying farsighted behaviour in this relatively
simple environment does not imply that it will be observed to the same ex-
tent with larger networks. However, we think it important to establish that
environments where farsighted concepts bring added value to myopic concepts
do exist.11 Conversely, not finding farsighted behaviour in our simple games
would be clear evidence that myopic concepts are sufficient.

As is most relevant to our experiment, we confine attention to the cooper-
ative pairwise theory of network formation, where creation of a link requires
the consent of both involved players, while severance of a link is a unilateral
decision of either player involved in the link.12 This theory focuses on char-
acterizing the outcome rather than the process of network formation, leaving
the process itself largely undefined or unstructured.13 Among the cooperative
pairwise concepts, two main approaches have been proposed in the literature.

10 The empty network was assigned very low payoffs in the hope that it would almost never
occur, allowing us to focus on three networks which are identified in different combinations
by different stability concepts.
11 Note that while we have networks that are farsightedly stable but not myopically stable,

we do not have networks which are only myopically stable. This is because the purpose
of our experiment is to cleanly test the added empirical value of farsighted concepts, as
the importance of myopic stability concepts is already well established. See, for example,
Kirchsteiger et al. (2016), who do have networks that are only myopically stable.
12 Two alternative approaches are explicitly modeling a network formation game according

to some exogenously given rule of order and using non-cooperative equilibrium concepts, or
considering deviating coalitions of more than two players. Examples of the former include
Myerson (1977), Aumann and Myerson (1988), Myerson (1991), Jackson and Watts (2002b),
Bala and Goyal (2000), Hojman and Szeidl (2008), Bloch (1996), Currarini and Morelli
(2000), Galeotti and Goyal (2010). Examples of the latter, with considerations of farsighted-
ness in network formation, include Chwe (1994), Xue (1998), Dutta and Mutuswami (1997),
Page Jr et al. (2005), Page Jr and Wooders (2009), Herings et al. (2004), Mauleon and Van-
netelbosch (2004), Ray and Vohra (2015). Note that the limited cooperation between the
two players involved in a link establishes an important distinction between cooperative pair-
wise stability and coalitional stability. That is, while in the pairwise approach, only special
2-player “coalitions” can form, the cooperation in such coalitions is only partial, and every
player has a natural “unilateral” domain of action. See discussion in Dutta et al. (2005).
13 This is a key difference from the approach in non-cooperative network formation models,

or in “hybrid” models such as Dutta et al. (2005), where the protocol of network forma-
tion (order of moves, choice of players to make a move at every period, players’ strategies,
knowledge assumptions, etc.) is specifically defined.
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The first approach assumes that players behave myopically, in the sense
that their decision to add or delete a link is guided completely by payoffs that
can be obtained immediately after making the change. In particular, players
do not take into account that others might react to their actions by adding
or deleting some other links, which might eventually lower or increase the
payoffs of the original individual(s). The most well-known concept within this
approach is pairwise stability, or PWS (Jackson and Wolinsky, 1996), and its
set-valued version, pairwise myopically stable set, or PWMS (Herings et al.,
2009).14 According to Jackson and Wolinsky (1996), a network is considered
pairwise (myopically) stable if no individual player can immediately benefit
from deleting one of her links, and no pair of individuals can benefit from
forming a link. It is easy to see that this holds only for the complete network
in Game I (GI

3) and for each of the one-link networks in Game II (GII
1 ).15

The second approach to cooperative pairwise stability assumes that players
are farsighted and do take into account the chains of reactions that might fol-
low after their own move. Almost all pairwise farsighted stability concepts rely
on the idea that players form or sever links based on the improvement that an
eventual stable network offers relative to the current network. These include
the pairwise farsightedly stable set (PWFS), von Neumann-Morgenstern pair-
wise farsightedly stable set (vN-MFS), largest pairwise consistent set (LPWC),
all defined in Herings et al. (2009), and the largest farsightedly consistent set
(LFC) introduced in Page Jr et al. (2005).16 Following an alternative approach,
the cautious path stable set, or CPS (Teteryatnikova, 2018), assumes that play-
ers add or delete links taking into account not only the payoff associated with
a final stable network, but also payoffs from intermediate networks.

The predictions of these farsighted stability concepts in our experimental
games can be intuitively understood as follows. In Game I, all pairwise far-
sighted concepts identify the one-link networks (GI

1) and the complete network
(GI

3) as stable. For example, the one-link networks are farsightedly stable be-
cause although either of the linked players could achieve a short-term gain by
forming a link with the third player, they do not do so as they foresee that the
other two players would then have an incentive to form the last link, leaving
them with a payoff of 22 rather than 30. Making a change in a one-link net-
work therefore “guarantees” that the eventual payoff of a linked player who
forms a second link will be worse. Similarly, in the complete network, cut-

14 A notion of the pairwise myopically stable set relies on the assumption that players make
changes along a myopic improving path of networks, which was first defined by Jackson and
Watts (2002a).
15 One problem with this concept is that pairwise stable networks are immune to just one-

link deviations. It could be, for example, that a player in the complete network would not
benefit from deleting a single link but would benefit from deleting two links simultaneously,
and yet the network is pairwise stable. Such scenario is not captured in our experimental
games, and it remains for future research to determine whether the predictive power of
pairwise stability would be lower in cases when players can benefit from severing multiple
links at a time.
16 All of these concepts apart from PWFS are based on earlier definitions in von Neumann

and Morgenstern (1944) and Chwe (1994).
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ting a link “guarantees” that the player’s payoff will not improve: in this case
even the short-term payoff of the player is worse than in the complete network
(17 < 22).
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Fig. 1 Experimental Games: Game I (above) and Game II (below).

The same certainty regarding the negative consequences of a link change
clearly exists for each one-link network in Game II (GII

1 ), as 30 is the maximum
payoff players can achieve, and so these networks are stable under all farsighted
concepts. However, in the complete network of Game II (GII

3 ), deleting a
link may or may not eventually decrease a player’s payoff, depending on the
subsequent action chosen by the player with two links remaining, who now
has an incentive to cut a further link. If the link that is deleted at this second
step is with the original player, she will be worse off, however, if it is with
the third player she will be better off. The possibility of an eventual payoff
improvement as a result of cutting a link in the complete network makes this
network unstable according to many farsighted concepts of stability (PWFS,
vN-MFS). It is only when players are sufficiently cautious or pessimistic about
future network changes that they prefer to avoid the risk and do not delete
a link in the complete network.17 This intuition is captured by such concepts
of stability as LPWC, LFC and CPS, which identify the complete network as
stable.18

In summary, in Game I all pairwise myopic and farsighted concepts of sta-
bility identify the complete network (GI

3) as stable; in addition, all farsighted
concepts identify one-link networks (GI

1) as stable. In Game II, on the contrary,

17 Alternatively, the risk of ending up with a worse payoff could be avoided if the sec-
ond player in the two-link network could credibly commit to delete the “correct” link. In
our experimental games and in many real-life applications that we are interested in such
commitment is not possible.
18 The idea behind these concepts is that no player has an incentive to deviate by adding

or deleting a link in a network if there exist further deviations leading to some network (in
the stable set) where the initially deviating players are not better off, and possibly worse
off.
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Table 1 Summary of predictions

Concept Concept Type Game I Game II

PWS myopic GI
3 GII

1

PWMS myopic GI
3 GII

1

PWFS farsighted GI
1, G

I
3, G

I
2 GII

1

vN-MFS farsighted GI
1, G

I
3 GII

1

LPWC cautious farsighted GI
1, G

I
3 GII

1 , GII
3 , GII

2

LFC cautious farsighted GI
1, G

I
3 GII

1 , GII
3

CPS cautious farsighted GI
1, G

I
3 GII

1 , GII
3

all myopic and farsighted concepts of stability identify one-link networks (GII
1 )

as stable; in addition, the cautious farsighted concepts identify the complete
network (GII

3 ) as stable. These predictions of different farsighted and myopic
stability concepts in both games are summarized in Table 1, and more detail is
provided by Table 8 in the Appendix.19 For simplicity, in the following we will
refer to the network which is stable only under cautious farsighted concepts
(GII

3 ) as cautious farsighted (cFS), those which are stable under all farsighted
but not myopic concepts of stability (GI

1) as farsightedly stable (FS), and we
will refer to networks that are myopically stable (GI

3 and GII
1 ) as pairwise

stable (PWS), keeping in mind that they are also farsightedly stable.
In addition to the networks that we describe as FS and cFS, each of the

two-link networks is also identified as stable by one of the farsighted concepts:
PWFS in Game I and LPWC in Game II. The reason has to do with the details
of both concepts’ definitions, which we leave for the Appendix. Inspecting the
payoffs of the games, and as discussed further in the Appendix, it is intuitively
unlikely that these networks will exhibit stability. Thus we do not refer to these
networks as farsightedly stable.

3 Experimental Design

In this section we first describe the playing screen, the manner in which sub-
jects interacted, and further procedural details. We then describe our strategy
of identifying which networks are empirically stable and of comparing the rel-
ative validity of different stability concepts in our setting.

3.1 Experimental Procedures

On the playing screen, subjects saw themselves represented as a green circle at
the bottom of the screen and the other two players as blue circles at the top.

19 To be close to our experimental design, CPS predictions are calculated under the as-
sumption that players’ payoffs associated with a sequence of networks are defined by the
arithmetic average of payoffs in all networks of the sequence.
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Links could be formed between two players in the following way. A subject
could indicate they were willing to form a link with another player by clicking
on the appropriate blue dot, resulting in a pink arrow pointing towards the
other player. Clicking again would undo this action. If two players had both
clicked on each other then a link was formed and shown in red. Links could
be broken by either of the parties clicking on the other, leaving a pink arrow
pointing towards the player who had broken the link. All of these actions could
be taken at any time, and were immediately observed by the other two players.

Payoffs were made at one second intervals according to the network de-
scribed by the red links.20 Each player’s per-second payoffs were displayed
next to their circle. Each game lasted 30 seconds: we chose this duration as a
compromise between lasting long enough for stable networks to emerge, but
short enough that boredom was unlikely to motivate subjects to leave other-
wise stable networks. We refer to each 30 second game as a “round”. The total
points accrued were displayed and updated throughout the round, as was the
number of seconds remaining.

The playing screen seen by subjects is shown in the instructions in the
Appendix. A video of a sample round can be viewed at http://homepage.

univie.ac.at/james.tremewan/Research/network.mp4.
Before commencing the paid rounds, subjects completed a detailed tutorial

familiarizing them with the interface, and played three practice rounds with
payoffs different from those in the games of interest. Throughout the experi-
ment subjects were able to consult a handout showing the per-second payoff
of every player in each of 8 possible networks of every game. Each session con-
sisted of 20 incentivised rounds with groups randomly rematched after each
round.21 The type of network in place at the beginning of each round was ran-
domly determined. More precisely, one quarter of games began in the empty
network, one quarter in one of the three one-link networks, one quarter in one
of the three two-link networks, and one quarter in the complete network.

The experiments were programmed in Z-tree (Fischbacher, 2007) and took
place at the Vienna Center for Experimental Economics. For each game, four
sessions were conducted, each consisting of 18 subjects divided into two match-
ing groups. This gives us a total of 8 independent observations per game, and
16 in total. One randomly chosen period was paid, with every 45 points ex-
changed for 1 Euro. Sessions lasted approximately one hour.

3.2 Predictions

The identification of networks as empirically stable requires an absolute defini-
tion of stability. Strictly speaking, the theories suggest that a stable network,

20 Note that although payoffs occur at one second intervals, subjects could observe intra-
period actions of other players as they were taken.
21 One advantage of our design is that stable networks can arise very quickly, with the

brevity of each game allowing for a large number of repetitions and thus greater learning.
In earlier experiments, subjects played only three or four times.

http://homepage.univie.ac.at/james.tremewan/Research/network.mp4
http://homepage.univie.ac.at/james.tremewan/Research/network.mp4
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once entered, will remain in place with probability one. However, given the in-
evitable noise in human behaviour, this criterion is too strict. We define a type
of network as being stable with respect to q̄ if such a network that is in place
for a given payment remains in place for the next payment with probability
greater than some fixed probability q̄:22

Definition 1 A type of network is stable with respect to probability q̄ if, con-
ditional upon being paid in the current period, the probability of it being paid
in the next is greater than q̄.

Higher values of q̄ represent more strict definitions of stability. The value
of q̄ that should be considered in a given application will depend on what
one considers sufficiently “stable” in that context. Note that this definition
controls for the probability with which a network is reached. That is, we are
primarily interested in the stability of networks once they have arisen, rather
than the frequency with which they occur.

Let q be the proportion of paid networks of type Gi
j that remain in place

for the next payment. Thus, there is statistical evidence that network Gi
j is

stable according to Definition 1 if we can reject the null hypothesis H0 : q ≤ q̄.

Which networks are determined to be stable clearly depends on the value
chosen for q̄. In the results section we first identify the networks which are
stable for q̄ = 0.5 (Section 4.3). We view this as a minimal criterion for stability,
under which networks are more likely to remain in place than not. We then
show how this set of networks changes as the requirement for stability becomes
more strict (i.e. as q̄ increases to one).

Each theoretical stability concept divides the set of all networks into those
which are stable and those which are unstable, as shown in Section 2. Rather
than formally define a hypothesis for each concept, it is more straightforward
to identify the networks which are stable, and compare this set of empirically
stable networks to the sets that are predicted theoretically. For a concept to
be validated in our setting, the empirically and theoretically stable sets should
coincide precisely. Thus, theories can be rejected either for failing to predict
networks which turn out to be empirically stable, or predicting networks to be
stable when they are not.23

We are also interested in whether networks that are myopically stable are
more stable than those that require farsighted behaviour. We therefore com-
pare the relative stability of each type of network, predicting that networks
identified by myopic concepts are more stable than those predicted only by
farsighted concepts.

22 We cannot simply use the average duration of networks as the basis of a measure of
stability because the final network in every game is censored.
23 Note that this is different from testing outcomes in a multi-equilibria environment, where

failure to observe one of the equilibria does not invalidate the theory. We are not asking
which networks will arise, but which networks are stable given that they have been entered,
which is why all networks identified by a concept must be stable.
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4 Results

We begin this section by giving a descriptive overview of the data before pro-
ceeding to formal statistical tests. The first set of tests are relative, comparing
the stability of different types of networks. The second set of tests ask whether
or not each type of network is “stable” using the absolute definition of sta-
bility described in the previous section (Definition 1). Finally, we consider
learning by comparing network stability in the first and second halves of the
experiment, and look at transitions between networks.

4.1 Data Overview

To give a full picture of the raw data, in the initial descriptive analysis we focus
on the simplest statistic capturing the stability of a network, the duration of
a network. We measure the duration of a network as the number of payments
that occur between when the network is formed and when a different network
becomes the basis for payment.24 We regard the one-second period between
payments as non-binding negotiation, so, for example, if a link is broken and
reformed between payments, we do not consider the second network to be
new. We refer to the number of consecutive payments of a given network as
its duration in periods.

The duration and frequencies of each type of network in each game are
displayed in Figures 2 and 3. To accommodate the large number of networks
of short duration while keeping visible differences in the distributions of more
stable networks, the data is split between durations of ≤ 5 and > 5 periods.
Summary statistics of the different types of networks are given in Table 2.

The PWS networks (GI
3 and GII

1 ) clearly display the greatest stability, of-
ten lasting upwards of 15 seconds. The FS networks GI

1 and the cFS network
GII

3 also often last more than half the periods of a game, but much less fre-
quently than the PWS networks. By contrast, distributions of GI

2 (identified
by PWFS) and GII

2 (identified by LPWC) do not possess these long tails, and
there is only one round in which one of these two types of networks lasts longer
than half the game. The empty networks occur rarely, and seldom last more
than two seconds. As the only networks observed to last entire games, it is
already clear that GI

3, GII
1 , GI

1, and GII
3 display a potential for strong stability,

which the other networks do not.25

24 While being a clear indicator of stability, as remarked earlier (see footnote 22) the
average duration of networks cannot be used in a formal test of stability due to censoring
of final networks in every game.
25 The two-link networks are the most frequent in each game, largely due to the necessity of

passing through these networks when moving between the more stable one-link and complete
networks.
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Empty (GI
0)

1− Link (GI
1)

2− Link (GI
2)

Complete (GI
3)

Fig. 2 Duration and frequency of networks (Game I)
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Empty (GII
0 )

1− Link (GII
1 )

2− Link (GII
2 )

Complete (GII
3 )

Fig. 3 Duration and frequency of networks (Game II)
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Table 2 Summary statistics.

Network Average Duration Frequency 15+
(proportion)

Game I

Empty 1.27 248 0.00
One-link 2.39 1026 0.04
Two-link 1.39 1929 0.00
Complete 6.77 1322 0.19

Game II

Empty 1.28 252 0.00
One-link 6.07 1561 0.16
Two-link 1.76 1649 0.00
Complete 3.79 447 0.09

Average Duration: total number of per-second payments divided by frequency. Frequency:
number of times network type formed and was paid at least once. 15+: proportion of
networks that remained in place for at least 15 payments.

4.2 Comparative Stability

We turn now to formal statistical tests. Table 3 reports the proportions of paid
networks of each type that are also paid in the subsequent period, along with
standard errors clustered by matching group. These proportions disaggregated
by matching group can be found in the Appendix (Table 9).

Table 3 Proportion of paid networks that are also paid in the subsequent period (q).

Proportions (q)
Network Game I Game II Difference (∆)
Empty 0.33 0.29 -0.04

(0.027) (0.031) (0.040)
One-link 0.68** 0.89*** 0.21***

(0.065) (0.025) (0.0.67)
Two-link 0.45 0.52 0.07

(0.022) (0.039) (0.043)
Complete 0.92*** 0.79*** -0.13**

(0.026) (0.048) (0.053)

Standard errors clustered by matching group in parentheses. **(***) p < 0.05 (p < 0.01).
Null hypothesis for columns two and three: H0 : q ≤ 0.5. Null hypothesis for column four:
H0 : ∆ = 0. # observations: 13,920.

As can be seen in Table 3, changing the payoffs attached to the two-link
network from those in Game I to those in Game II has no significant impact
on the stability of the empty network or the two-link networks themselves.
However, it increases the probability of remaining in the one-link network by
0.21 (p < 0.01) as it becomes PWS, and decreases the probability of remaining
in the complete network by 0.13 (p < 0.05) as it becomes only cFS. Thus, we
find a strong treatment effect, with the PWS networks apparently more stable
than either the FS or cFS networks.
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Table 4 Probability of remaining in current network

Game I Game II Both Games

Empty -0.116*** -0.228*** -0.174***
(0.0311) (0.0553) (0.0360)

PWS 0.470*** 0.367*** 0.402***
(0.0251) (0.0337) (0.0281)

FS 0.234*** 0.196***
(0.0601) (0.0605)

cFS 0.267*** 0.271***
(0.0641) (0.0615)

Complete 0.0308
(0.0351)

Constant 0.448*** 0.521*** 0.486***
(0.0217) (0.0391) (0.0246)

Observations 13,920 13,920 27,840
R-squared 0.223 0.159 0.190

PWS: Complete network in Game I and one-link networks in Game II; FS: one-link
networks in Game I; cFS: Complete network in Game II. Standard errors clustered by
matching group in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

To compare the stability of networks within a game we regress the proba-
bility of remaining in the current network on the different types of networks,
with the two-link network as the comparison group. Table 4 presents the re-
sults of linear probability models26, the first column using data from only
Game I, the second from only Game II, and the third pooling the data from
both games. Because in the final regression we want a variable for all pairwise-
stable networks, the dummy variable PWS takes the value one for networks in
GI

3 and GII
1 . In line with the notation introduced earlier, we label the dummy

variables indicating GI
I and GII

3 as FS and cFS, respectively.

As can be seen from the first column of Table 4, the networks in Game
I can be ranked from least to most stable as empty, two-link, one-link (FS),
complete (PWS), with all relationships significant (p < 0.01). The second col-
umn reports the results for Game II, ranking the networks from least to most
stable as empty, two-link, complete (cFS), one-link (PWS), with all relation-
ships strongly significant (p < 0.01) apart from the last, with the one-link
network being only weakly more stable than the complete (p = 0.068).

The last column of Table 4 addresses the possibility that the stability of the
complete network is due in part to the fact that it represents an equal share
of the surplus to all players, and thus may be focal, or appeal to subjects
with fairness concerns. To test this we pool the data from the two games, and
include as a regressor a dummy for being a complete network. This controls

26 Note that our motivation for running regressions is primarily to find the statistical
significance of differences in the proportions shown in Table 3. For this, a simple linear
probability will suffice, and has the advantage over other specifications that the coefficients
are precisely the differences in the reported proportions.
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for fairness concerns because the coefficient on the dummy variable for the
complete network in Game II (cFS) now represents extra stability given by
factors other than factors shared with the complete network in Game I. As
can be seen from the final column of Table 4, the coefficient on the complete
network dummy is insignificant and close to zero, whereas all the findings
from the previous two regressions are unchanged. We are therefore confident
that the stability of the complete networks is not due to focality or fairness
concerns.

4.3 Absolute Stability

We now test whether each type of network is stable according to the absolute
measure of stability proposed in Definition 1 (Section 3.2). We first identify
which networks are stable for what we consider a minimal requirement for
stability, q̄ = 0.5, that is a network is more likely to remain in place than not.
With empirical probabilities of remaining in the same network of 0.92 and 0.89
respectively, the PWS networks in both games (GI

3 and GII
1 ) are found to be

stable according to one-tailed t-tests (p < 0.01). The equivalent probabilities
for the FS network (GI

1) and the cFS network (GII
3 ) are 0.68 and 0.79, both

significantly greater than 0.5 (p < 0.05 and p < 0.01, respectively).

The empty networks in both games, and the two-link networks in Game I
are less likely to remain in place than be left, so cannot be stable according to
our definition. The probability of remaining in the two-link networks in Game
II is 0.52, but this is not significantly greater than 0.5 (p = 0.3).

Comparing the set of networks that are empirically stable according to
these tests to the sets identified by different theoretical stability concepts,
we can see that only two of the cautious farsighted concepts, CPS and LFC,
identify them precisely: in Game I, myopic concepts do not include the stable
GI

1, and the farsighted PWFS contains the unstable GI
2; in Game II, none of

the myopic and simple farsighted concepts (PWS, PWMS, PWFS, vN-MFS)
contain the stable GII

3 , while the cautious farsighted LPWC identifies the
unstable GII

2 .

Figure 4 shows how the set of stable networks varies as the criterion for
stability becomes stricter. For each value of q̄ ∈ [0.5, 1] we show the networks
that are identified as stable at the 5% level, i.e. where we can reject the hy-
pothesis that a type of network remains in place with probability less than or
equal to q̄.

For q̄ ∈ [0.5, 0.56], there is no change in the set of stable networks. For
q̄ ∈ [0.56, 0.70], GI

1 is no longer stable, and none of the theoretical concepts we
consider precisely identify the remaining three networks. For q̄ ∈ [0.70, 0.84],
the only stable networks are those identified by PWS. For q̄ ∈ [0.84, 0.87], only
GI

3 is stable, which is again not the prediction of any theory, and for q̄ > 0.87,
no network can be categorized as stable.
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GII
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3
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∅

CPS,LFC PWS

Fig. 4 Sets of networks which are stable with respect to q̄ ∈ [0.5, 1]. A network Gi
j which

remains in place with empirical probability q is considered stable if H0 : q ≤ q̄ is rejected
with p < 0.05.

4.4 Learning

We now consider how stability of networks changes as subjects gain more expe-
rience. To that end we compare the first and last ten rounds of the experiment.
First of all we note that all the results from the preceding two subsections hold
when looking exclusively at either early or late rounds (details available on re-
quest). Table 5 shows the probability of remaining in each of the networks in
the first and last 10 rounds, and the difference between the two.

The empty networks become slightly less stable over time with the proba-
bilities of remaining in place reduced by 4 p.p. and 3 p.p. in Games I and II
respectively, while the equivalent probabilities for the two-link networks are
almost unchanged. None of these differences are statistically significant. The
PWS networks in both games increase in stability, by 5 p.p. in Game I and 2
p.p. in Game II, with the former difference marginally significant (p < 0.1).
Stability increases substantially for both the FS (11 p.p.) and cFS (8 p.p.)
networks, however only the former is statistically significant (p < 0.05).

Thus, it appears in general that networks that are identified theoretically as
stable increase in stability as subjects become more experienced. This is par-
ticularly evident for the farsighted stability concepts (although this difference
in differences is not statistically significant in either game).
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Table 5 Proportion of paid networks that are also paid in the subsequent period (q).

Proportions (q)
Network First 10 rounds Last 10 rounds Difference

Game I

Empty 0.35 0.30 -0.04
(0.044) (0.023) (0.053)

One-link 0.63 0.74 0.11**
(0.056) (0.074) (0.039)

Two-link 0.44 0.45 0.01
(0.022) (0.033) (0.032)

Complete 0.89 0.94 0.05*
(0.032) (0.026) (0.021)

Game II

Empty 0.30 0.28 -0.03
(0.046) (0.040) (0.062)

One-link 0.88 0.90 0.02
(0.027) (0.025) (0.014)

Two-link 0.52 0.52 -0.01
(0.38) (0.049) (0.037)

Complete 0.74 0.82 0.08
(0.049) (0.052) (0.044)

Standard errors clustered by matching group in parentheses. **(***) p < 0.05 (p < 0.01).
# observations: 13,920.

4.5 Transitions

While the main interest of this paper is the stability of individual networks,
and our measure of stability controls for the probability that a network arises,
it is of interest to see how transition probabilities influence the frequency of
different networks. Tables 6 and 7 show the transition probabilities between
paid network types for Games I and II, respectively (more detail can be found
in Tables 10 and 11 in Appendix D, which disaggregate the one and two-link
networks).27

The vast majority of transitions involve the addition or deletion of a single
link. The only notable exception to this are transitions in both games from
the empty network, of which 20% jump directly to a two-link network, or
occasionally the complete network; subjects are understandably in a hurry
to escape the inefficient outcome. The small discrepancy between the figures
in Table 3 and the proportion of one-link to one-link and two-link to two-
link transitions are due to the small number of cases where a link is deleted
and another added within a second so that there is a transition between two
distinct networks of the same type.

The most interesting transitions are those from the two-link networks. In
each game, transitions from a two-link network can either be to a PWS or
a (c)FS network. Transitions to the PWS network follow an improving path
and are immediately beneficial to any party connected to the altered link,
whereas transitions to the FS and cFS networks involve an immediate loss
to one of the parties. The myopically attractive transitions to the PWS are

27 Rows do not always add to one due to rounding.
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substantially more common than transitions in the other direction: in Game
I, 33% of transitions are to the PWS complete network compared to 16% to
a FS one-link network; in Game II, 33% of transitions are to a PWS one-link
network compared to 9% to the cFS complete network. As one quarter of
all games begin in two-link networks, this goes some way to explaining the
greater frequency of PWS networks relative to FS networks (see Table 2). The
fact that the difference in frequencies is smaller in Game I, where the one-
link network is FS, is most likely due to our first observation that transitions
typically involve only the addition or deletion of a single link: a majority of
the quarter of games that begin in the empty network transition through a
one-link network. Thus, the nature of transitions favour the occurrence of both
PWS and one-link networks.28

Table 6 Transitions (row to column) - Game I

Empty 1-link 2-link Complete
Empty 0.33 0.47 0.19 0.01
1-link 0.03 0.71 0.23 0.03
2-link 0.01 0.16 0.50 0.33
Complete 0.00 0.01 0.07 0.92

Table 7 Transitions (row to column) - Game II

Empty 1-link 2-link Complete
Empty 0.29 0.51 0.19 0.01
1-link 0.01 0.89 0.09 0.01
2-link 0.01 0.33 0.58 0.09
Complete 0.00 0.04 0.17 0.79

One may also wonder if subgroups of players manage to coordinate in two-
step transitions in order to improve their payoffs. The only time in our games
when it is possible to observe this kind of coordination is when two players in
a complete network each break their link with the third player and increase
their payoffs from 22 to 30. We can look for evidence of such coordination
by looking at all two-step transitions from the complete to two-link to one-
link networks. There are two types of these sequences, depending on whether
the second player to break a link does so with the third player, or with the
player who broke the first link. In the former case, the first player benefits (the
two players coordinate), whereas in the latter, the first player receives a lower
payoff (coordination fails).

28 As in Section 4.4, we compared transition probabilities in the first and last 10 rounds
of the experiment to investigate learning. While there is a small increase in the proportion
of transitions from the two-link networks to PWS networks, and decrease in transitions to
FS networks, these differences are not statistically significant.
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We find that in only 42% of such sequences in Game I and 45% in Game
2 does the player who breaks the first link benefit. The fact that these pro-
portions differ little from 50% makes it impossible to determine the relative
importance of the possible mechanisms underlying these numbers: for exam-
ple, all the second players may be choosing randomly; alternatively half may
be coordinating (e.g. by reciprocating the opportunity provided by the first
player), while the other half are motivated by inequity aversion and choose to
punish the first player for deviating from an equal payoff network. However,
the observation that deviating from a complete network more often than not
involves a loss may explain the increase in stability of these networks over
time, as noted in Section 4.4.

5 Conclusion

We find that the most stable networks in two experimental network formation
games with flows of payoffs are those identified by myopic stability concepts.
The evidence comes in three forms: firstly, they remain in place for the whole
duration of games with greatest frequency; secondly, comparing results across
games we see that networks with identical structure and payoffs are signifi-
cantly more stable when they are theoretically myopically stable; finally, within
each game, they are the networks that when entered are most likely to remain
in place for the next period.

While myopically stable networks are clearly the most stable, we also find
convincing evidence of farsighed behaviour. Both farsighted and cautious far-
sighted networks (that are not at the same time myopically stable) exhibit
stability, in that they have the potential to last the full 30 seconds of a round,
and also in that once they are in place, they are significantly more likely to
remain than not. They are also significantly more stable than all networks that
in theory are neither myopically nor farsightedly stable.

By comparing stability in the first and last ten rounds of the experiment,
we find that stability of all theoretically stable networks increases over time.
Moreover, it increases by more for farsightedly stable networks. Therefore,
subjects’ experience leads to a less significant difference in stability between
farsightedly and myopically stable networks.

Considering which concepts most precisely identify the set of all stable
networks, we find that this depends on the strictness of one’s empirical def-
inition of stability. The strictness of a definition depends on the probability
with which a type of network must remain in place in order to be classified as
stable, with stricter definitions requiring higher values of this probability. We
find that myopic concepts precisely identify the set of stable networks for a
range of high probabilities, but for definitions which are not so strict they fail
to identify all stable networks. For a range of less strict definitions, it is the
two cautious farsighted concepts that predict exactly the empirically stable
networks.
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We conclude that the appropriateness of myopic versus farsighted concepts
of stability in predicting outcomes of network interactions which involve a
regular flow of payoffs depends on the purpose of the prediction. If the aim is to
predict the outcomes that are most likely to arise, the myopic concepts perform
best, as they identify the networks that are most consistently and strongly
stable. If on the other hand, the aim is to identify the full range of outcomes
that may achieve stability, or if a weaker definition of stability is acceptable,
then the concepts that perform best are farsighted and assume pessimism
regarding final outcomes. While the importance of farsighted stability may not
generalize to all settings, for example games where longer chains of reactions
need to be anticipated, our experiment proves the existence of environments
where myopic concepts do not suffice.

A Experimental Games and Predictions

All eight possible networks in each of our two experimental games are presented below.
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Fig. 5 Game I.

In these figures g0 denotes the empty network, g1, g2 and g3 are one-link networks, g4,
g5 and g6 are two-link networks, and g7 is the complete network. Using this notation Table
8 describes theoretical predictions of different stability concepts in both games, extending
the summary provided by Table 1.
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Fig. 6 Game II.

Table 8 Detailed summary of predictions

Concept Game I Game II Predictions

PWS g7 g1, g2, g3 GI
3;GII

1

PWMS {g7} {g1, g2, g3} GI
3;GII

1

PWFS {g1, g2, g3, g7}, {g1}, {g2}, {g3} GI
1, G

I
2, G

I
3;GII

1
{g1, g6, g7}, {g2, g5, g7}, {g3, g4, g7},
{g4, g5, g7}, {g4, g6, g7}, {g5, g6, g7}

vN-MFS {g1, g2, g3, g7} {g1}, {g2}, {g3} GI
1, G

I
3;GII

1

LPWC {g1, g2, g3, g7} {g1, g2, g3, g4, g5, g6, g7} GI
1, G

I
3;GII

1 , GII
2 , GII

3

LFC {g1, g2, g3, g7} {g1, g2, g3, g7} GI
1, G

I
3;GII

1 , GII
3

CPS {g1, g2, g3, g7} {g1, g2, g3, g7} GI
1, G

I
3;GII

1 , GII
3

B Formal Definitions

In this section we formally define theoretical concepts of stability discussed in the paper.
While the application of the defined concepts to our experimental games is rather straight-
forward, technical details for some of the concepts are also explained below. The remaining
details are available from the authors.

Let Yi(g) be a payoff that player i obtains in a network g, and let the set of all possible
networks on n nodes be denoted by G. If players i and j are linked in the network g, this
is denoted by ij ∈ g; otherwise, ij /∈ g. Networks obtained by adding or deleting a link ij
to/from an existing network g are denoted by g + ij and g − ij, respectively.

Following Jackson and Wolinsky (1996), a network g is defined to be pairwise stable, or
PWS, if no player can immediately benefit from deleting one of her links, and no pair of
players can benefit from forming a link.

Definition 2 Network g ∈ G is pairwise stable if

(i) for all ij ∈ g, Yi(g) ≥ Yi(g − ij) and Yj(g) ≥ Yj(g − ij), and
(ii) for all ij /∈ g, if Yi(g) < Yi(g + ij) then Yj(g) > Yj(g + ij).

The definition of the pairwise myopically stable set of networks, or PWMS (Herings et al.,
2009), requires introducing a myopic improving path first. It is a finite sequence of networks
that can emerge when players form or sever links based on the improvement that the imme-
diately resulting network offers them relative to the current network. Formally, the definition
in Herings et al. (2009) states that a myopic improving path from a network g to a network
g′ 6= g is a finite sequence of networks g1, .., gK with g1 = g and gK = g′ such that for any
1 ≤ k ≤ K − 1 either
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(i) gk+1 = gk − ij for some ij such that Yi(gk+1) > Yi(gk) or Yj(gk+1) > Yj(gk), or
(ii) gk+1 = gk + ij for some ij such that Yi(gk+1) > Yi(gk) and Yj(gk+1) ≥ Yj(gk).

If there exists a myopic improving path from g to g′, this is denoted by g 7→ g′, and for any
network g, M(g) = {g′ ∈ G|g 7→ g′}. In terms of this notation, a pairwise myopically stable
set can be defined as follows.

Definition 3 A set of networks G ⊆ G is pairwise myopically stable if

(i) ∀ g ∈ G,
(ia) ∀ij /∈ g such that g+ ij /∈ G, (Yi(g + ij), Yj(g + ij)) = (Yi(g), Yj(g)) or Yi(g+ ij) <

Yi(g) or Yj(g + ij) < Yj(g),
(ib) ∀ij ∈ g such that g − ij /∈ G, Yi(g − ij) ≤ Yi(g) and Yj(g − ij) ≤ Yj(g),

(ii) ∀ g′ ∈ G \G M(g′)
⋂
G 6= ∅,

(iii) ∀G′ ( G at least one of conditions (ia), (ib), (ii) is violated by G′.

Simply put, a set of networks G is PWMS if (i) all possible myopic pairwise deviations
from any network g ∈ G to a network outside the set are deterred by the threat of ending
worse off or equally well off, (ii) there exists a myopic improving path from any network
outside the set leading to some network in the set, and (iii) there is no proper subset of G
satisfying conditions (i) and (ii).

The definition of the pairwise farsightedly stable set of networks, or PWFS (Herings
et al., 2009), corresponds to the one of a pairwise myopically stable set with myopic devia-
tions and myopic improving paths replaced by farsighted deviations and farsighted improv-
ing paths. A farsighted improving path is a sequence of networks, where in each network a
player or players making a change may not gain immediately but they improve their payoff
in the final network. Namely, a farsighted improving path from a network g to a network
g′ 6= g is a finite sequence of networks g1, .., gK with g1 = g and gK = g′ such that for any
1 ≤ k ≤ K − 1 either

(i) gk+1 = gk − ij for some ij such that Yi(gK) > Yi(gk) or Yj(gK) > Yj(gk), or
(ii) gk+1 = gk + ij for some ij such that Yi(gK) > Yi(gk) and Yj(gK) ≥ Yj(gk).

If there exists a farsighted improving path from g to g′, this is denoted by g → g′, and for a
given network g, F (g) = {g′ ∈ G|g → g′}. Using this notation, Herings et al. (2009) defines
a pairwise farsightedly stable set of networks as follows.

Definition 4 A set of networks G ⊆ G is pairwise farsightedly stable if

(i) ∀ g ∈ G,
(ia) ∀ij /∈ g such that g + ij /∈ G, ∃g′ ∈ F (g + ij)

⋂
G such that (Yi(g

′), Yj(g′)) =
(Yi(g), Yj(g)) or Yi(g

′) < Yi(g) or Yj(g′) < Yj(g),
(ib) ∀ij ∈ g such that g − ij /∈ G, ∃g′, g′′ ∈ F (g − ij)

⋂
G such that Yi(g

′) ≤ Yi(g) and
Yj(g′′) ≤ Yj(g),

(ii) ∀ g′ ∈ G \G F (g′)
⋂
G 6= ∅,

(iii) ∀G′ ( G at least one of conditions (ia), (ib), (ii) is violated by G′.

Intuitively, and following Herings et al. (2009) on p. 532, a set of networks G is PWFS
if (i) all possible pairwise deviations from any network g ∈ G to a network outside G
are deterred by a credible threat of ending worse off or equally well off, (ii) there exists
a farsighted improving path from any network outside the set leading to some network in
the set, and (iii) there is no proper subset of G satisfying conditions (i) and (ii). Applying
this definition to the two network formation games that we implement in our experiment,
we obtain multiple predictions. In particular, in Game I, apart from the PWFS set that
includes all one-link networks and the complete network, there are a number of PWFS
sets that contain two-link networks. For example, G = {g4, g5, g7} is PWFS because (i) all
external pairwise deviations from any network in G are deterred by a possibility of returning
to the starting network, (ii) from the empty and from each of the one-link networks there
exists a short farsighted improving path to either g4 or g5, and from the two-link network g6
there exists a one-step improving path to g7, (iii) no proper subset of G satisfies (i) and (ii).
The fact that one-link networks are not stable, while two-link networks are stable according
to some of the PWFS predictions is counterintuitive. Indeed, even though there exists an
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improving path from any one-link network to one of the two-link networks in G, farsighted
individuals should foresee that the process of network formation will not stop there, as from
each of the two-link networks another simple improving deviation leads to the complete
network, where the payoff of every player is 22 rather than 30.

Another pair of farsighted stability concepts discussed by Herings et al. (2009) are the
von Neumann-Morgenstern pairwise farsightedly stable set, or vN-MFS, and the largest
pairwise consistent set, or LPWC. They are based on the original definition of the von
Neumann-Morgenstern stable set (von Neumann and Morgenstern, 1944) and the largest
consistent set (Chwe, 1994).

Definition 5 A set of networks G ⊆ G is von Neumann-Morgenstern pairwise farsightedly
stable if (i) ∀ g ∈ G F (g)

⋂
G = ∅, and (ii) ∀ g′ ∈ G \G F (g′)

⋂
G 6= ∅.

Simply put, a set of networks G is vN-MFS if no farsighted improving path exists between
any pair of networks in G, and from any network outside the set there is a farsighted
improving path leading to some network in G.

The largest pairwise consistent set contains any pairwise consistent set. Here, rather
than define the pairwise consistent set, we introduce the LPWC set directly via the iterative
procedure that is commonly used to construct it.29 The set is given by the intersection of
sets {Zk}k≥1, where each Zk (k = 1, 2, ...) is inductively defined as follows: let Z0 ≡ G and

g ∈ Zk−1 belongs to Zk with respect to Y if

(ia) ∀ij /∈ g ∃g′ ∈ Zk−1, where g′ = g + ij or g′ ∈ F (g + ij) such that (Yi(g
′), Yj(g′)) =

(Yi(g), Yj(g)) or Yi(g
′) < Yi(g) or Yj(g′) < Yj(g),

(ib) ∀ij ∈ g ∃g′, g′′ ∈ Zk−1, where g′ = g − ij or g′ ∈ F (g − ij), and g′′ = g − ij or
g′′ ∈ F (g − ij), such that Yi(g

′) ≤ Yi(g) and Yj(g′′) ≤ Yj(g).

The resulting LPWC set requires that both external and internal pairwise deviations are
deterred. It assumes that players are sufficiently cautious and irrespective of whether they
are in the network within or outside the stable set, consider all possible improving paths
that might be followed after a deviation. Applying the above procedure to our experimental
games, we find that in Game II it identifies all, apart from the empty network, as LPWC.
Intuitively the reason why one-link networks and the complete network are stable is the
same as explained in the main text (Section 2). Furthermore, two-link networks are stable
because (ia) adding a link in a two-link network reduces the payoffs of both involved players
(or leaves them unchanged if the same link is deleted again), and (ib) deleting a link in a
two-link network may lead – via a certain farsighted improving path from one-link to two-
link to another one-link network – to the reduction of the initially deviating player’s payoff
(6 < 18). However, that specific improving path from one-link to two-link to another one-
link network requires that the intermediate network payoffs do not matter to players (and
that when a link is added, only one player must strictly improve her final payoff, and the
other only weakly). Indeed, a player with payoff 30 in a one-link network who adds a link at
the first step of that improving path obtains payoff 18 in the intermediate, two-link network
before regaining 30 in another one-link network (after deleting the second link). We note
that the same path is not improving according to alternative cautious farsighted stability
concepts – CPS and LFC – which assume that payoffs in intermediate networks matter to
players at least marginally (CPS) or that links can only be added when both players can
strictly improve their payoff in the final network (LFC).

We now define these two alternative cautious farsighted stability concepts: cautious path
stable set, or CPS (Teteryatnikova, 2018), and the largest farsightedly consistent set, or LFC
(Page Jr et al., 2005). The former requires first defining path payoffs and surely improving
path.

For any player i a path payoff is a function that specifies the payoff πi(P ) that player
i obtains on any path, or sequence of networks P . For example, this could be a simple
arithmetic average of payoffs in all networks of the sequence, or a sum with exponential
discounting. The path payoff function allows defining an improving path of networks as a

29 This procedure was originally proposed by Chwe (1994) and is described in Herings
et al. (2009) on p.539.
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sequence where every link is added or deleted based on the improvement that the remainder
of the path offers to player(s) relative to staying in the status quo network for the same
number of steps. Moreover, when players are sufficiently cautious, they change links in the
network according to not just an improving but a surely improving path. An improving
path is called surely improving relative to a (stable) set G if whenever a link is added or
deleted, the involved player(s) prefer any improving path that starts after the link is added
or deleted and leads to a network in G to staying in the current network for the same number
of steps. Then the CPS set is defined as a minimal set which satisfies the property that for
any network outside the set there exists a surely improving path relative to G leading to
some network in the set.

Definition 6 A set of networks G ∈ G is cautious path stable if (i) ∀ g′ ∈ G\G there exists
a surely improving path relative to G that leads to G, and (ii) ∀ G′ ( G violates condition
(i).

The CPS set is also shown to satisfy internal stability: for any pair of networks in the
set, there does not exist a surely improving path (relative to G) between them. Therefore,
the definition of the CPS set is conceptually similar to the one of the vN-MFS set, but it
considers path payoffs instead of final-network payoffs and surely improving paths instead
of “simple” improving paths. Clearly, predictions of CPS depend on the exact specification
of the path payoff function. In the two experimental games of this paper the predictions are
calculated under the assumption that players’ path payoffs are defined by the arithmetic
average of payoffs in all networks of the path. The details of deriving these predictions are
provided in Teteryatnikova (2018).

Finally, the largest farsightedly consistent set, or LFC (Page Jr et al., 2005) in case of
2-player coalitions and pairwise approach to link formation can be defined using a slightly
different notion of a farsightedly improving deviation. Unlike most of the farsighted concepts
considered above, it assumes that whenever a link is added, both involved players must
strictly improve their payoff in a final network (but as usual, when a link is deleted, just one
of the involved players must improve her payoff). Let us denote by F (g) a set of networks that
can be reached through a sequence of such improving deviations starting from network g. As
any such sequence is also farsightedly improving in “old” sense, we have that F (g) ⊆ F (g).
Then the farsightedly consistent set of networks and the LFC set, which is the largest such
set, can be defined as follows:

Definition 7 A set of networks G ⊆ G is farsightedly consistent if ∀ g ∈ G,

(ia) ∀ij /∈ g, ∃g′ ∈ G, where g′ = g + ij or g′ ∈ F (g + ij)
⋂
G, such that Yi(g

′) ≤ Yi(g) or
Yj(g′) ≤ Yj(g),

(ib) ∀ij ∈ g, ∃g′, g′′ ∈ G, where g′ = g − ij or g′ ∈ F (g − ij)
⋂
G, and g′′ = g − ij or

g′′ ∈ F (g − ij)
⋂
G, such that Yi(g

′) ≤ Yi(g) and Yj(g′′) ≤ Yj(g).

The LFC set is the farsightedly consistent set that contains any farsightedly consistent set.

Thus, a set of networks is largest farsightedly consistent if it is the largest set for which
given any network in the set and any deviation from that network (to a network in- or
outside the set), there exists an improving path leading to some network in the set where
the initially deviating player(s) is not better off and possibly worse off.

C Non-cooperative Network Formation Game

In this section we consider a non-cooperative network formation game that can be viewed
as an approximation of the game played in our experiment. Namely, we study a finitely
repeated version of the one-shot simultaneous-move game of Myerson (1991). At each stage,
three players simultaneously choose which players they want to be connected to (if any)
and a link is formed whenever both involved players choose each other. This game is played
repeatedly 30 times (the 30 payoffs at one second intervals in the experiment) under the
assumption that past actions are perfectly observable. Below we provide a formal description
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of this game and present a simple argument showing that the repeated play of any network
in both of our experimental treatments can arise as a subgame-perfect Nash equilibrium.30

Using formal notation, the stage game in normal form is G = (A1, A2, A3; f1, f2, f3),
where Ai is an action space of player i and fi is i’s stage-game payoff function. The action
space of each player includes a choice of not linking to anyone, linking to both other players
and linking to just one of them. For example, A1 = {∅, {2, 3}, {2}, {3}}. 30 repetitions of
this stage game result in a new game, G30, and player i’s payoff in this game is given by the
sum of her payoffs in each round:31

Fi(a) =

30∑
t=1

fi(a
t),

where at is the action profile of players at stage t and a = {at}30t=1. A strategy of player i
in the game G30 is a specification of an action at date 1, and thereafter an action at each
date t conditional on any conceivable history of play, up to and including date t− 1.

As in the static network formation game of Myerson (1991), multiple Nash equilibria
arise in this finitely repeated game. In particular, below we show that with payoff specifi-
cation of Game I, there exists a subgame-perfect equilibrium where each network is played
repeatedly for 30 rounds, and with payoff specification of Game II, there exists a subgame-
perfect equilibrium where each network is played repeatedly for either 29 or 30 rounds.
Thus, all eight networks in both of our experimental treatments can be considered as stable
according to equilibrium predictions of this non-cooperative game.

Note that in Game I any network can arise as a Nash equilibrium outcome of the stage
game. For example, the empty network is an equilibrium outcome if none of the players
proposes any links, and any two-link network is an equilibrium outcome if one player chooses
to link with both other players, while they choose to link only with that player but not with
each other. Given such choices, no player has an incentive to unilaterally change her own
action. Then, as playing a Nash equilibrium of the stage game in every round is always a
subgame-perfect equilibrium of a repeated game, we obtain that in Game I, any network
played repeatedly for 30 rounds can arise as a subgame-perfect Nash equilibrium.

Similarly, in Game II the empty network and each of the one-link networks can be
supported as a Nash equilibrium outcome of the stage game, and there exists a subgame-
perfect Nash equilibrium of the repeated game where each of these networks emerges in all
30 rounds. The two-link and complete networks, on the other hand, are not Nash equilibria
of the stage game as at least one of the players has an incentive to unilaterally delete one
link. However, it is easy to show that there exists a subgame-perfect equilibrium of the
repeated game where each of these networks arises in the first 29 rounds followed by a
one-link network in the last round.

Consider the two-link network g5 in Figure 6, where Player 2 has two links. The following
strategy profile supports the emergence of this network in the first 29 rounds of the game
(and one-link network in the last round) as a subgame-perfect Nash equilibrium.32 In each
of the first 29 rounds, if no deviation has taken place, Player 2 chooses to link with Players 1
and 3, while Players 1 and 3 choose to link with Player 2 but not with each other. In the last
round, Player 2 links only with one player, say Player 1, and Player 1 links only with Player
2 (Player 3 can do anything). If at any round t ∈ {1, .., 29}, a player i deviates to a different

30 As we discuss at the end of this section, explicitly modelling the payoff-irrelevant intra-
second actions could only increase the number of equilibria.
31 Given the short duration of the game in our experiment, such payoff definition, with

no discounting, seems to be most appropriate. Considering a discounted sum of payoffs,∑30
t=1 delta

tfi(a
t) with 0 < δ < 1, would not change our conclusions for Game I, and in

Game II, the only change would be that playing a two-link or complete network for the first
29 rounds (and a one-link network in the last round) is a subgame-perfect Nash equilibrium
as long as players are sufficiently patient (discount factor δ is greater than 1/2 or 1/6,
respectively).
32 An analogous strategy profile can be described for the other two-link networks, g4 and
g6.
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action, then from date t+1 onward (until and including the last round) the other two players
punish the deviator by proposing a link to each other but not to i. Given such strategies,
only Player 2 may have an incentive to deviate and only at t ∈ {1, .., 29}: by proposing a
link to one player instead of two, she would increase her immediate payoff from 18 to 30.
However, in all subsequent rounds her payoff would be 6, irrespective of own actions. This
makes even her best deviation, at round 29 (with only one round of punishment) unprofitable
as 30 + 6 < 18 + 30. Moreover, a deviation off the equilibrium path is not beneficial either
as the “punishing” players obtain their best possible payoff. Thus, the described strategy
profile is a subgame-perfect Nash equilibrium.

Similarly, the complete network can be supported in the first 29 rounds as a subgame-
perfect equilibrium if the following strategy profile is played. At any t ∈ {1, .., 29} each player
chooses to link with two other players, and at t = 30 Player 2 links randomly with Player 1
or 3, choosing each of them with probability 0.5, while Players 1 and 3 choose to link only
with Player 2 but not with each other (a one-link network is formed). A deviation by player
i at any t ∈ {1, .., 29} is punished by the other two players choosing to link with each other
but not with i in the remaining rounds of the game. Given such strategy profile, an incentive
to deviate may only exist at t ∈ {1, .., 29}, as deleting a link in the complete network (that
is, choosing to link with one instead of two players) increases player’s immediate payoff
from 22 to 24. However, due to the subsequent punishment, even the best possible deviation
– where Player 1 or Player 3 proposes just one link at t = 29 – is not profitable because
24 + 6 < 22 + (30 · 0.5 + 6 · 0.5). Thus, neither on or off the equilibrium path do players have
an incentive to deviate, which means that our strategy profile is a subgame-perfect Nash
equilibrium.

These findings demonstrate the existence of multiple Nash equilibria, where all networks
in Games I and II are identified as stable. Moreover, this would not change even if we
modelled precisely the games implemented in the lab by allowing moves in continuous time.
Because no payoffs occur between seconds, it is easy to see that there exist equilibria in this
new game where at the times of payoffs players choose actions as described in the various
equilibria above and they keep choosing these same actions continuously throughout the
subsequent second until the next payoff instance. This would result in equilibria where all
networks of both games last the whole 30 or 29 seconds. Note that in this sense, cooperative
concepts employed in our experiment offer a refinement of Nash equilibria by identifying a
more narrow set of stable networks.33

33 Our game differs from much of the theoretical literature on continuous time games such
as Simon and Stinchcombe (1989), where payoffs flow at the same rate actions can be taken.
We are closer to models of continuous time bargaining, such as de Groot Ruiz et al. (2016),
where not all actions are payoff relevant. They also find that the set of subgame-perfect
Nash equilibria is too large to provide useful predictions.
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D Experimental Results

Table 9 Probability of remaining in current network by matching group

Empty One-link Two-link Complete
Game 1 0.33 0.68 0.45 0.92
Matching group 1 0.33 0.91 0.51 0.99
Matching group 2 0.27 0.66 0.44 0.83
Matching group 3 0.37 0.71 0.51 0.89
Matching group 4 0.28 0.91 0.40 0.98
Matching group 5 0.43 0.40 0.47 0.88
Matching group 6 0.37 0.70 0.46 0.98
Matching group 7 0.10 0.44 0.47 0.93
Matching group 8 0.33 0.55 0.38 0.65
Game 2 0.29 0.89 0.52 0.79
Matching group 9 0.40 0.92 0.51 0.42
Matching group 10 0.22 0.88 0.62 0.39
Matching group 11 0.31 0.91 0.58 0.51
Matching group 12 0.30 0.98 0.53 0.54
Matching group 13 0.37 0.77 0.49 0.86
Matching group 14 0.15 0.89 0.54 0.92
Matching group 15 0.22 0.89 0.59 0.79
Matching group 16 0.27 0.75 0.34 0.75

Table 10 Transitions (row to column) - Game I

Empty 1-link 2-link Complete
g0 g1 g2 g3 g4 g5 g6 g7

Empty g0 0.33 0.16 0.16 0.16 0.06 0.06 0.06 0.01

1-link
g1 0.04 0.67 0.02 0.02 0.12 0.12 0.00 0.03
g2 0.03 0.02 0.67 0.02 0.12 0.00 0.12 0.04
g3 0.01 0.02 0.02 0.67 0.00 0.12 0.12 0.04

2-link
g4 0.01 0.08 0.08 0.00 0.45 0.03 0.03 0.31
g5 0.01 0.08 0.00 0.08 0.03 0.45 0.03 0.33
g6 0.02 0.00 0.08 0.08 0.03 0.03 0.45 0.34

Complete g7 0.00 0.00 0.00 0.00 0.03 0.02 0.02 0.92
Networks are labelled as in Figures 5 and 6.

Figures are averaged across symmetric transitions.
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Table 11 Transitions (row to column) - Game II

Empty 1-link 2-link Complete
g0 g1 g2 g3 g4 g5 g6 g7

Empty g0 0.29 0.17 0.17 0.17 0.06 0.06 0.06 0.01

1-link
g1 0.01 0.89 0.00 0.00 0.05 0.05 0.00 0.01
g2 0.01 0.00 0.89 0.00 0.05 0.00 0.05 0.01
g3 0.01 0.00 0.00 0.89 0.00 0.05 0.05 0.01

2-link
g4 0.01 0.17 0.17 0.00 0.52 0.03 0.03 0.09
g5 0.01 0.17 0.00 0.17 0.03 0.52 0.03 0.09
g6 0.01 0.00 0.17 0.17 0.03 0.03 0.52 0.09

Complete g7 0.01 0.01 0.01 0.02 0.06 0.06 0.06 0.79
Networks are labelled as in Figures 5 and 6.

Figures are averaged across symmetric transitions.

E Instructions

[ONSCREEN]

Before the experiment begins there will be a short tutorial and three practice games to
make sure everybody understands how points can be earned.

The points that are distributed in these three practice rounds will not affect your final
payment.

Please click ”Continue” to proceed to the tutorial.
[PRINTED]
Please read and follow these instructions. Text in italics describes things you should do

onscreen. If you have a question, raise your hand and someone will come to help you as soon
as possible.

– In each round of this experiment you will be interacting with two other people using
the screen you can see on your monitor.

– You are represented by the green dot, and the other two players by the blue dots.
– Links may be formed between two players in the following way:

– You can indicate that you are willing to form a link with another person by clicking
on their blue dot.

– Clicking on them again indicates you are no longer willing to form a link with them.
– You can click on a person as many times as you like, switching back and forth

between being willing to form a link with them or not.
– If two people have both clicked on each other then a link is formed and it is shown

in red.
– A link can be formed between to people only if both of them want it to be formed.
– If only one of the people has shown they are willing to form a link then it is shown

in pink.
– On the screen in front of you the two other people have formed a link, and the person

on your right has indicated they are willing to form a link with you.
– Click on the blue dot on the left and see how the line turns pink. Click again and

see how it becomes white again.
– Click on the blue dot on the right and see how the line turns red. Click again and

see how it becomes pink again.
– Notice that nothing you can do will change the colour of the line between the other

two people. Whether or not that link is formed depends only on their decisions.
– Every second, you and the two other people will earn points. The number of points per

second earned by each person is shown in red next two their dot.
– The number of points each person earns per second depends on which links are formed

at that point in time.
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– These numbers will vary from round to round and will be shown to you before each
round begins. The numbers for the screen you see in front of you are described in the
following diagram:

– Click on the two other people and see how the numbers in red change, and how they
relate to the diagram. Notice that it doesn’t make a difference if a line is white or pink;
the numbers change only if a link is formed or broken (i.e. becomes red, or changes from
red to pink).

– In the practice rounds and real interactions the screen will look slightly different. An
example is shown below:

– As mentioned before, points will be earned every second. The total number of points
you have earned so far in a round will be shown at the top left of the screen as shown in
the picture “Your Point”). This number will increase every second by the red number
below the green dot.

– Each round lasts for 30 seconds. The number of seconds left will shown at the top right.
– WHEN YOU HAVE UNDERSTOOD THESE INSTRUCTIONS, PLEASE CLICK THE

BUTTON ON YOUR COMPUTER SCREEN.

[ONSCREEN]
Please answer the following questions relating to the picture shown in the handout.
Click ”Continue” when you have answered all questions.
How many points are you earning per second?
How many points is the person on your left earning per second?
How many points have you earned so far this round?
How many seconds are left before the round ends?
[New Screen]
You have answered all the questions correctly.
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Before the real experiment begins there will be three practice rounds.
These practice rounds will not affect your final payment.
The purpose of these practice rounds is for you to learn how these interactions work.

You should use them to experiment and learn how links are formed and how they relate to
the payoffs. Do not worry about earning a lot of points because they do not count!

The points associated with each practice round are shown on your handout.
If you have any questions, please raise your hand and someone will come to help you as

soon as possible.
Otherwise please click ”Continue” and wait for the other participants to finish the

Tutorial.
The first practice round is about to begin.
Check the payoffs described in Figure 1 of your printed instructions. These are the

payoffs that are relevant for the practice rounds.
Click OK when you are ready to begin.
[New Screen]
The first practice round is about to begin.
Check the payoffs described in Figure 1 of your printed instructions. These are the

payoffs that are relevant for the practice rounds.
[New Screen]
Click OK when you are ready to begin.
The practice rounds are now over.
You will now be handed the diagrams which describe the payoffs for the first real rounds.
[New Screen]
You will now play a game similar to the one in the tutorial but with different payoffs.
Please look at the diagram you have just been given to see how the points you earn will

depend on the links that are formed.
You will play this game 20 times. The links that have been already formed at the

beginning of the game will be randomly determined each time.
After each time you will be randomly rematched with new participants. This means it

is unlikely you will be playing with exactly the same people as in the previous round.
When all games have been played, one game will be randomly chosen to determine how

much you will be paid. All participants will be paid for the same game. For every 90 points
you earn in that game you will be paid 2 Euros.

When you are ready to start, please click ”Continue”.
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