
Journal of Mathematical Sciences, Vol. 239, No. 5, June, 2019

MORSE–SMALE SYSTEMS AND TOPOLOGICAL STRUCTURE
OF CARRIER MANIFOLDS

V. Z. Grines, Ye. V. Zhuzhoma, and O. V. Pochinka UDC 517.938

Abstract. We review the results describing the connection between the global dynamics of Morse–

Smale systems on closed manifolds and the topology of carrier manifolds. Also we consider the results

related to topological classification of Morse–Smale systems.
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Introduction

In [3], rough dynamical systems with a continuous (flow) time are introduced on compact plane

domains diffeomorphic to disks and bounded by cycles without contacts. The sense of the introduced
notion is as follows: sufficiently small C1-perturbations of the system do not change the qualitative
behavior of the system. This notion is fruitful: actually, in [3], it is proved that rough systems are

typical, i. e., they form an open everywhere dense set in the space of the considered systems, equipped
with the C1-topology. Moreover, it is shown by Andronov and Pontryagin that the dynamics of rough
systems is sufficiently clear: according to [3], rough flows in a bounded part of a plane have finite

numbers of equilibrium states and periodic trajectories such that they are hyperbolic and their union
contains the limit set of any trajectory. Moreover, there are no separatrices from a saddle to a saddle
(including the case where those two saddles coincide with each other). Note that the notion of plane

rough flows is naturally extended to the notion of flows on two-dimensional spheres; thus, in the sequel,
we mainly deal with manifolds without boundaries (for simplicity).

The paper [3] influenced investigations of the so-called Gor’kiy school (Andronov himself and his

disciples and colleagues) a lot. In [62], the roughness notion is introduced for discrete-time dynam-
ical systems (cascades) on circles and, in fact, the notion of rough flows without equilibrium states
on toruses. From [62], it follows that rough cascades on a circle are typical and their dynamics is
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sufficiently clear: for any rough cascade, its number of periodic points is finite and each such point is

hyperbolic.
In [74], Andronov–Pontryagin results are extended to arbitrary orientable closed surfaces, the rough-

ness notion is modified, and the structural stability notion is introduced. In fact, the Peixoto result
coincides with the Andronov–Pontryagin result on the dynamics of structurally stable flows, but the

statement that such flows appears explicitly (formally, Andronov and Pontryagin do not separate that
statement). Note, that Peixoto, being unaware of [62], has reproved several of Mayer’s results.

In [87], Smale influenced by [3, 74] introduces a class of dynamical systems on manifolds that are

calledMorse–Smale systems nowadays; at that time, they were claimed to be typical dynamical systems
with sufficiently clear dynamics. Actually, the Smale definition just lists the properties obtained in [3,
74], but the Andronov–Pontryagin condition about the absence of separatrix interfaces is changed

for the following many-dimensional analog: any intersection of separatrices is transversal. Earlier,
Smale proved the Poincaré conjecture for manifolds of dimensions greater than or equal to 5 (see [88,
90]), substantially using the Morse theory and vector fields generated by gradients of Morse functions.

In [89], a class of gradient-like vector fields (i. e., Morse–Smale flows without periodic trajectories) is
selected and it is proved that it is open and dense in the set of gradient vector fields.

It is reasonable to study the existence of Morse–Smale systems on closed manifolds. In [89], it is

proved that any Morse function defined on a manifold can be approximated by a Morse function such
that its gradient is a Morse–Smale vector field without periodic orbits. Then the translation to the time
t = 1 along trajectories of such a field is a Morse–Smale diffeomorphism. Since Morse functions exist

on any closed manifold, it follows that Morse–Smale systems (both flows and diffeomorphisms) exist on
any closed manifold. In [72, 73], the structural stability of Morse–Smale systems is proved. Therefore,
those systems form an open set in the space of C1-smooth dynamical systems. From the contemporary

viewpoint, Morse–Smale systems on closed manifolds are nothing but structurally stable dynamical
systems with zero topological entropy. From this viewpoint, they are the simplest structurally stable
systems (in [4, 5, 91, 92], the existence of broad classes of structurally stable dynamical systems with

positive topological entropies is proved).
A close relation between dynamical characteristics of a Morse–Smale system and the topology of

the carrier manifold is found already in the pioneering work [87]. This is why Morse–Smale systems

have been under close attention up to now, and a lot of new publications in this direction still ap-
pear. Results of various areas of topology, originally not related to dynamical systems, are applied to
investigate Morse–Smale systems. For example, for Morse–Smale flows without equilibrium states, it

is found that periodic trajectories form a special collection of knots and links. Rather recently, it is
found that invariant manifolds of saddle points might have wild embeddings.

The present review provides results about relations between the global dynamics of Morse–Smale

systems on closed manifolds and the topology of carrier manifolds. Also, we provide results related
to the topological classification of Morse–Smale systems considered on closed smooth n-dimensional
connected manifolds Mn (n ≥ 1).

The structure of this paper is as follows. In Sec. 1, the earliest definition of Morse–Smale sys-
tems, i. e., the Smale definition, and basic corollaries following intermediately from it are provided.
In Sec. 2, we provide a filtration construction for the carrier manifold, related to the dynamics of

the Morse–Smale system; it was introduced by Smale to deduce a system of inequalities called (by
Smale) Morse inequalities. Those inequalities establish relations between Betti numbers of the carrier
manifold and dynamical characteristics of the Morse–Smale system. In Sec. 3, Morse–Smale systems
on one-dimensional and two-dimensional manifolds are considered. Further, Morse–Smale systems on

manifolds of dimension exceeding two are considered. In Sec. 4, we consider Morse–Smale systems
without equilibrium states (the nonwandering set of such a system consists of periodic trajectories)
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and provide the classical Morgan–Azimov results about the structure of the carrier manifold. In

Sec. 5, Morse–Smale flows are considered on 3-manifolds such that their nonwandering sets include
equilibrium points. We provide theorems on the structure of the carrier manifold and existence con-
ditions for periodic trajectories (usually, this is important for applications). In Sec. 6, we describe
flows with three equilibrium states and study the topology of the manifold admitting such systems. In

Sec. 7, we consider Morse–Smale systems (both flows and diffeomorphisms) with restrictions; mainly,
the restrictions refer to the absence of heteroclinic intersections of various kinds. Then we obtain
sufficient existence conditions for heteroclinic curves and heteroclinic points. Existence theorems for

heteroclinic curves are important for the study of magnetic fields in electrically conducting media (see,
e. g., [43]). In Sec. 8, an arbitrary Morse–Smale diffeomorphism is represented as a diffeomorphism
between a source and a sink; in Sec. 9, this representation is used to obtain classification results.

The authors are grateful to V. S. Medvedev as well as all participants of the seminar “Topological
methods in dynamics” in NRU HSE for useful discussions. The work was supported by the RFBR

grants No. 15-01-03687-a and 16-51-10005-Ko a, the RSF grant No. 14-41-00044, and the NRU HSE
program of fundamental research (project No. 98) in 2016.

1. Main Definition

Recall notions and introduce notation needed to provide the first definition of dynamical Morse–
Smale systems (in the contemporary terminology). The space of Cr-diffeomorphisms (vector fields of

smoothness Cr), endowed the uniformed Cr-topology, is defined by Diff r (Mn) (χr (Mn) respec-
tively). For r = 1, the notation Diff (Mn) (χ (Mn) respectively) is usually used. For brevity, we
provide definitions mainly for diffeomorphisms; the corresponding definitions for vector fields (and

flows) are similar.
Fix f from Diff (Mn). Recall that a point x from Mn is called nonwandering if for any its

neighborhood U and any positive integer N there exists n0 from Z such that |n0| ≥ N and fn0(U)∩U �=
∅. For any diffeomorphism f , the set of its nonwandering points is denoted by NW (f). Obviously,
each periodic point is nonwandering. A periodic point x0 from Per (f), f q(x0) = x0, is called
hyperbolic if the derivative Df q(x0) : Tx0M

n → Tx0M
n (treated as linear mapping of the tangential

space into itself) has no eigenvalues with the absolute value equal to one. Due to the Grobman–
Hartman theorem, if x0 is a hyperbolic fixed point of a diffeomorphism f , then f is adjoint to the

linear diffeomorphism defined by the Jacobi matrix

(
∂f

∂x

) ∣∣∣
x0

in a neighborhood of x0 (see [49, 50,

56]). Recall that diffeomorphisms f : M → M and f ′ : M ′ → M ′ are called topologically adjoint if

there exists a homeomorphism h : M → M ′ such that hf = f ′h.
This means that any hyperbolic point x0 has a so-called stable manifold W s(x0) and unstable

manifold W u(x0) defined as the set of points y from Mn such that �M (f qkx0, f
qky) → 0 as k → +∞

(k → −∞ respectively), where �M is the metric in Mn. Note that the unstable manifold W u(x0) is a

stable manifold with respect to f−1. It is known that W s(x0) and W u(x0) are homeomorphic (with

respect to the inner topology) to the Euclidean spaces R
dimW s(x0) and R

dimWu(x0) respectively and
are smooth injective immersions of those spaces into Mn (see [57, 92]). A periodic hyperbolic point p
from NW (f) is called a node if either dimW s(p) = n (in this case, p is called a sink point, see Fig. 1.1

(c)) or dimW u(p) = n (in this case, p is called a source point, see Fig. 1.1 (b)). In the special case
where p is a fixed point, it is called a knot (sink or source respectively). A hyperbolic periodic point σ
from NW (f) is called a saddle point if the topological dimensions of its stable and unstable manifolds

are different from zero (see Fig. 1.1 (a)).
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Fig. 1.1

The definitions of hyperbolic equilibrium states of flows, hyperbolic periodic movements, and their
stable and unstable manifolds are introduced in the same way. However, unstable manifolds of equi-
librium states of flows are homeomorphic to Euclidean spaces, while unstable manifolds of equilibrium

states of one-dimensional periodic trajectories are homeomorphic to cylinders of the corresponding
dimension.

A diffeomorphism f is called a Morse–Smale diffeomorphism if NW (f) is a finite set of periodic

points (and, therefore, NW (f) = Per (f)), all periodic points are hyperbolic, and the intersection
of invariant manifolds W s(x) and W u(y) is transversal (if that intersection is not empty) provided
that x and y belong to NW (f). For flows, the definition is similar. Let MSr (Mn) (Σr(Mn)) denote

the set of Morse–Smale Cr-diffeomorphisms (vector fields respectively) on Mn. For r = 1, we use the
notation MS (Mn) and Σ (Mn).

Let f belong to MS (Mn). If dimW u(σ) = i, then each component of the set W u(σ) \ σ is called

an i-dimensional unstable separatrix and each component of the set W s(σ) \ σ is called an (n − i)-
dimensional stable separatrix. Since a point decomposes the one-dimensional Euclidean space, but
decomposes no Euclidean space of a higher dimension, it follows that any one-dimensional (stable or

unstable) manifold of a saddle periodic point consists of that saddle point and two periodic separatrices,
while any i-dimensional manifold, i ≥ 2, consists of that saddle point and one i-dimensional separatrix.

Fig. 1.2

The simplest Morse–Smale diffeomorphism is the diffeomorphism of a closed manifold with two fixed
points such that one of them is an attracting point (sink), another one is a repelling point (source),

and there are no other periodic points (see Fig. 1.2). In this case, the manifold is the sphere Sn and the
dynamics of such a diffeomorphism is simple: all points different from fixed ones are wandering points
moving from the source to the sink under the action of the diffeomorphism. All such diffeomorphisms

are pairwise topologically adjoint to each other (see, e. g., [44, Th. 2.2.1]).
If ψ : Mn → R is a Morse function, then the vector field ∇ψ = grad ψ on Mn defines a flow ψt

without periodic trajectories and such that the number of its equilibrium states is finite and each

equilibrium state is hyperbolic. The flow ψt is called a gradient flow ; it is not guaranteed that it is a
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Morse–Smale flow because the transversality of the intersection of separatrices of different its saddles

can be broken. However, it is proved in [89] that the space of Morse functions contains an open
everywhere dense set of Morse functions such that their gradient determines a Morse–Smale flow.

Fig. 1.3

Obviously, any Morse–Smale diffeomorphism that is a translation to the time unit of a flow induces
the identity map in the group of homologies. There exist Morse–Smale diffeomorphisms inducing
nontrivial isomorphisms in the group of homologies. For example, a Morse–Smale diffeomorphism of

the two-dimensional torus such that it induces a nontrivial isomorphism in the one-dimensional group
of homologies, but it cannot be embedded in a flow, can be obtained as a composition of the translation
along the trajectories of the gradient Morse–Smale vector field and the corresponding Dehn twist along

the closed transversal. The left-hand part of Fig. 1.3 displays the phase portrait of a gradient vector
field with two saddles and two knots on the square that is the fundamental region of the universal

covering of the torus. The Dehn twist acts along the curve such that the line x =
1

2
is projected

to that curve. The result of the composition of the translation along the trajectories and the Dehn
twist is a diffeomorphism such that the stable manifold of one saddle intersects the unstable manifold
of another saddle (see the right-hand part of Fig. 1.3). The Dehn twist yields a nontrivial action in

the group of homologies the arising of so-called heteroclinic points preventing the inclusion of such a
diffeomorphism to a flow. In [72], it is proved that any neighborhood of the identity map of a surface
contains Morse–Smale diffeomorphisms that cannot by embedded in a flow.

The following theorem is announced in [83] and is proved in [84].

Theorem 1.1. Let f : Md → Md be a Morse–Smale diffeomorphism. Then eigenvalues of the induced
map f∗ : H∗(Md,R) → H∗(Md,R) are roots of unity.

Recall that f∗ denotes the family of all maps f∗,k : Hk(M
d,R) → Hk(M

d,R), k ∈ {0, . . . , d}.
Let f : Mn → Mn be a Morse–Smale diffeomorphism and σ1 and σ2 be different saddle points

from NW (f). If W s(σ1) and W u(σ2) are their invariant manifolds and W s(σ1) ∩W u(σ2) �= ∅, then
we say that the said intersection is heteroclinic. Since W s(σ1) and W u(σ2) are locally embedded
submanifolds, it follows that any connected component of the heteroclinic intersection W s(σ1) ∩
W u(σ2) is a locally embedded submanifold as well. If dim (W s(σ1) ∩W u(σ2)) ≥ 1, that any connected
component of the intersection W s(σ1) ∩ W u(σ2) is called a heteroclinic manifold. In particular, if
dim (W s(σ1) ∩W u(σ2)) = 1, then the heteroclinic manifold is a heteroclinic curve (see Fig. 1.4).

If dim (W s(σ1) ∩W u(σ2)) = 0, then the intersection W s(σ1) ∩ W u(σ2) is an enumerable set of
points; they are called heteroclinic points. The set of heteroclinic points is invariant and is a union of
heteroclinic orbits. Note that Morse–Smale flows do not have heteroclinic points and their heteroclinic

manifolds consist of one-dimensional trajectories.
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Fig. 1.4

2. Smale Filtration and Morse Inequalities

The definition of Morse–Smale systems imply the following results proved in [87].

Proposition 2.1. Let f : Mn → Mn be a Morse–Smale diffeomorphism. Then

Mn =
⋃

p∈NW (f)

W s(p) =
⋃

p∈NW (f)

W u(p).

A similar assertion is valid for Morse–Smale flows as well.

Theorem 2.1. Let f : Mn → Mn be a Morse–Smale diffeomorphism and p and q belong to NW (f).
If W u(p) ∩W s(q) �= ∅, then

(1) W u(q) ⊂ closW u(p) and dimW u(p) ≥ dimW u(q);

(2) W s(p) ⊂ closW s(q) and dimW s(p) ≤ dimW s(q).

The inequalities for the dimensions are proved as follows. Really, let p and q belong to NW (f)
and W u(p) ∩ W s(q) �= ∅. Since the intersection of the invariant manifolds W u(p) and W s(q) is

transversal, it follows that dim W s(q) + dim W u(p) ≥ n. Hence, dim W s(q) ≥ dim W s(p) because
dim W s(p) = n− dim W u(p). The inequality dimW u(p) ≥ dimW u(q) is proved in the same way.

The conditionW u(p)∩W s(q) �= ∅ is denoted by p � q. The finiteness of the number of nonwandering

orbits and Theorem 2.1 imply the following assertion.

Proposition 2.2. For any Morse–Smale diffeomorphism, the relation � is a partial order relation on

the set of periodic orbits.

The relation � is naturally extended to the set of periodic orbits. Let Or denote the orbit of a

point r from NW (f). Assign Op � Oq if there exist points r from Op and s from Oq such that r � s.
It follows from Proposition 2.2 that the relation � is a partial order relation on the set of periodic
orbits.

In [92], it is proposed to represent the dynamics of a Morse–Smale system by means of the graph
constructed as follows. To the periodic orbit Op of a point p, we put in correspondence the node υ(Op)
of the graph G. Nodes υ(Op) and υ(Oq) of the graph G are joined by the rib from υ(Op) to υ(Oq) if

and only if W u(p) ∩W s(q) �= ∅ and there are no r from NW (f) such that W u(p) ∩W s(r) �= ∅ and
W u(r) ∩W s(q) �= ∅ (i. e., p � r � q). The graph constructed this way (its nodes can be endowed by
additional data about the dimension of stable and unstable manifolds) is called the Smale graph of

the diffeomorphism f.
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For Morse–Smale flows, similar definitions of the order and Smale graph can be introduced. It is

clear that Smale graphs of topologically equivalent Morse–Smale systems are isomorphic to each other.
The inverse is not true even if we consider only Morse–Smale flows without periodic trajectories on
surfaces. In [77] (also, see [70]), Morse–Smale flows on a sphere with isomorphic Smale graphs are
constructed such that they are not equivalent topologically.

Recall that a sequence of subsets M0 ⊂ M1 ⊂ . . . of a topological space Mn is called a filtration
if the set family M0,M1, . . . is a fundamental covering of the space Mn. In [87], a finite filtration
related to the dynamics of a Morse–Smale system is constructed by means of Theorem 2.1. It is found

that the subsets Kd =
⋃

dimWu
i ≤d

W u
i form a filtration, but the inclusion W u

i ⊂ Kd does not imply

the inclusion ∂W u
i ⊂ Kd−1 because it is possible that unstable manifolds lay in the limit set of other

unstable manifolds of the same dimension. For a Morse–Smale diffeomorphism f : Mn → Mn, the
following filtration is used. Let M0 = K0 be the set of sink periodic points. Let M1 be the union of
M0 and one-dimensional unstable manifolds such that their boundaries belong to M0. Note that M1

is a subset of K1, but M1 does not include one-dimensional unstable manifolds such that their limit
set contains other one-dimensional unstable manifolds (see Fig. 1.3). If Mi−1 is constructed, then the
union of Mi−1 and all unstable manifolds such that their boundaries belong to Mi−1 is Mi. From

Proposition 2.1, it follows that there exists k such that Mk = Mn. It is clear that all Mi are closed
and invariant with respect to f and they form a finite filtration of the manifold Mn.

Fig. 2.1

Figure 2.1 displays the phase portrait of a diffeomorphism of the sphere S2 such that its nonwan-

dering set is hyperbolic and consists of three fixed sink points ω1, ω2, and ω3, two fixed saddle points

σ1 and σ2, and one fixed source α. The filtration elements for this diffeomorphism are Mi =
i⋃

j=1
Bj ,

i = 1, 5, and M6 = S2, where Bi are appropriate disks.
Let Cj be the number of periodic points p of a diffeomorphism f such that the dimension of the

unstable manifold of any such point is equal to j = dimW s(p), p ∈ Per (f). Let βi(M
n) = βi be the

ith Betti number of the manifold Mn, i. e., βi(M
n) = rank Hi(M

n,Z). In [87], it is shown that the
following relations hold:

C0 ≥ β0, C1 −C0 ≥ β1 − β0, C2 − C1 + C0 ≥ β2 − β1 + β0,

· · · · · · · · · · · ·
n∑

i=0

(−1)iCi =

n∑
i=0

(−1)iβi.
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These relations hold for Morse–Smale flows as well, but the Betti numbers are computed in the ring Z2,

βi(M
n) = rank Hi(M

n,Z2), and Cj is the sum of the number of equilibrium states with j-dimensional
stable separatrices and the number of one-dimensional periodic trajectories with (j + 1)-dimensional
stable separatrices. In [36] (also, see [37]), the Morse–Smale inequalities are strengthened for Morse–
Smale flows without equilibrium states.

The term “Morse inequalities” comes from [67] investigating relations between the number of critical
points of the Morse function and the topological structure of the manifold.

Since β0 = 1 for any connected manifold, it follows from the first inequality of the above system of

inequalities that any Morse–Smale system has at least one sink and one source periodic orbit. This
confirms the above mentioned fact that the simplest Morse–Smale diffeomorphism is the diffeomor-
phism of a closed manifold with two fixed points such that one of them is an attracting point (sink),

another one is a repelling point (source), and there are no other periodic points (see Fig. 1.2).

3. One-Dimensional and Two-Dimensional Systems

The circle S1 is the only closed one-dimensional manifold. Morse–Smale systems (both flows and
diffeomorphisms) are everywhere dense in S1; their combinatorial description is rather simple and it
is omitted here because the number of trajectories of any such flow is finite. To prove the density

of the diffeomorphisms, the closure lemma is to be proved. For the first time, it was done in [62].
Other proofs can be found in [75, 76, 79]. For the circle, the closure lemma is proved in any class
of smoothness (even in the analytic one). Therefore, Morse–Smale diffeomorphisms MSk(S1) are

everywhere dense in Diff r (S1) provided that 1 ≤ k ≤ r ≤ ω. Taking into account this result, it is
easy to prove that the set of Cr-rough or, which is the same, of Cr-structurally stable diffeomorphisms
of the circle coincides with MSr(S1).

The description and topological classification of Morse–Smale diffeomorphisms of the circle, pre-
serving the orientation, is rather simple. Decompose MSr(S1) into the subclass MSr

+(S
1) of dif-

feomorphisms preserving the orientation and the subclass MSr
−(S1) of diffeomorphisms changing the

orientation. From [62], the following fact is known.
Proposition 3.1.

(1) For any diffeomorphism ϕ from MSr
+(S

1), the nonwandering set NW (ϕ) consists of 2n, n ∈ N,
periodic orbits such that the period of each one is equal to k.

(2) For any diffeomorphism ϕ from MSr
−(S1), the nonwandering set NW (ϕ) consists of 2q, q ∈ N,

periodic points such that two of them are fixed and the period of each other one is equal to 2.

Let ϕ belong to MSr
+(S

1). Renumber periodic points from NW (ϕ) as follows: p0, p1, . . . , p2nk−1,

p2nk=p0 clockwise, beginning from an arbitrary periodic point p0; then there exists an integer l such
that ϕ(p0) = p2nl, l = 0 for k = 1, l ∈ {1, . . . , k − 1} for k exceeding one, and the numbers (k, l) are
relatively prime.1 Note that l does not depend on the choice of the point p0 (see Fig. 3.1 (A)). For ϕ

from MSr
−(S1), assign ν = −1, ν = 0, and ν = +1 if its fixed points are sources, a source and a sink,

and sinks, respectively. Note that ν = 0 if q is odd, while ν = ±1 if q even (see Fig. 3.1 (B)).
The following fact is known from [62] as well.

Theorem 3.1.

(1) Diffeomorphisms ϕ and ϕ′ from MSr
+(S

1) with parameters n, k, and l and n′, k′, and l′ (respec-
tively) are topologically adjoint if and only if n = n′, k = k′, and one of the following assertions
is valid:

• l = l′ (in this case, if l �= 0, then the conjugating homeomorphism preserves the orientation),
• l = k′ − l′ (in this case, the conjugating homeomorphism changes the orientation).

1In [62], the order number r1 is used instead of l such that l · r1 ≡ 1(mod k).
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Fig. 3.1

(2) Diffeomorphisms ϕ and ϕ′ from MSr
−(S1) with parameters q and q′ (respectively) are topologi-

cally adjoint if and only if q = q′ and ν = ν ′.

Pass to Morse–Smale systems on two-dimensional manifolds. First, we consider flows. Then we
consider diffeomorphisms.

For a Morse–Smale flow with a predefined collection of equilibrium states, the only necessary re-
striction for the existence on a given closed surface is the Euler–Poincaré relation: the sum of indices
of the equilibrium states is equal to the Euler characteristic (see, e. g., [7]). Regarding the typicalness

of Morse–Smale flows, the following theorem is valid.

Theorem 3.2. The set Σ (M2) of Morse–Smale vector fields coincides with the space of structurally

stable vector fields on the closed surface M2. The set Σ (M2) is open and dense in the space χ (M2) of
all vector fields on M2. If M2 is an orientable surface or a nonorientable surface of kind g, 1 ≤ g ≤ 3,
then Σr(M2) coincides with the space of Cr-structurally stable vector fields and is open and everywhere
dense in χr (M2) provided that r ≥ 1.

In fact, Theorem 3.2 is proved for the sphere M2 = S2 in [3]. In [75, 76], this theorem is proved
for all other surfaces (for the case where r = 1) and for all orientable surfaces and for the projective

plane (for the case where r ≥ 1). According to the Aranson–Markley theorem (see [6, 60]), any flow
on the Klein bottle has no nontrivially recurrent trajectories. This implies the validity of Theorem 3.2
for the Klein bottle provided that r ≥ 1. Finally, for nonorientable surfaces of kind 3, Theorem 3.2

for r ≥ 1 follows from the following result of [53]: no flow on a nonorientable surface of kind 3 has a
so-called nonorientable nontrivially recurrent trajectory.

Recall definitions to pass to the classification. We say that flows f t
1 and f t

2 on Mn are topologically

equivalent if there exists a homeomorphism h : Mn → Mn mapping trajectories of one of those flows
to trajectories of another one. If this is satisfied and h preserves the direction with respect to time,
then we say that f t

1 and f t
2 are topologically trajectory (orbitally) equivalent. We say that this invariant

is complete if its coincidence for two flows is a necessary and sufficient condition of their equivalence.
Usually, the invariant of the topological equivalence is closely related to the invariant of the trajectory
equivalence: once one of them is constructed, it is easy to construct another one. Therefore, it is not

always specified what equivalence is meant.
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In [77], the following complete topological invariant is introduced for Morse–Smale flows: it is an

equipped graph (see Fig. 3.2) including the information about the mutual location of nonwandering
trajectories and their invariant manifolds (in particular, separatrices). In fact, Peixoto equipped the
Smale graph by additional information to transform it to a complete topological invariant (the so-
called distinguishing graph). Note that the scheme of the flow introduced in [58, 59] (also, see [2]) is a

complete topological invariant for flows on the sphere such that their numbers of special trajectories
are finite; fundamentally, it coincides with the Peixoto graph. For such flows, there exist other forms
of complete topological invariants in the spirit of the Peixoto equipped graph (see, e.g., [69, 95]).

Fig. 3.2

In Fig. 3.2, two gradient-like flows and their graphs are displayed. This illustration shows that if a

graph is not equipped by additional information, then it is not a complete topological invariant: the
displayed flows are not equivalent to each other, but their graphs coincide with each other.

In [71], a complete topological invariant is constructed for arbitrary Morse–Smale flows on closed

surfaces. Let us describe this invariant schematically.
Consider a vector field 
v on a compact surface N such that it is transversal to the boundary ∂N. We

say that N is an elementary surface if either it contains one and only one nonwandering trajectory (a

knot or a limit cycle) or all nonwandering trajectories are saddles. We say that an elementary surface
is nodal and assign a 
v-atom of type K to it if it is homeomorphic to a disk and contains one and
only one knot (a sink or a source). If it is homeomorphic either to a ring or to a Möbius band and

contains one and only one limit cycle, then we assign a 
v-atom of type R-Möb to it. If it contains only
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Fig. 3.3

saddles, then a 
v-atom of type S is assigned to it (see Fig. 3.3). It is possible to show that for any

Morse–Smale vector field 
v there exists a family of closed pairwise disjoint transversals, decomposing
the carrier surface M2 into elementary surfaces. Therefore, a graph Γ(
v) such that its nodes are

v-atoms with the specified types corresponds to the field 
v. Two nodes are connected by a rib if the

corresponding elementary surfaces have a common boundary component. Each rib is endowed with a
direction according to the direction of the vector field at the common boundary component. If a rib
connects nodes such that no one has type K, then either the number −1 or the number +1 is assigned

to that rib: if the homeomorphism gluing the two boundary components changes the orientation, then
we assign the number −1; the number +1 is assigned otherwise.

The structure of a flow on elementary surfaces corresponding to atoms of type K and R-Möb is

clear because it contains only one nonwandering attracting or repelling trajectory. For atoms of type
S, an invariant similar to the distinguishing Peixoto graph is constructed. Let a 
v-atom of type C be
assigned to an elementary surface N . Let σ be a saddle from N. For any Morse–Smale vector field,

any separatrix of the saddle σ intersects ∂N. Any arc of an unstable (stable) separatrix from σ to
∂N is called a u(s)-arc. The closures of all u(s)-arcs decompose N into open domains such that each
one has one and only one boundary component such that the field is directed out and one and only

one boundary component such that the field is directed in (see Fig. 3.4 (a) and (b)). Any arc of a
trajectory from one boundary component to another one is called a t-arc. In each domain, select one
t-arc arbitrarily. Then the family of all u(s)-arcs and selected t-arcs decompose N into curvilinear
polygons (see the qualitative picture at Fig. 3.4 (c)). The obtained curvilinear polygons are called

canonical.

Fig. 3.4
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In [71], for a given partition of an elementary surface N of type S, the following graph Γ(N) (the

so-called three-color graph) is constructed (see Fig. 3.5):

(1) nodes of the graph Γ(N) are in a one-to-one correspondence to canonical curvilinear polygons;
(2) if two canonical polygons have a common side formed by a u(s, t)-arc, then the rib connecting

the corresponding nodes is provided with the label u (s, t respectively).

The constructed graph does not depend on the choice of t-arcs.

Fig. 3.5

Using the information about the atoms, curves connecting them, and three-color graphs, one con-

structs the graph of the flow (in [71], it is called the molecule) and proves the following theorem.

Theorem 3.3. Morse–Smale vector fields 
v and 
v′ on a closed surface are topologically trajectory

equivalent if and only if the corresponding molecules Γ(
v) and Γ(
v′) are isomorphic.

Not any molecule (in the sense of the above abstract definition) can be treated as a molecule of a
Morse–Smale vector field: it and the three-color graphs should satisfy certain restrictions (see [71, Th.
3.24]). In [71], algorithms to compare molecules and to enumerate them with respect to a complexity

criterion are proposed. In [42], it is shown that the specified algorithm is not efficient. Recall that a
resolving algorithm for the problem to distinguish graphs is called efficient if the time to execute it
polynomially depends on the number of nodes of the graph. In [31], a notion of efficiently resolved

problems is proposed: a computational problem can be really resolved by a device if the resolving
time is bounded by a polynomial of the parameter representing the length of the input data. At the
moment, it is not known whether an efficient algorithm to distinguish arbitrary graphs exist. In [42],

the efficiency of distinguishing algorithms for three-color graphs and Peixoto graphs is achieved by

560



means of the following facts: three-color graphs are three-valent, while Peixoto graphs are embeddable

to the 2-sphere. Also, it is proved that the problem to establish the orientability of the surface and to
find its kind is polynomial as well.

Apply Theorem 3.3, which is a classification theorem, to illustrate the relation between the dynamics
of the Morse–Smale flow and the carrier surface.

Proposition 3.2. Let f t be a Morse–Smale flow on a closed surface M2 such that the nonwandering
set of the flow f t consists of three equilibrium states. Then M2 = P

2 is a projective plane. All Morse–

Smale flows on P
2 such that the nonwandering set of the flow consists of three equilibrium states are

topologically equivalent to each other.

Consider diffeomorphisms on surfaces.
The next theorem establishes a relation between the kind of the carrier surface and dynamical

characteristics of Morse–Smale diffeomorphisms of closed (orientable and nonorientable) surfaces. It

follows from the last relation of the system of Morse inequalities.

Theorem 3.4. Let f : M2
g → M2

g be a Morse–Smale diffeomorphism of a closed surface M2
g of kind

g (g ≥ 0 if M2
g is an orientable surface and g ≥ 1 if M2

g is a nonorientable surface). Suppose that f
has ν(f) saddle periodic points and μ(f) nodal periodic points. Then

g =
ν(f)− μ(f) + 2

2
if M2

g is an orientable surface and

g = ν(f)− μ(f) + 2 if M2
g is an nonorientable surface.

Note that Theorem 3.4 contains no assumptions about possible intersections of invariant manifolds

of saddle periodic points or about the character of the embedding of those manifolds to M2
g .

In [12–14, 20, 54, 68], more refined results regarding relations between periodic data of Morse–
Smale diffeomorphisms, their homotopic classes, and topological characteristics of the carrier surfaces

are obtained; in many of the above papers, wider classes of diffeomorphisms, including Morse–Smale
diffeomorphisms, are considered. In [35], the zeta-function of the Morse–Smale diffeomorphism is
expressed via its periodic data.

To solve the classification problem (up to the adjointness) for diffeomorphisms of surfaces, it is
natural to start from the investigation of the topological structure of domains formed by the partition
of the wandering set by separatrices of saddle periodic points. Let f belong to MS (M2). Take

the wandering set M2 \ NW (f) and remove the separatrices of all saddle periodic points of the
diffeomorphism f. Then only three cases are possible for the connected component of the remaining
set:

(1) it is a 1-connected wandering-type component;

(2) it is a 1-connected periodic-type component;
(3) it is a 2-connected periodic-type component.

In the last case, M2 is S2 and the boundary of the component consists of two and only two points:
the sink and the source (see [8]).

Morse–Smale diffeomorphisms without heteroclinic points (gradient-like diffeomorphisms) on ori-
entable closed surfaces are classified in [15–17]. Roughly speaking, such diffeomorphisms are obtained
as follows: Morse–Smale flows without closed trajectories and periodic transformations of surfaces

undergo superpositions of translations to the time unit. The complete invariant for such diffeomor-
phisms is an analog of the distinguishing Peixoto graph equipped with periodic automorphisms. Also,
an exhausting classification (including the realization) of gradient-like diffeomorphisms on surfaces is

obtained in [41] in terms of three-color graphs equipped with periodic automorphisms.
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If Morse–Smale diffeomorphisms have heteroclinic points, then their classification becomes much

more complicated (see Fig. 3.6). Heteroclinic points lead to the appearance of so-called heteroclinic
chains of saddle orbits (i. e., orbits generated by saddle periodic points). Recall that a sequence
of saddle orbits O1, . . . , Oh forms a heteroclinic chain if W u(Oi) ∩ W s(Oi+1) �= ∅ for any i such
that 1 ≤ i < h. Since Morse–Smale diffeomorphisms have no homoclinic points, it follows that each

heteroclinic chain consists of a finite number of pairwise different saddle orbits. Denote that number
by h, h ≥ 2, and call the number h − 1 the length of the chain O1, . . . , Oh. The greatest length of
the chains connecting orbits O and O′ such that O ≺ O′ is denoted by beh(O′|O). Any heteroclinic

chain of the greatest length corresponds to a simple nonclosed path in the Smale graph of the given
diffeomorphism. Figures 3.6 (a)-(b) display heteroclinic chains of length 1 and length 2.

Fig. 3.6

Since heteroclinic points are formed by an intersection of invariant manifolds of saddle orbits, it
follows that the set of heteroclinic points is invariant and, therefore, is a union of orbits. First,
we consider the class of diffeomorphisms with finite numbers of heteroclinic orbits. In this case,

the greatest heteroclinic chains have length 1. Morse–Smale diffeomorphisms with finite numbers
of heteroclinic orbits are classified in [38]: the so-called signature carrying the information about
heteroclinic points is added to the Bezdenezhnykh–Grines graph (see Fig. 3.7).

Fig. 3.7

Also, an exhausting classification (including the realization) of Morse–Smale diffeomorphisms with
finite numbers of heteroclinic orbits on surfaces is obtained in [65], where a wider class of diffeomor-

phisms is considered, namely, diffeomorphisms with finite numbers of stability modules on surfaces.
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Fig. 3.8

In [65], a complete topological invariant called the scheme is introduced: up to a homeomorphism,

this is a finite number of two-dimensional toruses that are spaces of wandering orbits with a collection
of simple closed curves or spaces of orbits of separatrices (see Fig. 3.8).

Arbitrary Morse–Smale diffeomorphisms on orientable surfaces are classified in [28], where nec-

essary and sufficient conditions for the adjointness of arbitrary structurally stable diffeomorphisms
of orientable closed surfaces are obtained in terms of Markov partitions. The main result of [28] is
valid for all structurally stable diffeomorphisms. We present its simplified version for Morse–Smale

diffeomorphisms.
Let O1, . . . , Oh be the greatest heteroclinic chain of saddle orbits of a Morse–Smale diffeomorphism

f. The union
h⋃

i=1
Oi ∪ K1h, where K1h =

(
h⋃

i=1
W u(Oi)

)⋂(
h⋃

i=1
W s(Oi)

)
, is called the saturation

of the given chain. In other words, the saturation of a chain is the union of saddle orbits and all
possible intersections of stable and unstable separatrices of saddle periodic points included to the
chain. Note that the saturation of the greatest heteroclinic chain is an invariant set. By virtue of the

structural stability of Morse–Smale diffeomorphisms, separatrices of saddle periodic points intersect
each other transversally. This implies (see [28]) that the saturation of greatest heteroclinic chains
can be provided with a uniform hyperbolic structure, and a coordinated hyperbolic structure can be

introduced on the intersection of the saturations. Therefore, a saddle-type hyperbolic set Kf called a
saturated hyperbolic set corresponds to any Morse–Smale diffeomorphism f . In [28], it is shown that
any saturated hyperbolic set has an invariant neighborhood of the finite topological type, i.e., a closed

surface with a finite number of holes.
The notion of saturated hyperbolic sets can be treated as a generalization of the notion of saddle-

type base sets (for those sets, we have the transitivity apart from the hyperbolic structure). Therefore,

Markov partitions of such sets can be constructed by means of the Bowen–Sinay technique (see [29,
85, 86]). In other words, the saturated hyperbolic set is covered by a special family of curvilinear
quadrangles formed by segments of stable and unstable separatrices. In [28], for so-called good Markov

partitions, the notion of the geometric type is introduced. A geometric type includes the description of
the reciprocal location, orientation, and enumeration of the curvilinear quadrangles and their images
under the action of the diffeomorphism. Two geometric types are equivalent if they are geometric types

of good Markov partitions of the same hyperbolically saturated set (e. g., changing the enumeration of

563



the curvilinear quadrangles, we obtain equivalent geometric types). The main result for Morse–Smale

systems is as follows (see [28, Th. 1.0.3]).

Theorem 3.5. Let Kf1 and Kf2 be saturated hyperbolic sets of Morse–Smale diffeomorphisms f1 and
f2 of closed orientable surfaces M1 and M2 respectively. Suppose that Kf1 and Kf2 have good Markov

partitions with equivalent geometric types. Then f1 and f2 are adjoint on invariant neighborhoods of
the sets Kf1 and Kf2 , i. e., there exists a homeomorphism h of a finite topological type, mapping an
invariant neighborhood U1 of the set Kf1 to an invariant neighborhood U2 of the set Kf2 such that U2

has a finite topological type and h conjugates the restrictions f1|U1 and f2|U2 .

In [18], a finite algorithm is presented; using it, one can check whether two geometric types are

equivalent.

4. Morse–Smale Flows without Equilibrium States

To describe carrier manifolds for Morse–Smale flows without equilibrium states, we use partitions
into (standard) handles, partitions into circular handles, the Seifert space, and other notions of topol-

ogy of manifolds.
The Seifert space (manifold or fibering) is any 3-manifold M3 representable as a union of pairwise

disjoint closed simple curves Cα such that each curve Cα has a closed neighborhood homeomorphic to

the solid torus D2 × S1, arising as follows: the disk D2 is multiplied by the segment [0; 1] such that
any point (x; 0) is glued with the point (d(x); 1) , where d : D2 → D2 is the rotation of the disk D2 to

the angle 2π
m

n
(m and n are relatively prime integers such that 0 ≤ m < n).

A three-dimensional manifold M3 is big in the Waldhausen sense if M3 contains an embedded
surface such that its fundamental group is infinite and is a subgroup of the fundamental group of the

manifold M3. In particular, any 3-manifold such that its first group of homologies is infinite and any
3-manifold such that its edge is incompressible (e. g., the manifold T 2×[0; 1]) are big. Any complement
to a knot embedded to a 3-sphere is a manifold big in the Waldhausen sense (see [61]).

The next theorem on the topological structure of the carrier 3-manifold for Morse–Smale flows
without equilibrium states is proved in [66].

Theorem 4.1. Let f t be a Morse–Smale flow without equilibrium states, defined on a closed three-
dimensional manifold M3. Then, if M3 is not big in the Waldhausen sense, then M3 is a Seifert
space. If M3 is big in the Waldhausen sense, then M3 is a union of Seifert spaces and direct products

T 2 × [0; 1].

In [36], necessary and sufficient existence conditions are obtained for Morse–Smale S3-flows (S3 is

the three-dimensional sphere) without equilibrium states, but with a prescribed collection of periodic
trajectories. Namely, denote the number of one-dimensional non-twisted2 periodic trajectories of index
k (the index of a periodic trajectory is equal to the dimension of its unstable manifold minus one)
by Ak. Then a Morse–Smale flow on S3 such that it has no equilibrium states and its prescribed

collection is (A0, A1, A2) exists if and only if the following conditions are satisfied:

(1) A0 ≥ 1 and A2 ≥ 1;
(2) A1 ≥ A0 − 1 and A1 ≥ A2 − 1.

If the above conditions are satisfied, then the number of twisted periodic trajectories of index 1 can
be arbitrary (see [36]).

Periodic trajectories of a Morse–Smale flow on the three-dimensional sphere S3 form indexed links

(this means that the index of the corresponding periodic trajectory is assigned to any knot). The

2We say that a periodic trajectory is twisted if the Poincaré map on its unstable manifold is adjoint to the involution

�x → −�x. Otherwise, we say that the trajectory is non-twisted.
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simplest Morse–Smale S3-flow without equilibrium states is a flow with two and only two periodic

trajectories such that the index of one of them (the attracting trajectory) is equal to 0, while the
index of another one (the repelling trajectory) is equal to 2 (see Fig. 4.1). Those trajectories form the
known Hopf link. Taking into account the indices, we call it the Hopf (0, 2)-link.

Fig. 4.1. The Hopf link

In [94], six operations are introduced on the set of indexed links (we call them Wada operations)

and it is proved that any indexed link formed by periodic trajectories of a Morse–Smale S3-flow
without equilibrium states can be obtained from the Hopf (0, 2)-link by means of Wada operations.
Conversely, any indexed link on S3, obtained from the Hopf (0, 2)-link by means of Wada operations

can be realized by means of periodic trajectories of a Morse–Smale flow without equilibrium states
(also, see [82, 96]). In [19], indexed links of nonsingular S3-flows without heteroclinic intersections
are described in terms of the Lyapunov graph, i. e., the oriented graph such that its nodes and ribs

correspond to filtration elements and regular level curves (respectively) of the Lyapunov function for
the flow.

Recall that the k-handle (handle of index k) of dimension n, 0 ≤ k ≤ n, is the product Dk ×Dn−k

or its homeomorphic image, where Dj is the j-dimensional closed ball. The part Sk−1 × Dn−k of
the boundary ∂

(
Dk ×Dn−k

)
is called the base of the handle Dk ×Dn−k. The gluing of the k-handle

Dk×Dn−k to an n-dimensional manifold Mn with a nonempty boundary is the identifying of the base

Sk−1 ×Dn−k ⊂ Sk−1 ×Dn−k
⋃

Dk × Sn−k−1 = ∂
(
Dk ×Dn−k

)

and a part of the boundary ∂Mn by means of a homeomorphism Sk−1 ×Dn−k → ∂Mn. To glue the
handle of index 0 is to add an n-dimensional ball to Mn. To glue the handle of index n is to paste an
n-dimensional ball into a component of ∂Mn.

The circular k-handle of dimension n, 0 ≤ k ≤ n, is the product S1 ×Dk ×Dn−k−1. The gluing of
the circular k-handle S1 ×Dk ×Dn−k−1 to Mn is the identifying of the set

S1 × Sk−1 ×Dn−k−1 ⊂ ∂
(
S1 ×Dk ×Dn−k−1

)

and a part of the boundary ∂Mn by means of a diffeomorphism S1 × Sk−1 ×Dn−k−1 → ∂Mn. If Mn

can be obtained from Mn−1× [0; 1], where Mn−1 is an (n−1)-manifold, by means of an iterated gluing
of circular handles (circular handles of different indices are allowed), then we say that Mn admits an
expansion into circular handles.

For the case where n ≥ 4, the following theorem is proved in [10].

Theorem 4.2. A Morse–Smale flow without equilibrium states exists on a manifold Mn (n ≥ 4) if

and only if Mn admits an expansion into circular handles.

In [11], it is proved that if the dimension of the manifold is greater than or equal to four, then
any vector field without singularities is homotopic (in the space of vector fields without singularities)
to the Morse–Smale vector field. Therefore, by virtue of Theorem 4.2, the description of the carrier

manifold can be applied to a wider class of flows without equilibrium states.
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5. Morse–Smale Flows with Equilibrium States, Defined on 3-manifolds

To describe carrier manifolds for Morse–Smale flows with equilibrium states, the Heegaard expan-

sion, the Heegaard kind, and other notions of topology of manifolds are used.
A three-dimensional manifold D3

g is called a 3-ball with g handles if D3
g is obtained from a three-

dimensional disk D3 by means of the gluing of g handles of index 1, g ≥ 0. A Heegaard partition
of kind g, g ≥ 0, of a closed three-dimensional manifold M3 is a representation of M3 as a glueing
of 3-balls with g handles by means of a homeomorphism identifying their boundaries. We say that

a manifold M3 has the Heegaard kind h(M3) if h(M3) is equal to the least g such that a Heegaard
partition of kind g exists for the manifold M3.

In [45, 46], we consider the case where the Morse–Smale flow has equilibrium states ultimately; in

a way, this situation is alternative to [10]. The following theorem is proved in [46].

Theorem 5.1. Let a Morse–Smale flow f t be defined on a closed three-dimensional manifold M3 and
let the nonwandering set of f t consist of ν(f t) saddle equilibrium states and μ(f t) nodal equilibrium
states. Then the manifold M3 can be represented by a Heegaard partition of kind

hD =
ν(f t)− μ(f t) + 2

2
.

Let M3 be a closed manifold. Then there exists a Morse–Smale flow on M3 such that it has no periodic

trajectories and 2h(M3) = ν(f t).

Corollary 5.1. Let a Morse–Smale flow f t be defined on a closed 3-manifold M3 such that the non-
wandering set of f t consists of ν(f t) saddle equilibrium states and μ(f t) nodal equilibrium states.
Then

h(M3) ≤ ν(f t)− μ(f t) + 2

2
.

From Theorem 5.1, one can deduce the following sufficient existence conditions for periodic trajec-
tories.

Proposition 5.1. Let a Morse–Smale flow f t be defined on a closed 3-manifold M3 such that the set
of equilibrium states of f t consists of ν(f t) saddles and μ(f t) knots. Then the flow f t has periodic

trajectories if

h(M3) >
ν(f t)− μ(f t) + 2

2
.

Theorem 5.2. Let a Morse–Smale flow f t be defined on a closed 3-manifold M3 such that the non-

wandering set of f t consists of ν(f t) saddle equilibrium states, ν(f t) ≥ 0, μ(f t) nodal equilibrium
states, μ(f t) ≥ 0, s(f t) saddle periodic trajectories, s(f t) ≥ 0, and r(f t) nodal periodic trajectories,
r(f t) ≥ 0. Then the manifold partition M3 can be represented as a Heegaard partition of kind

hD =
ν(f t)− μ(f t) + 2

2
+ s(f t)

and

h(M3) ≤ ν(f t) + r(f t)

2
+ s(f t).

Several classification results are obtained for special classes of Morse–Smale flows on closed 3-mani-
folds. In [33], polar flows, i. e., gradient-like flows such that each one has one and only one stable knot

and one and only one unstable knot, are classified. To construct a complete classification invariant of
such flows (in [33], it is called the Heegaard diagram), intersections of separatrices of the saddles with
spheres around the knots are considered. In [93], a complete topological invariant is constructed for

Morse–Smale flows such that each one has a finite number of trajectories belonging to intersections
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Fig. 6.1. A flow on a projective plane (diametrically opposite points of the circle are identified)

of two-dimensional separatrices of saddle nonwandering trajectories. This invariant is a combinatorial

description of the cells of the flow and a character description for the joining of the cells to the sinks
and the sources. In [81], a complete invariant is constructed for Morse–Smale flows without periodic
trajectories. Up to a homeomorphism, this invariant is a surface such that it is transversal to flow

trajectories located outside the closure of the set of one-dimensional separatrices of saddle points and it
contains traces of the intersections of that surface with two-dimensional separatrices of saddle points.

6. Flows with Three Equilibrium States

As we note above, if the nonwandering set of a Morse–Smale flow on a closed manifold Mn consists

of two points, then the flow has one and only one stable knot and one and only one unstable knot,
the manifold Mn is the n-dimensional sphere, and the flow is topologically equivalent to the standard
flow of the type “north–south.” Consider the dynamics of Morse–Smale flows with nonwandering sets

consisting of three points each. Due to Proposition 3.2, the carrier two-dimensional manifold of any
such flow is a projective plane M2 = P

2, and all Morse–Smale flows on P
2 such that the nonwandering

set of the flow consists of three equilibrium states are topologically equivalent. The phase portrait of

such a flow is displayed on Fig. 6.1. It is easy to see that the sink ω and the unstable manifold W u(σ)
of the saddle σ form a locally plainly embedded circle S1 ⊂ P

2 such that P2 \ S1 is homeomorphic to
an open ball. Thus, the following definition is reasonable.

Recall that we say that a k-dimensional sphere Sk, 1 ≤ k ≤ n − 1, topologically embedded in Mn

is locally plainly embedded if for any point z from Sk there exist a neighborhood U(z) = U ⊂ Mn and
a homeomorphism ϕz : U → R

n such that ϕz(S
k ∩U) = R

k ⊂ R
n. We say that Mn is a projective-like

manifold if

(1) n belongs to the set {2, 4, 8, 16};
(2) Mn is the disjoint union3 of a

n

2
-dimensional sphere S

n
2 locally plainly embedded in Mn and

an open n-dimensional ball Bn, i. e.,

Mn = S
n
2 ∪Bn and S

n
2 ∩Bn = ∅.

In [63] (also, see [97]), the following theorem is proved.

Theorem 6.1. Let f t be a Morse–Smale flow on a closed n-dimensional manifold Mn, n ≥ 2, such
that the nonwandering set of f t consists of three equilibrium states. Then Mn is a projective-like
manifold. For n = 2, that manifold is a projective plane M2 = P

2 (a nonorientable surface of kind 1

3A disjoint union is any union of pairwise disjoint sets.
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with the fundamental group π1(M
2) = Z2). For n ≥ 4, we have

π1(M
n) = · · · = πn

2
−1(M

n) = 0, and, therefore, Mn is orientable.

For any projective-like manifold, there exists a Morse–Smale flow on that manifold such that the
nonwandering set of that flow consists of three equilibrium states.

Note that any Morse–Smale flow on Mn such that its nonwandering set consists of three equilib-

rium states has one and only one saddle and closures of invariant (stable and unstable) manifolds of
that saddle are topologically embedded spheres of dimension n/2. Now, to present topological equiv-
alence results for flows with three equilibrium states, obtained in [64], introduce the key notion of

submanifolds locally equivalently embedded in the carrier manifold.
Let Mk

1 and Mk
2 be k-dimensional submanifolds topologically embedded in Mn, 1 ≤ k ≤ n − 1.

We say that Mk
1 and Mk

2 are locally equivalently embedded if there exist neighborhoods U(closMk
1 )

and U(closMk
2 ) of the topological closures closMk

1 and closMk
2 of the submanifolds Mk

1 and Mk
2

(respectively) and a homeomorphism h : U(closMk
1 ) → U(closMk

2 ) such that h(Mk
1 ) = Mk

2 . For
carrier manifolds of dimensions n = 8 and n = 16, the following theorem is valid.

Theorem 6.2. Let f t
i be a Morse–Smale flow (i = 1, 2) on a closed n-dimensional topological manifold

Mn
i , where n = 8, 16, such that the nonwandering set of f t

i consists of three equilibrium states. Then

the flows f t
1 and f t

2 are topologically equivalent if and only if the stable (equivalently unstable) manifolds
of the saddles of the flows f t

1 and f t
2 are locally equivalently embedded.

For carrier manifolds of dimensions n = 2 and n = 4, the following theorem is valid.

Theorem 6.3. Let f t
1 and f t

2 be Morse–Smale flows on closed topological manifolds Mn
1 and Mn

2 re-
spectively, where n = 2, 4, such that the nonwandering set of each flow consists of three equilibrium
states. Then f t

1 and f t
2 are topologically equivalent. In particular, the manifolds M4

1 and M4
2 are home-

omorphic to each other, while the manifolds M2
1 and M2

2 are homeomorphic to the two-dimensional
projective plane P

2.

7. Nonwandering Sets of Morse–Smale Systems and Topology of Carrier Manifolds:

Relations between Numeric Characteristics

In this section, Morse–Smale diffeomorphisms satisfying special conditions are considered.
As we note above, a Morse–Smale diffeomorphism can be defined on any three-dimensional man-

ifold. However, this is not valid for Morse–Smale diffeomorphisms without heteroclinic curves. The

following result about the topological structure of closed three-dimensional manifolds possessing the
said property is obtained in [23, 24].

Theorem 7.1. Let f : M3 → M3 be a Morse–Smale diffeomorphism preserving the orientation and
M3 be a closed orientable 3-manifold without heteroclinic curves. Then M3 is either the sphere S3

(ν(f) = μ(f)− 2 in that case) or the connected sum (S2 ×S1)� · · · �(S2 ×S1) such that the number of
its terms is equal to

ν(f)− μ(f) + 2

2
,

where ν(f) is the number of saddle periodic points and μ(f) is the number of nodal periodic points.

By G∗(Mn) denote the set of Morse–Smale diffeomorphisms of an orientable n-dimensional (n ≥ 4)
closed manifold Mn such that each diffeomorphism preserves the orientation, each its saddle point has
a one-dimensional (stable or unstable) manifold, and invariant manifolds of different saddle points do

not intersect each other. In [40, 51, 52], Theorem 7.1 is generalized as follows.
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Theorem 7.2. A closed orientable n-manifold Mn (n ≥ 4) admits a Morse–Smale diffeomorphism

f : Mn → Mn from the class G∗(Mn) such that it preserves the orientation and has ν(f) saddle
periodic points, ν(f) ≥ 0, and μ(f) nodal periodic points, μ(f) ≥ 2, if and only if Mn is either a
sphere (ν(f) = μ(f) − 2 in that case) or is the connected sum (Sn−1 × S1)� · · · �(Sn−1 × S1). In the
last case, the number of terms of the connected sum is equal to

ν(f)− μ(f) + 2

2
.

From Theorem 7.1, it follows that no Morse–Smale diffeomorphism with three and only three

periodic points exists on 3-manifolds. Omitting the trivial case of a diffeomorphism with two and only
two periodic points, we see that the Morse–Smale diffeomorphism with four and only four periodic
points is the simplest one. For such diffeomorphisms, the embedding of invariant manifolds of saddle

periodic points can be rather complicated; therefore, nontrivial examples exist even on the 3-sphere S3.
In [78], it is found that the tame (not wild) embedding of invariant manifolds of saddle periodic points
is possible for the Morse–Smale diffeomorphism f : S3 → S3 with three knots (two sinks and one

source) and one saddle with a one-dimensional (unstable) separatrix and a two-dimensional (stable)
separatrix (in the sequel, the class of such diffeomorphisms is called the Pixton class). To understand
the arising of a wild embedding of separatrices for a saddle point of a diffeomorphism f, denote the

sinks by ω1 and ω2 and denote the separatrix of a saddle σ, going to the sink ω2, by W u+(σ) (see
Fig. 7.1 (a)). Now, represent the union α∪W s(σ)∪W u+(σ)∪ω2 as an infinite “curve” with a slightly
inflated half (this half corresponds to α∪W s(σ)), where W s(σ) is the stable manifold of the saddle σ.

Then embed that curve and its neighborhood in S3, treating it as a curve with two wildness endpoints,
e. g., as the well-known (see [9]) Artin–Fox arc (see Fig. 7.1 (b)).

Fig. 7.1

The strict definition is as follows. Let f belong to MS(M3), ω be a sink point, and �u(σ) be a
one-dimensional separatrix of a saddle point σ such that �u(σ) is a subset of W s(ω). We say that
the separatrix �u(σ) is tamely embedded in M3 if there exists a homeomorphism h : W s(ω) → R

3

such that h(�u(σ)) is a ray in R
3. In the same way, a bundle Lω of one-dimensional separatrices such

that its closure contains ω is called a tame bundle if there exists a homeomorphism h : W s(ω) → R
3

unbending separatrices.

From [55], the following tame embedding criterion for one-dimensional separatrices is deduced.

Proposition 7.1. Let f belong to MS(M3), ω be a sink point, and �u(σ) be a one-dimensional
separatrix of a saddle point σ such that �u(σ) is a subset of W s(ω). Then the separatrix �u(σ) is
tamely embedded in M3 if and only if there exists a smooth 3-ball Bω ⊂ W s(ω) such that ω belongs to

it interior and the intersection of �u(σ) an ∂Bω consists of one point.
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For bundles of one-dimensional separatrices, no similar criterion is valid. Really, in [32], a bundle

of arcs is constructed in R
3 such that the intersection with the boundary of a 3-ball consists of one

point, but the bundle is tame (see Fig. 7.2, where the Debrunner–Fox bundle of arcs is realized as a
bundle of separatrices of a Morse–Smale diffeomorphism on S3). We call such a bundle moderately
wild because, extracting any arc from such a bundle, we obtain that the remaining union is tame.

Fig. 7.2

Let f : M3 → M3 be a Morse–Smale diffeomorphism on a closed 3-manifold M3 such that f has
no heteroclinic points. We say that one-dimensional separatrices of the diffeomorphism f are trivially

embedded if all bundles of one-dimensional separatrices are tame.
The next theorem and corollaries from it refer to relations between dynamical characteristics of a

Morse–Smale diffeomorphism with trivially embedded separatrices, but without heteroclinic points,

and the kind of the Heegaard partition of the carrier 3-manifold; they are obtained in [45, 46].

Theorem 7.3. Let f : M3 → M3 be a gradient-like diffeomorphism of a 3-manifold M3 such that
it has ν(f) saddle periodic points and μ(f) nodal periodic points. If one-dimensional separatrices of
the diffeomorphism f are trivially embedded, then the manifold M3 can be represented as a Heegaard
partition of kind

h =
ν(f)− μ(f) + 2

2
.

Corollary 7.1. Let f : M3 → M3 be a gradient-like diffeomorphism of a closed 3-manifold M3. If
one-dimensional separatrices of the diffeomorphism f are trivially embedded, then the number of saddle
periodic points of the diffeomorphism f is not less than the doubled Heegaard kind of the manifold M3.

For any closed manifold M3 of a Heegaard kind h(M3), there exists a Morse–Smale diffeomorphism
f on that manifold such that it has no heteroclinic points and the number of its saddle periodic points
is equal to 2h(M3).

Corollary 7.1 implies the following sufficient condition for the existence of heteroclinic points of a

Morse–Smale diffeomorphism with trivially embedded one-dimensional separatrices of saddle periodic
points.

Proposition 7.2. Let f : M3 → M3 be a Morse–Smale diffeomorphism of a closed 3-manifold M3

such that it has ν(f) saddle periodic points and μ(f) nodal periodic points. Suppose that the one-di-

mensional separatrices of saddle periodic points of the diffeomorphism f are trivially embedded. Then,
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if

h(M3) >
ν(f)− μ(f) + 2

2
,

then f has heteroclinic points. In particular, f is embedded in no flow.

From [61], it is known that the Heegaard kind is additive with respect to connected sums of 3-
manifolds. Since h(S2×S1) = 1, it follows that the Heegaard kind of a connected sum h

(
(S2 × S1)� · · ·

�(S2 × S1)
)
is equal to the number of its terms. This, Theorem 7.1, and the Seifert–van Campen

theorem imply the following assertion.

Proposition 7.3. Let f : M3 → M3 be a Morse–Smale diffeomorphism of a closed 3-manifold such
that it preserves the orientation and has ν(f) saddle periodic points and μ(f) nodal periodic points.
Suppose that one of the following conditions is satisfied:

(1) h(M3) >
ν(f)− μ(f) + 2

2
;

(2) the fundamental group π1(M
3) is not equal to the free product Z ∗ · · · ∗ Z of g samples of the

group Z of integers.

Then f has heteroclinic curves.

Frequently, closed heteroclinic curves have an artificial genesis and their presence is not caused by

the topological structure of the carrier manifold or by dynamical restrictions. Regarding nonclosed
heteroclinic curves, we present the next theorem proved in [47].

Theorem 7.4. Let f : M3 → M3 be a Morse–Smale diffeomorphism of a closed orientable three-
dimensional manifold such that the three-dimensional sphere S3 is its universal covering and the
nonwandering set of f consists of two saddle periodic points and two nodal periodic points. Then there

exists at least one heteroclinic nonclosed curve such that its boundary consists of saddle points (see
Fig. 7.3). Any such heteroclinic curve is invariant with respect to an iteration of the diffeomorphism
f. If the intersection of the two-dimensional invariant manifolds of saddle points is not exhausted by

such heteroclinic curves, then the remaining part of the intersection contains a denumerable family of
closed heteroclinic curves that are a union of orbits of a finite set of closed heteroclinic curves.

Fig. 7.3

The next theorem provides an estimate from below for the number of nonclosed heteroclinic curves
for Morse–Smale diffeomorphisms on lenses Lp,q under the assumption that the nonwandering set of

the diffeomorphism contains four and only four periodic points (see [47]).
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Theorem 7.5. Let f : Lp,q → Lp,q be a Morse–Smale diffeomorphism such that its nonwandering set

of the diffeomorphism consists four and only four periodic points. Then

(1) The diffeomorphism f has two saddle periodic points and two nodal periodic points and the

Morse indices of the saddle points are different from each other.
(2) If the one-dimensional separatrices of the diffeomorphism f are trivially embedded, then there

exist at least p heteroclinic nonclosed curves such that the boundary of each one consists of

saddle points. Any such heteroclinic curve is invariant with respect to an iteration of the dif-
feomorphism f.

It follows from Theorem 7.1 that any gradient-like diffeomorphism has heteroclinic (compact or
noncompact) curves on any irreducible manifold provided that at least one saddle point exists. The
next theorem proved in [43] refines that result for polar systems.

Theorem 7.6. The two-dimensional manifold of any saddle point of any polar gradient-like diffeo-

morphism on an irreducible manifold contains a noncompact heteroclinic curve.

8. Global Dynamics of Morse–Smale Systems

The complexity of the dynamics of arbitrary Morse–Smale systems is illustrated by the following
result from [1]. Let f t be a flow on a compact manifoldMn. LetG(f t) be the group of homeomorphisms
of the flow f t on itself, i. e., any homeomorphism from G(f t) maps any trajectory of the flow f t to a

trajectory of the flow f t, preserving the orientation with respect to time. The metric on Mn induces
a natural metric on G(f t). Following [1], we say that a trajectory l of the flow f t is special if there
exists a positive ε such that if g belongs to G(f t) and is ε-close to the identity homeomorphism, then
the condition g(l) = l is satisfied.

All equilibrium states and periodic trajectories of the Morse–Smale flow are special because they
are isolated in the nonwandering set. However, a wandering trajectory l belonging to the intersection
of the stable manifold W s and unstable manifold W u of nonwandering trajectories can be special as

well. In such a case, the relation dimW s+dimW u = dimMn+1 is valid. The type (dimW s,dimW u)
is assigned to the trajectory l. The set of all such special trajectories of type (m + 1,dimMn − m)
and their limit nonwandering trajectories is defined by Mm+1. In general, this set is disconnected

and consists of a finite number of components denoted by M
(1)
m+1, . . . , M

(κ)
m+1. In this notation, the

following theorem is valid (see [1]).

Theorem 8.1. Let f t be a Morse–Smale flow and M
(i)
m+1 be a component of the set Mm+1. Then the

restriction of the Morse–Smale flow to M
(i)
m+1 is topologically orbitally equivalent to a special suspension

(ΣA, f) over a topological Markov chain (ΣA, σ) with a finite number of states, where ΣA is the space
of two-side binary sequences determined by a matrix A and the nonnegative function f : ΣA → [0; 1]
vanishes only at points corresponding to constant sequences (σ is the translation to the left by 1).

The set of special trajectories has a complex structure, but any Morse–Smale system can be rep-

resented as a “source–sink” pair, where there are (appropriately simple) invariant closed sets such
that one of them is the attractor and another one is the repeller (see Fig. 1.2). Let us describe the
construction of the attractor Af and repeller Rf for the Morse–Smale diffeomorphism f : Mn → Mn.

If the space V̂f of orbits of the nonwandering set Vf = Mn \ (Af ∪Rf ) (together with the images em-

bedded to it under the factorization of invariant manifolds of saddle periodic points) can be described,
then new topological invariants describing the embedding (it might be wild) of stable and unstable
manifolds of saddle periodic points to the carrier manifold are found. This creates a premise for the

topological classification in the framework of that class of diffeomorphisms (see Sec. 9).
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Let f : Mn → Mn be a Morse–Smale diffeomorphism preserving the orientation. Let Σf , Δ
s
f , and

Δu
f denote the sets of all saddles, sinks, and sources (respectively) of the diffeomorphism f. Divide the

set of saddle points Σf into disjoint subsets ΣA
f and ΣR

f such that the sets

Af = Δs
f ∪W u

ΣA
f

and Rf = Δu
f ∪W s

ΣR
f

are closed and invariant. Note that if at least one of the sets Af or Rf is closed and invariant, then

another one is closed and invariant as well. The sets Af and Rf contain all periodic points of the
diffeomorphism f and do not intersect each other. The greatest dimension of an unstable (stable)
manifold of points from ΣA

f (ΣR
f ) is called the dimension of Af (Rf respectively).

Theorem 8.2. Let f : Mn → Mn be a Morse–Smale diffeomorphism. Then the set Af (Rf ) is an
attractor (repeller respectively) of the diffeomorphism f. If the dimension of the attractor Af (repeller

Rf ) does not exceed n− 2, then the repeller Rf (attractor Af respectively) is connected.

We say that Af and Rf are the global attractor and repeller (respectively) of the Morse–Smale
diffeomorphism f : Mn → Mn.

The next theorem describes the topological structure of the space of orbits of the set

Vf = Mn \ (Af ∪Rf ) .

Let

V̂f = Vf/f

denote the set of orbits of the action of f on the manifold Vf coinciding with the set of orbits of the

diffeomorphism f on Vf . Let

pf : Vf → V̂f

be the natural projection that maps any point x from Vf to its orbit by virtue of the diffeomorphism

f and endows the set V̂f with the quotient topology.
Recall that a sphere Sn−1 in Mn is said to be cylindrically embedded in Mn if there exists a

topological embedding h : Sn−1 × [−1;+1] → Mn such that h(Sn−1 × {0}) = Sn−1. Similarly to the

three-dimensional case, we say that Mn is irreducible if any (n− 1)-sphere cylindrically embedded in
Mn bounds an n-ball in Mn.

Theorem 8.3. The space Vf is a smooth orientable n-manifold. If the dimension of the attractor

Af and repeller Rf does not exceed n − 2, then Vf is connected and V̂f either is irreducible or is
homeomorphic to S

n−1 × S
1.

Several corollaries from Theorems 8.2-8.3 are provided below.

Corollary 8.1. If a Morse–Smale diffeomorphism f : Mn → Mn has no saddle points with one-

dimensional unstable (stable) manifolds, then the nonwandering set of f contains one and only one
sink (source).

If a Morse–Smale diffeomorphism has one and only one sink and one and only one source, then it
is called a polar diffeomorphism. Polar diffeomorphisms generalize “source–sink” diffeomorphisms in
a natural way. The next assertion follows directly from Corollary 8.1.

Corollary 8.2. If a Morse–Smale diffeomorphism f : Mn → Mn has no saddle points with one-di-

mensional invariant manifolds, then f is a polar diffeomorphism.

Recall that the direct productHn
q = B

q×B
n−q of two disks is called a handle of index q of dimension

n (0 ≤ q ≤ n) and the disk B
q is called the axis of the handle. The handle Hn

q is a smooth manifold

with boundary ∂Hn
q = ∂(Bq ×B

n−q) = (∂Bq ×B
n−q)∪ (Bq × ∂Bn−q) = (Sq−1×B

n−q)∪ (Bq × S
n−q−1).
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Recall the operation to glue a handle Hn
q to an n-manifold An with boundary Bn−1 = ∂An. Let

S
q−1 ⊂ Bn−1 be a smoothly embedded sphere and N(Sq−1) is its tubular neighborhood diffeomorphic

to the direct product S
q−1 × B

n−q. Glue the manifold An with the handle Hn
q along the map g :

S
q−1 × B

n−q → N(Sq−1), which is a diffeomorphism between the tubular neighborhood N(Sq−1) and

the manifold S
q−1 × B

n−q, which is a part of the boundary ∂Hn
q . Then, smoothing “angles” arising

at the points ∂N(Sq−1) = S
q−1 × S

n−q−1, we obtain a smooth manifold Ãn with a smooth boundary

B̃n−1.
Any triple (K,L0, L1), where L0 and L1 are closed manifolds of dimension n−1 and K is a compact

n-dimensional manifold such that ∂K = L0 � L1, is called a compact n-dimensional cobordism.

Corollary 8.3. Let f : Mn → Mn be a Morse–Smale diffeomorphism, ΣA
f be the set of saddle points

with one-dimensional unstable manifolds, and ΣR
f = Σf \ΣA

f . Then the corresponding global attractor

Af and global repeller Rf are connected and there exists an n-dimensional cobordism (K,L0, L1), where
K ⊂ Vf and L1 and L2 are homeomorphic to the boundary of the n-ball with g glued n-dimensional

handles of index 1, g ≥ 0, such that V̂f is obtained from (K,L0, L1) by means of the identifying of its

boundaries by virtue of the diffeomorphism f.

The next theorem describes the structure of the global attractor and the global repeller for the case
where they do not contain heteroclinic intersections.

The image of any open n-disk int Bq in a Hausdorff space X under a continuous mapping gq : Bq →
X such that its restriction gq|int Bq : int Bq → gq(int Bq) is a homeomorphism is called a q-block eq

(q ≥ 0). Note that ∂Bq = S
q−1 for any nonnegative q. If q = 1, then the boundary S

0 of the disk B
1

consists of two points. If q = 0, then the disk B
0 is a point and its boundary S

−1 is the empty set. A

finite block complex is any Hausdorff space X representable as a union of pairwise disjoint cells (block

decomposition) X =
n⋃

q=0

( cq(X)⋃
j=1

eqj

)
such that the boundary Fr eqj of any block eqj is contained in a

union of blocks of lower dimensions. The dimension of the greatest block of a block complex is called

the dimension of that block complex.
A special case of block complexes is a union of spheres: to obtain it, we take spheres X1, . . . , Xm

of positive dimensions (different dimensions for different spheres are allowed), mark a point of each
sphere, and identify all marked points with one point (see [34]). Any isolated point can be treated as

a trivial union of spheres.

Fig. 8.1

We say that two unions of spheres, embedded to a same space, are joined by an arc if an arc (a
topological embedding of a segment) is added to the unions such that it joins the marked points of
the unions and its interior does not intersect the unions. That arc is called the binding arc. Any

connected set consisting of a finite number of unions of spheres and binding arcs is called a sheaf of
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unions of spheres. For example, Figure 8.1 (a)–(c) displays sheafs of unions of spheres, while the set

displayed at Fig. 8.1 (d) is not a sheaf of unions of spheres because the sphere of a union has the only
marked point.

Theorem 8.4. Let Af (Rf ) be a global attractor (global repeller respectively) of a Morse–Smale dif-
feomorphism f : Mn → Mn such that Af (Rf respectively) does not contain heteroclinic intersections.

Then Af (Rf respectively) is a finite family of sheafs of unions of spheres.

9. Morse–Smale Diffeomorphisms on n-Manifolds:
Topological Classification for n ≥ 3

Consider the problem to classify Morse–Smale diffeomorphisms on closed 3-manifolds.
For diffeomorphisms from the Pixton class, the topological classification is reduced to the isotopic

classification of knots in S2 × S1, homotopic to knots {·} × S1 (for details, see [21]). In particular,

this implies the existence of a denumerable set of topological adjointness classes for Morse–Smale
S3-diffeomorphisms with three knots and one saddle for each.

In [21], a qualitatively new adjointness invariant is found and the main stages of the proof of
necessary and sufficient adjointness conditions are developed (for the case of a basic class) for two

diffeomorphisms from wider classes. This work inspired a flow of publications devoted to the classifi-
cation of various classes of Morse–Smale diffeomorphisms on closed 3-dimensional manifolds (see [22,
23, 25–27] etc.) Finally, in [80], a complete topological classification is obtained for diffeomorphisms

from the set MS (M3), preserving the orientation. We describe the scheme to construct a complete
topological invariant for such diffeomorphisms.

Let f be a diffeomorphism from the class MS (M3), preserving the orientation. By Af (Rf ) denote

the union of all sink (source respectively) periodic points and all one-dimensional unstable (stable
respectively) manifolds of saddle periodic points of the diffeomorphism f. Then Af is an attracting
set and is a union of a finite number of arcs and circles (points of their wild knotting at sink periodic

points are possible). The repelling set Rf is described in the same way. Also, the sets Af and Rf

can contain arcs such that one-dimensional separatrices of saddle periodic points tend to those arcs,
“oscillating.”

Assign Vf = M3 \ (Af
⋃

Rf ) . The set Vf is an invariant open connected subset belonging to the

wandering set of the diffeomorphism f. Since it is invariant, one can consider the space of orbits V̂f

lying in Vf . Formally, V̂f is a quotient space with respect to the following equivalence relation: two

points are equivalent to each other if they belong to a same orbit. Let pf : Vf → V̂f denote the

natural projection. By virtue of Theorem 8.3, V̂f is a connected closed oriented three-dimensional

manifold and the projection pf is a covering with a group of covering transformations isomorphic to

Z (see, e. g., [48]). Therefore, pf determines an epimorphism αf : π1(V̂f ) → Z. Let Γ̂u
f and Γ̂s

f denote
the images with respect to pf for all two-dimensional stable and unstable separatrices, respectively.

These sets are compact and any component of the arcwise connectedness of the sets Γ̂u
f and Γ̂s

f is

the two-dimensional torus or the Klein bottle with an empty, finite, or denumerable set of punctured
points (see Fig. 9.1); it is possible that the sets Γ̂u

f and Γ̂s
f transversally intersect each other.

Any collection Sf = (V̂f , αf , Γ̂
u
f , Γ̂

s
f ) is called a scheme. We say that schemes Sf = (V̂f , αf , Γ̂

u
f , Γ̂

u
f )

and Sf ′ = (V̂f ′ , αf ′ , Γ̂u
f ′ , Γ̂s

f ′) are equivalent to each other if there exists a homeomorphism h : V̂f → V̂f ′

such that

(1) h(Γ̂u
f ) = Γ̂u

f ′ , h(Γ̂u
f ) = Γ̂u

f ′ ;

(2) h∗(αf ′) = αf , where the isomorphism h∗ : π1(V̂f ′ ,Z) → π1(V̂f ,Z) is induced by the homeomor-

phism h.
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Fig. 9.1

Theorem 9.1. Up to an equivalence, the scheme is a complete topological invariant in the class of
diffeomorphisms from MS (M3) preserving the orientation.

In [40], Theorem 9.1 is generalized to the class G∗ (Mn): a scheme similar to the scheme of the
Morse–Smale 3-diffeomorphism is introduced for diffeomorphisms from G∗ (Mn).

Theorem 9.2. Up to an equivalence, the scheme is a complete topological invariant in the class of
diffeomorphisms from G∗ (Mn) preserving the orientation.

In [39], for a diffeomorphism f from the class G(Sn) of Morse–Smale diffeomorphisms with a one-
dimensional set of unstable separatrices on the n-sphere, we introduce a graph G(f) similar to the
distinguishing Bezdenezhnykh–Grines graph (recall that the latter is an analog of the distinguishing

Peixoto graph) and define an automorphism on it.
In [47], the following assertion is proved.

Theorem 9.3. Let f and g be Morse–Smale diffeomorphisms on the n-dimensional sphere Sn (n ≥ 4)

such that they preserve the orientation, and the nonwandering set of each one consists of four fixed
points: one saddle of codimension one and three knots. Then f and g are adjoint if and only if the
Morse indices of their saddles are equal to each other (it is equal either to 1 or to n− 1).

Comparing this result with fact that there is a denumerable family of Morse–Smale diffeomorphisms
on the 3-dimensional sphere such that they are pairwise and each one has one saddle and three
knots (see [21]), we see a contrast: the multidimensional case is simpler. The reason is that no wild

embedding of a one-dimensional separatrix and its topological closure (and one knot) is possible. This
follows from [30], where it is proved that if n ≥ 4, then any wildly embedded arc has a continual set of
points of wildness. Therefore, this case does not require knotting points (unlike the case where n = 3.)

Theorem 9.4. Let f and f ′ be diffeomorphisms from the class G(Sn), preserving the orientation.
They are topologically adjoint if and only if there exists an isomorphism of the graphs G(f) and G(f ′),
conjugating the automorphisms.
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