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1. INTRODUCTION

1.1. Definitions and Notation

An algorithm parameterized by a parameter k is referred to as an FPT algorithm (a fixed parameter
tractable algorithm) if its complexity can be estimated by the function f(k)nO(1), where n is the length
of the input, and f(k) is some computable function depending only on the parameter k. A computational
problem parameterized by a parameter k is referred to as an FPT problem (a fixed parameter tractable
problem) if it can be solved using an FPT algorithm. The theory of parameterized complexity was
described in detail in [1, 2].

Let A ∈ Z
m×n and b ∈ Z

m, P (A, b) = {x ∈ R
n : Ax � b} be a polyhedron defined by the system

of inequalities Ax � b, Δk(A) is the maximum absolute value of the k × k minors of A, Δ(A) =
Δrank(A)(A), Ai j is an element in the i-row and the jth column of A (Ai ∗ and Aj ∗ are the ith row
and jth column of A, respectively, A∗ = det(A)A−1 is a matrix adjoint to A, and ||A||max is the element
of the matrix A that is maximal in absolute value. It is obvious that ||A||max = Δ1(A). The set of integers
starting with i and ending with j is denoted by i : j = {i, i + 1, . . . , j}.

We define the length of the bit record of an integer x, a rational irreducible fraction r = p
q , a rational

vector v ∈ Q
n, and a rational matrix A ∈ Q

d×n, according to [3, 4]:

size(x) = 1 + �log2(|x|+ 1)�,
size(r) = 1 + size(p) + size(q),

size(v) = n+
n∑

i=1

size(vi),

size(A) = mn+

d∑

i=1

n∑

j=1

size(Ai j).

*E-mail: sergey.veselov@itmm.unn.ru.
**E-mail: dimitry.gribanov@gmail.com.

***E-mail: dsmalyshev@rambler.ru.

1



2 VESELOV et al.

For a matrix A ∈ R
m×n, let cone.hull(A) = {At : t ∈ R

n
+} be the cone generated by columns of A,

conv.hull(A) = {At : t ∈ R
n
+,

n∑
i=1

ti = 1} be the convex hull generated by columns of A.

A matrix A ∈ Z
n×n is referred to as unimodular if |det(A)| = 1. The theory of unimodular matrices

was described in [4, 5].
Let P be a convex body. The following quantity is referred to as the width of P along the direction

c ∈ Z
n

widthc(P ) = max
x∈P

c�x−min
x∈P

c�x.

The following quantity is referred to as the width of the convex body P

width(P ) = min{widthc(P ) : c ∈ Z
n \ {0}}.

The direction c, on which the minimum width is reached is referred to as the flat direction of P .
The algorithms for searching the width and flat direction of a convex body are important components

of modern algorithms for integer linear and nonlinear programming, the complexity of which is polyno-
mial for a fixed dimension. The main ideas of such algorithms were described in [6].

1.2. Review of Existing Results and the Aim of this Work

Let A ∈ Z
m×n, b ∈ Z

m, and c ∈ Z
n. Gomory [7–9] (see also [10, 11]) show that if the matrix A is

square and nondegenerate, then an FPT algorithm with the complexity Δn · poly(s), where Δ = Δ(A)
and s = size(A)+ size(b)+ size(c), can be used to solve the integer linear programming problem (ILPP)
max{c�x : x ∈ P (A, b) ∩ Z

n}. This result can, e.g., be obtained by a simple algorithm for confirming
the presence of an integer point in the simplex specified by the system Ax � b. To do this, it suffices
to solve the ILPP with an objective functional that coincides with the normal vector of one facet of the
simplex.

The result obtained by Gomory was generalized in [12] for rectangular matrices, with the additional
condition that the matrix A must not have degenerate rank order submatrices. The obtained algorithm
has the complexity nO(log3 Δ) · poly(s), which is not the complexity of an FPT-algorithm with respect to
the parameter Δ.

The following improvements were made in [13]: The existence of an FPT algorithm was shown,
when the matrix A was allowed to have any fixed number of rows. The complexity of this algorithm can
be roughly estimated as n2(k+1)Δ2(k+1) · poly(s), where k = m− n is the number of additional lines,
provided that rank(A) = n. The FPT algorithm for the case, when A is not allowed to have rank order
degenerate submatrices was also obtained. Its complexity was no greater than n4Δ4 · poly(s).

Cases where there are no constraints on the matrix A remain poorly studied. It is well known
(see, e.g., [4, 5]) that for Δ(A) = 1 the ILPP max{c�x : x ∈ P (A, b) ∩ Z

n} is equivalent to a linear
programming problem, which in turn can be solved in polynomial time [14–17]. The case of Δ(A) = 2
was first studied in [18]. It was shown that the solidity of such a polyhedron implies the existence
of an integer point in the polyhedron, meaning there is a polynomial time algorithm for checking the
nonemptiness of the intersection of the polyhedron and the integer lattice. It was also shown that in
a bimodular case, the vertices of the convex hull of integer points of the original polyhedron lie on its
edges. The polynomial solvability of the bimodular ILPP, which almost closes the case of Δ(A) = 2,
was recently shown in [19] using these results. It should be noted that the algorithm obtained in [19]
was quite complex, so the problem of obtaining a simpler and more efficient algorithm is relevant.

Almost nothing is currently known about the case of Δ(A) = 3. Some results associated with
{0, 1}–ILPP, when the variables of the problem and the elements of the matrices and vectors A, b, c

consist of zeros and ones, are noteworthy. It was shown in [20] that if Δ
(
c�

A

)
is bounded, and each row

of A contains no more than two units, then the ILPP can be solved in polynomial time. The polynomial
solvability of {0, 1}–ILPP formulations of the edge and vertex dominating set problems was established

in [21–23], provided that Δ
(c�

A

)
is bounded. We should note recent works on determining the boundary

between polynomial solvability and NP completeness for some extremal problems on graphs [24–29].
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FPT-ALGORITHM FOR SYMPLEX WIDTH COMPUTATION 3

One possible line for developing this work is to search for a boundary cases when the polynomial
solvability (FPT solvability) changes to NP completeness (W[1] completeness).

The problem of computing the width and flat directions for the polyhedra P (A, b) and convex bodies
of more general form is the most important component of integer programming algorithms [30–34]
that are polynomial for a fixed dimension. In [35], it was shown that the width computation problem is
NP hard even when the system Ax � b contains only the n+ 1 line and defines a simplex. However,
it was shown in [36] that if we bound the value Δ = Δ(A) of minors of A and the value Δ(A b)
of minors of extended the matrix (A b), then we can obtain an algorithm with a polynomial time
complexity for the considered problem. The result of [36] was improved in [13], where the algorithm
with complexity O(logΔ · n5Δ3 ·Δ(A b) · mult(n3 log Δ(A b) + n3 log n)), where mult(t) is the bit
complexity of multiplying two numbers of the length t. Under the additional condition that the simplex
contains no integer points, we can avoid an exponential dependence on Δ(A b) and construct an FPT
algorithm with the complexity O(logΔ · n4Δ4 · mult(n3 logΔ(A b) + n3 log n)).

The aim of this work is to consider a dual case, in which the simplex is given by the convex hull
of its vertices S = conv.hull(V ), where V is a matrix composed of the simplex vertices. We show that
there is an FPT algorithm parameterized by Δ(V ). We assume that V and the vertices of the simplex
are integral. The case of the rational matrix V can be reduced to the integer case by multiplying by the
corresponding factors, but Δ(V ) will grow exponentially.

1.3. Structure and Results of This Work

The first part of this work serves as an introduction in which the necessary definitions and notation
are given. It presents a brief overview of the results on the solvability of the ILPP and problems close to
it, provided that the absolute value of the minors of the matrices included in the problem formulation is
bounded. The second part contains intermediate propositions necessary for deriving the main results of
this work. The third part presents the main result of this work, i.e, the FPT algorithm for computing the
width of a simplex generated by a convex hull of points.

2. AUXILIARY RESULTS

2.1. Hermite and Smith Normal Forms

Proposition 1. Let r1, r2, . . . , rn ∈ Z+ and r1 be the number maximum in absolute value among
{ri}, then

size(r1 + r2 + · · · + rn) � log2 n+ size(r1),

size(r1r2 . . . rn) � size(r1) + size(r2) + · · ·+ size(rn).

Proposition 1 is a direct consequence of the value size definition given in the introduction.
Proposition 2. Let x, y ∈ Q

n and x�y ∈ Z, then

size(x�y) = O(log n+ log ||x||∞ + log ||y||∞).

Let A ∈ Q
m×n, B ∈ Q

n×k, C ∈ Z
m×k and C = AB. Then

size(||C||max) = O(log n+ log ||A||max + log ||B||max).

Proof. It is obvious that |x�y| � n||x||∞||y||∞. We obtain the required equality by finding the
logarithm. The second part of the proposition follows directly from the formula Ci j = (Ai ∗)�B∗ j .

Proposition 3. Let A ∈ Q
n×n, then

size(detA) � 2size(A).

Proof of Proposition 3 can be found in [3, 4]. The following obvious equality follows from Proposition 3
and the inverse matrix definition

size(||A−1||max) = O(size(A)).

The following proposition was proved in [13]:
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Proposition 4. Let the matrix A ∈ Z
(n+1)×n be reduced to the Hermite normal form (HNF).

Then

Δn−1(A) � Δ2

2
(1 + log2 Δ),

where Δ = Δ(A).
The most important tools for studying lattices and integer solutions of systems of linear equations

and inequalities are the Hermite and Smith normal forms [3, 4, 6, 37].
Theorem 1. Any matrix A ∈ Q

m×n of a rank r can be presented as a product A = HQ, where
matrix Q ∈ Z

n×n is unimodular, and the matrix H ∈ Q
m×n, referred to as the Hermite normal

form (HNF), has the form
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 1 0 . . . 0 0 . . . 0

H2 1 H2 2 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hr 1 Hr 2 . . . Hr r 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hm 1 Hm 2 . . . Hm r 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For elements H with numbers i, j ∈ {1, 2, . . . , r} the following is true: Hi i > 0, 0 � Hi j < Hi i

for i < j. For other elements of the matrix H these properties can be incorrect. If the source
matrix A is integer, the matrix H is also an integer.

Theorem 2. Any matrix A ∈ Q
m×n of a rank r can be presented as a product A = PSQ, where

the matrices P ∈ Z
m×m and Q ∈ Z

n×n are unimodular, and the matrix S ∈ Q
m×n, referred to as

the Smith normal form (SNF), has the form
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1 1 0 . . . 0 0 . . . 0

0 S2 2 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . Sr r 0 . . . 0

0 0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

At the same time, Si i|Si+1 i+1 for 1 � i � n− 1. If the source matrix A is an integer, then the
matrix S is an integer.

The most time-efficient algorithms for computing HNF and SNF were given in [38, 39].
Theorem 3. There are algorithms with the following complexity for computing the HNF and

NFS of the matrix A

Õ(nΘ−1m · mult(n log ||A||max)) = Õ(nΘ−1 · mult(sizeA)),

where Θ is the matrix multiplication exponent.
Proposition 5. Let A ∈ Z

n×n, Δ = |detA| > 0 and A = HQ, where Q is an unimodular n× n
matrix, and H is the HNF of A. The following equalities then hold:

size(H) = O(n2 + n logΔ),

||H−1||max � Δ,
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size(||Q||max) = O(log n+ logΔ + log ||A||max),

size(||Q−1||max) = O(log n+ logΔ + size(A)).

Proof. Let us prove the first equality. The matrix H can be reduced to the following form through
additional permutation of the rows and columns:

HB =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 . . . 0

Hs+1 1 Hs+2 2 . . . Hs+1 s Hs+1 s+1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hn 1 Hn 2 . . . . . . . . . . . . . . . . . . . . . . . . . . Hn n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where Hi i > 1 and s+ 1 ≤ i ≤ n. Let k = n− s denote the number of diagonal elements that do not
equal 1. It can be seen that k � log2 Δ. The total size of the elements in the lines with numbers from 1
to s does not exceed O(n2). The total size of the elements in line i, where s+ 1 � i � n, does not exceed
O(n logHi i). We obtain the required equality by summing all lines together.

Let us prove the second equality. It can be seen that Δn−1(H) � Δ2. We find that ||H−1||max � Δ,
since the elements of matrix H−1 are fractions of the n− 1 order minors to Δ.

The third equality follows directly from Proposition 2, since Q = H−1A. The fourth equality follows
from Proposition 2 and the equality after Proposition 3.

Remark 1. Let A be an integer nondegenerate n× n matrix. The unimodular matrix Q performing
the decomposition A = HQ is then unique and can be easily found using the formula Q = H−1A.
Unfortunately, this is not true for unimodular matrices P , Q from the decomposition A = PSQ, where
S is the SNF of A, since P and Q are not uniquely defined. The problem of finding the smallest possible
matrices P and Q thus arises. It was noted in [38] that an appropriate matrix P can be found using an
algorithm with the same complexity as in Theorem 2. In addition, size(P ) = O(size(A)) is true. This
result suffices for us, since we did not construct the matrix Q in this work.

A similar problem arises when constructing the decomposition A = HQ if the matrix A ∈ Z
m×n is

not square. The matrix Q is in this case not unique either. An algorithm for constructing Q with the
same complexity as in Theorem 3 was provided in [39]. The matrix Q−1 produced by this algorithm has
no more than O(nm) nonzero elements and size(||Q||max) = O(m log ||A||max).

2.2. A Square Inequality System with Two-Sided Constraints

Let A ∈ Z
n×n, Δ = |det(A)| > 0 and a, b, c ∈ Z

n. We then consider the problem

c�x → min (2)
{
a � Ax � b

x ∈ Z
n.

(3)

The original system is converted to one below after introducing residuals y = b−Ax and replacing
x = A−1(b− y):

c�A−1y − c�A−1b → max
⎧
⎪⎨

⎪⎩

Ax+ y = b

0 � y � b− a

x, y ∈ Z
n.
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Let A = PSQ, where S is the SNF of A, and P and Q are the unimodular matrices. The original
system is converted into an equivalent system after multiplying the original system by P−1 and replacing
x → Q−1x:

w�y → max (4)
⎧
⎪⎨

⎪⎩

Gy ≡ g (mod S)

0 � y � τ

y ∈ Z
n,

(5)

where w� = c�A∗, G = P−1 mod S, g = P−1b mod S and τ = b− a. Here, A∗ = det(A)A−1 is the
matrix adjoint to A. The latter problem is actually the Gomory group minimization problem [7–9] and
can easily be solved via dynamic programming.

Remark 2. It can be seen that the matrix S has no more than log2Δ diagonal elements unequal to
one. Thus, we can assume that the matrix G has no more than log2Δ rows, and the elements of its ith
row do not exceed Si i � Δ. The same can be said about the vector g.

Let us consider the auxiliary problem Prob(k, η) to solve the problem (3) using dynamic program-
ming:

(w1:k)
�y → max,

⎧
⎪⎨

⎪⎩

G∗ 1:k y ≡ η (mod S)

0 � y � τ1:k

y ∈ Z
k

,

where 1 � k � n, η ∈ Z
n mod S.

We denote the optimum value of the problem Prob(k, η) by ψ(k, η). For infeasible problems, we set
ψ(k, η) = −∞. If wk � 0. The values of ψ(k, η) then satisfy the recurrence relation

ψ(k, η) = max
0�z�min{τk ,Δ−1}

zwk + ψ(k − 1, (η − zG∗ k) mod S), (6)

otherwise, if wk > 0, we have

ψ(k, η) = max
max{0,τk−Δ+1}�z�τk

zwk + ψ(k − 1, (η − zG∗ k) mod S). (7)

The values of ψ(1, η) for w1 � 0 can be computed using the formula

ψ(1, η) = max{w1z : for such 0 � z � min{τ1,Δ − 1}, that G∗ 1z ≡ η (mod S)}, (8)

if relation G∗ 1z ≡ η (mod S) does not hold for any z, the problem ψ(1, η) is infeasible, and we may
assume ψ(1, η) = −∞. A similar formula is true for the case, when w1 > 0.

Lemma 1. When solving problem (3), there is an algorithm with the complexity O(logΔ · nΔ2 ·
mult(s)), where s = log ||τ ||max + log ||w||max + logΔ + log n.

Proof. we must determine the value of ψ(n, g) to solve problem (3). Let us find the complexity
of one recursion step for computing ψ(k, η) using formulas (5) and (6). Due to Remark 2, the bit
complexity of the operation (η − zG∗ k) mod S does not exceed O(logΔ · mult(log τk + logΔ)). Since
ψ(k, η) � kmax{Δ, τk}||w||∞, the complexity of the subsequent addition does not exceed O(log n+
logΔ+ log τk + log ||w||∞). Allowing for the enumeration of the values of z. The total complexity of one
recursive step does not exceed

O(logΔ ·Δ · mult(log ||τ ||∞ + logΔ) + Δ · (log ||w||∞ + log n)).

Thus, the total complexity of the algorithm thus does not exceed the last value multiplied by nΔ.
We obtain resulting estimate O(logΔ · nΔ2 · mult(s)) by estimating the complexity of addition and
multiplication.

Theorem 4. When solving problem (2) there is an algorithm with the complexity

O((n2 + logΔ · nΔ2) · mult(s)),

MOSCOW UNIVERSITY COMPUTATIONAL MATHEMATICS AND CYBERNETICS Vol. 43 No. 1 2019
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where s = log ||b− a||∞ + log ||c||∞ + logΔ + size(A). The size of the elements of the optimum
vector x∗ does not exceed O(size(A) + log ||b− a||∞).

Proof. As was shown above, the system (2) can be transformed into the system (3). Let us determine
the complexity of this transformation, after which it remains to apply Lemma 1.

The most complicated step of the transformation is to compute the matrix S (the SNF of of the
vertex v in S) and the unimodular matrix P from the decomposition A = PSQ. The matrix Q is not
needed for computations. In accordance with Theorem 3 and Remark 1, the complexity of this step
does not exceed O(nΘ−1 · mult(sizeA)), and size(P ) = O(size(A)). From Proposition 3, it follows that
size(||P−1||max) = O(size(A)). The complexity of computing G = P−1 mod S and g = P−1b mod S
does not exceed the complexity of computing the NFS. In accordance with Proposition 3, the com-
plexity of computing w� = c�A∗ does not exceed O(n2mult(log ||c||∞ + size(A))), and log(||w||∞) =
O(log ||c||∞ + size(A)).

By combining the complexity of the transformation and the complexity of Lemma 1 computations,
we find the overall complexity does not exceed

O(nΘ−1 · mult(size(A)) + n2 · mult(log ||c||∞) + logΔ · nΔ2 · mult(s)).

We obtain the required complexity as an upper bound of this estimate.

Finally, the optimum vector x∗ is computed using the formula x∗ = A−1(b− y∗), where y∗ is the
optimum vector of the problem (3). Since ||y∗||∞ � ||b− a||∞, we find size(||x∗||∞) = O(size(A) +
log ||b− a||∞).

3. COMPUTING SYMPLEX WIDTH

Let V ∈ Z
n×(n+1), Δ = Δ(V ) and S = conv.hull(V ) be a simplex of a dimension n. The aim of this

section was to construct an FPT algorithm parameterized by the Δ(V ) parameter to compute the value
of width(S) and the flat direction of the simplex S. The corresponding result is formulated in Theorem 5.

We repeatedly need the following lemma for further reasoning. Its proof follows from the standard
theory of convex polyhedra. (See, e.g., [4, 5, 40].)

Lemma 2. Let A ∈ Z
n×n, b ∈ Z

n and detA 
= 0. Then P (A, 0) = cone.hull(−A∗) and P (A, b) =

v + cone.hull(−A∗), where v = A−1b is the apex of the polyhedral cone P (A, b).

Lemma 2 implies that there exists a dual representation for the simplex S. In other words, there
exist a matrix A ∈ Z

(n+1)×n and a vector b ∈ Z
n+1 such that S = P (A, b). Note too that the coordinate

columns of the vertices of simplex S coincide with the columns of the matrix V . Let us identify them.

Let v be the vertex of S. Then v = V∗ i for some 1 � i � n+ 1. Let us define the matrix B(v) by the
following formula

B(v) = (V∗ 1 − V∗ i, . . . , V∗ (i−1) − V∗ i, V∗ (i+1) − V∗ i, . . . , V∗ (n+1) − V∗ i).

The columns of B(v) are the radius vectors of the edges of S coming from the vertex v. We also
denote A(v)x � b(v) as a subsystem of the system Ax � b such that A(v)v = b(v). The system
A(v)x � b(v) has exactly n lines. The excluded inequality holds strictly for v. Let us denote C(v) =
v + cone.hull(B(v)) as the angular cone of the vertex v in S. According to Lemma 2, the equalities
cone.hull(B(v)) = P (A(v), 0) and C(v) = P (A(v), b(v)) hold true. Let us denote N(v) as the cone
of normals generated by normal vectors of facets incident to the vertex v. By definition, the equality

MOSCOW UNIVERSITY COMPUTATIONAL MATHEMATICS AND CYBERNETICS Vol. 43 No. 1 2019
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N(v) = cone.hull(A(v)�) holds. Therefore, N(v) = P (−(A(v)∗)�, 0) according to Lemma 2. It then
follows from the equality C(v) = P (A(v), b(v)) that N(v) = P (B(v)�, 0).

An equality R
n =

⋃
v∈vert(S)

N(v) is true due to the boundedness of simplex S, so the equality R
n =

⋃
v,u∈vert(S)

N(v) ∩ (−N(u)) also holds.

Let M(v, u) = N(v) ∩ (−N(u)) ∩ Z
n \ {0}. The formula below then holds for width(S)

width(S) = min
v,u∈vert(S)

min
c∈M(v,u)

(max
x∈S

c�x−min
x∈S

c�x)

= min
v,u∈vert(S)

min
c∈M(v,u)

c�(v − u). (9)

The original problem is thus equivalent to solving n(n− 1)/2 problems of the form min
c∈M(v,u)

c�(v− u)

for different pairs of vertices v, u of S.
We fix an arbitrary pair of vertices v and u of S. The vertices v, u have n− 1 common facets, since

any two vertices of the simplex are adjacent. Let the matrix F� consist of rows of the matrix A which
correspond to these n− 1 common facets. We may therefore assume that N(u) = cone.hull(F au) and
N(v) = cone.hull(F av), where a�u , a�v are the rows of A, for which the corresponding inequalities of the
system Ax � b are strictl for v and u, respectively. In addition, the relations −au ∈ N(v), −av ∈ N(u)
are true, so the relation av − au ∈ M(v, u) holds as well.

Let us consider the hyperplane H(k) = {x ∈ R
n : w�x = k}, where w = (v − u)/d and d are the

greatest common divisors of the elements of the vector v − u. Since ∀c ∈ M(v, u) the inequality
(v − u)c� � 0 holds, then the equality M(v, u) =

⋃
k∈Z+

(M(v, u) ∩H(k)) is true. Thus,

min
c∈M(u,v)

c�(v − u) = min{k ∈ {1, 2, . . . , r} : M(v, u) ∩H(k) 
= ∅}, (10)

for some finite r.
The latter means that the problem min

c∈M(v,u)
c�(v − u) is reduced to r problems of checking the

nonemptiness of sets of the form M(v, u) ∩H(k). It is easy to see that r ≤ (n+ 1)Δ. The latter enables
us to develop an algorithm for checking the nonemptyness of M(v, u) ∩H(k).

The following lemma describes the structure of sets M(v, u) ∩H(k).
Lemma 4. Let k ∈ R+, then N(v) ∩ (−N(u)) ∩H(k) = (pv(k) + cone.hull(F )) ∩ (pu(k)−

cone.hull(F )), where pv(k) is the intersection point of the ray Lv = {avt : t ∈ R+} with the
hyperplane H(k) and pu(k) is the intersection point of the ray Lu = {−aut : t ∈ R+} with the
hyperplane H(k).

Proof. Let x ∈ N(v) ∩ (−N(u)) ∩H(k), then x = Fα+ avtv = −Fβ − autu for some α, β ∈ Q
n−1
+

and tv, tu ∈ Q+. In addition, w�x = k is true. tv = k
w�av

and tu = − k
w�au

holds because v�F = u�F .
Let us consider points pv(k) and pu(k). It can be seen that pv(k) = avtv and pu(k) = −autu. The
inclusion x ∈ (pv(k) + cone(F )) ∩ (pu(k)− cone(F )) is true because x = Fα+ avtv = −Fβ − autu.

Let x ∈ (pv(k) + cone(F )) ∩ (pu(k)− cone(F )). w�x = w�pv(k) = k holds, so x ∈ H(k), since
w�F = 0. Finally, x ∈ N(v) and x ∈ −N(v), since points pv(k), pu(k) lie on the rays Lv, Lu, which
generate rays for the normal cones N(v) and −N(u).

The problem of checking the non-emptyness of the set M(v, u) ∩H(k) is equivalent to checking the
feasibility of the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w�x = k

B�(v)x � 0

B�(u)x � 0

x ∈ Z
n.

(11)
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The elements of the vector w are mutually simple. There is then an unimodular matrix Q such that
w�Q = e�1 , where e1 is the vector for which only the first coordinate is 1 and the others are 0. The
transformation exists, since e�1 is the HNF for w�. According to Theorem 3, the matrix Q can be
found for time O(nΘ−1mult(n log ||w||∞)), and size(||Q||max) = O(log ||w||∞) is true, in accordance
with Remark 1. The system (9) becomes the system below after the transformation x → Qx and
rearranging the rows in the matrices B(v) and B(u)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, . . . , 0)x = k(
−d 0

α B̂

)
x � 0

(
d 0

beta hatB

)
x � 0

x ∈ Z
n.

(12)

Let us recall that d is the largest common divisor of the elements of the vector v − u and w =
(v − u)/d. Let us explain why the system (10) takes this form. First, the matrix B(v) contains the
column u− v and the matrix B(u) contains the column v − u by construction. The corresponding rows
B�(v) and B�(u) become −de�1 and de�1 after substituting x → Qx. It is easy to see from Lemma 4
that there are identical blocks containing the matrix B̂ ∈ Z

(n−1)×(n−1) . Note too that |det B̂| � Δ,
size(||B̂||max) = O(log ||V ||max), size(||α||∞) = O(log ||V ||max) and size(||β||∞) = O(log ||V ||max).

After the substitution x1 = k, the system (10) becomes

{
−kβ � B̂x � −kα,

x ∈ Z
n.

(13)

The consistency of this system can be checked using Theorem 4.

CONCLUSIONS

Theorem 5. Let V ∈ Z
n×(n+1), Δ = Δ(V ) and S = conv.hull(V ) be a simplex of a dimension n.

The problem of computing the simplex width S and its flat direction can then be solved using an
algorithm with the complexity

O(r · n2 · (n2 + logΔ · nΔ2) · mult(s)),

where r is an estimate of the simplex width, for which the inequality r ≤ (n+ 1)Δ, and s =
n2 log ||V ||max + logΔ holds. This algorithm is an FPT algorithm with respect to the parameter
Δ.

Proof. The formula (7) shows that the original problem is equivalent to O(n2) problems of form
min

c∈M(u,v)
c�(v − u) for different pairs of vertices of the simplex S. The formula (8) in turn shows that each

problem of the the form min
c∈M(v,u)

c�(v − u) is equivalent to r problems of checking the non-emptyness

of the sets M(v, u) ∩H(k), where k ∈ 1 : r. The problem of checking the non-emptyness of the set
M(v, u) ∩H(k) is equivalent to checking the feasibility of the system (11). We obtain an algorithm with
the required estimate of a complexity by applying Theorem 4 and estimates of the determinant and the
size of the system (11).
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