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1. Introduction

This paper is a sequel to [Nak16]. It is written for mathematicians so that no
knowledge on physics is required to read. It can be read even independently
of [Nak16] except the next background subsection. We by no means intend to
ignore past research in physics. We try our best to give appropriate physics
references either here or in [Nak16] so that the reader could see how we
understand them. There are two companion papers [Quiver, Affine] where
specific topics arising from this paper are discussed.

1(i). Background

In [Nak16] the third named author proposed an approach to define the
Coulomb branch MC of a 3-dimensional N = 4 SUSY gauge theory in a
mathematically rigorous way. The Coulomb branch MC is a hyper-Kähler
manifold with an SU(2)-action possibly with singularities. It has been stud-
ied by physicists intensively over the years, nevertheless lacks a firm math-
ematical footing as the physical definition involves quantum corrections.

A key idea in [Nak16] was to use a certain moduli stack, motivated
by reduction of the generalized Seiberg-Witten type equation to S2 = P1,
associated with a compact Lie group Gc and its representation M over the
quaternions H, corresponding to a given SUSY gauge theory. Then the space
of holomorphic functions on MC is proposed as the dual of the critical
cohomology with compact support of the moduli stack, associated with an
analog of the complex Chern-Simons functional.

The goal of this paper is to define a commutative multiplication on the
dual cohomology group, under the assumption that M is of cotangent type,
i.e., M = N⊕N∗ for a complex representation N of G. The commutative
ring of functions determines MC as an affine algebraic variety as its spec-
trum. Therefore the remaining step is to find a hyper-Kähler metric, or
equivalently the twistor space.

Under the cotangent type assumption, it was heuristically shown
([Nak16]) that the critical cohomology group can be replaced by the or-
dinary cohomology group with compact support for a smaller moduli stack
R of pairs of holomorphic principal G-bundles P with holomorphic sections
of the associated vector bundle P×G N over P1. Here G is a complexifi-
cation of Gc. In fact, we further change the moduli stack of pairs over P1

by a stack modeled after the affine Grassmannian. In other words, we con-
sider the moduli stack of pairs over the non-separated scheme D̃ obtained
by gluing two copies of the formal disk D = SpecC[[z]], along the punctured
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disk D∗. This allows us to apply various techniques used in study of affine
Grassmannian. (See below for some detail, and the main body for full de-
tail.) The graded dimension of the cohomology group does not change as we
will see later, and we conjecture that two cohomology groups are naturally
isomorphic.

The original intuition for the multiplication in [Nak16] was a conjec-
tural 3d topological quantum field theory associated with the gauge theory.
Namely the dual cohomology group is regarded as the quantum Hilbert
space HS2 associated with S2, and the multiplication is given by the vec-
tor corresponding to the 3-ball with two balls removed from the interior.
Intuitively our definition of the product uses the same picture, but one of
three boundary components is very small. Let us view it as Σ× [0, 1] with
small 3-ball B3 removed from the interior, where Σ = S2. Then it can be
regarded as a movie of Σ on which a small 2-ball appears and disappears,
where [0, 1] is the time direction. (See Figure 1.) We have a multiplication
HΣ ⊗H∂B3 → HΣ from the 3d point of view. On the other hand, from a 2d
observer on Σ, the intersection B3 ∩ (Σ× t) appears in a small neighborhood
of a point. Therefore the observer sees something happening on the formal
disk D. From this point of view, HΣ is a module of a ring H∂B3 , where the
multiplication on H∂B3 is given by considering two formal disks. This 2d
movie is nothing but the convolution diagram for the affine Grassmannian,
or more precisely Beilinson-Drinfeld Grassmannian.

B3

Σ× 1

Σ× t

Σ× 0

Figure 1: 3d picture vs 2d movie.

We do not expect our technique to be applied to more general 3-manifolds
with boundaries, but we think that it is a good starting point nevertheless.

Let us also mention that the relevance of the affine Grassmannian (and
[BFM05], see below) in 3d SUSY gauge theories with N = 0 was pointed
earlier by Teleman [Tel14].
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1(ii). Construction

We believe that our definition of the affine algebraic variety MC is inter-
esting in its own, even ignoring physical motivation. For mathematicians
who do not know physics, it can be regarded as new construction of a class
of algebraic varieties with interesting structures. The class contains moduli
spaces of based maps from P1 to a flag variety (also conjecturally instantons
on multi Taub-NUT spaces), and spaces studied in the context of geometric
representation theory, such as slices in affine Grassmannian. But we expect
MC is an unknown space in most cases.

Let us give a little more detail on the definition. Let G be a complex re-
ductive group, and N be its representation. We consider the moduli space R
of triples (P, ϕ, s), where P is a G-bundle on the formal disk D = SpecC[[z]],
ϕ is its trivialization over the punctured disk D∗ = SpecC((z)) and s is a sec-
tion of the associated vector bundle P×G N such that it is sent to a regular
section of a trivial bundle under ϕ. We have a natural action of GO = G[[z]],
the group of O-valued points of G by changing ϕ. If we ignore s, we get the
moduli space of pairs (P, ϕ), which is nothing but the affine Grassmannian
GrG. When N = g, the adjoint representation, R is the affine Grassman-
nian Steinberg variety. For general N, we have a projection R → GrG whose
fibers are infinite dimensional vector spaces.

It is a direct limit of inverse limits of schemes of finite type, but its GO-
equivariant Borel-Moore homology group HGO

∗ (R) is well-defined, as we will
explain in the main text.

We then introduce a convolution diagram for R as an analog of one
for GrG, used in [MV07] for geometric Satake correspondence. It defines
a convolution product ∗ on HGO

∗ (R). This construction has originally ap-
peared in [BFM05] for GrG itself (i.e., N = 0) and N = g. There is a closely
related earlier work [Vas05] for N = g, and also [VV10]. We thus get a
graded commutative ring A, and define the Coulomb branch as its spec-
trum MC = SpecA.

We can thus regard these earlier results as computation of examples of
MC : For N = 0, MC is the the algebraic variety ZG

∨

g∨ formed by the pairs
(g, x) such that x lies in a (fixed) Kostant slice in g∨, and g ∈ G∨ satisfies
Adg(x) = x. See §3(x)(a) for more detail.

For N = g, the adjoint representation, MC is (t× T∨)/W , where t is
the Lie algebra of a maximal torus T , T∨ is the dual torus of T , and W is
the Weyl group. See §3(x)(b) for more detail.
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1(iii). Quantization of MC

As a byproduct of our definition, we obtain a noncommutative deformation
(quantized Coulomb branch) A~, flat over C[~]. This is defined as the equiv-
ariant homology groupHGOoC×

∗ (R), where C× is the group of loop rotations,
as in earlier works [Vas05, VV10, BF08]. Therefore the classical limit A has
a Poisson bracket. We show that it is symplectic on the regular locus ofMC

(Proposition 6.15). When N = 0, A~ is a quantum hamiltonian reduction of
the ring of differential operators on G∨ ([BF08, Th. 3]). When N = g, A~
is expected to be the spherical subalgebra of the graded Cherednik algebra,
based on [Vas05, VV10]. (See §3(x)(b) for a precise statement.)

The quantized Coulomb branch A~ contains H∗G×C×(pt)1 as a commuta-
tive subalgebra (Cartan subalgebra). Correspondingly we have a morphism
$ : MC → t/W ∼= C` such that all functions factoring through $ are Pois-
son commuting. A generic fiber of $ is T∨ (Propositions 3.15, 5.19). Thus
$ is an integrable system in the sense of Liouville. In examples N = 0 and
g, the morphism $ is an obvious projection to t/W .

Remarks 1.1. (1) A physical explanation of the ‘quantization’ is given in
[BDG15, §3.4]. It is coming from the Ω-background, i.e., the C×-action on
R3. This should have the same origin with our definition.

(2) In 4-dimension, it is known that Coulomb branches are closely re-
lated to the Hitchin system (see e.g., [Don97], a review for mathematicians).
But the integrable system above is not a simple limit of the 4-dimensional
integrable system even for (G,N) = (SL(2), 0): MC is the Atiyah-Hitchin
space, which is the complement of the infinity section in 4d Coulomb branch
for R3 × S1, the total space of Seiberg-Witten curves y2 = x3 − x2u+ x

([SW97, (3.18)]), but the hamiltonian is u in 4d while it is v
def.
= x− u in

3d. Anyhow the integrable system is coming from monopole operators cor-
responding to the cocharacter λ = 0. And it is proposed that they form a
Poisson commuting subalgebra in [BDG15, §3.2, §4.2].

1(iv). The organization of the paper

§2 is devoted to the definition of R and its equivariant Borel-Moore homol-
ogy group. We give the definition of the convolution product in §3. Some
basic properties of A, except the commutativity of the multiplication, are
established also in §3. In §4 we determine A when G is a torus. We give
a linear basis with explicit structure constants. §5 is a technical heart of
the paper. We analyze MC using the localization theorem in equivariant
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homology groups. The compatibility of convolution products with the local-
ization is studied. One of proofs of the commutativity of the multiplication
is given. (Another proof will be given in [Affine].) We also give a recipe
to identify MC with a known space, following [BFM05]: Suppose we have
Π : M→ t/W such thatM is normal and all the fibers of Π have the same
dimension. If (M, Π) and (MC , $) coincide up to codimension 2, they are
isomorphic. (See Theorem 5.26 for the precise statement.) In §6 we introduce
a degeneration ofMC to a variety with combinatorial flavor, and prove that
A is finitely generated and normal as applications. We also determine MC

when G is PGL(2) or SL(2).
There is one appendix. In §A we compare the answer for N = 0 in [BF08]

and one in the physics literature for type A. Both are understood in a
uniform way thatMC is the moduli space of solutions of Nahm’s equations
for the Langlands dual group G∨c .

1(v). Companion papers

In [Quiver] we study Coulomb branches of quiver gauge theories. When
(G,N) is coming from a quiver of type ADE, MC is the moduli space
of based maps from P1 to the flag variety of the corresponding type ADE
([Quiver, Theorem 3.1]). More generally, if N is coming from a framed quiver
of type ADE,MC is a slice in the affine Grassmannian of the corresponding
type ADE under a dominance condition, and its generalization in general.
(See [Quiver, §3].)

In [Affine] we study the following object: As a byproduct of our con-
struction we get a GO-equivariant constructible complex A on GrG de-
fined by π∗ωR[−2 dim NO], where ωR is the dualizing complex on R and
π : R → GrG is the projection. We can recover HGO

∗ (R) as H∗GO(GrG,A).
Moreover the construction of the convolution product gives us a homomor-
phism m : A ?A→ A, where ? is the convolution product on DGO(GrG), the
GO-equivariant derived category on GrG. Therefore (A,m) is a ring object
in DGO(GrG).

Notation

1) We basically follow the notation in Part I [Nak16]. However we mainly
use a complex reductive group instead of its maximal compact subgroup.
Therefore we denote a reductive group by G, and its maximal compact by
Gc. On the other hand, we use the notation R for the variety of triples,
though it was used for the corresponding space associated with P1 in Part I.
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2) Let us choose and fix a maximal torus T of G. Let W be the Weyl
group of G. Let Y denote the coweight lattice of G. The Lie algebra of G
(resp. T ) is denoted by g (resp. t).

3) The constant sheaf on a space X is denoted by CX . The dualizing
complex is denoted by ωX . The Verdier duality is denoted by D. (We take
C as the base ring.)

4) We will not use the usual homology group, and denote the Borel-
Moore homology group with complex coefficients by Hi(X). It is H−i(ωX),
and the dual of cohomology group with compact support. When a group
G acts on X, the equivariant Borel-Moore homology group is denoted by
HG
i (X).
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2. A variety of triples and its equivariant Borel-Moore
homology group

Our construction of a space R, a direct limit of inverse limits of schemes
of finite type, and its equivariant Borel-Moore homology group are based
on similar well-known results for the affine Grassmannian and the affine
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Grassmannian Steinberg variety. See [BeiDr, §4.5], [BFM05, §7] and the
references therein for the detail and proofs.

2(i). A variety of triples

Let G be a complex connected reductive group. The connectedness assump-
tion is not essential. See Remark 2.8(3) below. Let O denote the formal
power series ring C[[z]] and K its fraction field C((z)). Let GrG = GK/GO
be the affine Grassmannian, where GK, GO are groups of K and O-valued
points of G. It is an ind-scheme representing the functor from affine schemes
to sets:

S 7→ {(P, ϕ) | a G-bundle P on D × S,
a trivialization ϕ : P|D∗×S → G×D∗ × S},

where D = Spec(O) (resp. D∗ = Spec(K)) is the formal disk (resp. punc-
tured disk). We simply say GrG is the moduli space of pairs (P, ϕ) of a
G-bundle P on D and its trivialization ϕ over D∗. The same applies to the
variety of triples, introduced below.

The set π0(GrG) of connected components of GrG is known to be in
bijection to the fundamental group π1(G) of G. It is a classical result that
π1(G) is isomorphic to the quotient of the coweight lattice by the coroot
lattice.

Let N be a (complex) representation ofG. We consider a variety of triples
R ≡ RG,N, the moduli space parametrizing triples (P, ϕ, s), where (P, ϕ) is
in GrG, and s is a section of an associated vector bundle PN = P×G N such
that it is sent to a regular section of a trivial bundle under ϕ. We use the
notation R when (G,N) is clear from the context. It is an ind-scheme of
ind-infinite type, as we will explain below. But we simply call it a variety.

Let us explain the last condition. Let ϕN denote the induced isomor-
phism PN|D∗ → D∗ ×N of vector bundles over D∗. It sends a section s ∈
H0(PN) to a rational section of the trivial bundle D ×N, i.e., an element
in NK. It may have a pole at the origin, as ϕ is not regular there in general.
The last condition means that it is regular, i.e., ϕN(s) ∈ NO. It defines a
finite codimensional subspace in H0(PN).

The variety R is a closed subvariety of a variety T ≡ TG,N, the moduli
space of (P, ϕ, s) as above, but s is merely a section of PN, no further
condition on the behavior under ϕN. Under the projection T → GrG, it has
a structure of a vector bundle over GrG, whose fiber at (P, ϕ) is H0(PN).
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The rank of the vector bundle is infinite. This is the reason why T is not an
ind-scheme of ind-finite type.

The closed embedding R → T is denoted by i. The projection T → GrG
is denoted by π.

As sets, T is the quotient GK ×GO NO. Let us write its point as [g, s]
with g ∈ GK, s ∈ NO. The equivalence relation is given by (g, s) ∼ (gb−1, bs)
for b ∈ GO, and [g, s] denote the equivalence class for (g, s). We have a map
T 3 [g, s] 7→ gs ∈ NK. In terms of the description of T as a moduli space, gs
is nothing but ϕN(s). Let us denote it by Π. Together with the projection
π : T → GrG, it gives a closed embedding (π,Π): T ↪→ GrG ×NK. We have
R = T ∩ (GrG ×NO).

We have an action of GK on T given by the left multiplication. As a
moduli space, it is given by the change of the trivialization ϕ. Its restriction
to GO preserves R. There is also C×-actions on GrG, T , R induced from
the loop rotation of D. It is combined to actions of the semi-direct product
GO oC×.

Convention. In order to make formulas look cleaner, we let the loop rota-
tion C× act on N by weight 1/2. (So we take a double covering of C×, but
we do not introduce a new notation for the double cover for brevity.)

Remark 2.1. Let St be the usual (finite dimensional) Steinberg variety,
i.e.,

St = {(B1, x,B2) ∈ B× g×B | x ∈ n1 ∩ n2},

where B is the flag variety, considered as the space of Borel subgroups, and
na is the nilradical of the Lie algebra of Ba (a = 1, 2). We have an action of
G× C× on St, and the equivariant Borel-Moore homology group HG×C×

∗ (St)
gives a geometric realization of the degenerate affine Hecke algebra [Lus88]
(see also [CG97] for the K-theory version).

If we fix a point B2 = B ∈ B, we have an isomorphism B = G/B, and
the induced isomorphism St ∼= G×B St, where

St = {(B1, x) ∈ B× g | x ∈ n1 ∩ n},

where n is the nilradical of the Lie algebra of B. Our space R is an analogue
of St. We have

HG×C×
∗ (St) ∼= HB×C×

∗ (St),

hence we can understand the geometric realization in terms of St.
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Let Y be the coweight lattice of G. It is well-known that GO-orbits in
GrG are parametrized by dominant coweights Y + : GrG =

⊔
λ∈Y + GrλG. The

closure relation corresponds to the usual order on Y + : Gr
λ
G =

⊔
µ≤λ GrµG.

It is well-known that Gr
λ
G is a scheme of finite type. The GO-action on Gr

λ
G

factors through a finite dimensional quotient.

Recall π : T → GrG denote the projection forgetting sections. Let T≤λ
def.
=

π−1(Gr
λ
G). This is a scheme of infinite type, and T =

⋃
T≤λ. We define

R≤λ
def.
= R∩ π−1(Gr

λ
G). It is also a scheme of infinite type and R =

⋃
R≤λ.

For a sufficiently large d� 0 consider the fiberwise translation by zdNO
on T = GK ×GO NO. The quotient is T = GK ×GO NO → T d

def.
= GK ×GO

(NO/z
dNO). We have a surjective vector bundle homomorphism pde : T d →

T e for d > e. The original T can be understood as the inverse limit of this

system. Let T d≤λ = (πd)−1(Gr
λ
G) where πd : T d → GrG is the projection. It

is a scheme of finite type. Moreover we have an induced homomorphism
T d≤λ → T e≤λ, and T≤λ is the inverse limit of this system.

The order of pole of ϕ at 0 is bounded by a constant depending on λ for

(P, ϕ) ∈ Gr
λ
G. Therefore R≤λ is invariant under the translation by zdNO if

we choose d larger than the order. LetRd≤λ denote the quotient. It is a closed

subscheme of T d≤λ. Moreover we have an affine fibration p̃de : Rd≤λ → Re≤λ, as

the restriction of pde for d > e. Then R≤λ is the inverse limit of this system.
Let Rλ = R∩ π−1(GrλG), the inverse image of the GO-orbit GrλG. It is

an open subvariety in a closed subvariety R≤λ, hence locally closed in R.
Let R<λ be the complement R≤λ \ Rλ. It is closed subvariety. Let us define
Tλ, T<λ in the same way.

Lemma 2.2. The restriction of π to Rλ is a vector bundle Rλ → GrλG of
infinite rank. It is a subbundle of another infinite rank vector bundle Tλ →
GrλG such that the quotient bundle has a finite rank given by the formula

dλ
def.
= rank(Tλ/Rλ) =

∑
χ

max(−〈χ, λ〉, 0) dim N(χ),

where N(χ) is the weight χ subspace of N.

Proof. This is obvious since Rλ is GO-invariant and GrλG is a GO-orbit: Con-
sider a coweight zλ as an element GK, and also a point in GrλG. Then the fiber
R∩ π−1(λ) is NO ∩ zλNO = {s ∈ NO | z−λs ∈ NO}. This is a subspace of
NO invariant under the stabilizer StabGO(zλ). Then Rλ is the vector bundle
over GrλG = GO/StabGO(zλ) associated with NO ∩ zλNO.
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The rank of the quotient is the dimension of zλNO/NO ∩ zλNO. This
can be computed by decomposing N into weight spaces. If s is contained in
the weight χ subspace, we replace N by a 1-dimensional subspace, and find
that the contribution is dim z〈χ,λ〉C[[z]]/C[[z]] ∩ z〈χ,λ〉C[[z]]. This is equal to
max(−〈χ, λ〉, 0). The above formula follows. �

2(ii). Equivariant Borel-Moore homology of the variety of triples

We shall use the equivariant Borel-Moore homology groups HGO
∗ (R) and

HGOoC×
∗ (R) to define the Coulomb branch and its quantization. Since both

GO and R are infinite dimensional, these homology groups must be treated
carefully.

We have the ind-scheme R together with a map π : R → GrG. We would
like to define its GO-equivariant Borel-Moore homology. To this end it is
sufficient to define the GO-equivariant Borel-Moore homology of R≤λ = R∩
π−1(Gr

λ
G) in such a way that an embedding R≤µ ↪→ R≤λ will induce a map

HGO
∗ (R≤µ)→ HGO

∗ (R≤λ) for µ ≤ λ.
Now, given such R≤λ, we choose an integer d ≥ 0 so that we have a finite

dimensional scheme Rd≤λ as its quotient as above. We have the induced GO-

action on Rd≤λ. Let Gi = G(O/ziO). This is a quotient of GO and for large
i the action of GO factorizes through Gi.

We now set

HGO
∗ (R≤λ)

def.
= H−∗Gi (Rd≤λ,ωRd≤λ)[−2 dim(NO/z

dNO)].

We claim that this definition depends neither on i nor on d. Indeed, in-
dependence of i follows from the fact that for i > j we have a surjective
map Gi → Gj with unipotent kernel. Independence of d follows from the
fact that for d > e we have a GO-equivariant map p̃de : Rd≤λ → Re≤λ which
is a locally trivial fibration with fibers being affine spaces of dimension
dim(zeNO/z

dNO). Note that if p : Z →W is a locally trivial fibration of
finite-dimensional schemes over C with fibers being affine spaces of dimen-
sion r then we have a canonical isomorphism H∗(Z,ωZ) ' H∗(W,ωW )[2r]
and the same is true for equivariant Borel-Moore homology with respect to
any algebraic group K acting on Z and W (and such that the morphism p
is K-equivariant).

Note also that the degree of this homology group is given relative to
‘2 dim NO’. Namely if a homology classes has degree k, it means that we
consider homology classes Rd≤λ for all sufficiently large d whose degree is

k + 2 dim(NO/z
dNO). As d→∞, the degree goes to ‘k + 2 dim NO’. Since
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it is not illuminating to go back to finite dimensional approximations every
time, we use this convention hereafter: we just write 2 dim NO (and later
2 dimGO) without mentioning finite dimensional approximations.

Given an embedding R≤µ ↪→ R≤λ as above, note that for sufficiently
large d and i we have a Gi-equivariant closed embedding Rd≤µ ↪→ Rd≤λ and
we can use the push-forward with respect to this closed embedding to define
the map

H∗Gi(R
d
≤µ,ωRd≤µ)[−2 dim(NO/z

dNO)]

→ H∗Gi(R
d
≤λ,ωRd≤λ)[−2 dim(NO/z

dNO)].

The equivariant Borel-Moore homology group HGO
∗ (R) is a module over

H∗GO(pt), the equivariant cohomology group of a point, defined using Gi
above. Since any Gi acts (trivially) on pt, we have a natural isomorphism
H∗GO(pt) ∼= H∗G(pt).

The definition of the GO oC×-equivariant homology group is the same.
In the definition of the convolution product, we also use equivariant

Borel-Moore homology groups of other spaces (see (3.2)). A prototype of
such homology groups is HGO×GO

∗ (GK). Let us explain how this is de-
fined. Homology groups of spaces actually needed are simple variants of
HGO×GO
∗ (GK), and hence can be defined in the same way.

Let Gi = G(O/ziO) as before. We have a surjective homomorphism
GO → Gi, and let Ki be its kernel. Take a dominant coweight λ, and let

G≤λK be the inverse image of Gr
λ
G under GK → GrG. We take j � i so that

Kj acts trivially on G≤λK /Ki. (This is possible by the same well-known ar-

gument that Ki acts trivially on Gr
λ
G for i� 0.) Then we have an action of

Gj ×Gi on G≤λK /Ki. We define

HGO×GO
∗ (G≤λK )

def.
= H−∗Gj×Gi(G

≤λ
K /Ki,ωG≤λK /Ki

)[−2 dimGi].

This definition is independent of i or j by the same argument as above.
Note also that the degree is given relative to ‘2 dimGO’ in the same sense
as above.

We have a homomorphism HGO×GO
∗ (G≤µK )→ HGO×GO

∗ (G≤λK ) for µ ≤ λ
as above. Therefore we defineHGO×GO

∗ (GK) as the direct limit of this system.

Furthermore, as G≤λK /Ki → Gr
λ
G is a principal Gi-bundle, we have

HGO×GO
∗ (G≤λK ) ∼= HGO

∗ (Gr
λ
G).
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As a direct limit, we have an isomorphism

(2.3) HGO×GO
∗ (GK) ∼= HGO

∗ (GrG).

Remark 2.4. We consider Borel-Moore homology groups with complex
coefficients. But many of results below remain true for integer coefficients.
In particular, our Coulomb branch MC will be an affine scheme over the
integers. We leave to the interested reader the consideration of possible ap-
plications, and stick to complex coefficients in this paper.

2(iii). Monopole formula

We compute the equivariant Poincaré polynomial of R in this subsection.
This computation is essentially the same as [Nak16, §8], but we give the
detail as it is simple.

We take the following convention:

PGOt (R) =
∑
k

t−k dimHGO
k (R),

and similarly for other spaces.
Let GrλG be the GO-orbit corresponding to a dominant coweight λ as

before. Let

PG(t;λ)
def.
=
∏ 1

1− t2di
,

where di are degrees of generators of invariant polynomials of StabG(λ). In
other words, they are exponents plus one.

Lemma 2.5. The equivariant Poincaré polynomial of GrλG is given by the
formula

PGOt (GrλG) = t−4〈ρ,λ〉PG(t;λ),

where ρ is the half sum of positive roots, and λ is taken so that it is dominant.

If λ is dominant, we have

−4〈ρ, λ〉 = −2
∑
α∈∆+

|〈α, λ〉| = −
∑
α∈∆

|〈α, λ〉|,

where ∆+ (resp. ∆) is the set of positive (resp. all) roots. The right hand
side is invariant under the Weyl group action, while the left hand side is not.
Since PGOt (GrλG) is W -invariant, it is better to replace −4〈ρ, λ〉 by the right
hand side.
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Proof. It is known that GrλG is a vector bundle over a flag manifold G/Pλ,
where Pλ is the parabolic subgroup associated with λ. It is also known that
dimension of GrλG is 2〈ρ, λ〉. (See e.g., [MV07, §2]. In fact, the tangent space

of GrλG at zµ is isomorphic to
⊕

α∈∆

⊕max(0,〈α,µ〉)−1
n=0 gαz

n.)
We have

HGO
∗ (GrλG) = HG

∗ (GrλG) ∼= HG
∗−4〈ρ,λ〉+2 dimG/Pλ

(G/Pλ)

∼= H
−∗+4〈ρ,λ〉
G (G/Pλ) ∼= H

−∗+4〈ρ,λ〉
StabG(λ) (pt),

where StabG(λ) is as above, which is the Levi quotient of Pλ. Now the

assertion follows from the well-known result P
StabG(λ)
1/t (pt) =

∏
1/(1− t2di).

�

Lemma 2.6. (1) The equivariant Poincaré polynomial of HGO
∗ (Rλ) is given

by

PGOt (Rλ) = t2dλPGOt (GrλG).

In particular, homology group vanishes in odd degrees.
(2) The homology group HGO

∗ (R≤λ) vanishes in odd degrees. Hence the
Mayer-Vietoris sequence splits into short exact sequences

0→ HGO
∗ (R<λ)→ HGO

∗ (R≤λ)→ HGO
∗ (Rλ)→ 0.

Proof. (1) Since Rλ → GrλG is a vector bundle (see Lemma 2.2), we have
the Gysin isomorphism HGO

∗ (Rλ) ∼= HGO
∗+2dλ

(GrλG). Here note that the rank
of Rλ is 2 dim NO − 2dλ, as the rank of T is 2 dim NO. Since the degree
of HGO

∗ (Rλ) is relative to 2 dim NO, we have the above shift of the degree.
The formula of the equivariant Poincaré polynomial follows. The vanishing
of odd degree homology follows from Lemma 2.5 above.

(2) We prove the vanishing of HGO
∗ (R≤λ) by induction on λ. If λ is

a minimal element, R≤λ = Rλ, and hence the assertion is true by above.
For general λ, we have odd degree vanishing of HGO

∗ (R<λ), HGO
∗ (Rλ) by

the induction hypothesis and the above. Looking at the Mayer-Vietoris long
exact sequence for the triple (R<λ,R≤λ,Rλ), we have the odd vanishing of
HGO
∗ (R≤λ). �

We thus get
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Proposition 2.7. Fix a dominant coweight λ. Then

PGOt (R≤λ) =
∑
λ≤λ

t2dλ−4〈ρ,λ〉PG(t;λ),

where the sum runs over dominant coweights λ with λ ≤ λ.

Remarks 2.8. (1) Taking λ→∞, we formally get

(2.9) PGOt (R) =
∑
λ

t2dλ−4〈ρ,λ〉PG(t;λ).

However this infinite sum may not be well-defined even as a formal Laurent
series, as we do not have a control on 2dλ − 4〈ρ, λ〉 in general.

(2) The above formal infinite sum is essentially the same as the monopole
formula of the Hilbert series of the Coulomb branch of the 3-dimensional
N = 4 SUSY gauge theory associated with (Gc,N⊕N∗), proposed by Cre-
monesi, Hanany and Zaffaroni [CHZ14]. Here there is a slight difference:
dλ − 2〈ρ, λ〉 is replaced by

(2.10) ∆(λ)
def.
= −

∑
α∈∆+

|〈α, λ〉|+ 1

2

∑
χ

|〈χ, λ〉|dim N(χ).

It is a simple exercise to check that the difference

dλ − 2〈ρ, λ〉 −∆(λ) = −1

2

∑
χ

〈χ, λ〉 dim N(χ)

depends only on the equivalence class [λ] in π1(G) = π0(R). (In fact, it
depends only on the free part of the abelian group π1(G).) Therefore this
correction term is harmless: we just shift the degree on each component
of R. This shift turns out to be natural when we identify the Coulomb
branch with known examples. The degree ∆(λ) is determined so that the
corresponding S1-action, the restriction of the C×-action in §3(v), extends
to an SU(2)-action on the Coulomb branch which rotates the hyperKähler
structure.1 See §4(iv) below. See also [Quiver, Remarks 3.3 and 3.13].

It should be remarked also that the monopole formula is proposed under
the assumption 2∆(λ) ≥ 1 for any λ 6= 0 (the so-called ‘good’ or ‘ugly’ the-
ory.) This is to avoid a possible divergence in the infinite sum above pointed

1The third named author thanks Amihay Hanany for his explanation.
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out in (1). On the other hand, our HGO
∗ (R) is always well-defined even with-

out this assumption. We do not have any problem even if its degree piece is
infinite dimensional.

Nevertheless the monopole formula is very useful to investigate expected
properties of the Coulomb branch.

(3) Suppose that G is possibly disconnected. Since GrG depends on
the connected component G0 of G, our variety R of triples does not see
the component group. However the equivariant homology group does see

the component group: HGO
∗ (R) ∼= H

G0
O
∗ (R)Γ, where Γ = G/G0. (See e.g.,

[Hsi75, Chap. 3, §1, Example 3].) For the Coulomb branch defined in the
next section, it means MC(G,N) =MC(G0,N)/Γ. For the monopole for-
mula above, we should understand PG(t;λ) as the Poincaré polynomial
of H∗StabG(λ)(pt), where StabG(λ) is possibly disconnected. See [CHMZ15,

App. A] for examples of computation.

3. Definition of Coulomb branches as affine schemes

We define the convolution product on HGO
∗ (R), following [BFM05, §7] in this

section. This gives us a definition of the Coulomb branch as the spectrum
of HGO

∗ (R).
We use a sheaf theoretic framework for later applications, hence need

to make some points in the construction [BFM05, §7] to actual statements,
e.g., Lemma 3.5.

3(i). Convolution diagram

Recall the convolution diagram for the affine Grassmannian ([MV07, (4.1)]):

(3.1) GrG ×GrG
p←−−−− GK ×GrG

q−−−−→ GrG×̃GrG
m−−−−→ GrG,

Here GrG×̃GrG is the quotient GK ×GO GrG. The maps p, q are projections
and m is the multiplication. For GO-equivariant perverse sheaves A1,A2,
the pullback p∗(A1 �A2) descends to GrG×̃GrG by the equivariance. Let us
denote it by A1�̃A2. Then we define A1 ? A2 by m∗(A1�̃A2). It defines a
symmetric monoidal structure on the category of GO-equivariant perverse
sheaves on GrG, and is equivalent to the monoidal category of finite dimen-
sional representations of the Langlands dual of G [MV07].

Let us describe the convolution diagram (3.1) in terms of functors, as
in §2(i). This is given in [MV07, §5]. The leftmost space GrG ×GrG is the
moduli space of (P1, ϕ1,P2, ϕ2), two G-bundles on the formal disk D with
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trivializations over the punctured disk D∗. The next GK ×GrG is the moduli
of (P1, ϕ1, κ,P2, ϕ2), the above data together with a trivialization κ of P1

over D. The third space GrG×̃GrG is the moduli of (P1, ϕ1,P2, η), where η
is an isomorphism between P1 and P2 over D∗.

The map p just forgets κ. The map q is

(P1, ϕ1, κ,P2, ϕ2) 7→ (P1, ϕ1,P2, ϕ
−1
2 ◦ κ|D∗).

Note ϕ−1
2 ◦ κ|D∗ is an isomorphism from P1|D∗ to P2|D∗ , as required. Finally

m is given by (P1, ϕ1,P2, η) 7→ (P2, ϕ1 ◦ η−1).
The goal of this subsection is to introduce corresponding diagrams for

R. Recall that T is the quotient GK ×GO NO, and we have an embedding
T ↪→ GrG ×NK such that R = T ∩ (GrG ×NO). We consider the induced
space GK ×GO R. It consists of

[
g1, [g2, s]

]
with g1 ∈ GK, [g2, s] ∈ R ⊂ T =

GK ×GO NO. We have
[
g1, [g2, s]

]
=
[
g1b, [b

−1g2, s]
]

for b ∈ GO. We consider
the diagram

(3.2)

R×R p̃←−−−− p−1(R×R)
q̃−−−−→ q(p−1(R×R))

m̃−−−−→ R

i×idR

y i′
y y yi

T ×R p←−−−− GK ×R
q−−−−→ GK ×GO R

m−−−−→ T ,

where the first row consists of closed subvarieties in spaces in the second
row. Maps in the second row are given by

(3.3) ([g1, g2s], [g2, s])← [ (g1, [g2, s]) 7→
[
g1, [g2, s]

]
7→ [g1g2, s].

Since p−1(R×R) = {(g1, [g2, s]) | g1g2s ∈ NO}, the target of m̃ is R as re-

quired. The map m factors as GK ×GO R
idGK ×GO i−−−−−−−→ GK ×GO T

m′−→ T , and
m′ (and hence also m) is ind-proper.

Let us introduce the following group actions on terms in the second row:

GO ×GO y T ×R; (g, h) · ([g1, s1], [g2, s2]) = ([gg1, s1], [hg2, s2]) ,

GO ×GO y GK ×R; (g, h) · (g1, [g2, s]) =
(
gg1h

−1, [hg2, s]
)
,

GO y GK ×GO R; g · [g1, [g2, s]] = [gg1, [g2, s]] ,

GO y T ; g · [g1, s] = [gg1, s].

(3.4)

These actions preserve spaces in the first row. Moreover morphisms p, q, m
are equivariant, where we take a group homomorphism p1 : GO ×GO → GO
for q.
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Let us understand spaces in (3.2) as moduli spaces. Let us first consider
spaces in the lower row.

The space T ×R is clear. It is the moduli space of (P1, ϕ1, s1,P2, ϕ2, s2)
such that (P1, ϕ1), (P2, ϕ2) ∈ GrG and s1, s2 are sections of the associated
bundles P1,N, P2,N. We require ϕ2,N(s2) ∈ NO. The second space GK ×R
is the moduli of (P1, ϕ1, κ,P2, ϕ2, s2), where κ is a trivialization of P1 as in
the affine Grassmannian case. The third space GK ×GO R is the moduli of
(P1, ϕ1,P2, s2, η), where η is an isomorphism between P1 and P2 over D∗.
We require η−1

N (s2) ∈ H0(P1,N).
Let us describe maps. The map p is given as follows. Let us take (P1, ϕ1, κ,

P2, ϕ2, s2) from GK ×R. Since ϕ2,N(s2) ∈ NO, it can be considered as a
section of the trivial bundle D ×N over D. We transfer it to a section of
P1,N by κN : P1,N → D ×N. We denote it by κ−1

N ◦ ϕ2,N(s2). Then we have
(P1, ϕ1, κ

−1
N ◦ ϕ2,N(s2),P2, ϕ2, s2) ∈ T ×R. The map q is given by

(P1, ϕ1, κ,P2, ϕ2, s2) 7→ (P1, ϕ1, s2,P2, ϕ
−1
2 ◦ κ|D∗).

The condition ϕ2,N(s2) ∈ NO is equivalent to

η−1
N (s2) = κ−1

N ϕ2,N(s2) ∈ H0(P1,N).

Since we do not need to touch the section s2, it is essentially the same as
the corresponding map in the affine Grassmannian case. Finally the map
m is given by (P1, ϕ1,P2, s2, η) 7→ (P2, ϕ1 ◦ η−1, s2). This is again the same
as the affine Grassmannian case, but we note that there is no reason that
the trivialization ϕ1 ◦ η−1 sends s2 to NO. Therefore the target of m is T ,
not R.

Let us go to the spaces in the upper row. They are sub-ind-schemes of
spaces in the lower row. So we describe the conditions defining the upper
spaces in the lower spaces. The space R×R is clear. We impose ϕ1,N(s1) ∈
NO in T ×R. The second space p−1(R×R) is given by the condition ϕ1,N ◦
κ−1
N ◦ ϕ2,N(s2) ∈ NO. For the third space q(p−1(R×R)), we need to rewrite

this condition as ϕ1,N ◦ η−1
N (s2) ∈ NO. Since q is given by setting η = ϕ−1

2 ◦
κ|D∗ , two conditions are equivalent as required. Finally m sends q(p−1(R×
R)) to R, as ϕ1 ◦ η−1 is the new trivialization of P2 given by the map m.

3(ii). Abstract nonsense

We need some preparatory material before we give a definition of the con-
volution product.
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(a). Let A be a complex of sheaves on a space X. Then we have a canonical
homomorphism A⊗ DA→ ωX . (See [CG97, (8.3.17)].)

(b). We define the pull-back homomorphism with support (cf. [CG97,
8.3.21]).

Let
M −−−−→

f
N

i

x xj
X

f̃−−−−→ Y
be a Cartesian square. Let A, B be complexes on N , M respectively. For a
homomorphism ϕ ∈ Hom(A, f∗B) = Hom(f∗A,B), we define the pull-back
with support homomorphism in Hom(j!A, f̃∗i

!B) as the composite of

j!A→ j!f∗f
∗A ∼= f̃∗i

!f∗A
f̃∗i!ϕ−−−→ f̃∗i

!B,

where the first map is the adjunction and the middle isomorphism is base
change. It induces a homomorphism H∗(j!A)→ H∗(i!B) on hypercohomol-
ogy. We denote both homomorphisms by f∗. Note that it depends on the
map f between M and N , though complexes j!A, i!B are on Y , X, and the
map between X and Y is f̃ .

(c). We define an ‘intersection pairing’. Let A be a complex on a space X.
By 3(ii)(a) above, we have

H∗(A)⊗H∗(DA)→ H∗(ωX).

It is constructed as follows. Let ∆: X → X ⊗X be the diagonal embed-
ding. We have ∆∗(A� DA) = A⊗ DA. We have the adjunction homomor-
phism H∗(A)⊗H∗(DA) = H∗(A� DA)→ H∗(∆∗∆

∗(A� DA)) = H∗(A⊗
DA). We now compose 3(ii)(a).

3(iii). Convolution product

We return back to (3.2). The leftmost square is Cartesian. Thanks to the
above definition, a homomorphism p∗ωT ×R → ωGK×R induces pull-back
with support homomorphism

ωR×R = (i× idR)!ωT ×R → p̃∗i
′!ωGK×R = p̃∗ωp−1(R×R).

Therefore we want to understand p∗ωT ×R. Let us write p = (pT , pR) ac-
cording to factors of T ×R. Then p∗ωT ×R = p∗T ωT ⊗ p∗RωR.
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Lemma 3.5. We have isomorphisms of GO ×GO-equivariant complexes

p∗RωR
∼= CGK � ωR,

p∗T ωT
∼= ωGK � CR[2 dim NO − 2 dimGO],

p∗ωT ×R ∼= ωGK×R[2 dim NO − 2 dimGO].

(3.6)

Here the degree shift [2 dim NO − 2 dimGO] is understood by taking
finite dimensional approximation as in §2(ii). The same applies to degree
shifts appearing in the proof below.

Proof. The first isomorphism is obvious as pR is just the projection to the
second factor.

Note that pT factorizes as

GK ×R
idGK ×Π
−−−−−→ GK ×NO

p′T−→ T ,

where Π: R → NO is the natural projection, and the second map p′T is the
quotient by GO. Since p′T is a fiber bundle with smooth fibers, p′∗T ωT

∼=
ωGK � ωNO [−2 dimGO]. Since NO is smooth, we have

ωNO = CNO [2 dim NO].

We pull back further by idGK ×Π. Since the pull-back of the constant sheaf
is again constant sheaf,

p∗T ωT
∼= ωGK � CR[2 dim NO − 2 dimGO].

Finally a tensor product of any complex A with the constant sheaf is A
itself. Hence we obtain (3.6). It is an isomorphism of GO ×GO-equivariant
sheaves. �

Using (3.6) as ϕ in 3(ii)(b), we get the restriction with support homo-
morphism for sheaves and their hypercohomology groups:

(3.7)
p∗ : ωR×R → p̃∗ωp−1(R×R)[2 dim NO − 2 dimGO],

p∗ : HGO
∗ (R)⊗HGO

∗ (R)→ HGO×GO
∗ (p−1(R×R)).

Note that GK ×R is not smooth, hence it is different from the usual restric-
tion with support (e.g., [CG97, 8.3.21]). Our definition uses a special form
of p.

Let us check the degree for the second equation in (3.7). Recall the
degree of HGO

∗ (R) is given relative to 2 dim NO. Similarly the degree of
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HGO×GO
∗ (p−1(R×R)) is given relative to 2 dim NO + 2 dimGO, as p−1(R×
R) is a closed subvariety in GK ×R, whose homology group is shifted by
that. The difference of the degrees is 2 dim NO − 2 dimGO appeared above.
Therefore p∗ preserves the degree.

Remark 3.8. Lemma 3.5 gives homomorphisms

p∗T : HGO
∗ (R)→ H∗GO×GO(i′!A),

p∗R : HGO
∗ (R)→ H∗GO×GO(DA),

where A denotes ωGK � CR for short. Then CGK � ωR = DA.
We compose i′∗ : H∗GO×GO(DA)→ H∗GO×GO(i′∗DA) with the intersection

pairing in 3(ii)(c), we get

H∗GO×GO(i′!A)⊗H∗GO×GO(DA)→ H∗GO×GO(ωp−1(R×R)).

The intersection pairing is defined as i′∗DA = Di′!A. Thus p∗ is the compo-
sition of p∗T ⊗ i′∗p∗R and the intersection pairing.

We further have

HGO×GO
∗ (p−1(R×R))

q̃∗←−∼= HGO
∗ (q(p−1(R×R)))

as in (2.3). Since m̃ is ind-proper, we have the push-forward homomorphism
for the Borel-Moore homology. We define a convolution product

c1 ∗ c2 = m̃∗(q̃
∗)−1p∗(c1 ⊗ c2) for c1, c2 ∈ HGO

∗ (R).

The degree is preserved, so the product preserves the grading.

Remarks 3.9. (1) We have an isomorphism

GK ×GO R
∼=−→ T ×NK T ;

[
g1, [g2, s]

]
7→ ([g1, g2s], [g1g2, s]).

Since g1(g2s) = (g1g2)s, it is a fiber product over NK as required. The map
m is interpreted as the second projection p2 from T ×NK T , while the first
projection p1 is the descent of pT . (The remaining pR does not seem to have
a simple interpretation in terms of T ×NK T .)

According to Remark 2.1, T ×NK T is analog of St. It is tempting to
define a convolution product onHGK

∗ (T ×NK T ) as usual, namely using three
projections from T ×NK T ×NK T to T ×NK T . But we are not sure whether
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even this homology group is well-defined or has a well-defined convolution
product unless we identify it with HGO

∗ (R). For example, we do not know
how to define a convolution on nonequivariant homology group H∗(T ×NK

T ).
(2) There is alternative approach to a definition of the convolution prod-

uct in [VV10]. The Kashiwara affine flag manifold played an essential role
there. We do not check whether this approach can be applicable to our
setting, nor gives the same convolution product.

(3) Our definition of the convolution product can be modified for the
equivariant K-theory as follows.

First of all, the equivariant K-group of R is defined as the limit of
KGi(Rd≤λ) as for the equivariant Borel-Moore homology group. We use the

pullback with respect to p̃de : Rd≤λ → Re≤λ and pushforward with respect to

the embeddingRd≤µ → Rd≤λ. These are well-defined on equivariantK-theory,

as p̃de is flat and the embedding is proper. We now omit these d, ≤ λ from
the notation and treat R (and other spaces T , GO) as if it would be a finite
dimensional scheme.

Looking back the definition of the product for homology groups, we only
need to replace Lemma 3.5 and the pull-back homomorphism with support
by appropriate arguments which make sense for K-theory.

Take E ∈ KGO(R). We consider it as a class of an object inDb
GO

(Coh(T ))
whose cohomology groups are supported in R. We replace p′∗T (E) by its res-
olution, consisting of sheaves which are flat over NO. This is possible since
NO is smooth and finite dimensional as it is actually a truncation of the
infinite dimensional NO. Now we further pull back p′∗T (E) by id×Π. It is a
complex defined over GK ×R consisting of sheaves which are flat over R.

Taking another F ∈ Db
GO

(Coh(R)), we consider p∗R(F ), which is flat over

GK. Then thanks to the flatness, (id×Π)∗(p′∗T (E))⊗L p∗R(F ) has only finitely
many higher Tor, hence a well-defined object in Db

GO×GO×GO(Coh(GK ×
R)). Moreover its cohomology groups are supported on p−1(R×R).

This operation sends a distinguished triangle (either for E or F ) to a
distinguished triangle. Therefore descends to the equivariant K-theory.

When N = g, the adjoint representation of G, one can easily check that
this definition coincides with one in [BFM05, §7].

(4) Note that NK is a representation of GK, and NO is a GO-subrepre-
sentation. Then HGO

∗ (R) is an infinite dimensional example of Springer
theory formulated in [Sau13], as a uniform way to look at various exam-
ples of geometric constructions of noncommutative algebras via convolution.
Namely for a reductive group G, a parabolic subgroup P, a representation
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V of G, and a P-subrepresentation V ′ of V , we introduce a variety R
def.
=

{[g, s] ∈ G×P V ′ | gs ∈ V ′} with P-action given by p[g, s] = [pg, s]. Then
HP
∗ (R) is an associative algebra. We take (G,P, V, V ′) = (GK, GO,NK,NO)

for our R. Another infinite dimensional examples of Springer theory, which
are cousins of our R for quiver gauge theories, are given recently in [BEF16,
Web16, §4].

Theorem 3.10. The convolution product ∗ defines an associative graded
algebra structure on HGO

∗ (R). The unit is given by the fundamental class
of the fiber of R → GrG at the base point [1] ∈ GrG. The multiplication
is H∗GO(pt)-linear in the first variable. The same assertions are true for

HGOoC×
∗ (R).

Since we will prove that HGO
∗ (R) is commutative, the multiplication

turns out to be linear in both first and second variables. However it is not
true for HGOoC×

∗ (R). See the computation in §3(vii)3(vii) below.

Proof of Theorem 3.10. We prove the assertions for GO for notational sim-
plicity. All the arguments work also for GO oC×.

The last assertion is clear from the definition.
Let e denote the fundamental class of the fiber of R → GrG at [1] ∈ GrG.

We prove

e ∗ • = id = • ∗ e on HGO
∗ (R).

Consider e ∗ •. The class (q̃∗)−1p∗(e⊗ •) is given by the pushforward homo-
morphism HGO

∗ (R)→ HGO
∗ (q(p−1(R×R))) with respect to the embedding

R 3 [g, s] 7→ [id, [g, s]] ∈ q(p−1(R×R)). If we compose m̃, the embedding
becomes just idR. Therefore e ∗ • = id. Similarly (q̃∗)−1p∗(• ⊗ e) is given by
the pushforward homomorphism of the embedding R 3 [g, s] 7→ [g, [id, s]] ∈
q(p−1(R×R)). If we compose m̃, it becomes idR again. Hence • ∗ e = id.

It remains to prove the associativity.
We consider the following commutative diagram, which is a ‘product’ of

two copies of the upper row of (3.2):
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(3.11)

R×R p−1(R×R)
p̃oo q̃ // q(p−1(R×R))

m̃ // R

q(p−1(R×R))×R

m̃×idR

OO

3oo

OO

// 4

OO

// q(p−1(R× idR))

m̃

OO

p−1(R×R)×R

q̃×idR

OO

p̃×idR

��

1oo //

OO

��

2

OO

//

��

p−1(R×R)

q̃

OO

p̃

��
R×R×R R× p−1(R×R)

idR×p̃
oo

idR×q̃
// R× q(p−1(R×R))

idR×m̃
// R×R,

where

1 = {(g1, g2, [g3, s]) ∈ GK ×GK ×R | g2g3s, g1g2g3s ∈ NO},

and 2 , 3 , 4 are quotients of 1 by 1×GO, GO × 1, GO ×GO respec-

tively. Here GO ×GO acts on 1 by

(h1, h2) · (g1, g2, [g3, s]) = (g1h
−1
1 , h1g2h

−1
2 , [h2g3, s])

for (h1, h2) ∈ GO ×GO.

Horizontal and vertical arrows from 1 , 4 are given by
(3.12)

(g1, [g2, g3s], [g3, s]) (g1, g2, [g3, s]) ∈ 1�oo
_

��
([g1, g2g3s], (g2, [g3, s])),

[g1g2, [g3, s]]

4 3 [g1, [g2, [g3, s]]]
_

OO

� // [g1, [g2g3, s]].

Arrows from 2 , 3 are given by trivial modification of above ones, as 1 →
3 , etc. are fiber bundles.

The convolution product c1 ∗ (c2 ∗ c3) is given by applying induced ho-
momorphisms in the bottom row from left to right, and then going up in
the rightmost column. Similarly (c1 ∗ c2) ∗ c3 is given by going the leftmost
column and the top row. Therefore the associativity follows if we show that
arrows induce appropriate pull-back or push-forward homomorphisms, and
they form a commutative diagram for each square.
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Let us first look at the bottom left square. We can extend the square to
a cube as

GK ×R×R

p×idR

��

GK × p−1(R×R)

P

��

idGK ×p̃oo

p−1(R×R)×R

55

��

1

55

oo

��

T ×R×R T × p−1(R×R)
idT ×p̃oo

R×R×R

44

R× p−1(R×R)oo

44

Arrows from spaces in the front square to those in the rear square are closed
embeddings. Arrows in the rear square are as indicated, and one remaining
P : GK × p−1(R×R)→ T × p−1(R×R) is given by the formula for the
corresponding map in the front square in (3.12).

Homomorphisms between dualizing complexes ω and their pull-backs
have been already constructed for p and p̃ in (3.6) and (3.7) respectively.
For P , we decompose P = (PT , Pp−1(R×R)) and see that

P ∗p−1(R×R)ωp−1(R×R)
∼= CGK � ωp−1(R×R),

P ∗T ωT
∼= ωGK � Cp−1(R×R)[2 dim NO − 2 dimGO],

as in Lemma 3.5. We then construct pull-back homomorphisms with support
(3(ii)(b)) for the front square, as the top and bottom squares are cartesian.

In order to show commutativity of pull-back homomorphisms, it is
enough to consider the rear square by the construction of pull-back homo-
morphisms with support. Let us factor ωT ×R×R = ωT � ωR×R as before,
and consider the pull-backs of ωT and ωR×R separately.

Let us first consider ωR×R. We have two homomorphisms

P ∗(idT ×p̃)∗(CT � ωR×R) −−−−→ CGK � ωp−1(R×R)[2 dim NO − 2 dimGO]∥∥∥ ∥∥∥
(p× idR)∗(idGK ×p̃)∗(CT � ωR×R) −−−−→ CGK � ωp−1(R×R)[2 dim NO − 2 dimGO]

by following left, top arrows and bottom, right arrows. They are the same, as
both are essentially given by p∗ : p̃∗ωR×R→ωp−1(R×R)[2 dim NO−2 dimGO]
constructed in (3.7).
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Next consider ωT . The T -component of (idT ×p̃) ◦ P = (idGK ×p̃) ◦ (p×
idR) factors as

GK × p−1(R×R)
idGK ×Π′

−−−−−−→ GK ×NO
p′T−→ T ,

where Π′ : p−1(R×R)→ NO is (g2, [g3, s]) 7→ g2g3s. As in the proof of
Lemma 3.5, we have

((idT ×p̃) ◦ P )∗(ωT � CR×R) ∼= ωGK � Cp−1(R×R)[2 dim NO − 2 dimGO].

Two homomorphisms which are constructed by going along left, top ar-
rows and bottom, right arrows are the same, as they are constructed in the
same way. This completes the proof of the commutativity at the bottom left
square.

Since q̃ : p−1(R×R)→ q(p−1(R×R)) is a fiber bundle with fibers GO,
commutativity for squares involving q̃ is obvious. Let us consider the right
bottom square. We extend it to a cube:

GK × q(p−1(R×R))

P ′

��

idGK ×m̃
// GK ×R

p

��

2

55

//

��

p−1(R×R)

��

55

T × q(p−1(R×R))
idT ×m̃

// T ×R

R× q(p−1(R×R)) //

44

R×R

44

Arrows from the front to rear are closed embeddings. The map P ′ : GK ×
q(p−1(R×R))→ T × q(p−1(R×R)) is given by the formula in (3.12). Re-
call that the pull-back with support homomorphism p∗ from R×R to
p−1(R×R) is defined via p. Similarly the pull-back from R× q(p−1(R×
R))) to 2 is defined via P ′. Therefore it is enough to check the commuta-
tivity in the rear square, i.e.,

p∗(idT ×m̃)! = (idGK ×m̃)!P
′∗ : HGO×GO

∗ (T × q(p−1(R×R)))

→ HGO×GO
∗ (GK ×R)

(with appropriate degree shift). But this follows from the base change, as
the rear square is cartesian.
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The commutativity of the right top square is clear, as it involves only
pushforward homomorphisms. �

3(iv). Definition of the Coulomb branch

Let us denote (HGO
∗ (R), ∗) by A or A(G,N) when we want to emphasize

(G,N). We will prove thatA is commutative later. Therefore we can consider
its spectrum. Here is our main proposal:

Definition 3.13. We define the Coulomb branch MC (as an affine scheme)
by

MC ≡MC(G,N)
def.
= SpecA.

If we add the loop rotation, the equivariant homology group
(HGOoC×
∗ (R), ∗) is a noncommutative deformation of the Coulomb branch

MC . Let us denote it by A~ or A~(G,N). We call it the quantized Coulomb
branch. In particular, MC has a natural Poisson structure.

We will show that A is finitely generated and integral later (see Proposi-
tion 6.8, Corollary 5.22). We also prove that A is normal (Proposition 6.12).
It could be compatible with the following example in [CHMZ15, Table 10]:
Take a nilpotent orbit O whose Lusztig-Spaltenstein dual (in the Langlands
dual Lie algebra) is not normal. Take a gauge theory whose Higgs branch
is the intersection of the nilpotent cone and the Slodowy slice to O. Such a
gauge theory exists for classical groups (see [Nak16, Appendix A]). A naive
guess gives us Lusztig-Spaltenstein dual of O as the Coulomb branch, hence
is not normal. But [CHMZ15, Table 10] suggests us the normalization of
the Lusztig-Spaltenstein dual instead. Note however that they are not of
cotangent type, hence our construction does not apply. Therefore it is a lit-
tle early to make any conclusion, but it seems natural to conjecture that A
is normal even if not necessarily of cotangent type.

In many examples, A is Cohen-Macaulay. We will use these properties
crucially in [Quiver, Theorem 3.1] and we do not have counter-examples at
this moment. Moreover we show that the Poisson structure is symplectic
on the regular locus of MC (Proposition 6.15) and believe that there is
a hyper-Kähler structure there. This is what physicists have expected. We
optimistically conjecture thatMC has only symplectic singularities [Bea00],
i.e., the symplectic form on the smooth locus extends to a holomorphic 2-
form on a resolution M̃C →MC .
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We will give two proofs of the commutativity of A. The first proof is
a reduction to the abelian case, and is given in Theorem 4.1 and Proposi-
tion 5.15.

The second proof is a well-known argument: Using the Beilinson-Drinfeld
Grassmannian to deform a situation where the product c1 ∗ c2 is manifestly
symmetric under c1 ↔ c2. Then we use nearby cycle functors and (dual)
specialization homomorphism. In fact, we will prove a commutativity at the
level of an object in the GO-equivariant derived category of constructible
sheaves on GrG. See [Affine, §§2, 3] for more detail.

Remark 3.14. In the same way we define the K-theoretic Coulomb branch

as MK
C

def.
= SpecKGO(R) thanks to Remark 3.9(3). The first proof of the

commutativity is a reduction to abelian cases, and hence works for KGO(R).
(The second proof seems only applicable for homology groups.) The proofs
that A is finitely generated and integral work for KGO(R). The proof of the
normality does not work, as we will use the grading in Lemma 6.9(1).

3(v). Grading and group action

(See [Nak16, §4(iv), Properties (a,c)] for original sources in physics.)
Recall that connected components of GrG are parametrized by π1(G).

Since R is homotopy equivalent to GrG, we also have π0(R) ∼= π1(G). Thus
we have a decomposition

HGO
∗ (R) ∼=

⊕
γ

HGO
∗ (Rγ),

where Rγ is the connected component corresponding to γ ∈ π1(G). This
decomposition is compatible with the convolution product:

HGO
∗ (Rγ1) ∗HGO

∗ (Rγ2) ⊂ HGO
∗ (Rγ1+γ2),

where γ1 + γ2 is the sum of γ1 and γ2 in the abelian group π1(G). Therefore
A is a Z× π1(G)-graded algebra, where the first Z is the half of the coho-
mological grading. (The odd degree part vanishes by Proposition 2.7.) This
gives an action of C× × π1(G)∧ on the spectrum MC , where π1(G)∧ is the
Pontryagin dual of π1(G).
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3(vi). Cartan subalgebra – a commutative subalgebra in the
quantized Coulomb branch

Recall that A~ = HGOoC×
∗ (R) is a module over H∗G×C×(pt). Let T be a

maximal torus of G with the Lie algebra t. Let W be the Weyl group. We
have H∗G(pt) ∼= C[t]W . We add a variable ~ for the C×-part, so H∗G×C×(pt) ∼=
C[~, t]W . It is also known that t/W ∼= C`, where ` is the rank of G.

Proposition 3.15. Let 1 be the unit of the algebra A~. Then H∗G×C×(pt)1 =
C[~, t]W 1 forms a commutative subalgebra of A~.

Definition 3.16. We call the commutative subalgebra C[~, t]W 1 the Car-
tan subalgebra2 of the quantized Coulomb branch.

Proof of Proposition 3.15. It can be checked directly, but this is a formal
consequence of properties that have been already established in Theorem 3.10.
Let c1, c2 ∈ H∗G×C×(pt). Then

(c11) ∗ (c21) = c1(1 ∗ (c21)) = c1(c21) = (c1c2)1.

The first equality is the linearity of the multiplication ∗ with respect to the
first variable. The second equality holds as 1 is unit. The third is true, as
HGOoC×
∗ (R) is a module over H∗G×C×(pt).

Since H∗G×C×(pt) is commutative, the above implies the assertion. �

By specializing Proposition 3.15 at ~ = 0, we have a Poisson commuting
subalgebra H∗G(pt) ∼= C[t]W of A. Therefore we have a morphism

(3.17) $ : MC = SpecA → Spec(H∗G(pt)) ∼= t/W ∼= C`,

and all the functions factoring through $ are Poisson commuting. It will be
proved in Proposition 5.19 that the generic fiber is T∨, the dual torus of T .
Hence $ is a complete integrable system.

The Poisson bracket { , } is the commutator [ , ] divided by ~. Therefore
it is of degree −deg ~ = −1.

2This commutative subalgebra is called Gelfand-Tsetlin algebra in related con-
texts. But our subalgebra is hardly worth this name, as the proof of the commuta-
tivity is just a tautology. This alternative name is proposed to us by Boris Feigin.
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3(vii). Trivial properties of Coulomb branches

Let us list a few trivial properties ofMC and A~, which follow directly from
the definition.

(a). Suppose (G,N) = (G1 ×G2,N1 ⊕N2), where Ni is a representation
of Gi (i = 1, 2). Then

MC(G,N) =MC(G1,N1)×MC(G2,N2),

A~(G,N) = A~(G1,N1)⊗C[~] A~(G2,N2).

These follow from RG,N = RG1,N1
×RG2,N2

, and the Künneth formula

HGO
∗ (RG,N) = H

(G1)O
∗ (RG1,N1

)⊗C H
(G2)O
∗ (RG2,N2

) and its C×-equivariant
version.

(b). Suppose (G,N) = (G,N1 ⊕N′), where N′ is a trivial representation
of G. Then

MC(G,N) =MC(G,N1), A~(G,N) = A~(G,N1).

Take G1 = G, G2 = {e}, N2 = N′ in 3(vii). We have Gr{1} is just a
single point and R{e},N′ ∼= N′O. Its homology H∗(N

′
O) is spanned by the

fundamental class of N′O. We have H∗(N
′
O) ∼= C, as an algebra. Therefore

MC({1},N′) is a single point. For the quantized version, we have HC×
∗ (N′O)

∼= C[~].

(c). Let G′ → G be a finite covering, and let π1(G′) ⊂ π1(G) be the cor-
responding cofinite subgroup of π1(G). Let Γ be the Pontryagin dual of
π1(G)/π1(G′), considered as a subgroup of π1(G)∧. It acts on MC(G,N)
by the construction in §3(v). Let us consider N as a representation of G′

through the projection G′ → G. Then

MC(G′,N) =MC(G,N)/Γ, A~(G′,N) = A~(G,N)Γ.

It is known that GrG′ is the union of components of GrG corresponding
to π1(G′) ⊂ π1(G) ∼= π0(GrG). (See e.g., [BeiDr, 4.5.6].) The same is true for
RG′,N. Note also that there is no difference between equivariant homology
groups for GO and G′O as we consider over complex coefficients. Therefore

H
G′O
∗ (RG′,N) is just the Γ-invariant part of HGO

∗ (RG,N). It means the asser-
tion.
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(d). Next one is similar to the above, but the case when the Pontryagin
dual of π1(G̃)/π1(G) is a torus. Let 1→ G→ G̃→ TF → 1 be a short exact
sequence of connected reductive groups where TF is a torus. The subscript ‘F’
stands for flavor symmetry that will be discussed more generally in §§3(viii),
3(ix). For any representation N of G̃ we can consider the corresponding
Coulomb branch MC(G̃,N). It acquires an action of the dual torus T∨F =
π1(TF )∧ by §3(v). Then

Proposition 3.18.

MC(G,N) ∼= Hamiltonian reduction of MC(G̃,N) by T∨F .

Since MC(G̃,N) has singularities in general, this statement means an
algebraic counterpart, i.e., A(G,N) is the T∨F -invariant part of A(G̃,N)/
{µT∨F = 0}, where µT∨F is the moment map for the T∨F -action, which is de-
scribed as follows.

Let tF = LieTF ∼= (LieT∨F )∗. Recall that a map µT∨F : MC(G̃,N)→ tF
is a moment map if ξ ◦ µT∨F is a hamiltonian for a vector field ξ∗ generated
by ξ ∈ LieT∨F = t∗F . It is equivalent to say that the Poisson bracket satisfies
{f, ξ ◦ µT∨F } = ξ∗(f) for any function f ∈ A(G̃,N). This notion makes sense
for Poisson algebras. A moment map is not unique in general, but we have
the canonical one given by the composite of MC(G̃,N)

$−→ SpecH∗
G̃

(pt)→
SpecH∗TF (pt), or in other words:

Lemma 3.19. The composite of

C[tF ] = H∗TF (pt)→ H∗
G̃

(pt)
$∗−−→ HG̃O

∗ (RG̃,N) = A(G̃,N)

is the comoment map, i.e., the pull-back by the moment map µT∨F : MC(G̃,N)

→ tF . Here the first homomorphism is induced by G̃→ TF , and the second
one is multiplication to the unit 1 ∈ HG̃O

∗ (RG̃,N) as in Proposition 3.15,
which is the pull-back by $ in (3.17).

Proof. We take a character χ : TF → C× and consider its first Chern class
c1(χ) as an element in H2

TF
(pt). We also consider it as G̃→ C×, and hence

as an element in H2
G̃

(pt). We have the induced C×-action through C× =

(C×)∨ → T∨F . We need to show that the comoment map for C× is c1(χ) 7→
c1(χ)1 ∈ HG̃O

∗ (RG̃,N).
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We consider the quantized version of the homomorphism

H∗
G̃×C×(pt)→ HG̃OoC×

∗ (RG̃,N)

and the commutator [•, c1(χ)1]. The assertion follows from the following
lemma below.

Indeed, it implies that the Poisson bracket {•, c1(χ)1} is π1(χ) id, which
is the action of the Lie algebra. This is nothing but the definition of the
comoment map. �

Lemma 3.20. Let χ : G̃→ C× be a character and consider its first Chern
class c1(χ) as an element in H2

G̃
(pt). Then [•, c1(χ)1] = ~π1(χ) id, where

π1(χ) is the Z-valued function given by π0(RG̃,N) = π1(G̃)
π1(χ)−−−→ π1(C×) =

Z.

Proof. By the definition of the convolution product, [•, c1(χ)1] is given by
the cup product with respect to the first Chern class of the line bundle
over RG̃,N induced from the composite of G̃O → G̃

χ−→ C×, where the first
homomorphism is given by taking the constant term. The line bundle is the
pull-back from GrG̃ by the projection RG̃,N → GrG̃. It is further the pull-
back from GrC× by the morphism GrG̃ → GrC× given by χ. Let us note that
the identification GrC× ' Z is given by C×K/C

×
O 3 [zn] 7→ n. Then the line

bundle is trivial, equipped with the C×O oC×-equivariant structure by the
nth power map C× → C× on the component for n ∈ Z.

Now π1(χ) is given byRG̃,N → GrC× , and [•, c1(χ)1] = ~π1(χ) id follows.
�

Proof of Proposition 3.18. Since TF is torus, its affine Grassmannian is a
discrete lattice. Hence RG,N is a union of components of RG̃,N as in 3(vii).

Hence HG̃O
∗ (RG,N) is the T∨F -invariant part of HG̃O

∗ (RG̃,N). Next the equiv-
ariant homology for GO is given by

HG̃O
∗ (RG,N)⊗H∗

G̃
(pt) H

∗
G(pt) = HG̃O

∗ (RG,N)⊗H∗TF (pt) C.

This is given by cutting out the ideal generated by c1(χ)1 for various χ ∈
H2
TF

(pt).
We need to check that the induced product and the original product on

HGO
∗ (RG,N) are equal. Namely both maps

HG̃O
∗ (RG̃,N) ←−−−− HG̃O

∗ (RG,N) −−−−→ HGO
∗ (RG,N)
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are algebra homomorphisms. The left arrow is the embedding of the degree
0 part with respect to the grading given by π1(TF ) in §3(v), and hence it
is an algebra embedding. The right arrow will be studied in more general
setting in Proposition 3.22. It will be shown that it is an algebra homomor-
phism. Moreover the multiplication on HG̃O

∗ (RG,N) in Proposition 3.22 is
the one given as a subalgebra: The diagram (3.23) is the degree 0 part of the
diagram (3.2) for RG̃,N. ThereforeMC(G,N) is the Hamiltonian reduction

of MC(G̃,N) by T∨F . �

Now the corresponding statement for quantized Coulomb branches is
clear.

A~(G,N) is the quantum Hamiltonian reduction of A~(G̃,N) by T∨F .

Recall a homomorphism µ∗ : U(LieT∨F )[~]→ A~(G̃,N) is a quantum como-
ment map if [f, µ∗(ξ)] = ~ξ∗(f) for ξ ∈ LieT∨F , f ∈ A~(G̃,N). Since T∨F is
torus, we have

U(LieT∨F ) ∼= S(LieT∨F ) ∼= C[tF ].

The above proof of Lemma 3.19, in fact, shows that the composite of
C[t, ~] = H∗TF×C×(pt)→ H∗

G̃×C×(pt)→ A~(G̃,N) is a quantum comoment

map. Furthermore HG̃OoC×
∗ (RG,N) = A~(G̃,N)T

∨
F and HGOoC×

∗ (RG,N) =

HG̃OoC×
∗ (RG,N)⊗H∗

G̃×C× (pt) H
∗
G×C×(pt). Hence A~(G,N) is the quotient of

A~(G̃,N)T
∨
F by the intersection of A~(G̃,N)T

∨
F and the right ideal gener-

ated by the image of the quantum comoment map. (The intersection is a
two-sided ideal, and the quotient is actually a ring.) This is nothing but the
definition of the quantum Hamiltonian reduction. See [Eti07, §4].

Example 3.21. Let us give an example of this construction. Let (G̃,N) =
(GL(2), (C2)⊕Nf ), and G = SL(2). Here C2 is the vector representation of
GL(2) and (C2)⊕Nf is the direct sum of its Nf copies. Then (G̃,N) is a quiver
gauge theory of type A1 with dimV = 2, dimW = Nf . Assume Nf ≥ 4 so
that the corresponding vector is dominant. As we will prove in [Quiver,
§3(iii)], the Coulomb branch for (G̃,N) is a quiver variety of type ANf−1 with
dimension vectors dimV = (1, 2, . . . , 2, 1), dimW = (0, 1, 0, . . . , 0, 1, 0) ∈
ZNf−1. Moreover, the torus π1(G̃)∨ action is identified with the action of
GL(W2) ∼= C×. (See [Quiver, Remark 3.12].) Therefore the Coulomb branch
of (G, (C2)Nf ) is the Hamiltonian reduction of

∏
GL(Vi)×GL(W2), which

is a quiver variety of type DNf of dimension vectors dimV = (
1

1
2 . . . 21),

dimW = (
0

0
0 . . . 010) ∈ ZNf . This quiver variety is Kronheimer’s original
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construction of a simple singularity of type DNf . This coincides with the
expectation in [SW97].

By [SW97, (2.18)], MC(G,N) is in general expected to be y2 = x2v −
vNf−1 even for Nf = 1, 2, 3. In this case, MC(G̃,N) is not a quiver variety,
hence the above argument does not work. It should be possible to check this
by using the Coulomb branch of (G̃,N) in [Quiver, §2(ii)]. But we give an
alternative argument in Lemma 6.9.

Further examples are given as toric hyper-Kähler manifolds. See §4(vii).
Let us also remark that this proposition is naturally predicted from the

monopole formula (2.9), as was observed in [CHZ14, §5.1].

3(viii). Flavor symmetry group – deformation

Suppose that we have a larger group G̃ containing G as a normal subgroup.
Let GF = G̃/G. This is called the flavor symmetry group in physics liter-
ature. We suppose our G-module N extends to a G̃-module. We denote it
by the same notation N. The Hamiltonian reduction in 3(vii) above is an
example when GF is a torus. Note that MC(G,N) in 3(vii) has a natural
deformation and a family of quasi-projective varieties which are projective
over MC(G,N). The former is given by changing the level of the moment
map, and the latter is given by considering GIT quotients for characters of
T∨F . We will give both constructions for arbitrary GF . This property was
expected in [Nak16, §5]. See original physics literature given there.

The deformation is easy, and is given here. Quasi-projective varieties will
be given later in §3(ix).

Since G is a normal subgroup of G̃, the GO-action on GrG extends
to G̃O. Moreover, as N is a representation of G̃, we have G̃O-actions on
T , R, etc. Therefore we can consider the G̃-equivariant homology group
HG̃O
∗ (R). It is a module over H∗

G̃
(pt) and has extra directions parametrized

by Spec(H∗GF (pt)). We have the restriction homomorphism

HG̃O
∗ (R)→ HGO

∗ (R) = HG̃O
∗ (R)⊗H∗GF (pt) C.

Proposition 3.22. A convolution product ∗ defines an associative graded
algebra structure on HG̃O

∗ (R). The restriction homomorphism HG̃O
∗ (R)→

HGO
∗ (R) is an algebra homomorphism. The same is true for G̃O oC×, GO o

C× equivariant homology groups.
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Applying Lemma 3.20 to the setting in the proof below, we see that
H∗GF (pt) is central in HG̃OoC×

∗ (R). (Note that π1(χ) is zero on R.) There-

fore HG̃OoC×
∗ (R)⊗H∗GF (pt) C has an induced multiplication. Then the second

assertion means that HG̃OoC×
∗ (R)⊗H∗GF (pt) C ∼= HGOoC×

∗ (R) is an algebra
isomorphism.

A proof of commutativity of the product on HG̃O
∗ (R) is the same as one

for HGO
∗ (R), hence is postponed until §5.

Proof. Let us regard GrG as the moduli space of pairs (P, ϕ) as before. We

have the induced G̃-bundle P̃
def.
= P×G G̃ and its trivialization ϕ̃

def.
= ϕ×G

G̃ : P×G G̃→ G̃×D∗. Moreover for the further induced GF -bundle P̃×G̃
GF , the trivialization ϕ̃×G̃ GF extends across the origin 0 ∈ D. Conversely

a pair (P̃, ϕ̃) such that the trivialization ϕ̃×G̃ GF extends is coming from
a pair (P, ϕ). Thus GrG can be regarded as the moduli space of such pairs
(P̃, ϕ̃).

Let G̃OK be the inverse image of (GF )O under G̃K → (GF )K. The homo-
morphism GK → G̃OK induces a bijection GrG = GK/GO ∼= G̃OK/G̃O, where
the latter quotient G̃OK/G̃O is compatible with the above scheme structure
of GrG. As an analog of (2.3), we have

HG̃O×G̃O
∗ (G̃OK) ∼= HG̃O

∗ (GrG).

Let us modify (the lower row of) the diagram (3.2) as

(3.23) T ×R p←−−−− G̃OK ×R
q−−−−→ G̃OK ×G̃O R

m−−−−→ T ,

where maps are given by

([g1, g2s], [g2, s])←[ (g1, [g2, s]) 7→
[
g1, [g2, s]

]
7→ [g1g2, s].

It is exactly the same formula as (3.3) above, but we have used the descrip-
tion R = {[g, s] ∈ G̃OK ×G̃O NO | gs ∈ NO}, etc. The upper row of (3.2) is
defined in the same way.

The same formula as in (3.4) gives actions

G̃O × G̃O y T ×R, G̃O × G̃O y G̃OK ×R,
G̃O y G̃OK ×G̃O R, G̃O y T .

The above diagram (3.23) is equivariant. Also the diagram is given by mor-
phisms of schemes as before.
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We then define the convolution product ∗ on HG̃O
∗ (R) using (3.23) in-

stead of (3.2).

The compatibility of two products on HG̃O
∗ (R) and HGO

∗ (R) follows from
a commutative diagram connecting (3.2) to (3.23). The detail is omitted. �

Remarks 3.24. (1) When GF is a torus, we are in the setting §3(vii)3(vii).
As we have remarked in the beginning of this subsection, the quotient
µT∨F : MC(G̃,N)//T∨F → tF gives a deformation of MC(G,N) parametrized
by tF . Taking the quotient by T∨F , but not imposing the moment map equa-
tion µTF = 0 means that we change the space from RG̃,N to RG,N, but keep

the group as G̃O. Therefore we haveMC(G̃,N)//T∨F = SpecHG̃O
∗ (R) in this

case.
In general, we take a maximal torus TF of GF , and set G̃′ as its in-

verse image in G̃. ThenMC(G̃′,N)//T∨F = SpecH
G̃′O
∗ (R) is a WF -covering of

SpecHG̃O
∗ (R), whereWF is the Weyl group ofGF . (Checking thatH

G̃′O
∗ (R) ∼=

HG̃O
∗ (R)⊗H∗

G̃
(pt) H

∗
G̃′

(pt) respects the multiplication is left as an exercise for

the reader.)
(2) If G̃ acts on N through G, i.e., we have a group homomorphism

ρ : G̃→ G such that the G̃-action on N factors through ρ, we haveHG̃O
∗ (R) ∼=

HGO
∗ (R)⊗H∗G(pt) H

∗
G̃

(pt), where H∗G(pt)→ H∗
G̃

(pt) is given by ρ. Our defor-

mation is trivial in this case. An example is the dilatation action of C× on
N. (See §6(ix).) Although G̃ = G× C× acts on N, it factors through G in
many occasions, say quiver gauge theories whose underlying graphs have no
cycles.

3(ix). Flavor symmetry group – resolution

Let us continue the setting in the previous subsection. We have just con-
structed a deformation ofMC parametrized by H∗GF (pt). SinceMC is sup-
posed to be a hyper-Kähler manifold, a deformation and a (partial) resolu-
tion should come together. We shall construct the latter in this subsection.
In fact, in the hyper-Kähler setting, one can construct simultaneous resolu-
tion of the deformation, after the base change to a WF -cover. Therefore in
view of Remark 3.24 we take a maximal torus TF of GF , and set G̃′ as its
inverse image in G̃. Therefore we are in the setting of §3(vii)3(vii). We con-
sider the GIT quotient ofMC(G̃′,N) by T∨F with respect to a character λF
of T∨F . Let us denote it by MC(G̃′,N)//λFT

∨
F . We have a natural projective
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morphism MC(G̃′,N)//λFT
∨
F →MC(G̃′,N)//T∨F , which fits in the diagram

SpecHG̃O
∗ (R) −−−−→ tF /WFx/WF

x/WF

MC(G̃′,N)//λFT
∨
F −−−−→ MC(G̃′,N)//T∨F −−−−→ tFx x x

µ−1
T∨F

(0)//λFT
∨
F −−−−→ µ−1

T∨F
(0)//T∨F

§3(vii)3(vii)
= MC(G,N) −−−−→ {0}.

This is reminiscent of the Grothendieck-Springer resolution of g∗ and the
corresponding diagram for quiver varieties.

Let us give a description of MC(G̃′,N)//λFT
∨
F in terms of a homology

group of a modification of R.
In order to simplify the notation, let us replace G̃ (resp. GF ) by G̃′ (resp.

TF ), and assume G̃ = G̃′, GF = TF . We also denote TG̃,N, RG̃,N by T̃ , R̃
respectively for short.

A G̃-bundle P induces a TF -bundle by P×G̃ TF . This gives a morphism

GrG̃ → GrTF . Composing it with T̃ → GrG̃ or R̃ → GrG̃, we have

π̃ : T̃ or R̃ → GrTF .

Let T̃ λF or R̃λF = π̃−1(λF ) be a fiber of this projection at a coweight

λF of GF . It is preserved under the action of G̃O. We have HG̃O
∗ (R̃) =⊕

λF
HG̃O
∗ (R̃λF ) by §3(v). It corresponds to T∨F -action on MC(G̃,N).

Proposition 3.25. Consider the Z≥0-graded algebra
⊕

n≥0H
G̃O
∗ (R̃nλF ).

We have

MC(G̃,N)//λFT
∨
F
∼= Proj(

⊕
n≥0

HG̃O
∗ (R̃nλF )).

Similarly we have

µ−1
T∨F

(0)//λFT
∨
F
∼= Proj(

⊕
n≥0

HGO
∗ (R̃nλF )).

This is clear from the definition of the left hand side. It is Proj of the
ring of T∨F -semi-invariants with respect to the character λF : T∨F → C×. The
semi-invariants ring is the graded algebra in question.

For the second isomorphism, note that HGO
∗ (R̃) = HG̃O

∗ (R̃)⊗H∗TF (pt) C
has the induced multiplication. This is obvious if we use the commutativity,
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which will be proved later. But it is true even without commutativity as we
have already know H∗GF (pt) is central, as remarked after Proposition 3.22.

Let us denote Proj(
⊕

n≥0H
GO
∗ (R̃nλF )) by MλF

C (G,N). We have a pro-

jective morphism π : MλF
C (G,N)→MC(G,N) as HGO

∗ (R̃0) = HGO
∗ (R) =

C[MC(G,N)]. Since
⊕

n≥0H
GO
∗ (R̃nλF ) is finitely generated, we can take

sufficiently large n0 so that
⊕

n≥0H
GO
∗ (R̃nn0λF ) is generated byHGO

∗ (R̃n0λF )
as a C[MC(G,N)]-algebra. Therefore we have the corresponding line bundle
over MλF

C (G,N). Let LλF denote its 1/n0-th power, considered as a Q-line
bundle.

Remark 3.26. The dimension of HGO
∗ (R̃nλF )) is given by a formula similar

to Proposition 2.7 and (2.9). In fact, we take the stratification R̃ =
⊔
R̃λ̃

parametrized by dominant coweights λ̃ of G̃. Then R̃λF is the union of
strata R̃λ̃ such that λ̃ is sent to λF under G̃→ TF . Such an extension of the
monopole formula was given in [CHMZ14]. See [Nak16, §5(i)] for a review.

3(x). Previously known examples

Let us identify previous constructions in the literature as special cases of
our Coulomb branches.

(a). Pure gauge theories. Consider N = 0. Then R = GrG. The con-
volution algebra HGO

∗ (GrG) was calculated in [BFM05, Th. 2.12], and was
attributed to an earlier work by Peterson [Pet97, Kos96]. It is the algebraic
variety ZG

∨

g∨ formed by the pairs (g, x) such that x lies in a (fixed) Kostant
slice in g∨, and g ∈ G∨ satisfies Adg(x) = x. Combining with [Bie97], we
will prove that the Coulomb branch MC is the moduli space of solutions
of Nahm’s equations for the Langlands dual group G∨c in Theorem A.1. For
G = SL(k), it recovers results proved by physical arguments ([SW97] for
k = 2, [CH97] for arbitrary k). See §A for detail.

(b). Adjoint matters. Consider N = g, the adjoint representation of G.
We consider the dilatation action on N as a flavor symmetry group (G̃ =
G× C×, GF = C×). The space R in this case is

R = {(ξ, [g]) ∈ gO ×GrG | Adg−1(ξ) ∈ gO},

which is a variant of the affine Grassmannian Steinberg variety, denoted by
Λ in [BFM05, §7]. (In fact, Λ is a closed subvariety of R, and the inclusion
induces HGO

∗ (Λ) ∼= HGO
∗ (R).) In [BFM05, §7], it was shown that KGO(Λ)
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is isomorphic to C[T∨ × T ]W . The argument for K-theory in [BFM05] uses
its specific features (certain coherent sheaves obtained as associated graded
of certain D-modules). The homology case can be deduced from the K-
theory case via Chern character homomorphism as we will see in [Quiver,
Proposition 3.23]. But we also give another proof in Proposition 6.14. Recall
that it was shown that the equivariant K-group of the affine flag variety
analog of Λ is isomorphic to the Cherednik double affine Hecke algebra in
[VV10]. (See also an earlier work [Vas05].) Therefore, when we include the
loop rotation C× and the flavor symmetry group GF = C×, the equivariant
homology group HG̃OoC×

∗ (R) is expected to be the spherical subalgebra of
the graded Cherednik algebra (alias the trigonometric degeneration of the
double affine Hecke algebra). 3 In fact, representations of the whole graded
Cherednik algebra were constructed on equivariant homology groups of affine
Springer fibers [OY16]. Therefore we believe that the only remaining task is
a matter of checking.

4. The abelian case

In this section we determine the Coulomb branch and its quantization when
the group is a torus. We obtain an explicit presentation of the ring HTO

∗ (R).
This presentation is the same as one proposed in [BDG15, §3] by a physical
intuition.

4(i). The main result - the non-quantized case

Let T be a torus and let Y denote its coweight lattice. We denote by t the
Lie algebra of T and by t∗ its dual space. Let N be a representation of T
given by a bunch of characters ξ1, . . . , ξn. Note that each ξi can be viewed
as an element of t∗.

For two integers k, l let us set

d(k, l) =

{
0 if k and l have the same sign,

min(|k|, |l|) if k and l have different signs.

Theorem 4.1. The T -equivariant Borel-Moore homology of R ≡ RT,N is
generated by the algebra Sym(t∗) together with symbols rλ, λ ∈ Y subject to

3After this paper was written, it is proved in [KN18] in type A.
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the following relation:

(4.2) rλrµ =

n∏
i=1

ξ
d(ξi(λ),ξi(µ))
i rλ+µ.

Remark 4.3. It is easy to see that the above algebra is graded if the degree
of any y ∈ t∗ is 2 and we also set

deg rλ =

n∑
i=1

|ξi(λ)|.

This is the grading given by ∆ in (2.10).

Proof. First, the algebra HT
∗ (R) clearly contains H∗T (pt) = Sym(t∗). The

multiplication is H∗T (pt)-linear in the first variable by definition. It is also
in the second variable by Lemma 3.20. On the other hand, the affine Grass-
mannian of T has connected components parametrized by Y . Each such
components consists of one point (we ignore nilpotents here). The space T
is identified with the disjoint union

⊔
λ∈Y {λ} × zλNO via the embedding

T ⊂ GrT ×NK. We also have R =
⊔
λ∈Y {λ} × (zλNO ∩NO). We denote

by rλ the fundamental class of the component of R, corresponding to λ.
Clearly, as a vector space we have

HTO
∗ (R) =

⊕
λ∈Y

Sym(t∗)rλ

It remains to show that (4.2) holds. For this let us describe the part of the
convolution diagram, corresponding to the convolution of the components,
corresponding to λ and µ.

We use the identification

TK ×TO R ∼=
⊔

λ,ν∈Y
{λ} × {ν} × (zνNO ∩ zλNO)

given by [g1, [g2, s]] 7→ ([g1], [g1g2], g1g2s). We define p′ : TK ×TO R → T ×R
by

(4.4) {λ} × {ν} × (zνNO ∩ zλNO) 3 (λ, ν, s)

7−→ (λ, s, ν − λ, z−λs) ∈ {λ} × zλNO × {ν − λ} × (zν−λNO ∩NO).

Let us decompose p′ = (p′T , p
′
R) as before. We have p′T ◦ q = pT . For R,

we define a : TK ×R → TK ×R by (g1, [g2, s]) 7→ (g1, [z
λg−1

1 g2, s]) when the
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class of g1 is λ. (Note zλg−1
1 ∈ TO.) Then p′R ◦ q ◦ a = pR. Therefore

(4.5) (q∗)−1p∗RωR = p′∗RωR, (q∗)−1p∗RωR = (q∗)−1a∗q∗p′∗T ωT .

In the abelian case, T ×R, TK ×TO R (resp. TK ×R) are unions of vec-
tor spaces (resp. products of groups and vector spaces), in particular they
are smooth and hence their dualizing sheaves are isomorphic to constant
sheaves up to shifts by the Poincaré duality. Therefore p′∗RωR

∼= CTK×TOR,
p′∗T ωT

∼= CTK×TOR up to shifts. Looking at the construction of isomorphisms
in (3.6), we find that this Poincaré duality and (3.6) are the same un-
der (4.5). We further replace p′ by multiplying zλ, composing the inclu-
sion zνNO ∩ zλNO ⊂ zνNO in the second factor, and dropping unnecessary
entries λ, ν:

p′ : zλNO ∩ zνNO 3 s 7→ (s, s) ∈ zλNO × zνNO.

Then the morphism m is given by the projection to the second factor zνNO.
As (q∗)−1a∗q∗ in (4.5) does not affect the computation, we have rλrµ =
m∗p

′∗[(zλNO ∩NO)× zνNO].
To simplify the notation, let us give a proof in the case n = 1 (the general

case is essentially a word-by-word repetition). We set ξ = ξ1. Also, set a =
ξ(λ), b = ξ(µ). In the above notation we use ν = λ+ µ, so a+ b = ξ(ν).

From the above argument, the convolution product rλrµ is given as
follows. First, consider the vector space W = zaO ⊕ za+bO. It contains sub-
spaces V12 = O ∩ zaO ⊕ za+bO, V23 = zaO ∩ za+bO (where V23 is embedded
into W by means of the diagonal embedding). Let also m denote the pro-
jection from W to za+bO. We denote by V the subspace of za+bO equal to
O ∩ za+bO. Clearly, m sends V12 ∩ V23 = O ∩ zaO ∩ za+bO to V (and when
restricted to V12 ∩ V23 the map p is injective).

Let x12 and x23 be the fundamental classes of V12 and V23 viewed as
elements of the T -equivariant Borel-Moore homology of W . There exists a
class x in HT

∗ (V ) such that m∗(x12 ∩ x23) is equal to the direct image of x
from V to za+bO. Then x is the product of rλrµ.

On the other hand, let L be any vector space with a T -action and let
L1, L2 be two T -invariant subspaces. Let xLi (resp. xL1∩L2

) be the funda-
mental class of Li (resp. L1 ∩ L2) viewed as an element of HT

∗ (L). Then
xL1
∩ xL2

= xL1∩L2
· e(Coker(L/L1 ∩ L2 → L/L1 ⊕ L/L2)), where e( ) de-

notes the equivariant Euler class. Hence in our case we see that rλrµ equals
rλ+µ multiplied by

(4.6) e(Coker(W/V12 ∩ V23 →W/V12 ⊕W/V23)) · e(V/V12 ∩ V23).
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Let us now look at the different options for signs of a and b.
1) a ≥ 0, b ≥ 0.
In this case V12 = zaO ⊕ za+bO, V23 = za+bO = V12∩V23 = V . Hence the

2nd equivariant Euler class in (4.6) is equal to 1. Also W/V12 ∩ V23 = zaO,
W/V12 = 0, W/V23 = zaO, hence the 1st equivariant Euler class is equal to
1 as well.

2) a ≤ 0, b ≤ 0.
In this case V12 = O ⊕ za+bO, V23 = zaO, V = V12 ∩ V23 = O. Hence the

2nd equivariant Euler class is equal to 1 again. Also W/V12 = zaO/O,
W/V23 = za+bO and W/V12 ∩ V23 = zaO/O ⊕ za+bO. Hence the 1st equiv-
ariant Euler class is again 1.

3) a ≥ 0, b ≤ 0.
In this case we have V12 = zaO ⊕ za+bO, V23 = zaO, V12 ∩ V23 = zaO,

V = O ∩ za+bO. So W/V12 = 0,W/V23 = za+bO,W/V12 ∩ V23 = za+bO and
hence the first equivariant Euler class in (4.6) is equal to 1. On the other
hand the 2nd equivariant Euler class is equal to e(O ∩ za+bO/zaO) which
is equal to ξ−b if a+ b ≥ 0 and ξa if a+ b ≤ 0. This is exactly ξd(a,b).

4) a ≤ 0, b ≥ 0.
In this case we have V12 = O ⊕ za+bO, V23 = za+bO, V12 ∩ V23 = O ∩

za+bO = V . Hence in this case the 2nd equivariant Euler class (4.6) is equal
to 1. On the other hand, assume that a+ b ≥ 0. Then V12 ∩ V23 = za+bO and
W/V12 ∩ V23 = zaO. On the other hand, W/V12 = zaO/O, W/V23 = zaO
and hence the first equivariant Euler class in (4.6) is equal to e(zaO/O) =
ξ|a|. But since a+ b ≥ 0 we have |a| = d(a, b). Similarly, if a+ b ≤ 0, then
V12 ∩ V23 = O. Hence W/V12 = zaO/O,W/V23 = zaO and W/V12 ∩ V23 =
zaO ⊕ za+bO/O. Hence the equivariant Euler class in question is equal to
e(zaO/za+bO) = ξb = ξd(a,b). �

4(ii). The quantized version

We now want to do everything C×-equivariantly (where C× acts by loop
rotation). Let ~ denote the generator of H∗C×(pt). Then the description of
HTOoC×
∗ (R) is similar, except the relation (4.2) now reads

(4.7) rλrµ =

n∏
i=1

Ai(λ, µ) rλ+µ,

where
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Ai(λ, µ) =



d(ξi(λ),ξi(µ))∏
j=1

(ξi + (ξi(λ)− j + 1
2)~) if ξi(λ) ≥ 0 ≥ ξi(µ),

d(ξi(λ),ξi(µ))∏
j=1

(ξi + (ξi(λ) + j − 1
2)~) if ξi(λ) ≤ 0 ≤ ξi(µ),

1 otherwise.

The proof easily follows from the same calculations as above. Note that 1/2
is coming from the action of C× on N with weight 1/2.

In addition, SymC[~](t
∗) now does not commute with rλ’s. But it is easy

to see that for any α ∈ t∗ we have

(4.8) [rλ, α] = ~α(λ)rλ.

See Lemma 3.20.

4(iii). Flavor symmetries

Let T̃ = T × (C×)n. Then T̃ acts naturally on N and thus also on R and

we can consider the algebra H T̃OoC×
∗ (R). This algebra has a presentation

similar to the above, except that the relation (4.7) now reads

(4.9) rλrµ =

n∏
i=1

Ãi(λ, µ) rλ+µ,

where

Ãi(λ, µ) =



d(ξi(λ),ξi(µ))∏
j=1

(bi + ξi + (ξi(λ)− j + 1
2)~) if ξi(λ) ≥ 0 ≥ ξi(µ),

d(ξi(λ),ξi(µ))∏
j=1

(bi + ξi + (ξi(λ) + j − 1
2)~) if ξi(λ) ≤ 0 ≤ ξi(µ),

1 otherwise,

where b1, . . . , bn denote the equivariant parameters for the torus (C×)n.

4(iv). Examples

Let T = C×, n = 1 and take ξ to be the N -th power the standard character.
In this case Λ = Z. Set x = r1, y = r−1 (note that r−1 is not the inverse
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of r1!). Let also a denote the generator of t∗. Then x, y and a generate
HTOoC×
∗ (R) and we have the following relations:

xy =

N∏
j=1

(
a+

(
j − 1

2

)
~
)
, yx =

N∏
j=1

(
a−

(
j − 1

2

)
~
)
,

[x, a] = ~x, [y, a] = −~y

When ~ = 0 we get a commutative ring, generated by x, y, a with relation
xy = aN .

On the other hand, let N be the direct sum of N standard characters.
We define x, y and a in the same way as above. Then we have

xy =

(
a+

1

2
~
)N

, yx =

(
a− 1

2
~
)N

, [x, a] = ~x, [y, a] = −~y.

Note that for ~ = 0 we get the same algebra as before.
Let degh denote the half of the homological degree. We have degh x = 0,

degh y = N , degh a = 1. On the other hand, the degree deg given by ∆(λ)
by (2.10) is deg x = N/2, deg y = N/2, deg a = 1. If we multiply it by 2, it
is the weight of the C×-action, which is the restriction of the SU(2)-action
on {xy = aN} = C2/(Z/NZ), rotating the hyper-Kähler structure. Namely
we identify C2 with the quaternions H = {z1 + z2j | z1, z2 ∈ C}. The hyper-
Kähler structure is given by multiplication of i, j, k from the left, with
the standard inner product. The action of Z/NZ is given by multiplication
of Nth roots of unity from the right. Then x = zN1 , y = zN2 , a = z1z2. The
action of SU(2) = Sp(1) is the multiplication of unit quaternions from the
left. If we restrict to U(1), unit complex numbers, z1, z2 both have weight 1.

4(v). Changing ξ to −ξ

Let us assume that we change one of the ξ to −ξ; let us denote by Ni the
corresponding new representation of T . We claim that the resulting alge-
bra A(T,Ni) is isomorphic to A(T,N). Then define a map σ : A(T,Ni)→
A(T,N) which is equal to identity on t∗ and such that

σ(rλ) =

{
rλ if ξi(λ) ≤ 0

(−1)ξi(λ)rλ if ξi(λ) > 0

In particular, we see that the algebra A(T,N) depends only on M = N⊕N∗

and not on N.
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The same is true for the quantized case. (It is not true if we do not
introduce the weight 1/2 action of C× on N.)

4(vi). Changing the representation

Let V be another representation. Then we claim that there is a natural
embedding A(T,N⊕V) ↪→ A(T,N). To construct it, it is enough to assume
that V = ξ for some ξ. Then the η which is equal to identity of Sym(t∗) and
such that

(4.10) η(rλ) =

{
ξ−ξ(λ)rλ if ξ(λ) < 0

rλ otherwise

defines the embedding.
This embedding is given by the pull-back homomorphism HTO

∗ (RT,N⊕V)
→ HTO

∗ (RT,N) with respect to the embedding TT,N ⊂ TT,N⊕V of a subbun-
dle. In §5(iv), we consider a similar pull-back with respect to z : GrG ↪→ TG,N
for general (G,N). The formula (4.10) is understood as the multiplication
of e(zλVO/z

λVO ∩VO) = e(zξ(λ)O/zmax(ξ(λ),0)O).
In the quantized case, we define

η(rλ) =


−ξ(λ)−1∏
j=0

(ξ + (ξ(λ) + j +
1

2
)~)rλ if ξ(λ) < 0,

rλ otherwise.

Using (4.8), we can check that this is an algebra homomorphism.
The following observation might be important: although for general V

the above map does not respect the gradings on A(T,N⊕V) and A(T,N),
the gradings are preserved if V is self-dual.

Remark 4.11. We can recover Theorem 4.1 and its quantized version (4.7)
from the above formulas together with rλrµ = rλ+µ when N = 0.

4(vii). Toric hyper-Kähler manifolds

Consider a short exact sequence

0→ Zd−n α−→ Zd β−→ Zn → 0,
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and the associated sequence

(4.12) 1→ G = T d−n
α−→ T d

β−→ GF = Tn → 1.

Let N = Cd, considered as a representation of G through α. By §3(vii)3(vii),
the Coulomb branchMC(G,N) is the Hamiltonian reduction ofMC(T d,Cd)
by G∨F . We have MC(T d,Cd) ∼= C2d by Theorem 4.1. Hence MC(G,N) is,
by definition, a toric hyper-Kähler manifold associated with the dual exact
sequence of (4.12), introduced by Bielawski and Dancer in [BD00].4

The coordinate ring of the Hamiltonian reduction of C2d by G∨F has the
presentation given by Theorem 4.1. In fact, this can be checked directly. See
[Nak16, §5(ii)].

5. Codimension 1 reduction

Recall that T is a maximal torus of G with Lie algebra t. Let W be the Weyl
group of G.

In this section, we develop a tool to analyze MC based on the idea in
[BFM05]. It says that it is enough to find an affine scheme M, flat over
t/W such that it is equal to MC over an open subset t•/W of t/W =
Spec(H∗G(pt)) whose complement has codimension at least 2. Then auto-
matically MC =M. See Theorem 5.26 for more detail.

It is easy to determine MC on a smaller open subset t◦/W of t/W , the
complement of certain hyperplanes. We prove HGO

∗ (R)|t◦/W ∼= C[t× T∨]|Wt◦ ,
where T∨ is the dual torus of T . This will be done in §5(v) after preparation.
At a point t in (t• \ t◦)/W , we will show that MC is the Coulomb branch
of another pair (G′,N′) such that G′ has semisimple rank at most 1. (See
Lemma 5.1.) We can determine MC(G′,N′): §4 for abelian, Lemma 6.9 for
G′ = PGL(2) or SL(2), and the proof of Proposition 6.12 in general. There-
fore we just need to look forM such that it is isomorphic toMC(G′,N′) for
each t ∈ (t• \ t◦)/W . Using these, we can determine, for example, (G,N) as-
sociated with a quiver gauge theory of type ADE. See [Quiver, Theorem 3.1].

4The name ‘toric hyper-Kähler manifold’ and a special class of examples were
introduced earlier in [Got92]. Many people use a new name ‘hypertoric manifold’,
but we use the original name to respect the contribution of Goto, Bielawski-Dancer.



i
i

“1-Nakajima” — 2019/4/12 — 22:11 — page 1117 — #47 i
i

i
i

i
i

Coulomb branches of 3d N = 4 gauge theories, II 1117

5(i). Fixed points and generalized roots

Lemma 5.1. Let t ∈ LieT . Let RtG,N be the fixed point set of exp(Rt) in
RG,N, i.e., the zero locus of the vector field generated by t. Then

RtG,N ∼= RZG(t),Nt ,

where ZG(t) is the centralizer of t in G, and Nt is the subspace of t invari-
ants, considered as a representation of ZG(t). Similarly T tG,N ∼= TZG(t),Nt.

Proof. For the Grassmann part, it is known that GrtG
∼= GrZG(t). (We are

unable to find an exact reference, but it is implicit in [BFGM02, §6]: ZG(t)
is a Levi subgroup L in a parabolic P with radical U . The Grassmannian
GrG is a disjoint union of “semiinfinite orbits”: the connected components of
GrP = L(K) · U(K)/L(O) · U(O). Since t acts trivially on L and contracts
U to the origin, its fixed points on GrP are L(K)/L(O) = GrL.)

For the representation part, it is clear from the embedding RG,N ⊂
GrG ×NO. �

From this description, it is natural to introduce the following definition,
which is given directly in terms of (G,N) without reference to RG,N.

Definition 5.2. Fix a maximal torus T of G as before. A generalized root
α for a pair (G,N) is either (I) a nonzero weight of N or (II) a root of LieG.

Generalized roots define hyperplanes in t
def.
= LieT . Let t◦ denote the

complement of the union of all generalized root hyperplanes.

From the above lemma, the fixed point subset RtG,N of t is strictly larger

than the fixed point RTG,N of T if and only if 〈α, t〉 = 0 for some generalized

root α. Hence t◦ consists of t such that RtG,N = RTG,N.
We call a nonzero weight α of N as a generalized root of type (I). More

precisely, we say α is of type (I) further if there is no roots of G in Qα. We
may assume α is primitive, i.e., it is not a positive integer multiple of another
integral weight. Suppose 〈t, α〉 = 0 and t is not contained in any other gener-
alized root hyperplanes. Then ZG(t) = T , Nt = NT ⊕

⊕
m∈Z N(mα), where

N(mα) (resp. NT ) is the weight mα (resp. 0) subspace. We understand that
N(mα) = 0 if mα is not a weight of N. The first factor NT plays no role

by §3(vii)3(vii). Since ZG(t) is abelian, we already know H
ZG(t)
∗ (RZG(t),Nt)

thanks to §4.
Other generalized roots are of type (II). They are just roots of G. We

further suppose t is not contained in any other generalized root hyperplanes.



i
i

“1-Nakajima” — 2019/4/12 — 22:11 — page 1118 — #48 i
i

i
i

i
i

1118 A. Braverman, M. Finkelberg, and H. Nakajima

In particular, 〈µ, t〉 6= 0 for any nonzero weight µ /∈ Qα. It could happen that
a multiple of α is also a weight of N. Let N(mα) be the weight mα subspace,
understanding it is 0 if mα is not a weight. Then ZG(t) is of semisimple
rank 1 and Nt = NT ⊕

⊕
m∈Q N(mα). For example, if (G,N) = (GLr, glr)

and t = diag(t1, t1, t3, . . . , tr) with t1, t3,. . . , tr distinct, we have ZG(t) =
GL2×T r−2, Nt = gl2⊕Cr−2. Another example is (G,N) = (GLr,Cr) with
the same t. We have Nt = {0}.

5(ii). Torus equivariant homology

The TO-equivariant Borel-Moore homology group HTO
∗ (R) is defined in the

same way as in §2(ii). The same applies also for TO oC×-equivariant ho-
mology. Recall HGO

∗ (R) (resp. HTO
∗ (R)) is a module over H∗G(pt) = C[t/W ]

(resp. H∗T (pt) = C[t]). Also W acts on HTO
∗ (R) induced by the N(T )-action

on R, where N(T ) is the normalizer of T in G as usual (and W = N(T )/T ).

Lemma 5.3. The H∗T (pt)-module HTO
∗ (R) is flat, and the H∗G(pt)-module

HGO
∗ (R) is flat. Moreover, the natural map H∗T (pt)⊗H∗G(pt) H

GO
∗ (R)→

HTO
∗ (R) is an isomorphism, and HGO

∗ (R) = (HTO
∗ (R))W . The same applies

for TO oC× and GO oC× equivariant homology groups.

Proof. Same as the one of [BFM05, Lemma 6.2] �

5(iii). Bimodule

Let us consider the diagram (3.2), and we restrict the GO ×GO (resp. GO)
action on the first and second (resp. third and fourth) columns to TO ×GO
(resp. TO). Then we have a right HGO

∗ (R)-module structure on HTO
∗ (R),

i.e., we have c1 ∗ (c2 ∗ c3) = (c1 ∗ c2) ∗ c3 for c1 ∈ HTO
∗ (R), c2, c3 ∈ HGO

∗ (R).
This is obvious from the proof of the associativity in Theorem 3.10, where
we restrict GO-action to TO at appropriate places.

Let NT be the restriction of the G-module N to T ⊂ G. Then we can
introduce the space RT,NT

of triples for T . It is nothing but the preimage in
R ≡ RG,N of GrT ⊂ GrG under the natural projectionR → GrG. We modify
the diagram (3.2) to
(5.4)

TT,NT
×RG,N

p←−−−− TK ×RG,N
q−−−−→ TK ×TO RG,N

m−−−−→ TG,N.

(We only write the bottom row, as the top row is given by closed em-
beddings.) We have TO × TO (resp. TO) action on the first and second
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(resp. third and fourth) spaces. Then the diagram gives a left HTO
∗ (RT,NT

)-
module structure on HTO

∗ (R), i.e., we have c1 ∗ (c2 ∗ c3) = (c1 ∗ c2) ∗ c3 for
c1, c2 ∈ HTO

∗ (RT,NT
), c3 ∈ HTO

∗ (R). This again follows from the proof of the
associativity in Theorem 3.10 with appropriate changes of spaces.

Two actions are commuting, i.e., c1 ∗ (c2 ∗ c3) = (c1 ∗ c2) ∗ c3 for c1 ∈
HTO
∗ (RT,NT

), c2 ∈ HTO
∗ (R), c3 ∈ HGO

∗ (R). This also follows from the proof
of the associativity in Theorem 3.10 with appropriate changes of spaces.
Therefore

Lemma 5.5. The convolution product

HTO
∗ (RT,NT

)⊗HTO
∗ (R)⊗HGO

∗ (R)→ HTO
∗ (R)

gives an (HTO
∗ (RT,NT

), HGO
∗ (R))-bimodule structure on HTO

∗ (R). The same
applies for TO oC× and GO oC× equivariant homology groups.

Let us remark that the convolution product c ∗ c′ may not be linear in
the second variable c′, and is not so if we include the rotation C×-action.
See the computation in §3(vii)3(vii).

Also theW -action onHTO
∗ (R) commutes with the right action ofHGO

∗ (R)
and normalizes the left action of HTO

∗ (RT,NT
). Indeed, we have

Lemma 5.6. We have a W -action on HTO
∗ (RT,NT

) so that its algebra
structure and its left module structure on HTO

∗ (R) in Lemma 5.5 are W -
equivariant. The same applies to TO oC× equivariant homology groups.

Proof. Let N(T ) be the normalizer of T . The N(T )-action on R preserves
RT,NT

. Hence we have the induced W -action on HTO
∗ (RT,NT

). Diagrams
(3.2) for (T,NT ) and (5.4), used to define convolution products, are N(T )-
equivariant. Therefore the convolution products are W -equivariant. �

Let us consider e, the fundamental class of of the fiber of R → GrG at
the base point [1] ∈ GrG as in Theorem 3.10. It was the unit in HGO

∗ (R),
but we consider it as an element in the bimodule HTO

∗ (R) instead.

Lemma 5.7. (1) The left multiplication HTO
∗ (RT,NT

) 3 c 7→ c ∗ e ∈ HTO
∗ (R)

is the pushforward homomorphism ι∗ for the embedding ι : RT,NT
→ R.

(2) The right multiplication HGO
∗ (R) 3 c′ 7→ e ∗ c′ ∈ HTO

∗ (R) is the ho-
momorphism given by the restriction from GO to TO. In particular, it is
H∗G(pt)-linear under the forgetting homomorphism H∗G(pt)→ H∗T (pt).

(3) Both (1), (2) are true for TO oC×, GO oC× equivariant homology
groups.
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The proof is exactly the same as the proof that e is unit in Theorem 3.10.
By (2), we have a well-defined homomorphism

(5.8) e ∗ • : HGO
∗ (R)⊗H∗G(pt) H

∗
T (pt)

∼=−→ HTO
∗ (R).

It is an isomorphism thanks to Lemma 5.3.

Lemma 5.9. The homomorphism ι∗ becomes an isomorphism over t◦, the
complement of the union of all generalized root hyperplanes. In particular,
it is injective.

For TO oC×-equivariant homology groups, ι∗ is an isomorphism over
t◦ × Lie(C×).

Proof. The last assertion is a consequence of the first and Lemma 5.3.
By Lemma 5.1 (or a direct consideration), we have RTT,NT

= RT . The
localization theorem for equivariant homology groups implies the assertion.

�

Hereafter we often use the notation ‘|t◦ ’ meaning the localization at the
ideal given by generalized root hyperplanes, i.e., tensor product with C[t◦]
over H∗T (pt).

Lemma 5.10. (1) ι∗ : HTO
∗ (RT,NT

)W → HGO
∗ (R) is an algebra homomor-

phism.
(2) The same is true for TO oC× and GO oC× equivariant homology

groups. In particular, ι∗ in (1) respects the Poisson structures.5

Proof. Our idea of the proof is based on [CKL13, §5.3].
Let c1, c2 ∈ HTO

∗ (RT,NT
). By Lemma 5.7(1) ι∗(ca) = ca ∗ e (a = 1, 2). If

ca is W -invariant, ca ∗ e is also by Lemma 5.6, hence we have ca ∗ e = e ∗ c′a
for some c′a ∈ HGO

∗ (R) by Lemma 5.7(2). The map ι∗ in the statement is
nothing but ca 7→ c′a.

Now the associativity implies

(c1 ∗ c2) ∗ e = c1 ∗ (c2 ∗ e) = c1 ∗ (e ∗ c′2)

= (c1 ∗ e) ∗ c′2 = (e ∗ c′1) ∗ c′2 = e ∗ (c′1 ∗ c′2).

It means that ι∗ is an algebra homomorphism. The argument works also
when the loop rotation C× is included. �

5The statement will make sense after we prove the commutativity in Proposi-
tion 5.15 below. The same applies to Lemma 5.11(3).
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5(iv). From the variety of triples to the affine Grassmannian

In the same (and simpler) way as in §5(iii), we have a natural (HTO
∗ (GrT ),

HGO
∗ (GrG))-module structure on HTO

∗ (GrG). Alternatively it is a special case
of the above construction with N = 0.

Let z : GrG → T be the closed embedding given by considering GrG
as the 0 section of the vector bundle T . We have z−1(R) = GrG. Since
T → GrG is a vector bundle, we have the pull-back homomorphism z∗ωT →
ωGrG [2 dim NO], where dim NO is the rank of the vector bundle. Let z̃ denote
the inclusion GrG → R (so that z = i ◦ z̃). We have the pull-back with sup-
port homomorphisms z∗ : ωR[−2 dim NO]→ z̃∗ωGrG and z∗ : HGO

∗ (R)→
HGO
∗ (GrG), where the degree is given relative to 2 dim NO for the former

so that the degree is preserved. In fact, it is also easy to check that z∗ is

the same as the composite of HGO
∗ (R)

i∗−→ HGO
∗ (T )

z∗−→∼= HGO
∗ (GrG). The sec-

ond z∗ is an isomorphism and its inverse is π∗ where π : T → GrG is the
projection.

We also have z∗ : HTO
∗ (R)→ HTO

∗ (GrG), and z∗ : HTO
∗ (RT,NT

)→
HTO
∗ (GrT ). The second z should be understood as GrT → TT,NT

, but is
denoted by the same letter for brevity.

Lemma 5.11. (1) z∗ : HGO
∗ (R)→ HGO

∗ (GrG) is an algebra homomorphism.
The same is true for z∗ : HTO

∗ (RT,NT
)→ HTO

∗ (GrT ).
(2) z∗ : HTO

∗ (R)→ HTO
∗ (GrG) is a homomorphism of bimodules.

(3) Both (1), (2) are true for TO oC×, GO oC× equivariant homology
groups. In particular, z∗ in (1) respects the Poisson structures.

Proof. We give the proof of the first statement of (1). The second statement
is the special case G = T . The proof of (2) is straightforward modification
of the proof of (1), and is omitted. The proof of (3) is the same as (1), just
check that everything is C×-equivariant.

The idea of the proof is similar to one of Lemma 5.10.
We consider the diagram

(5.12) T ×GrG ←−−−− GK ×GrG −−−−→ GK ×GO GrG −−−−→ GrG,

which is nothing but the diagram (3.1) with the leftmost term replaced by

T ×GrG via the inclusion GrG ×GrG
z×idGrG−−−−−→ T ×GrG. As in §5(iii) we can

view HGO
∗ (GrG) as a left HGO

∗ (R)-module. Then we have c∗̄c′ = z∗(c) ∗ c′,
where the left ∗̄ is the module action, and the right ∗ is the multiplica-
tion in HGO

∗ (GrG). Now we take c′ = 1, the unit of HGO
∗ (GrG). Then the
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associativity implies

z∗(c1 ∗ c2) = (c1 ∗ c2)∗̄1 = c1∗̄(c2∗̄1) = c1∗̄z∗(c2) = z∗(c1) ∗ z∗(c2).

This means that z∗ is an algebra homomorphism. The proof of the associa-
tivity is the same as one in Theorem 3.10, hence is omitted. �

Lemma 5.13. The homomorphisms z∗ in three cases in Lemma 5.11 be-
come isomorphisms over t◦, the complement of the union of all generalized
root hyperplanes. In particular, they are injective.

Proof. Since HGO
∗ (•) = (HTO

∗ (•))W for both • = R and GrG, it is enough to
check the assertion for z∗ in (2). (The second z∗ in (1) is the special case
G = T .)

Recall that z∗ is the composite of HTO
∗ (R)

i∗−→ HTO
∗ (T )

z∗−→∼= HTO
∗ (GrG),

as we remarked above. Therefore it is enough to show that i∗ becomes an iso-
morphism over t◦. The pushforward homomorphisms of inclusions RT ⊂ R,

T T ⊂ T induce isomorphisms HTO
∗ (RT )|t◦

∼=−→ HTO
∗ (R)|t◦ , HTO

∗ (T T )|t◦
∼=−→

HTO
∗ (T )|t◦ respectively. Therefore it is enough to show that i∗ forHTO

∗ (RT )|t◦
→ HTO

∗ (T T )|t◦ is an isomorphism. But this is clear from Lemma 5.1 : RT ∼=
RT,NT

∼= GrG ×NT
O
∼= T T . �

Remark 5.14. Let V be another representation. Then there is a natu-
ral embedding HGO

∗ (RG,N⊕V) ↪→ HGO
∗ (RG,N) given by the pull-back homo-

morphism with respect to the embedding TT,N ⊂ TT,N⊕V of a subbundle.
(cf. §4(vi)) This can be proved by the same argument, or by observing
HGO
∗ (RG,N⊕V)→ HGO

∗ (GrG) factors as HGO
∗ (RG,N⊕V)→ HGO

∗ (RG,N)→
HGO
∗ (GrG).

5(v). Classical description of Coulomb branches

We studyMC over t◦ in this subsection. This is called a classical description
of the Coulomb branch MC in the physics literature. This description first
leads to a proof of the commutativity of HGO

∗ (R), as we promised in §3(iv).

Proposition 5.15. HGO
∗ (R) is commutative.

One way to prove this is to use Lemma 5.13 and the commutativ-
ity of HGO

∗ (GrG), proved in [BFM05]. The proof of the commutativity of
HGO
∗ (GrG), as was explained in §3(iv), uses the Beilinson-Drinfeld Grass-

mannian. This proof will be given at a categorical level in [Affine, §3]. We
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present another argument, completely avoiding Beilinson-Drinfeld Grass-
mannian now.

Proof of Proposition 5.15. Since we have proved that HTO
∗ (RT,NT

) is com-
mutative (see §4), the multiplication is H∗TO(pt)-linear in both first and

second variables. In particular, its localization HTO
∗ (RT,NT

)|t◦ inherits the
algebra structure.

Recall the embedding ι : RT,NT
→ R. By Lemma 5.9 it induces an iso-

morphism between the localized equivariant homology groups:

ι∗ : HTO
∗ (RT,NT

)|t◦
∼=−→ HTO

∗ (R)|t◦ .

We have a chain of injective maps

HGO
∗ (R)→ HTO

∗ (R)→ HTO
∗ (R)|t◦

ι−1
∗ =(•∗e)−1

−−−−−−−−→
∼

HTO
∗ (RT,NT

)|t◦ ,

where the injectivity of the first two maps follows from Lemma 5.3. By the
proof of Lemma 5.10, the composite respects the multiplication. Therefore
HGO
∗ (R) is commutative. �

We endow HTO
∗ (R) ∼= HGO

∗ (R)⊗H∗G(pt) H
∗
T (pt) with an algebra struc-

ture induced from HGO
∗ (R). Note that a priori it does not have an algebra

structure. The multiplication ∗ on HGO
∗ (R) is H∗G(pt)-linear only in the first

variable. In our case, we have just proved that HGO
∗ (R) is commutative,

and hence also linear in the second variable. Therefore the multiplication is
well-defined. This construction does not work in general, say HTOoC×

∗ (R),
as it is noncommutative.

Remark 5.16. Let us emphasize further how the commutativity ofHGO
∗ (R)

is important in this construction.
Consider the usual finite dimensional Steinberg variety St, and its analog

St. We also consider StP , StP corresponding to a parabolic subgroup P . Our
HGO
∗ (R) is an analog of HP

∗ (StP ), which is isomorphic to HG
∗ (StP ). In this

situation, HP
∗ (StP ) is an algebra, but HT

∗ (StP ) is not in general. It is clear
from the following: We have HP

∗ (StP ) ∼= ePH
B
∗ (St)eP for an idempotent

eP . Then HT
∗ (StP ) ∼= HB

∗ (St)eP . Thus HT
∗ (StP ) is a bimodule, but not an

algebra.

We have
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Lemma 5.17. The pushforward homomorphism ι∗ of the embedding ι :
RT,NT

→ R, composed with the inverse of (5.8), gives an algebra homo-
morphism HTO

∗ (RT,NT
)→ HTO

∗ (R) ∼= HGO
∗ (R)⊗H∗G(pt) H

∗
T (pt). It becomes

an isomorphism over t◦. In particular, it is injective.

Thus HGO
∗ (R) and HTO

∗ (GrT ) are related as

(5.18) HTO
∗ (GrT )W

z∗←− HTO
∗ (RT,NT

)W
ι∗−→ HTO

∗ (R)W ∼= HGO
∗ (R).

Both ι∗ and z∗ are algebra homomorphisms, and become isomorphisms over
t◦. (See Lemma 5.13 for the last assertion.)

Proposition 5.19. (1) We have a C[t]W -algebra isomorphism

HTO
∗ (GrT )W ∼= C[t× T∨]W ,

where T∨ is the dual torus of T . The W -action on t× T∨ is the usual one.
(2) The quantized algebra HTOoC×

∗ (GrT )W is isomorphic to the W -
invariant part of the ring of ~-differential operators D~(T∨) on T∨. The
homomorphism H∗GOoC×(pt)→ HTOoC×

∗ (GrT )W is given by invariant vec-

tor fields via the isomorphism H∗GOoC×(pt) ∼= H∗T×C×(pt)W ∼= Sym(t∨)W [~].

Proof. Since GrT consists of points parametrized by the coweight lattice Y of
T , we have HTO

∗ (GrT ) ∼= C[t× T∨]. (This is a special case of Theorem 4.1.)
The W -action on HTO

∗ (GrT ) is given by the N(T )-action on GrT , and the in-
duced W = N(T )/T -action on GrT ×T EG ∼= Y × (EG/T ) = Y ×BT ,
where EG→ BG, ET → BT are the classifying spaces for G and T . This
induces the usual W -action on t× T∨.

The argument for the quantized version is the same. �

Taking spectrum of (5.18), Lemma 5.11, we get

(5.20)
t× T∨/W →MC(T,NT )/W ←MC(G,N),

MC(G,N)←MC(G, 0).

Since homomorphisms are injective, those morphisms are dominant.
When N = 0, the left and right morphisms are the identity. The middle

morphism is an affine blowup described in [BFM05, §2.5]. This is not explic-
itly stated in [BFM05], but is clear from the proof of [BFM05, Th. 2.12].

Next consider examples in §4(iv) (hence G = T ). The middle morphism
is the identity. The left (and the right) morphism is given by an open em-
bedding C× C× 3 (a, x) 7→ (a, x, y = aNx−1) ∈ {xy = aN}.
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Corollary 5.21. (1) We have a birational isomorphism

MC(G,N) ≈ t× T∨/W

given by z∗ι−1
∗ , where $ in (3.17) corresponds to the first projection in t×

T∨/W . It is an isomorphism over t◦ × T∨/W . In particular, the generic
fiber of $ is T∨.6

(2) Moreover the Poisson structure onMC(G,N)|$−1(t◦/W ) corresponds
to the standard one on t◦ × T∨/W , the restriction of the symplectic structure
on T ∗T∨/W to the open subset t◦ × T∨/W .

Corollary 5.22. MC(G,N) is an integral scheme.

Proof. We have an injective homomorphism HGO
∗ (R)→ C[t◦ × T∨]. The lat-

ter is an integral domain. Therefore HGO
∗ (R) is also. �

Remark 5.23. Let us consider the open subvariety

$−1(t \ {root hyperplanes}/W )

in MC . The morphism MC(G,N)→MC(T,NT )/W in (5.20) becomes an
isomorphism over this open subvariety, thanks to the localization theorem in
equivariant homology groups. Therefore C[$−1(t \ {root hyperplanes}/W )]
has an explicit presentation from that of A(T,NT ) = C[MC(T,NT )]. Fur-
thermore, we have an embedding A(T,NT ) ↪→ A(T, 0), where the latter is
just a Laurent polynomial ring C[t× T∨].

These embeddings make sense for quantized Coulomb branches:
we have A~(G,N) ↪→ A~(T,NT )[~−1, (root +m~)−1]m∈Z ↪→ A~(T, 0)[~−1,
(root +m~)−1]m∈Z. Here one can easily check that the multiplicative sub-
set generated by ~, roots + Z~ satisfies the Ore condition in A~(T,NT )
and A~(T, 0) thanks to Lemma 3.20. Therefore the localization as H∗T (pt)-
modules have algebra structure. MoreoverA~(T,NT )[~−1, (root+m~)−1]m∈Z
is the (localized) ring of ~-difference operators on t.

The ring homomorphism ι∗ : A~(T,NT )W → A~ becomes an isomor-
phism if we invert the expressions ~, α+m~ where α is a root of G and
m is an integer, considered as elements in H∗T×C×(pt) (5(iii)). Indeed, it
suffices to check that for any dominant coweight λ, the homomorphism
of (H∗T×C×(pt))W -modules ι∗ : (HTOoC×

∗ (RT,NT
)Wλ)W → HGOoC×

∗ (Rλ) be-
comes an isomorphism after inverting the expressions ~, α+m~. To this end

6The third named author thanks Kentaro Hori for correcting his mistake.
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note that at a T -fixed point wλ ∈ Rλ, w ∈W , the quotient of the tangent
space to Rλ modulo the tangent space to RT,NT

equals the tangent space
to GrλG, and the weights of T × C× in the latter tangent space are all of the
form ~, α+m~.

We further have a ring homomorphism z∗ : A~(T,NT )→A~(T, 0) (5(iv)).
By 5.19 A~(T, 0) is a C[~]-algebra generated by wr, u±1

r (1 ≤ r ≤ dimT )
with relations [u±1

r , ws] = ±δr,s~u±1
r . (Here we take coordinates of T∨ and

the induced coordinates on t.)
In [BDG15, §4] it is argued that C[MC ] is embedded into an explicit

combinatorial ring, denoted by C[Mabel
C ] from a physical intuition. It turns

out that C[Mabel
C ] is nothing but the coordinate ring of $−1(t \ {root hyper-

planes}/W ). This is obvious from [BDG15, (4.11)]. The explicit presenta-
tion in [BDG15, (4.9)] coincides with one induced from A(T,NT ) explained
above. The quantized case is mentioned in [BDG15, §4.5].

5(vi). Flatness guarantees that codimension 1 is enough

Let t• be the complement to all pairwise intersections of generalized root
hyperplanes. We have codimt(t \ t•) = 2. We set t• = t if dim t = 1, and t• =
t \ {0} if dim t = 2.

Let t ∈ t• \ t◦. Let G′ = ZG(t) and N′ = Nt, where ZG(t), Nt are as in
Lemma 5.1. We consider T as a maximal torus of G′.

We consider the diagrams (5.18) for both (G,N), (G′,N′) and will study
their compatibilities. Let us denote the maps for (G′,N′) by z′∗, ι′∗.

Note that the embedding z : GrT → TT,NT
factors as GrT

z′−→ TT,N′T
z′′−→

TT,NT
where z′′ is an embedding of a subbundle. We have also another

embedding z′′′ : TG′,N′ → TG′,N of a subbundle. We have pull-back with sup-
port homomorphisms z′′∗ : HTO

∗ (RT,NT
)→ HTO

∗ (RT,N′T ) together with z∗,
z′∗, z′′′∗ as in §5(iv).

Note also that ι : RT,NT
→ R factors as RT,NT

→ RG′,N → R. Let ι′′

(resp. ι′′′) denote the left (resp. right) map.
Let us consider the following diagram:

(5.24)

C[t× T∨] = HTO
∗ (GrT )

z∗←−−−− HTO
∗ (RT,NT

)
ι∗−−−−→ HTO

∗ (R)∥∥∥ ∥∥∥ xι′′′∗
C[t× T∨] = HTO

∗ (GrT )
z∗←−−−− HTO

∗ (RT,NT
)

ι′′∗−−−−→ HTO
∗ (RG′,N)∥∥∥ z′′∗

y yz′′′∗

C[t× T∨] = HTO
∗ (GrT )

z′∗←−−−− HTO
∗ (RT,N′T )

ι′∗−−−−→ HTO
∗ (RG′,N′).
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Lemma 5.25. All squares are commutative.

Proof. The commutativity is obvious except for the right bottom square.
The commutativity of the right bottom square follows from the base change,
noticing that z′′∗, z′′′∗ are z′′!, z′′′! up to appropriate shifts respectively, and

TT,NT
−−−−→ TG′,Nx x

TT,N′T −−−−→ TG′,N′

is Cartesian. �

Theorem 5.26. Let M Π−→ t/W be an affine scheme over t/W , and let
M• := Π−1(t•/W ). We assume that the natural morphism Π∗OM →
j∗Π∗OM• is an isomorphism where j : t•/W ↪→ t/W is an open embedding.
We further assume M is equipped with the following data.

1) Assume we are given an isomorphism between the localizations

C[M]⊗C[t/W ] C[t◦/W ]
Ξ−→ C[t× T∨]W ⊗C[t/W ] C[t◦/W ]
∼−→ HGO

∗ (RG,N)⊗C[t/W ] C[t◦/W ],

(the second isomorphism is ι∗(z
∗)−1 of (5.18) plus Proposition 5.19).

The composition is denoted

Ξ◦ : C[M]⊗C[t/W ] C[t◦/W ]
∼−→ HGO

∗ (RG,N)⊗C[t/W ] C[t◦/W ].

2) Let t ∈ t• \ t◦. Let G′ = ZG(t) and N′ = Nt, where ZG(t), Nt are as
in Lemma 5.1. We consider T as a maximal torus of G′. Assume we
are given an isomorphism

Ξt : (C[M]⊗C[t/W ] C[t])t
∼=−→ (H

G′O
∗ (RG′,N′)⊗H∗

G′ (pt) C[t])t

such that

z′∗(ι′∗)
−1
(
Ξt ⊗C[t]t C[t◦]

)
= Ξ⊗C[t◦/W ] C[t◦].

Here Ξ is a C[t◦/W ]-algebra isomorphism, while Ξt is a C[t]t-algebra iso-
morphism.

Then Ξ◦ extends to an isomorphism between M and Spec(HGO
∗ (R)) as

schemes over t/W .
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This proposition enables us to determine M in two steps. We first de-
termine the Coulomb branch H

G′O
∗ (RG′,N′) for another pair (G′,N′). Since

G′ has semisimple rank 1, it should be easier than HGO
∗ (R). Then we look

for M so that various H
G′O
∗ (RG′,N′) are ‘glued’ to form a flat family.

Proof. Recall that for a dominant coweight λ we denote by Rλ (resp. R≤λ)
the preimage of the GO-orbit GrλG (resp. of its closure GrλG); we also have
R<λ := R≤λ \ Rλ. Then the closed embedding R<λ ↪→ R≤λ gives rise to the
exact sequence 0→HGO

∗ (R<λ)→HGO
∗ (R≤λ)→HGO

∗ (Rλ)→0 (Lemma 2.6).
Since HGO

∗ (Rλ) = HGO
∗ (GrλG) is a finitely generated flat H∗GO(pt) = C[t/W ]-

module, we conclude inductively that HGO
∗ (R≤λ) is a finitely generated flat

C[t/W ]-module. Hence it is a finitely generated projective C[t/W ]-module.
Let H≤λ denote the corresponding locally free coherent sheaf on t/W . Then
the natural morphism H≤λ → j∗j

∗H≤λ is an isomorphism (since t/W is
smooth). Taking the union over all λ we obtain that the natural morphism
H → j∗j

∗H is an isomorphism, where H is the quasicoherent sheaf on t/W
localizing the H∗GO(pt) = C[t/W ]-module HGO

∗ (R).

We see that in order to identify the t/W -schemesM and Spec(HGO
∗ (R))

it suffices to identify the quasicoherent t•/W -modules Π∗OM• and j∗H:
indeed, due to (1), both C[M] and HGO

∗ (R) are subalgebras in C[t◦ × T∨]W ,
so it suffices to identify them as subsets. Now the desired identification is
given in (1) upon restriction to t◦/W ⊂ t•/W , and (2) guarantees that the
latter identification extends to t•/W . More precisely, let Ξ◦ = ι∗(z

∗)−1 ◦ Ξ.
Note that maps in the diagram (5.24) are W -equivariant. Hence Ξ◦ gives an
isomorphism from C[M]⊗C[t/W ] C[t◦/W ] to HGO

∗ (R)⊗H∗G(pt) C[t◦/W ]. We
have

z′∗(ι′∗)
−1
(
Ξt ⊗C[t]t C[t◦]

)
= z∗(ι∗)

−1
(
Ξ◦ ⊗C[t◦/W ] C[t◦]

)
by the assumption in (2). By Lemma 5.25

Ξt ⊗C[t]t C[t◦] = z′′′∗(ι′′′∗ )−1
(
Ξ◦ ⊗C[t◦/W ] C[t◦]

)
.

Note that z′′′∗(ι′′′∗ )−1 is an isomorphism over C[t]t by the localization theorem
in equivariant homology groups, as RG′,N′ is the fixed point set of t. Since Ξt

extends to C[t]t by the assumption, Ξ◦ ⊗C[t◦/W ] C[t◦] also extends to C[t]t.
We apply this argument to all generalized roots, we get an extension to C[t•].
Taking the W -invariant part, we see that Ξ◦ extends to C[t•/W ]. �

Remark 5.27. There are various ways to guarantee the condition Π∗OM∼=−→ j∗Π∗OM• of Theorem 5.26. For instance, it is enough to assume that Π
is flat, and M is Cohen-Macaulay. In effect, let j : M• ↪→M denote also
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the open embedding of the preimage of t•/W in M. We have j∗Π∗OM• =
Π∗j∗OM• = Π∗OM because M is Cohen-Macaulay, and the codimension
of M\M• in M is at least 2 because all the fibers of Π have the same
dimension by flatness.

Alternatively, it is enough to assume that all the fibers of Π have the
same dimension, and M satisfies the Serre condition S2, e.g. M is normal.

6. Degeneration and its applications

We introduce a natural degeneration of MC and study its applications in
this section.

6(i). Filtration

Let Gr
λ
G and R≤λ = R∩ π−1(Gr

λ
G) as in §2(i). In the diagram (3.1), it is

known that mqp−1(Gr
λ
G ×Gr

µ
G) ⊂ Gr

λ+µ
G (see e.g., [MV07, Lemma 4.4]).

Therefore we have

m̃q̃p̃−1(R≤λ ×R≤µ) ⊂ R≤λ+µ

as the diagram (3.2) is compatible with (3.1) under π : T → GrG. From the
definition of the convolution product, we have

HGO
∗ (R≤λ) ∗HGO

∗ (R≤µ) ⊂ HGO
∗ (R≤λ+µ).

Thus

Proposition 6.1. A is a filtered algebra with respect to the filtration A =
HGO
∗ (R) =

⋃
HGO
∗ (R≤λ). The same is true for A~.

Let grA denote the associated graded algebra. It is graded by Y + =
Y/W , where Y + is the semi-group of dominant coweights.

Thanks to Lemma 2.6(2) the associated graded algebra grA is identified
with

⊕
HGO
∗ (Rλ), as an H∗GO(pt)-module. Moreover Lemmas 2.5 and 2.6(1)

imply that

HGO
∗ (Rλ) ∼= H∗StabG(λ)(pt) ∩ [Rλ] ∼= C[t]Wλ [Rλ],

where Wλ is the stabilizer of λ in the Weyl group W . We regard [Rλ] as a
class of grHGO

∗ (R).
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Let us replace G by its maximal torus T . The affine Grassmannian GrT
for the torus T consists of discrete points parametrized by the coweight
lattice Y of T . Therefore we have a direct sum decomposition HTO

∗ (RT,NT
) =⊕

µ∈Y H
TO
∗ (Rµ;T,NT

), where Rµ;T,NT
is the component corresponding to a

coweight µ. The above filtration for T is just the union of HTO
∗ (Rµ;T,NT

)
such that µ is in a Weyl group orbit of a dominant coweight µ′ with µ′ ≤ λ.
Thanks to the calculation in Theorem 4.1, this is a ring having an explicit
presentation by generators and relations.

In order to calculate grA, let us relate grA to grA(T,NT ). Recall the
embedding ι : RT,NT

→ R appearing in Lemma 5.7. It is compatible with
the filtration R =

⋃
R≤λ : RT,NT

∩R≤λ consisting of the inverse image of
Wλ in RT,NT

, where Wλ is the Weyl group orbit of λ considered as a subset
of GrT . Therefore we have a homomorphism

gr ι∗ : grA(T,NT )→ grHTO
∗ (R) = grA(G,N)⊗H∗G(pt) H

∗
T (pt).

Thanks to Lemma 5.17, it is a graded algebra homomorphism, which be-
comes an isomorphism over t◦. In particular, it is injective.

Let us compute structure constants of the multiplication in [Rλ], via
grA(T,NT ). Recall rλ is the fundamental class of the fiber of RT,NT

→ GrT
at a point corresponding to a (not necessarily dominant) coweight λ. (See
the proof of Theorem 4.1.) Let aλ,µ ∈ C[t] denote the coefficient given by
rλrµ = aλ,µr

λ+µ. See (4.2) for the explicit form.

Proposition 6.2. Let λ, µ be dominant coweights. Let f , g ∈ C[t]Wλ, C[t]Wµ

respectively. We have the following identity in the associated graded ring
grA:

f [Rλ] ∗ g[Rµ] = aλ,µfg[Rλ+µ].

The same is true for A~.

Proof. We have

(6.3) (gr ι∗)
−1f [Rλ] =

∑
λ′∈Wλ

wf × rλ′

e(Tλ′GrλG)
,

where Tλ′GrλG is the tangent space of GrλG at the point zλ
′
with λ′ ∈Wλ, and

e(Tλ′GrλG) is its equivariant Euler class. Furthermore w for wf is given so
that λ′ = wλ. Then wf is independent of the choice as f is invariant under
Wλ. Since gr ι∗ is an algebra homomorphism, we can calculate f [Rλ] ∗ g[Rµ]
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from the right hand side. Since it is enough to compute the coefficient of
rλ+µ, we do not need to worry other terms than rλ, rµ. Therefore we obtain

f [Rλ] ∗ g[Rµ] =
e(Tλ+µGrλ+µ

G )

e(TλGrλG)e(TµGrµG)
aλ,µfg[Rλ+µ].

Now we use e(TλGrλG) =
∏
α∈∆+ α〈λ,α〉, where α is considered as an element

of C[t] (cf. the proof of Lemma 2.5). Therefore e(TλGrλG)e(TµGrµG) cancels

with e(Tλ+µGrλ+µ
G ) and we get the assertion. �

Remark 6.4. Let us check that aλ,µfg ∈ C[t]Wλ+µ . From the description
of aλ,µ (see (4.2)), it is clear that aλ,µ ∈ C[t]W . Note also that Wλ is the
subgroup ofW generated by simple reflections si such that the corresponding
simple roots αi are perpendicular to λ. Therefore we have Wλ+µ = Wλ ∩Wµ,
and hence fg ∈ C[t]Wλ+µ .

Remark 6.5. In [BDG15, §4.3], a monopole operator MA,p ∈ C[MC ] cor-
responding to a cocharacter A and an WA-invariant polynomial p is con-
sidered. Here WA is the Weyl group of StabG(A). Moreover a formula for
the product MA,pMA′,p′ is proposed. (See [BDG15, (4.16,17)].) They satisfy
the triangular property, which is related to our filtration. Therefore MA,p

could be related to our f [Rλ] (f ∈ C[t]Wλ) under A↔ λ, p↔ f . However
our f [Rλ] lives in grA. It is not clear for us how to lift f [Rλ] to C[MC ]
canonically. Also it is not clear for us how to define the equivariant integra-
tion in [BDG15, (4.16,17)] rigorously.

6(ii). Closed GO-orbits

The discussion in the previous subsection was about the associated graded,
but we can also say something if GrλG is a closed GO-orbit.

First note that the fundamental class [Rλ] is well-defined in HGO
∗ (R)

as R<λ = ∅. Let ι∗ as in Lemma 5.7, and rλ
′

denote the fundamental class
of the fiber of RT,NT

→ GrT at a coweight λ′ as above. Then (6.3) remains
true:

Proposition 6.6. Let λ be a dominant weight such that GrλG is a closed
GO-orbit. Let f ∈ C[t]Wλ. Then

(ι∗)
−1f [Rλ] =

∑
λ′∈Wλ

wf × rλ′

e(Tλ′GrλG)
.
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Recall that we have explicit structure constants for rλ
′

(Theorem 4.1)
and ι∗ is an algebra homomorphism (Lemma 5.10). Therefore this proposi-
tion can be used to compute multiplication of elements of forms f [Rλ] with
GrλG closed.

Remark 6.7. It has been noted that monopole operators MA,p have ex-
plicit presentation when A is minuscule in [BDG15, §4.3]. This observation
is compatible with the above proposition, i.e., f [Rλ] has well-defined lift
when λ is minuscule, in view of Remark 6.5. As is noted [BDG15], there
are many examples such that minuscule monopole operators generate A, for
example when G is a product of GL and PGL like a quiver gauge theory.
See the proof of Lemma 6.9(2) below, for example.

6(iii). Finite generation

Proposition 6.8. A and A~ are finitely generated. They are noetherian.

Proof. As for finite generation, it is enough to check that for A since A~
is a flat deformation of A. Since A is commutative, it is noetherian if it is
finitely generated. Then A~ is also noetherian. Thus it is enough to check
that A is finitely generated. Furthermore, it is sufficient to show that grA
is finitely generated.

We consider generalized (closed) Weyl chambers given by complements
of generalized root hyperplanes. Our λ, µ are in the dominant Weyl chamber
in the usual sense, but the dominant Weyl chamber is further decomposed
into union of generalized Weyl chambers as there might be weights which
are not roots.

Now each generalized chamber is a rational polyhedral cone, hence its
intersection with the coweight lattice is a finitely generated semigroup. We
take finitely many [Rλ] so that λ is a generator of the semigroup. If we
multiply [Rλ], [Rµ] when λ, µ are in the same generalized Weyl chamber,
aλµ is 1 from its definition. Therefore [Rλ][Rµ] = [Rλ+µ]. Therefore [Rλ] as
above for each generalized chamber, together with generators of C[t] generate
grA. �

6(iv). SL(2) and PGL(2) cases

We determine MC when G = SL(2) or PGL(2) in this subsection.7

Lemma 6.9.
7This result was taught by Amihay Hanany as a result of physical intuition. The

third named author thanks him for his explanation.
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(1) Suppose G = SL(2). Then MC(G,N) is a hypersurface in C3 of
the form ξ2 = δη2 − δN−1 (N ≥ 1) or ξ2 = δη2 + η (N = 0), where N =∑

µ |〈χ, λ0〉|dim N(χ)/2. Here λ0 is the generator of the coweight lattice,
which is dominant.

(2) Suppose G = PGL(2). ThenMC(G,N) is also ξ2 = δη2 − δN−1 where
N =

∑
µ |〈χ, λ0〉|dim N(χ)/2 + 1. Furthermore we have R≤λ0

= Rλ0
in this

case, and generators are given by η = [Rλ0
], ξ = t[Rλ0

], δ = t2∈H4
C×(pt){±1},

up to multiplicative constants, where H∗C×(pt) = C[t]. Here λ0 is again the
generator of the coweight lattice, which is dominant. (It is the half of λ0 in
(1).).

Proof. Let us first consider both G = SL(2) and PGL(2) together.
We use grA.
Let us identify the torus T with C× and the coweight lattice with Z so

that dominant coweights are Z≥0. (Hence λ0 in the statement is 1.) Since
λ,µ ∈ Z>0 are equal up to multiple of Q>0, 〈χ, λ〉 and 〈χ, µ〉 always have the
same sign for any weight χ. Therefore aλ,µ in Proposition 6.2 is 1. Moreover
Wλ = {±1} if λ = 0, = {1} if λ > 0. Therefore grA is generated by δ = t2 ∈
H4

C×(pt){±1}, η = [R1], ξ = t[R1], where t is a generator of C[t] ∼= H∗C×(pt).
Moreover the relation is

(6.10) ξ2 = (t[R1])2 = t2[R2] = δη2.

The singularities of Spec(grA) is at ξ = η = 0 and arbitrary δ. (In particular
Spec(grA) is not normal.)

Since grA is a degeneration of A, δ, η, ξ are generators of A, henceMC

is also a hypersurface in C3.
Note that (6.10) is true modulo HGO

∗ (R≤1) and the defining equation
must be homogeneous with deg ξ = deg η + 1, deg δ = 2. The only possibility
is

ξ2 − δη2 = aδm+bδnξ or +bδnη

for some m, n ∈ Z≥0, a, b ∈ C. (m = deg η + 1, n = (deg η + 1)/2 or (deg η +
2)/2.)

Consider the first case ξ2 − δη2 = aδm + bδnξ. We have m = 2n. We set

ξ′
def.
= ξ − bδn/2. Then (ξ′)2 − δη2 = (a− b2/4)δm. Note that a = b2/4 is not

possible, as we know thatMC is nonsingular for δ 6= 0 by Corollary 5.21 as
0 6= δ ∈ t◦. Therefore by rescaling δ and η, we get the equation (ξ′)2 − δη2 =
δm.

The other case ξ2 − δη2 = aδm + bδnη is the same if n 6= 0. If n = 0, m =
−1. Therefore aδm cannot appear. Hence we have ξ2 − δη2 = η by rescaling.
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We now suppose G = PGL(2). In this case Grλ0

G is a closed GO-orbit for

λ0 = 1. Hence Proposition 6.6 is applicable for η, ξ. We have Grλ0

G
∼= P1 and

Wλ0 = {±λ0} is the north and south poles. We have

(ι∗)
−1(η) =

rλ0 − r−λ0

t
, (ι∗)

−1(ξ) = rλ0 + r−λ0 .

Therefore

(ι∗)
−1(ξ2 − δη2) = 4rλ0r−λ0 = 4

∏
µ

(〈µ, λ0〉t)|〈µ,λ0〉|,

where the last equality is by (4.2). Note that the power of t is even as
weights appear in pairs µ, −µ. Thus the right hand side is a power of δ.
After rescaling ξ, δ, η, we get an equation ξ2 − δη2 = δm.

Finally the formula of N is given by computing the degree of η = [R1].
The rank of T /R over Gr1

G is given by Lemma 2.2, and dim Gr1
G = 1 for

PGL(2), 2 for SL(2). (For PGL(2), the above computation also gives the
formula of m = N − 1.) �

Remark 6.11. The hypersurface ξ2 = δη2 − δN−1 is a simple singularity
of type DN if N ≥ 4. The cases ξ2 = δη2 + η (‘type D0’) and N = 1 are
nonsingular. N = 2 has two A1 singularities at ξ = δ = 0, η = ±1. N = 3 is
isomorphic to the A3-singularity. (The natural hyper-Kähler metrics on D3

and A3 are different.) Compare with Example 3.21.

6(v). Normality

Proposition 6.12. MC(G,N) is a normal variety.

The proof occupies this subsection. We start with the following lemma.

Lemma 6.13. Let X be an affine scheme of finite type over a field k and
let U be an open subset of X such that the complement has dimension ≥ 2.
Assume that a) U is normal, b) any regular function on U extends to X.
Then X is normal.

Proof. We use Serre’s criterion (R1) and (S2). By a) U satisfies both (R1)
and (S2).

By (R1) for U and codim(X \ U) ≥ 2, X satisfies the condition (R1).
The condition (S2) is guaranteed by (S2) for U and b), as (S2) is equivalent
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to that any regular function on V extends to X for arbitrary open subscheme
V ⊂ X with codim(X \ V ) ≥ 2. �

We take X =MC(G,N), U = $−1(t•/W ). The condition b) is satisfied
thanks to the first part of the proof of Theorem 5.26. We also know $ is flat
(Lemma 5.3) and X is irreducible (Corollary 5.22). Therefore fibers of $ all
have the same dimension, hence the complement of U has codimension 2.
Therefore it is enough to show that U is normal.

By the localization theorem in equivariant cohomology groups, we have
an isomorphism

H
ZG(t)O
∗ (RZG(t),Nt)⊗H∗ZG(t)(pt) C[t]Wt

t
∼= HGO

∗ (RG,N)⊗H∗G(pt) C[t]Wt

t

for t ∈ t. (Recall §5, especially (5.24).) Here Wt is the Weyl group of ZG(t),
which is the subgroup of W fixing t. Therefore it is enough to show the nor-
mality ofMC(ZG(t),Nt) for each t ∈ t•. If t ∈ t◦, we haveMC(ZG(t),Nt) ∼=
T ∗T∨. So it is smooth. Therefore we may assume t ∈ t• \ t◦. By §5(i), there
is a unique generalized root α such that 〈t, α〉 = 0.

As remarked at the beginning of §5, ZG(t) has semisimple rank at most
1, and we know the answer for SL(2), PGL(2) and a torus T . The remaining
task is a reduction to these cases.

Proof of Proposition 6.12. The same (or simpler) argument as in Lemma 6.9
shows thatMC(G,N) for G = C× is a hypersurface xy = wN for some N =
0, 1, 2, . . . .

Slightly more generally, suppose that α is a generalized root of type (I).
Then ZG(t) = T , Nt = NT ⊕

⊕
m∈Z N(mα). Let us considerA(ZG(t),Nt) =

A(T,
⊕

m∈Z N(mα)). Let Y (T ) be the coweight lattice of T . Since α is a
weight of T , we have a homomorphism Φ: Y (T )→ Z given by the pairing
with α. Let us consider the kernel and image

0→ Ker Φ→ Y (T )→ Im Φ→ 0.

Since Ker Φ and Im Φ are both free, this exact sequence splits, hence Y (T ) ∼=
Ker Φ⊕ Im Φ. Let us take λg ∈ Im Φ ∼= Z, a generator. We suppose 〈λg, α〉 >
0. Then by Theorem 4.1, A(T,

⊕
m∈Z N(mα)) is generated by C[t], rλ (λ ∈

Ker Φ), r±λg with the relation

rλrµ = rλ+µ (λ, µ ∈ Ker Φ), rλgr−λg =
∏
m∈Z

(mα)|m|〈λg,α〉 dimN(mα),
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where α is regarded as an element in t∗. Therefore MC(ZG(t),Nt) is a
product of T ∗T ′ for one dimensional lower torus T ′ and a simple singularity
xy = wN of type A for some N = 1, 2, . . . .

If α is a type (II) generalized root, ZG(t) has semisimple rank 1. Let
us denote by Z the neutral connected component of the center of ZG(t).
It acts trivially on Nt since its Lie algebra Lie(Z) ⊂ t is the kernel of α in
the Cartan subalgebra, but the weights of Nt are multiples of α. Hence
the action of ZG(t) on Nt factors through H := ZG(t)/Z. Note that H
is isomorphic to SL(2) or PGL(2) (recall that ZG(t) is connected). Let
D ⊂ ZG(t) be the derived subgroup, and let T ′ := ZG(t)/D be the quo-
tient torus. The kernel of the diagonal morphism ZG(t)→ T ′ ×H is a finite
abelian subgroup Γ (in fact, Γ is either {±1} or trivial), so that we have
an exact sequence 1→ Γ→ ZG(t)→ T ′ ×H → 1. As we have just seen, the
representation of ZG(t) in Nt factors through its quotient ZG(t)→ T ′ ×
H → H. Hence HZG(t)O(RZG(t),Nt) = H(T ′×H)O(RT ′×H,Nt)Γ∧ = C[T ∗T ′∨ ×
MC(H,Nt)]Γ

∧
by §3(vii)3(vii),3(vii). SinceMC(H,Nt) is normal according

to Lemma 6.9, (T ∗T ′∨ ×MC(H,Nt))/Γ∧ is normal as well. �

6(vi). Adjoint matters

The purpose of this subsection is to prove the following result, mentioned in
§3(x)(b).

Proposition 6.14. For a reductive group G and its adjoint representation
g, the birational isomorphism z∗ι−1

∗ : MC(G, g)|Φ−1(t◦/W ) ' (t◦ × T∨)/W of

Corollary 5.21 extends to a biregular isomorphismMC(G, g)
∼−→ (t× T∨)/W .

Proof. We use the criterion in Theorem 5.26.8 In this case generalized roots
are nothing but usual roots. For t ∈ t• \ t◦, there is a single root α with
〈α, t〉 = 0. By the commutativity of (5.24), Ξt is also given by Corollary 5.21,
but for ZG(t). Therefore it is enough to check the assertion for ZG(t). By the
argument in the last part of the proof in Proposition 6.12, we can replace
ZG(t) by PGL(2). (SL(2) can be replaced by PGL(2), as we are considering
the adjoint representation.)

ForG = PGL(2), let us use the computation in the proof of Lemma 6.9(2).
Thanks to §4(vi), we have z∗(ι∗)

−1(η) = rλ0 + r−λ0 , z∗(ι∗)
−1(ξ) = t(rλ0 −

r−λ0), where r±λ0 is the fundamental class of the point ±λ0 (= ±1) in GrT .

8The third named author thanks Ryosuke Kodera for his suggestion to give this
proof.
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Now we see that z∗ι−1
∗ is an isomorphism, as rλ0 and t are coordinates of

T∨ and t respectively. �

6(vii). Symplectic form

Proposition 6.15. The Poisson structure is symplectic on the smooth locus
of MC .

Proof. By Corollary 5.21, we already know the assertion over $−1(t◦/W ).
By Hartogs theorem, it is enough to check that the symplectic form ex-
tends and is nondegenerate up to codimension 2. As in the proof of Proposi-
tion 6.12, we check it for $−1(t•/W ), then it is enough to assume G = C×,
SL(2) or PGL(2).

Let us consider G = C×. Then MC is a hypersurface xy = wN in C3

(N = 0, 1, . . . ). The birational isomorphism z∗(ι∗)
−1 : MC

≈
99K T ∗C× = C×

C× in Corollary 5.21 is given by (x, y, w) 7→ (w, x) defined over w 6= 0. More-
over the symplectic structure on T ∗C× is x−1dx ∧ dw. We can rewrite it as
−y−1dy ∧ dw. Hence it is a well-defined symplectic form over {x 6= 0} ∪ {y 6=
0} =MC \ {x = y = w = 0}. If N = 0,MC = C× C∗, i.e., it is well-defined
everywhere. If N = 1, we have w = xy, hence x−1dx ∧ dw = dx ∧ dy. Hence
it is also well-defined and non-degenerate over the whole MC . (It is also a
consequence of Hartogs theorem.) For general N , it is a symplectic form on
MC

∼= C2/(Z/N), descending from the standard one on C2, divided by N .
Let us next consider the case G = PGL(2). Let ξ = t[Rλ], η = [Rλ] as in

the proof of Lemma 6.9. We use z∗(ι∗)
−1 : MC

≈
99K (C× C×)/(Z/2). Let t,

a± be coordinates of C and C× respectively. The Weyl group action is t↔
−t, a↔ a−1. First note that δ is sent to t2. Recall (ι∗)

−1(η) = t−1(rλ − r−λ),
(ι∗)

−1(ξ) = rλ + r−λ in the proof of Lemma 6.9(2). Thanks to §4(vi), we have
z∗(ι∗)

−1(η) = tN−2(a± a−1), z∗(ι∗)
−1(ξ) = tN−1(a∓ a−1) up to the same

multiplicative constant. Here ± is determined according to the parity of N
so that those are invariant under the Weyl group action. Let us rescale ξ,
η so that these formulas are true without ambiguity. (Hence the defining
equation is ξ2 = δη2 ∓ 4δN−1.)

The standard symplectic form on C× C× is a−1da ∧ dt, and descends to
C× C×/(Z/2). Its pull-back is

1

2
ξ−1dη ∧ dδ over ξ 6= 0,

1

2
δ−1η−1dξ ∧ dδ over δη 6= 0,(

η2 ∓ 4(N − 1)δN−2
)−1

dη ∧ dξ over η2 ∓ 4(N − 1)δN−2 6= 0.
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Therefore the pull-back is well-defined and nondegenerate over MC \ {ξ =
δη = η2 ∓ 4(N − 1)δN−2 = 0}. The complement is empty if N = 1; ξ = δ =
0, η = 2, −2 if N = 2; and ξ = δ = η = 0 if N ≥ 3. It is exactly the singular
locus of MC . In fact, it is the descent of the standard symplectic form on
C2 up to constant if N ≥ 3.

For G = SL(2), lifts of [Rλ], t[Rλ] are well-defined only up to Cδm for
appropriate m. (In fact, either of two is well-defined by the degree reason.)
By adjusting the ambiguity, we take η, ξ so that z∗(ι∗)

−1(η) = tN−2(a±
a−1), z∗(ι∗)

−1(ξ) = tN−1(a∓ a−1) are true. Then the remaining argument
is the same. The case N = 0 is exceptional. In this case, there is no ambiguity
of Cδm by degree reason. We determine η as z∗(ι∗)

−1(η) = t−2(a+ a−1 − 2)
so that the defining equation ξ2 = δη2 + 4η has no negative powers of δ.
Then the symplectic form is ξ−1dη ∧ dδ/2 over ξ 6= 0, (δη + 2)−1dξ ∧ dδ/2
over δη + 2 6= 0 and η−2dη ∧ dξ over η 6= 0. Since ξ = η = 0 and δη + 2 =
0 cannot happen simultaneously, we conclude that the symplectic form is
well-defined and non-degenerate on the whole MC . (In this case MC is
nonsingular.) �

6(viii). Changing a summand to its dual

Let us combine §4(v) with Theorem 5.26 to show that MC(G,N) depends
only on M = N⊕N∗. Let N be a summand of N, and let N′ be the repre-
sentation of G obtained by replacing N by its dual N∗.

Let us define an automorphism of HTO
∗ (GrT ) ∼= C[t× T∨] by

rλ 7→ (−1)
∑
χ max(χ(λ),0) dimN(χ)rλ,

where N(χ) is the weight χ subspace of N. This definition is based on the
definition in §4(v). This is W -equivariant, hence induces an automorphism
of t× T∨/W . Composing with birational isomorphisms MC(G,N) 99K t×
T∨/W , MC(G,N′) 99K t× T∨/W in Corollary 5.21, we consider the above
as a birational isomorphism MC(G,N) 99KMC(G,N′). We claim that it

extends to a biregular isomorphism MC(G,N)
∼=−→MC(G,N′). By Theo-

rem 5.26 and a similar argument in the proof of Proposition 6.12, we may
assume G is either torus, PGL(2) or SL(2).

By §4(v) the assertion is true when G is torus.
Suppose G = PGL(2). We may assume N = Sk(C2) with k even. Then

χ(λ0) is k/2, k/2− 1,. . . , −k/2. Therefore
∑

χ max(χ(±λ0), 0) dim N(χ) =

k(k + 2)/8. Since (ι∗)
−1ξ = rλ0 + r−λ0 , (ι∗)

−1η = (rλ0 − r−λ0)/t, δ = t2 (see
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the proof of Lemma 6.9), (ξ, η, δ) is mapped to (±ξ,±η, δ), hence the equa-
tion ξ2 = δη2 − cδN−1 (c ∈ C) is preserved.

Suppose G = SL(2) and N = Sk(C2). Then χ(λ0) is k, k − 2,. . . , −k.
Therefore

∑
χ max(χ(±λ0), 0) dim N(χ) = k(k + 2)/4 if k is even, (k + 1)2/4

if k is odd. As in the proof of Proposition 6.15, we adjust ξ, η by Cδm
so that (ι∗)

−1ξ = (rλ0 − r−λ0)/t, (ι∗)
−1η = (rλ0 + r−λ0)/t2. Thus the bira-

tional isomorphism is given by (ξ, η, δ) 7→ (±ξ,±η, δ), hence the equation
ξ2 = δη2 − cδN−1 (c ∈ C) is preserved.

6(ix). Another degeneration

We have a C×-action on R induced from the dilatation on N. Let us denote
the variable for the equivariant cohomology of this C× by t, i.e., H∗C×(pt) =
C[t]. Let us consider the embedding

z∗ : HC××GOoC×
∗ (R)→ HC××GOoC×

∗ (GrG) ∼= HGOoC×
∗ (GrG)[t]

(where the second factor C× stands for the loop rotation). We extend it to
HC××GOoC×
∗ (R)⊗C[t] C[t, t−1]→ HGOoC×

∗ (GrG)[t, t−1]. Let L ≡ LG,N be

the pull-back of the C[t−1]-lattice HGOoC×
∗ (GrG)[t−1] by z∗. We have the

induced injective ring homomorphism

(6.16) z∗ : L/t−1L → HGOoC×
∗ (GrG).

Proposition 6.17. z∗ : L/t−1L ∼−→ HGOoC×
∗ (GrG) is an isomorphism.

Proof. Recall the multifiltrations onHC××GOoC×
∗ (R), HC××GOoC×

∗ (GrG) in-
troduced in §6(i). They induce the multifiltrations on HC××GOoC×

∗ (R)⊗C[t]

C[t, t−1], HGOoC×
∗ (GrG)[t, t−1], and z∗ is compatible with the filtrations.

Hence it induces a ring homomorphism

(6.18) gr z∗ : gr(L/t−1L) = (grL)/t−1(grL)→ grHGOoC×
∗ (GrG).

The first equality is a version of the Zassenhaus lemma. More generally, let
F be a filtered quasicoherent sheaf on an algebraic variety S with a point
s ∈ S. Then we have an isomorphism gr(Fs)

∼−→ (grF )s. In effect, the Rees
construction associates to F a Gm-equivariant quasicoherent sheaf RF on
S × A1, and grF is the restriction of RF to S × {0}. Hence both gr(Fs) and
(grF )s are naturally isomorphic to the fiber of RF at (s, 0) ∈ S × A1.

So it suffices to prove that gr z∗ is surjective. But gr z∗[Rλ] = (tdλ +
lower) ∩ [Grλ] where ‘lower’ stands for the terms in C[t]Wλ [t] of degree lower



i
i

“1-Nakajima” — 2019/4/12 — 22:11 — page 1140 — #70 i
i

i
i

i
i

1140 A. Braverman, M. Finkelberg, and H. Nakajima

than dλ in t. Therefore grL is spanned by t−dλ [Rλ] and t−dλ [Rλ] is sent to
[Grλ] at t =∞. �

Remark 6.19. Thus we obtain a sheaf of algebras over P1 with coordinate
t. From the proof of Proposition 6.17, it is a sheaf of filtered algebras, and the
associated graded sheaf is clearly flat, so the initial sheaf is flat as well. If we
drop the loop rotation equivariance, we obtain a flat sheaf of commutative
algebras; letMt

C → P1 denote its relative spectrum. The grading by degree
of equivariant homology gives rise to an action of Gm onMt

C such that the
projectionMt

C → P1 is equivariant with respect to the natural action of Gm

on P1. Hence all the fibers over t 6= 0,∞ are isomorphic.

Remark 6.20. It seems likely that when N = g is the adjoint representa-
tion, HC××GOoC×

∗ (R) is the spherical subalgebra in the graded Cherednik
algebra (alias trigonometric DAHA) [OY16, 4.1], while HGOoC×

∗ (GrG) is
the spherical subalgebra in the trigonometric Nil-DAHA (cf. [CF13, 1.2]).
The above degeneration is related to the Inozemtsev degeneration [Ino89,
Section 2] of the quantum Calogero-Moser system into the quantum Toda
system.

Appendix A. A moduli space of solutions of Nahm’s
equations and homology of affine

Grassmannian

We use mainly a compact Lie group Gc, rather than its complexification G
in this section.

The Coulomb branch MC of the gauge theory Gc = SU(k), N = 0 is
identified with M0

k , the moduli space of centered monopoles by physical
arguments ([SW97] for k = 2, [CH97] for arbitrary k).

Let us generalize this result to arbitrary compact Lie group Gc in our
definition ofMC . We shall use a moduli space of solutions of Nahm’s equa-
tions, studied (in more general setting) by Bielawski [Bie97].

Let G∨c be the Langlands dual group of Gc. We consider Nahm’s equa-
tions

∇tTα +
1

2

∑
β,γ

εαβγ [Tβ, Tγ ] = 0 (α, β, γ = 1, 2, 3)

on the interval (−1, 1), where Tα is a g∨c -valued function. We require that
Tα has at most simple poles at t = ±1. Then its residue rest=±1 Tα defines
a Lie algebra homomorphism ρc : su(2)→ g∨c . Then we further require that
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ρc is the restriction of a homomorphism ρ : sl(2)→ g∨ such that y = ρ( 0 0
1 0 )

is a principal nilpotent element in g∨.
We consider the moduli space of solutions, that is the quotient by the

group GG∨c of gauge transformations γ : [−1, 1]→ G∨c such that γ(±1) is the
identity element.

Theorem A.1. The Coulomb branch MC of the pure gauge theory for Gc
(i.e., N = 0) is the moduli space of solutions of Nahm’s equations for the
Langlands dual group G∨c .

This result immediately follows once we combine [BFM05, BF08] with
[Bie97], as reviewed below.

Since the moduli space is a hyper-Kähler quotient, it is natural to ex-
pect that this remains true in physicists’ (not yet mathematically precise)
definition of MC .

While preparing the manuscript, we have noticed that this statement is
mentioned in [Tel14, Remark 6.4].

Remark A.2. When Gc = U(k), the moduli space of solutions of Nahm’s
equations is isomorphic to the space of based maps from P1 to itself [Don84].
This description is the A1 case of [Quiver, Theorem 3.1]: As for a quiver
gauge theory of type ADE, the Coulomb branch MC is the space of based
maps from P1 to the flag variety of the corresponding type.

A.1. Homology of affine Grassmannian

When N = 0, our proposal 3.13 statesMC is the spectrum of the equivariant
Borel-Moore homology group HGO

∗ (GrG) of the affine Grassmannian GrG =
GK/GO of G, equipped with an algebra structure given by the convolution.
Let us use a description which naturally arises from [BF08, Th. 3].

Let G∨ be the Langlands dual group and g∨ its Lie algebra. Let ρ :
sl(2)→ g∨ be a Lie algebra homomorphism such that y = ρ( 0 0

1 0 ) is a princi-
pal nilpotent element in g∨. Let N∨ be the unipotent subgroup of G∨ whose
Lie algebra n∨ is the sum of negative eigenspaces of h = ρ(−1 0

0 1 ). If we re-
gard y as an element of n∨∗ via an invariant pairing on g∨, it is stabilized
by N∨.

The cotangent bundle T ∗G∨ = G∨ × g∨ is a holomorphic symplectic
manifold with a G∨ ×G∨-action by left and right multiplication. Here we
identify g∨∗ with g∨ by the invariant inner product. We have a (complex)
moment map µC : G∨ × g∨ → g∨∗ ⊕ g∨∗ given by µC(g, ξ) = (ξ,−Ad(g−1)ξ)
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for g ∈ G∨, ξ ∈ g∨. Let µC : G∨ × g∨ → n∨∗ ⊕ n∨∗ be the moment map for
the N∨ ×N∨-action, that is the composite of µC and the natural projection
g∨∗ ⊕ g∨∗ → n∨∗ ⊕ n∨∗. Now [BF08, Th. 3] implies

(A.3) Spec(HGO
∗ (GrG)) ∼= µ−1

C (y, y)/N∨ ×N∨.

Remark A.4. In [BF08, Th. 3], HGOoC×
∗ (GrG) is described as a quantum

hamiltonian reduction of the ring of differential operators on G∨. The above
description is its classical limit. On the other hand, HGO

∗ (GrG) is described
as ZG

∨

g∨ in the earlier paper [BFM05, Th. 2.12] as we mentioned in §3(x)(a).

Since both are HGO
∗ (GrG), we have an isomorphism µ−1

C (y, y)/N∨ ×N∨ ∼=
ZG
∨

g∨ . While preparing the manuscript, we have learned that an explicit con-
struction of the isomorphism is given in [Tel14, Th. 6.3].

A.2. Moduli space of solutions of Nahm’s equations

Let MG∨c be the moduli space in Theorem A.1. By [Bie97] it is a submanifold
of T ∗G∨ defined as follows. Let ρ : sl(2)→ g∨ as above. We define Kostant-
Slodowy slice S(ρ) = y + Z(x), where x = ρ( 0 1

0 0 ), y = ρ( 0 0
1 0 ) and Z(x) is the

centralizer of x in g∨. Now [Bie97, Cor. 4.1] states MG∨c = µ−1
C (S(ρ)× S(ρ)).

Let us further rewrite MG∨c as a holomorphic symplectic quotient of
T ∗G∨. The result is implicit in [Bie97, §3]. The point is that S(ρ) equals
to ν−1(y)/N∨, where N∨ is the unipotent subgroup of G∨ as above, and
ν : g∨∗ → n∨∗ is the natural projection. Since µC = (ν × ν) ◦ µC, we have
MG∨c

∼= µ−1
C (y, y)/N∨ ×N∨.

Combining with (A.3), we finish the proof of Theorem A.1.

A.3. Centered SU(2)-monopoles

In the remainder of this section, we explain that Theorem A.1 reproduces
[SW97, CH97] for Gc = SU(k).

Let Mk be the framed moduli space of charge k, SU(2)-monopoles on
R3 (see [AH88]). By [Hit83], it is naturally bijective to the moduli space of
solutions of Nahm’s equations with values in u(k) on the interval (−1, 1)
such that Tα has at most simple poles at t = ±1 and its residue rest=±1 Tα
gives an irreducible k-dimensional representation ρ of SU(2). They are even
isomorphic as hyper-Kähler manifolds [Nak93]. Since the irreducible rep-
resentation corresponds to the principal nilpotent for gl(k), we conclude
Mk = MU(k). We identify Mk with the moduli space of solutions of Nahm’s
equations for Gc = U(k) hereafter.
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We need to modify this description in the case of centered monopoles.
Let M̃k be the space of solutions, and Gk = GU(k) be the group of gauge
transformations, i.e., the space of maps γ : [−1, 1]→ U(k) such that γ(±1) =
1. We have Mk = M̃k/Gk. We introduce a larger group G̃k consisting of maps
γ, for which we require γ(−1) = 1 and γ(1) commutes with the pole α of Tα
for α = 1, 2, 3. Since resTα gives an irreducible representation, γ(1) must be
scalar. Moreover, the action of G̃k is still free by the irreducibility of (∇t, Tα).
We have a free action of G̃k/Gk = U(1) on Mk.

We also have an R3-action on Mk given by Tα 7→ Tα + ixα (xα ∈ R,
α = 1, 2, 3). The quotient

M0
k = (Mk/U(1))/R3

is called the moduli space of centered monopoles. In [AH88], this space was
introduced in terms of monopoles, one can check that it is equivalent to the
above definition. The detail is left as an exercise for the reader.

Choose a trivialization of the vector bundle, and write ∇ = d+ T0. By
the gauge transformation

γ(t)
def.
= exp

(
id

k

∫ t

−1
trT0(s)ds

)
∈ G̃k,

we can make trT0 = 0. The Nahm’s equation implies that d
dt trTα = 0, hence

we can make trTα = 0 by the R3-action. Therefore

M0
k = {(T0, Tα) : (−1, 1)→ su(k)}/G̃′k,

where (d+ T0, Tα) satisfies Nahm’s equation and the condition of the pole.
The group G̃′k is the subgroup of G̃k preserving the condition trT0 = 0. There-
fore it consists of maps γ : [−1, 1]→ SU(k) with γ(−1) = 1, γ(1) ∈ Zk =
U(1) ∩ SU(k).

Since T0, Tα are su(k)-valued, we can replace G̃′k by the space of maps
γ : [−1, 1]→ SU(k)/Zk. Moreover as [−1, 1] is contractible, such γ lifts uni-
quely to SU(k) when we set γ(−1) = 1. Therefore the group is unchanged
under this replacement. Thus G̃′k = GSU(k)/Zk , where GSU(k)/Zk is the space
of maps γ : [−1, 1]→ SU(k)/Zk such that γ(±1) = 1. Thus we see that M0

k

is nothing but MSU(k)/Zk .
The Langlands dual group of SU(k) is SU(k)/Zk, hence MC in Theo-

rem A.1 is the moduli space M0
k of centered SU(2)-monopoles with charge

k, as given in [SW97, CH97].



i
i

“1-Nakajima” — 2019/4/12 — 22:11 — page 1144 — #74 i
i

i
i

i
i

1144 A. Braverman, M. Finkelberg, and H. Nakajima

References

[Quiver] A. Braverman, M. Finkelberg, and H. Nakajima, Coulomb
branches of 3d N = 4 quiver gauge theories and slices in the
affine Grassmannian (with appendices by Alexander Braverman,
Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku
Nakajima, Ben Webster, and Alex Weekes), arXiv:1604.03625
[math.RT], (2016).

[Affine] A. Braverman, M. Finkelberg, and H. Nakajima, Ring objects
in the equivariant derived Satake category arising from Coulomb
branches, arXiv:1706.02112 [math.RT], (2017).

[AH88] M. Atiyah and N. Hitchin, The Geometry and Dynamics of Mag-
netic Monopoles, M. B. Porter Lectures, Princeton University
Press, Princeton, NJ, 1988.

[BeiDr] A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable
system and Hecke eigensheaves, available at http://www.math.
uchicago.edu/~mitya/langlands.html, 2000.

[BD00] R. Bielawski and A. S. Dancer, The geometry and topology of
toric hyperkähler manifolds, Comm. Anal. Geom. 8 (2000), no. 4,
727–760.

[BDG15] M. Bullimore, T. Dimofte, and D. Gaiotto, The Coulomb branch
of 3d N = 4 theories, Commun. Math. Phys. 354 (2017), no. 2,
671–751, arXiv:1503.04817 [hep-th].

[Bea00] A. Beauville, Symplectic singularities, Invent. Math. 139 (2000),
no. 3, 541–549.

[BEF16] A. Braverman, P. Etingof, and M. Finkelberg, Cyclotomic double
affine Hecke algebras (with an appendix by Hiraku Nakajima and
Daisuke Yamakawa), arXiv:1611.10216 [math.RT], (2016).

[BF08] R. Bezrukavnikov and M. Finkelberg, Equivariant Satake cate-
gory and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008),
no. 1, 39–72, 183.

[BFGM02] A. Braverman, M. Finkelberg, D. Gaitsgory, and I. Mirković,
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