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Abstract

We describe the correspondence of the Matsuo–Cherednik type between the quantum n-body Ruijse-
naars–Schneider model and the quantum Knizhnik–Zamolodchikov equations related to supergroup 
GL(N |M). The spectrum of the Ruijsenaars–Schneider Hamiltonians is shown to be independent of the 
Z2-grading for a fixed value of N + M , so that N + M + 1 different qKZ systems of equations lead to 
the same n-body quantum problem. The obtained results can be viewed as a quantization of the previously 
described quantum-classical correspondence between the classical n-body Ruijsenaars–Schneider model 
and the supersymmetric GL(N |M) quantum spin chains on n sites.
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1. Introduction

The KZ-Calogero and qKZ-Ruijsenaars correspondences are the Matsuo–Cherednik type con-
structions [12,10,18,19] for solutions of the Calogero–Moser–Sutherland [4] and Ruijsenaars–
Schneider [14] quantum problems by means of solutions of the Knizhnik–Zamolodchikov (KZ) 
[8] and quantum Knizhnik–Zamolodchikov (qKZ) equations [11] respectively. Consider, for ex-
ample, the qKZ equations1 related to the Lie group GL(K):

eηh̄∂xi

∣∣∣�〉
= K(h̄)

i

∣∣∣�〉
, i = 1, . . . , n, (1.1)

K(h̄)
i = Ri i−1(xi − xi−1 + ηh̄). . .Ri1(xi − x1 + ηh̄)g(i)Rin(xi − xn). . .Ri i+1(xi − xi+1),

(1.2)

where g = diag(g1, . . . , gK) is a diagonal K ×K (twist) matrix, and g(i) acts by g multiplication 
in the i-th tensor component of the Hilbert space V = (CK)⊗n. The quantum R-matrices Rij are 
in the fundamental representation of GL(K). They act in the i-th and j -th tensor components 
of V and satisfy the quantum Yang–Baxter equation, which guarantees compatibility of equa-
tions (1.1). The twist matrix g is the symmetry of Rij : g(i)g(j)Rij = Rij g(i)g(j). In the rational 
case we deal with the Yang’s R-matrix [17]:

Rij (x) = xI + ηPij

x + η
, (1.3)

where I is identity operator in End(V), and Pij is the permutation operator, which interchanges 
the i-th and j -th tensor components in V . The operators2

Ma =
n∑

l=1

e(l)
aa (1.4)

commute with K(h̄)
i and provide the weight decomposition of the Hilbert space V into the direct 

sum

V = V ⊗n =
⊕

M1,...,MK

V({Ma}) (1.5)

of eigenspaces of operators Ma with the eigenvalues Ma ∈ Z≥ 0, a = 1, . . . , K : M1 + . . . +
MK = n. Using the standard basis {ea} in CK introduce the basis vectors in V({Ma}) as the 
vectors∣∣∣J 〉

= ej1 ⊗ ej2 ⊗ . . . ⊗ ejn, (1.6)

where the number of indices jk such that jk = a is equal to Ma for all a = 1, . . . , K . The dual 

vectors 
〈
J

∣∣∣ are defined in so that 
〈
J

∣∣∣J ′
〉
= δJ,J ′ .

Then the statement of the qKZ-Ruijsenaars correspondence is as follows [19]. For any solution 

of the qKZ equations (1.1)
∣∣∣�〉

=
∑
J

�J

∣∣∣J 〉
from the weight subspace V({Ma}) the function

� =
∑
J

�J , �J = �J (x1, ..., xn) (1.7)

1 The quantum R-matrices entering (1.2) are assumed to be unitary: Rij (x)Rji (−x) = id.
2 The set {eab | a, b = 1...K} is the standard basis in Mat(K, C): (eab)ij = δiaδjb .
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or

� =
〈
�

∣∣∣�〉
,

〈
�

∣∣∣ =
∑

J : ∣∣J 〉∈V({Ma})

〈
J

∣∣∣ (1.8)

with the property〈
�

∣∣∣Pij =
〈
�

∣∣∣ (1.9)

is an eigenfunction of the Macdonald difference operator:

n∑
i=1

n∏
j �=i

xi − xj + η

xi − xj

�(x1, . . . , xi + ηh̄, . . . , xn) = E�(x1, . . . , xn) , E =
K∑

a=1

Maga .

(1.10)

The eigenvalues of the higher rational Macdonald–Ruijsenaars Hamiltonians

Ĥd =
∑

I⊂{1,...,n},|I |=d

( ∏
s∈I,r /∈I

xs − xr + η

xs − xr

)∏
i∈I

eηh̄∂xi (1.11)

are given by the elementary symmetric polynomial of n variables ed(g1, . . . , g1︸ ︷︷ ︸
M1

, . . . gN , . . . , gK︸ ︷︷ ︸
MK

).

QC-duality. Using the asymptotics of solutions to the (q)KZ equations [15] it was also ar-
gued in [18,19] that the qKZ-Ruijsenaars correspondence can be viewed as a quantization of 
the quantum-classical duality [1,7,2] (see also [13,5]), which relates the generalized inhomoge-
neous quantum spin chains and the classical Ruijsenaars–Schneider model. Consider the classical 
K-body Ruijsenaars–Schneider model, where the positions of particles {xi} are identified with 
the inhomogeneity parameters of the spin chain which is described by its transfer matrix

T(x) = tr0

(
R̃0n(x − xn) . . . R̃02(x − x2)R̃01(x − x1)(g ⊗ I)

)
(1.12)

with the R-matrix

R̃(x) = x + η

x
R(x) = I + η

x
P. (1.13)

The quantum spin chain Hamiltonians are defined as follows:

Hi = Res
x=xi

T(x) = R̃i i−1(xi − xi−1) . . . R̃i1(xi − x1)g(i)R̃in(xi − xn) . . . R̃i i+1(xi − xi+1).

(1.14)

Therefore,

Hi = K(0)
i

n∏
j �=i

xi − xj + η

xi − xj

, K(0)
i = K(h̄)

i |h̄=0 . (1.15)

Identify also the generalized velocities {ẋi} with the eigenvalues of (1.14). Then the action vari-
ables {Ii | i = 1, ..., K} of the classical model (eigenvalues of the Lax matrix) are given by the 
values of g1, ..., gK with multiplicities M1, ..., MK :

{Ii | i = 1, ...,K} =
{

g1, . . . , g1︸ ︷︷ ︸, . . . gN , . . . , gK︸ ︷︷ ︸}
. (1.16)
M1 MK
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See details in [7], where this statement was proved using the algebraic Bethe ansatz tech-
nique.

QC-correspondence. On the other hand, the quantum-classical duality possesses a general-
ization to the so-called quantum-classical correspondence [16], where the classical Ruijsenaars–
Schneider model is related not to a single spin chain but to the set of K + 1 supersymmetric spin 
chains [9] associated with supergroups

GL(K|0) , GL(K − 1|1) , ... ,GL(1|K − 1) , GL(0|K) . (1.17)

More precisely, it was shown in [16] that the previous statement (1.16) is valid for all supersym-
metric chains with supergroups (1.17).

The aim of this paper is to quantize the (supersymmetric) quantum-classical correspondence, 
that is to establish supersymmetric version of the qKZ-Ruijsenaars correspondence for the qKZ 

equations related to the supergroups GL(N |M). We construct generalizations of the vector 
〈
�

∣∣∣
(1.8) and show that the quantum K-body Ruijsenaars–Schneider model follows from all K + 1
qKZ systems of equations related to the supergroups GL(N |M) with N + M = K (1.17). The 

skew-symmetric vectors 
〈
�−

∣∣∣ with the property 
〈
�−

∣∣∣Pij = −
〈
�−

∣∣∣ (instead of symmetric vec-

tor (1.9)) are described as well. They lead to the Ruijsenaars–Schneider model with different sign 
of the coupling constant η and h̄.

The paper is organized as follows. For simplicity we start with the rational KZ-Calogero 
correspondence. Then we proceed to the rational and trigonometric qKZ-Ruijsenaars relations. 
Most of notations are borrowed from [18,19,16]. We briefly describe the notations and definitions 
related to the graded Lie algebras (groups) in the Appendix.

2. SUSY KZ-Calogero correspondence

The rational Knizhnik–Zamolodchikov (KZ) equations [8] have the form

h̄∂xi

∣∣∣�〉
=

⎛⎝g(i) + κ

n∑
j �=i

Pij

xi − xj

⎞⎠∣∣∣�〉
, (2.1)

where 
∣∣∣�〉

=
∣∣∣�〉

(x1, . . . , xn) belongs to the tensor product V = V ⊗ V ⊗ . . . ⊗ V = V ⊗n of 

the vector spaces V = C
N |M , Pij is the (graded) permutation operator (A.7) of the i-th and j -th 

tensor components, g = diag(g1, . . . , gN+M) is a diagonal (N + M) × (N + M) matrix and 
g(i) is the operator in V acting as g on the i-th component (and identically on the rest of the 
components). The operators

Hi = g(i) + κ

n∑
j �=i

Pij

xi − xj

(2.2)

form the commutative set of Gaudin Hamiltonians [6]. Similarly to non-supersymmetric case 
they also commute with the operators:

Ma =
n∑

e(l)
aa , (2.3)
l=1
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where eab are basis elements of End(CN |M) (A.2)–(A.4). In what follows we restrict ourselves 
to the subspace V({Ma}) corresponding to a component of decomposition (1.5) with the fixed set 
of eigenvalues Ma for the operators Ma . We fix a basis in V({Ma}):∣∣∣J 〉

= ea1 ⊗ ea2 ⊗ . . . ⊗ ean =
∣∣∣a1...an

〉
,

where ea are basis vectors in V and the number of indices ak such that ak = a is equal to Ma for 
all a = 1, . . . , N + M . A general solution to (2.1) can be written as∣∣∣�〉

=
∑
J

�J

∣∣∣J 〉
, (2.4)

where the coefficients �J are functions of all parameters entering (2.1).
To proceed further we need to find a (co)vector〈

�

∣∣∣ =
∑
J

〈
J

∣∣∣�J (2.5)

similar to (1.8) with the property〈
�

∣∣∣Pij =
〈
�

∣∣∣ , (2.6)

where in contrast to (1.9) the permutation operator Pij acts in the graded space (it has the form 
(A.7)). Having such a vector and taking into account the identities (A.11) and (A.12), we can 
repeat all the calculations from [18] without any changes. They lead to the eigenvalue equation 
for the second Calogero–Moser Hamiltonian:⎛⎝h̄2

n∑
i=1

∂2
xi

−
n∑

i �=j

κ(κ − h̄)

(xi − xj )2

⎞⎠� = E�, (2.7)

where

� =
〈
�

∣∣∣�〉
=

∑
J

�J �J (2.8)

and

E =
N+M∑
a=1

Mag
2
a . (2.9)

Let us construct the vector 
〈
�

∣∣∣. Due to (A.9) the basis vector 
〈
J

∣∣∣ entering 
〈
�

∣∣∣ can not contain 
two identical fermions (vectors ea with p(a) = 1). Otherwise we get a contradiction with (2.6). 

Keeping this in mind choose a vector 
∣∣∣J 〉

with a1 ≤ a2 ≤ ... ≤ an from V({Ma}), and fix the 

coefficient �a1≤a2≤...≤an = 1 for this set. Next, generate the rest of vectors 
∣∣∣J 〉

by the rule that 
the permutation of two nearby indices multiplies the coefficient by the standard parity factor:

�a1 a2...am+1 am...an = (−1)p(am)p(am+1)�a1 a2...am am+1...an (2.10)

By repeating this procedure and summing up all the resultant vectors 
∣∣∣J 〉

(in the orbit of the 
action of permutation operators with the corresponding coefficients �J ) we get the final answer 

for 
∣∣∣�〉

. Here are some examples.
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Example 2.1. Let N + M = 2, n = 3, M1 = 2, M2 = 1, p(1) = 0, p(2) = 1. Then∣∣∣�〉
=

∣∣∣112
〉
+

∣∣∣121
〉
+

∣∣∣211
〉
. (2.11)

Example 2.2. Let N + M = 3, n = 3, M1 = M2 = M3 = 1. Then∣∣∣�〉
=

∣∣∣123
〉
+(−1)p(1)p(2)

∣∣∣213
〉
+(−1)p(2)p(3)

∣∣∣132
〉
+

+ (−1)p(1)p(3)+p(2)p(3)
∣∣∣312

〉
+(−1)p(1)p(2)+p(1)p(3)

∣∣∣231
〉
+

+ (−1)p(1)p(2)+p(2)p(3)+p(1)p(3)
∣∣∣321

〉
.

(2.12)

Example 2.3. Let N + M = 3, n = 4, M1 = 2, M2 = M3 = 1, p(1) = 0, p(2) = p(3) = 1. Then∣∣∣�〉
=

∣∣∣1123
〉
+

∣∣∣1213
〉
+

∣∣∣2113
〉
+

∣∣∣1231
〉
+

+
∣∣∣2311

〉
+

∣∣∣2131
〉
+

∣∣∣2113
〉
−(2 ↔ 3) .

(2.13)

Note that in the case when p(a) = 0 for all a we return back to the non-supersymmetric case: 
�J = 1 for all J . On the other hand, when p(a) = 1 for all a we get completely antisymmetric 
tensor �a1...an = εa1...an . Thus different choices of B (A.1) provide different eigenfunctions (2.8). 
At the same time the eigenvalues are the same (2.9), so that we get a degeneracy of the spectrum 
for the Hamiltonian (2.7).

It is also worth noting that in order to change the sign of κ in the Hamiltonian (2.7) we need 

to construct vector 
∣∣∣�−

〉
, which is antisymmetric under the action of permutations:〈

�−
∣∣∣Pij = −

〈
�−

∣∣∣ , (2.14)

where the sign is opposite to the one in (2.6). Such a vector can not contain two identical bosons 
because the permutation of them contradicts assumption (2.14). In other situations it can be 
constructed. The example is given below.

Example 2.4. Let N + M = 3, n = 3, M1 = M2 = M3 = 1 as in (2.12) and p(1) = p(2) =
p(3) = 1. Then∣∣∣�−

〉
=

∣∣∣123
〉
+

∣∣∣213
〉
+

∣∣∣132
〉
+

∣∣∣312
〉
+

∣∣∣231
〉
+

∣∣∣321
〉
. (2.15)

3. SUSY qKZ-Ruijsenaars correspondence: rational case

In this section we generalize the correspondence between KZ equations and Calogero–Moser 
systems to the case of SUSY qKZ equations and the Ruijsenaars–Schneider systems. The qKZ 
equations have the form

eηh̄∂xi

∣∣∣�〉
= K(h̄)

∣∣∣�〉
, i = 1, . . . , n , (3.1)
i
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where the operators in the r.h.s.

K(h̄)
i = Ri i−1(xi − xi−1 + ηh̄) . . .Ri1(xi − x1 + ηh̄)g(i)Rin(xi − xn) . . .Ri i+1(xi − xi+1)

(3.2)

are constructed by means of the quantum R-matrix R, which is a (unitary) solution of the graded 
Yang–Baxter equation. We start with the rational one

Rij (x) = xI + ηPij

x + η
, (3.3)

where Pij is the graded permutation operator (A.7). Similarly to the non-supersymmetric case 
introduce the rescaled R-matrix:

R̃(x) = x + η

x
R(x) = I + η

x
P. (3.4)

The transfer matrix of the corresponding supersymmetric spin chain

T(x) = str0

(
R̃0n(x − xn) . . . R̃02(x − x2)R̃01(x − x1) (g ⊗ I)

)
(3.5)

provides non-local Hamiltonians as its residues:

T(x) = str g · I +
n∑

j=1

ηHj

x − xj

. (3.6)

Explicitly,

Hi = R̃i i−1(xi − xi−1) . . . R̃i1(xi − x1)g(i)R̃in(xi − xn) . . . R̃i i+1(xi − xi+1). (3.7)

Alternatively,

Hi = K(0)
i

n∏
j �=i

xi − xj + η

xi − xj

. (3.8)

From comparison of expansions of the transfer matrix as x → ∞ in the forms (3.5) and (3.6)

str g · I + η

x

n∑
i=1

str0

(
P0ig(0)

)
+ . . . = str g · I + η

x

n∑
i=1

Hi + . . . (3.9)

we obtain:

n∑
i=1

Hi =
n∑

i=1

g(i) =
N+M∑
a=1

gaMa, (3.10)

where the property (A.12) was used. To obtain the correspondence we project the qKZ-equations 

on the vector 
∣∣∣�〉

(2.6), constructed in the previous section:

eηh̄∂xi

〈
�

∣∣∣�〉
= eηh̄∂xi � =

〈
�

∣∣∣K(h̄)
i

∣∣∣�〉
=

〈
�

∣∣∣K(0)
i

∣∣∣�〉
, (3.11)

and repeat all calculations from [19]. This yields:
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n∑
i=1

⎛⎝ n∏
j �=i

xi − xj + η

xi − xj

⎞⎠ eηh̄∂xi � =
n∑

i=1

n∏
j �=i

xi − xj + η

xi − xj

〈
�

∣∣∣K(0)
i

∣∣∣�〉

=
n∑

i=1

〈
�

∣∣∣Hi

∣∣∣�〉
=

n∑
i=1

〈
�

∣∣∣g(i)
∣∣∣�〉

=
N+M∑
a=1

ga

〈
�

∣∣∣Ma

∣∣∣�〉
=

(
N+M∑
a=1

gaMa

)
�,

where

� =
〈
�

∣∣∣�〉
(3.12)

is the eigenfunction and

E =
N+M∑
a=1

gaMa (3.13)

is the eigenvalue.

Remark 3.1. To obtain the Macdonald–Ruijsenaars Hamiltonian with the opposite sign of the 
coupling constant η and h̄ one should start with the R-matrix

Rij (x) = xI + ηPij

x − η
(3.14)

in (3.1) instead of (3.3). The R-matrix (3.14) is still unitary and acts identically on the antisym-

metric vector 
∣∣∣�−

〉
(2.14) which is to be used instead of 

∣∣∣�〉
.

3.1. Higher Hamiltonians

Following the construction in the non-supersymmetric case, it can be shown that the wave 

function � =
〈
�

∣∣∣�〉
satisfies the equations

d∏
s=1

e
ηh̄ ∂

∂xis � =
〈
�

∣∣∣K(0)
i1

. . .K(0)
id

∣∣∣�〉
for ik �= im . (3.15)

The proof of this statement is the same as in [19]. One more point needed for the correspondence 
is the determinant identity

det
1≤i,j≤n

(
zδij − ηHi

xj − xi + η

)
=

N∏
a=1

(z − ga)
Ma . (3.16)

It was proven for the supersymmetric case in [16]. Therefore, the correspondence works in the 

supersymmetric case as well. Namely, given a solution |�
〉

of the qKZ equations the wave func-

tion of the rational Ruijsenaars–Schneider quantum problem is given by (3.12). The eigenvalues 
are the same symmetric polynomials as in the non-supersymmetric case (1.11).
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4. SUSY qKZ-Ruijsenaars correspondence, trigonometric case

The trigonometric (hyperbolic) solution to the graded Yang–Baxter equation has the following 
form [3]:

R12(x) = 1

2 sinh(x + η)

N+M∑
a=1

(
ex+ηq−2p(a) − e−x−ηq2p(a)

)
eaa ⊗ eaa

+ sinhx

sinh(x + η)

N+M∑
a �=b

eaa ⊗ ebb

+ sinhη

sinh(x + η)

N+M∑
a<b

(
ex(−1)p(b)eab ⊗ eba + e−x(−1)p(a)eba ⊗ eab

)
,

(4.1)

where q = eη. It can be rewritten as follows:

R12(x) = P12 + sinhx

sinh(x + η)

(
I − Pq

12

)
+ G+

12 , (4.2)

where P12 is the graded permutation operator (A.7), Pq

12 – its q-deformation (the quantum per-
mutation operator)

Pq

12 =
N+M∑
a=1

(−1)p(a)eaa ⊗ eaa + q

N+M∑
a>b

(−1)p(b)eab ⊗ eba + q−1
N+M∑
a<b

(−1)p(b)eab ⊗ eba

(4.3)

and

G+
12 =

N+M∑
a=1

( sinh(x + η − 2ηp(a))

sinh(x + η)
− (−1)p(a) + sinh(x)

sinh(x + η)
((−1)p(a) − 1)

)
eaa ⊗ eaa

= 2
∑
a∈F

(coshη − 1) sinhx

sinh(x + η)
eaa ⊗ eaa

(4.4)

or

G+
12 =

N+M∑
a=1

G+
a eaa ⊗ eaa , G+

a = (1 − (−1)p(a))(coshη − 1) sinhx

sinh(x + η)
. (4.5)

The R-matrix entering the transfer matrix differs from (4.1) by a scalar factor:

R̃12(x) = sinh(x + η)

sinhx
R12(x) , (4.6)

and the transfer matrix itself is defined similarly to (3.5). The Hamiltonians are introduced 
through the expansion

T(x) = C + sinhη

n∑
Hk coth(x − xk) . (4.7)
k=1
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They are related to the operators in the r.h.s. of the qKZ-equations by the same formulae as in 
non-supersymmetric case:

Hi = K(0)
i

n∏
j �=i

sinh(xi − xj + η)

sinh(xi − xj )
. (4.8)

4.1. Construction of q-symmetric vectors

Our strategy is as follows. Following the non-supersymmetric construction [19], we now need 

to find a vector 
〈
�q

∣∣∣ with the property〈
�q

∣∣∣Ri i−1(x) =
〈
�q

∣∣∣Pi i−1, i = 2, . . . , n . (4.9)

Let us show that this vector has the form:〈
�q

∣∣∣ =
∑
J

q
(J )�J

〈
J

∣∣∣ , (4.10)

where �J is the same as in the rational case (2.7), (2.10), while 
(J ) is defined to be the minimal 
number of elementary permutations required to get the multi-index J = (j1, j2, . . . , jn) starting 
from the “minimal” one. The “minimal” order implies that the jk’s are ordered as 1 ≤ j1 ≤ j2 ≤
. . . ≤ jn ≤ N (see [19]). The proof is straightforward. First, by the construction we see that〈

�q

∣∣∣Pq

i,i−1 =
〈
�q

∣∣∣ . (4.11)

In contrast to the non-supersymmetric case we have additional terms G+
i,i−1 in R-matrices (4.2). 

However, they do not provide any effect when acting on 
〈
�q

∣∣∣:〈
�q

∣∣∣G+
i,i−1 = 0 . (4.12)

It happens because of the tensor structure (4.4). Indeed,

G+
i,i−1

∣∣∣J 〉
= G+

ai
δai ,ai−1

∣∣∣J 〉
, (4.13)

so that only the same basis vectors eai
entering 

∣∣∣J 〉
may contribute. But we have already assumed 

that our vector 
〈
�q

∣∣∣ does not contain two identical fermions, and for bosons G+
a = 0. Finally, 

using (4.2) we arrive at (4.9).

Example 4.1. Let N + M = 3, n = 3, M1 = M2 = M3 = 1. Then∣∣∣�q

〉
=

∣∣∣123
〉
+q (−1)p(1)p(2)

∣∣∣213
〉
+q (−1)p(2)p(3)

∣∣∣132
〉
+

+ q2(−1)p(1)p(3)+p(2)p(3)
∣∣∣312

〉
+q2 (−1)p(1)p(2)+p(1)p(3)

∣∣∣231
〉
+

+ q3(−1)p(1)p(2)+p(2)p(3)+p(1)p(3)
∣∣∣321

〉
.

(4.14)
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4.2. Calculation of the eigenvalue

Coming back to the proof of the correspondence we need the identity〈
�q

∣∣∣K(h̄)
i =

〈
�q

∣∣∣K(0)
i =

〈
�q

∣∣∣Pi i−1 . . .Pi1 , (4.15)

which follows from Pi i−1Pq
i i−2 = Pq

i−1 i−2Pi i−1 and an analogue of the identity

T(±∞) = C ± sinhη
∑

k

Hk =
N∑

a=1

gae
±ηMa

for the supersymmetric case. It is as follows.

Proposition 4.1.

T(∞) =
∑
a∈B

gae
ηMa −

∑
a∈F

gae
−ηMa ,

T(−∞) =
∑
a∈B

gae
−ηMa −

∑
a∈F

gae
ηMa .

(4.16)

Proof. We will prove the first equality. The proof of the second one is similar. Let us first find 
the asymptotics of the R-matrix:

R̃(∞) = I + (q − q−1)

N+M∑
a<b

(−1)p(b)eab ⊗ eba + (q − 1)

N+M∑
a=1

(−1)p(a)eaa ⊗ eaa

+
N+M∑
a=1

(
q1−2p(a) − (−1)p(a)q + ((−1)p(a) − 1)

)
eaa ⊗ eaa .

(4.17)

This expression can be rewritten in the following form:

R̃(∞) = I + (q − q−1)

N+M∑
a<b

(−1)p(b)eab ⊗ eba +
N+M∑
a=1

(
q1−2p(a) − 1

)
eaa ⊗ eaa . (4.18)

The off-diagonal part does not contribute to the trace in (3.5). Therefore,

T(∞) =
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

(
1 + (q1−2p(a) − 1)e

(j)
aa

)
=

=
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

(
1 +

∞∑
Nj =1

ηNj (1 − 2p(a))Nj

Nj ! e
(j)
aa

)
=

=
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

( ∞∑
N =0

ηNj (1 − 2p(a))Nj

Nj ! (e
(j)
aa )Nj

)
(4.19)
j
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and, finally,

T(∞) =
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

(
eη(1−2p(a))e

(j)
aa

)
=

N+M∑
a=1

(−1)p(a)ga

(
e
η(1−2p(a))

∑n
j=1 e

(j)
aa

)
=

=
N+M∑
a=1

(−1)p(a)ga

(
eη(1−2p(a))Ma

)
=

∑
a∈B

gae
ηMa −

∑
a∈F

gae
−ηMa . �

(4.20)

Notice that although this expression depends on the choice of B and F the eigenvalue of the 
Ruijsenaars–Schneider Hamiltonian is independent of it:

n∑
i=1

⎛⎝ n∏
j �=i

sinh(xi − xj + η)

sinh(xi − xj )

⎞⎠ eηh̄∂xi � =
n∑

i=1

n∏
j �=i

sinh(xi − xj + η)

sinh(xi − xj )

〈
�q

∣∣∣K(0)
i

∣∣∣�〉

=
n∑

i=1

〈
�q

∣∣∣Hi

∣∣∣�〉
=

〈
�q

∣∣∣T(∞) − T(−∞)

2 sinhη

∣∣∣�〉

=
〈
�q

∣∣∣ ∑
a∈B

ga

sinh(ηMa)

sinhη
+

∑
a∈F

ga

sinh(ηMa)

sinhη

∣∣∣�〉

=
N+M∑
a=1

ga

〈
�q

∣∣∣ sinh(ηMa)

sinhη

∣∣∣�〉
=

(
N+M∑
a=1

ga

sinh(ηMa)

sinhη

)
�.

(4.21)

Therefore,

� =
〈
�q |�

〉
(4.22)

is indeed an eigenfunction of the Ruijsenaars–Schneider Hamiltonian with the eigenvalue

E =
N+M∑
a=1

ga

sinh(ηMa)

sinhη
. (4.23)

4.3. Construction of q-antisymmetric vectors

In order to extend the correspondence to the case of the Hamiltonian with the opposite sign of 
η we should start with a different R-matrix:

R(x) = 1

2 sinh(x − η)

N+M∑
a=1

(ex+ηq−2p(a) − e−x−ηq2p(a))eaa ⊗ eaa

+ sinhx

sinh(x − η)

N+M∑
a �=b

eaa ⊗ ebb

+ sinhη

sinh(x − η)

N+M∑ (
ex(−1)p(b)eab ⊗ eba + e−x(−1)p(a)eba ⊗ eab

)
.

(4.24)
a<b
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It is an analog of (3.14) in the rational case. Expression (4.24) can be rewritten in the form

R12(x) = −P12 + sinhx

sinh(x − η)

(
I + Pq

12

)
+ G−

12 , (4.25)

where

G−
12 =

N+M∑
a=1

( sinh(x + η − 2ηp(a))

sinh(x − η)
+ (−1)p(a) − sinh(x)

sinh(x − η)
((−1)p(a) + 1)

)
eaa ⊗ eaa

= 2
∑
a∈B

(coshη − 1) sinh(x)

sinh(x − η)
eaa ⊗ eaa =

N+M∑
a=1

G−
a eaa ⊗ eaa .

(4.26)

Similarly to the case of symmetric vector (and also similarly to (2.14)) it is easy to see that the 

vector 
〈
�q

∣∣∣ with the property〈
�q

∣∣∣Pq
i,i−1 = −

〈
�q

∣∣∣ (4.27)

can not contain two or more identical bosonic vectors. On the other hand, G−
12 acts by zero on 

the pair of identical fermions. Thus〈
�q

∣∣∣Ri,i−1 = −
〈
�q

∣∣∣Pi,i−1 . (4.28)

Repeating the steps from the previous paragraphs we obtain the following expressions for the 
asymptotics of the R-matrix at infinity:

R̃(∞) = I + (q − q−1)

N+M∑
a>b

(−1)p(b)eab ⊗ eba +
N+M∑
a=1

(
q1−2p(a) − 1

)
eaa ⊗ eaa ,

R̃(−∞) = I + (q−1 − q)

N+M∑
a<b

(−1)p(b)eab ⊗ eba +
N+M∑
a=1

(
q−1+2p(a) − 1

)
eaa ⊗ eaa ,

(4.29)

where

R̃(x) = sinh(x − η)

sinhx
R(x) . (4.30)

It is easy to see that these asymptotics differ from the corresponding asymptotics in the 
q-symmetric case by non-diagonal part only, but the latter does not contribute to the trace in 
the transfer matrix. Therefore, the Hamiltonian with the opposite sign of η has the same eigen-
value:

n∑
i=1

⎛⎝ n∏
j �=i

sinh(xi − xj − η)

sinh(xi − xj )

⎞⎠ eηh̄∂xi � =
(

N+M∑
a=1

ga

sinh(ηMa)

sinhη

)
�. (4.31)

4.4. Symmetry between q-(anti)symmetric vectors

In this paragraph we will show that the usage of q-antisymmetric vectors do not actually 
lead to any new wave functions of the Ruijsenaars–Schneider system. For this paragraph let us 
introduce more refined notations:
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R̃p(x|η) = 1

2 sinhx

N+M∑
a=1

(
ex+ηq−2p(a) − e−x−ηq2p(a)

)
eaa ⊗ eaa +

N+M∑
a �=b

eaa ⊗ ebb

+ sinhη

sinhx

N+M∑
a<b

(
ex(−1)p(b)eab ⊗ eba + e−x(−1)p(a)eba ⊗ eab

) (4.32)

and

Rp
±(x|η) = sinhx

sinh(x ± η)
R̃p(x|η) , (4.33)

where the index p stands for a fixed choice of grading.
Let us introduce the operator Q of the grading change:

p(Qea) = p(ea) + 1 (mod 2). (4.34)

This operator simply changes all basis bosonic vectors ea to fermionic ones and vice versa. It is 
easy to see from this definition that the R-matrix has a symmetry

QR̃p(x|η)Q−1 = R̃p+1(x| − η) , (4.35)

where the index p +1 means simultaneous shift of all grading parameters by 1 modulo 2 in (4.32). 
Therefore,

QRp
−(x|η)Q−1 = Rp+1

+ (x| − η) . (4.36)

For the special vectors (on which we project the solutions) we also reserve the following notation:〈
�

p
q+

∣∣∣Pq,p
i,i−1 =

〈
�

p
q+

∣∣∣, 〈
�

p
q−

∣∣∣Pq,p
i,i−1 = −

〈
�

p
q−

∣∣∣. (4.37)

By changing all bosons to fermions in these equations and vice versa, and taking into account 
that

QPq,p
i,i−1Q

−1 = −Pq,p+1
i,i−1 , (4.38)

we get〈
�

p
q+

∣∣∣Q =
〈
�

p+1
q−

∣∣∣ . (4.39)

As a first step towards the explanation of the origin of the wavefunctions for Hamiltonians 
with signs of η and h̄ changed we will prove the following

Proposition 4.2. For any solution 
∣∣∣�p

−(x|η, h̄)
〉

of the qKZ equations with the R-matrix Rp
−(x|η)

suitable for projecting on the q-antisymmetric vector 
〈
�

p
q−

∣∣∣, we can construct the solution ∣∣∣�p+1
+ (x|η, h̄)

〉
of the qKZ equations, with the R-matrix Rp+1

+ (x|η) suitable for projecting on 

the q-symmetric vector 
〈
�

p+1
q+

∣∣∣.
Proof. Consider the qKZ-equations:

eηh̄∂xi

∣∣∣�p
−(x|η, h̄)

〉
= Rp

−,i i−1(xi − xi−1 + ηh̄|η) . . .Rp
−,i1(xi − x1 + ηh̄|η)G(i)

×Rp
(xi − xn|η) . . .Rp

(xi − xi+1|η)

∣∣∣�p
−(x|η, h̄)

〉
, i = 1, . . . , n .
−,in −,i i+1
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Changing signs of η and h̄ yields

eηh̄∂xi

∣∣∣�p
−(x| − η,−h̄)

〉
= Rp

−,i i−1(xi − xi−1 + ηh̄| − η) . . .Rp
−,i1(xi − x1 + ηh̄| − η)G(i)

×Rp
−,in(xi − xn| − η) . . .Rp

−,i i+1(xi − xi+1| − η)

∣∣∣�p
−(x| − η,−h̄)

〉
, i = 1, . . . , n .

Using the symmetry (4.35) this could be rewritten in the form:

eηh̄∂xi Q

∣∣∣�p
−(x| − η,−h̄)

〉
= Rp+1

+,i i−1(xi − xi−1 + ηh̄|η) . . .Rp+1
+,i1(xi − x1 + ηh̄|η)G(i)

×Rp+1
+,in(xi − xn|η) . . .Rp+1

+,i i+1(xi − xi+1|η)Q

∣∣∣�p
−(x| − η,−h̄)

〉
, i = 1, . . . , n .

It can be seen from here that the desired solution 
∣∣∣�p+1

+ (x|η, h̄)
〉

is the following:∣∣∣�p+1
+ (x|η, h̄)

〉
= Q

∣∣∣�p
−(x| − η,−h̄)

〉
. � (4.40)

Consider the space of all wavefunctions �−(x|η, h̄) of the Ruijsenaars Hamiltonian with signs 
of η and h̄ changed:

n∑
i=1

⎛⎝ n∏
j �=i

sinh(xi − xj − η)

sinh(xi − xj )

⎞⎠ eηh̄∂xi �−(x|η, h̄) =
(

N+M∑
a=1

ga

sinh(ηMa)

sinhη

)
�−(x|η, h̄) ,

(4.41)

which could be obtained with our construction, i.e. they have the form

�−(x|η, h̄) =
〈
�

p
q−

∣∣∣�p
−(x|η, h̄)

〉
. (4.42)

For any such �−(x|η, h̄) the function �+(x|η, h̄) = �−(x| − η, −h̄) is automatically satisfies 
the equation

n∑
i=1

⎛⎝ n∏
j �=i

sinh(xi − xj + η)

sinh(xi − xj )

⎞⎠ eηh̄∂xi �+(x|η, h̄) =
(

N+M∑
a=1

ga

sinh(ηMa)

sinhη

)
�+(x|η, h̄) .

(4.43)

Now we are ready to prove the main statement of this section.

Proposition 4.3. For any wavefunction of the form (4.42) the corresponding �+(x|η, h̄) =
�−(x| − η, −h̄) can be also obtained from our construction, i.e., it has the form

�+(x|η, h̄) =
〈
�p+1

q

∣∣∣�p+1
+ (x|η, h̄)

〉
. (4.44)

The proof follows from the previous proposition with 
∣∣∣�p+1

+ (x|η, h̄)
〉

defined as in (4.40) and 
the remark (4.39).

This proposition actually means that for any wavefunction constructed with the help of the 
q-antisymmetric vector the existence of the corresponding solution of the qKZ equation is a 
simple consequence of the existence of such solution for the wavefunction with signs of η and h̄
changed, constructed with the help of the q-symmetric vector.
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Appendix A

Here we give a short summary of notations and definitions related to the Lie superalgebra 
gl(N |M).

Let B be any one of the subsets of {1, 2, . . . , N + M} with Card(B) = N , and F be the com-
plement set F = {1, 2, . . . , N +M} \B. The vector space CN |M is endowed with the Z2-grading. 
The grading parameter is defined as

p(a) =
{

0 , a ∈ B (bosons) ,

1 , a ∈ F (fermions) .
(A.1)

The Lie superalgebra gl(N |M) is defined by the following relations for the generators eab:

eabecd − (−1)p(eab)p(ecd )ecdeab = δbcead − (−1)p(eab)p(ecd )δadecb , (A.2)

where

p(eab) = p(a) + p(b) mod 2 . (A.3)

In the fundamental representation the set of generators {eab} forms the standard basis in matrices 
End(CN |M): (eab)ij = δiaδjb , so that for the orthonormal basis vectors ea , a = 1, ..., N + M in 
C

N |M (i.e. (ea)k = δak) we have

eab ec = δbc ea . (A.4)

For any homogeneous (with a definite grading) operators {Ai ∈ End(CN |M)}4
i=1 and homoge-

neous vectors x , y ∈C
N |M we have:

(A1 ⊗ A2)(x ⊗ y) = (−1)p(A2)p(x)(A1x ⊗ A2y) (A.5)

and

(A1 ⊗ A2)(A3 ⊗ A4) = (−1)p(A2)p(A3)(A1A3 ⊗ A2A4) . (A.6)

The graded permutation operator P12 ∈ End
(
C

N |M ⊗C
N |M)

is of the form:

P12 =
M+N∑
a,b=1

(−1)p(b)eab ⊗ eba. (A.7)

Due to (A.5) it permutes any pair of homogeneous vectors x and y according to the rule

P12 x ⊗ y = (−1)p(x)p(y)y ⊗ x . (A.8)

In particular,

P12 ea ⊗ ea = (−1)p(a) ea ⊗ ea . (A.9)
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The supertrace and the superdeterminant of M ∈ End(CN |M) are given by

strM =
N+M∑
a=1

(−1)p(a)Maa (A.10)

and sdetM = exp(str logM). For an operator M(i) acting as M on the i-th component of 
(CN |M)⊗n we have

Pij M(j) =M(i) Pij , (A.11)

str0(P0i M(0)) =M(i) . (A.12)
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