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As the participants of Earth Orientation Parameters Combination of Prediction Pilot Project (EOPC PPP),
Sternberg Astronomical Institute of Moscow State University (SAI) and Shanghai Astronomical Obser-
vatory (SHAO) have accumulated ~1800 days of Earth Orientation Parameters (EOP) predictions since
2012 till 2017, which were up to 90 days into the future, and made by four techniques: auto-regression
(AR), least squares collocation (LSC), and neural network (NNET) forecasts from SAI, and least-squares
plus auto-regression (LS + AR) forecast from SHAO. The predictions were finally combined into SAI-
SHAO COMB EOP prediction. In this work we present five-year real-time statistics of the combined
prediction and compare it with the uncertainties of IERS bulletin A predictions made by USNO.
© 2018 Institute of Seismology, China Earthquake Administration, etc. Production and hosting by Elsevier
B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Earth orientation parameters, such as polar motion (PM X, PM
Y), UT1-UTC, and length-of-day (LOD), are essential for trans-
formation between the celestial and terrestrial coordinate systems,
which has important applications in the Earth sciences, astronomy
and satellite navigation [1,2]. Due to the complex data processing,
EOP are usually available with a delay from hours to days. The
growing demands by spacecraft tracking and navigation require
real-time EOP data and the questions of safety and stability require
the EOP predictions covering at least two weeks, what prompts the
respective research.

During 2005—2009, the Earth Orientation Parameters Prediction
Comparison Campaign (EOP PCC) was conducted as an international
competition, aiming to estimate the accuracy of the EOP predictions
and provoke their improvement [3]. The major conclusion reached

* Corresponding author. Sternberg Astronomical Institute of Moscow State Uni-
versity, Moscow 119992, Russia.
E-mail address: wolftempus@gmail.com (L. Zotov).
Peer review under responsibility of Institute of Seismology, China Earthquake
Administration.

E‘LSEVIE‘I; Production and Hosting by Elsevier on behalf of KeAi

https://doi.org/10.1016/j.geog.2018.11.002

by the EOP PCC was that there is no particular prediction technique
superior to the others for all EOP components and all prediction
intervals. While the techniques of LS, AR and artificial neural net-
works (NNET) produced good results for polar motion (PM X, PM Y)
prediction [3—9]; the wavelet decomposition and auto-covariance
prediction [10,11], adaptive transformation from the atmospheric
angular momentum to length-of-day (LOD) change [3], and Kalman
filter with atmospheric angular momentum forecasts [12—14] show
better results for UT1-UTC and LOD forecasts.

Based on the EOP PCC results, International Earth Rotation and
Reference Systems Service (IERS) and Jet Propulsion Laboratory
(JPL) initiated the Earth Orientation Parameters Combination of
Prediction Pilot Project (EOPC PPP) in 2010. The main goal was to
develop a strategy for predictions combination, since the combined
solution should perform better than all the individual prediction
techniques. This project attracted 14 participants from various
countries and institutes, including SAI and SHAO, who have send
predictions made by four methods [5,8,15]. Despite the results of
competition were quite interesting, it was finished and no paper
was published by the organizers.

Below, in the second part of our paper we briefly described our
EOP prediction methods such as LS, AR, LSC and NNET. The com-
bined prediction strategy, errors estimation and statistics are given
in part 3 based on ~5.5 years of daily predictions since 01.2012 till
05.2017. The conclusions and recommendations for the future can
be found in the last section.
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2. Prediction models
2.1. Least-squares

Polynomial trend and harmonic oscillations in the time series
can be modeled by means of Least Squares (LS) method. EOP of our
interest also include trends and periodicities, which can be
captured by spectral analysis [16]. In this study, we use the
following model, which parameters are estimated by the least-
squares method,

Xt =a+bt+ ccos(ﬁ> +d sin(@> +e cos<@>
P1 P1 P2
+ fsin (@) (1)
D2

where t is time, and q, b, ¢, d, e, f are unknown amplitudes to be
estimated. In case of UT1-UTC and LOD, the main periodic terms are
annual and semiannual oscillations, p; = 365.24, p, = 182.62 days.
For polar motion (PM X, PM Y) annual and Chandler harmonics
with periods p1; = 365.24, p, = 435.00 days are to be estimated. In
SAHO LS realization periods pq, p2 were selected a priory. In SAI AR
method Chandler period was also adjusted, thus nonlinear version
of LS with iterations was implemented.

2.2. AR model

After deterministic part of the EOP time series is modeled and
subtracted by the LS model (1), a stochastic process Auto-
regression (AR) model can be used for the residuals [17]. For a
stationary random sequence X; (t =1,2,...,N), the AR model can be
expressed as follows,

p
Xt = Z oiXe_i + Ut, (2)
i=1
FPE, =P,(N+p+1)/(N—p—1), 3)
N p
Pp=1/(N-p) > Xc—> oX;j)?, (4)
t=p+1 j=1

where u; is zero-mean white noise, p is an order of the model, and
04,0y, ..., 0p are autoregression coefficients, obtained by solving the
Yule—Walker equations, which can be done through Levinson-
Durbin recursion [18]. The optimum order p can be determined by
Akaike's Final Prediction Error (FPE) criterion, which corresponds to
the smallest FPE [19]. For SAI AR-predictions 6.4-year base interval
was used, linear trend, annual and Chandler wobble were pre-
liminary modeled and removed. For UT1-UTC and LOD zonal tide
model was also subtracted, using IERS conventions (2003).

2.3. Least squares collocation

LSC is a matrix regression method, widely used in geodesy for
surveying and combining of gravity measurements [16]. Let the
observational model be written in form I = £ + n, where t is the useful
signal vector, n is noise. The mutual noise—signal correlations are
supposed to be zero. If we know the covariance matrices for obser-
vations Qy, and noise Q,,, the cross-covariance matrix of useful
signal can be obtained as Q;; = Qy — Q- If we subdivide the useful
signal vector t into two parts: ®is up to now, and fstands for the future
values, then the matrix Qg can be obtained as the left lower part of
Q4 and the vector for the future signal can be estimated as

f=QnQu'l (5)

The autocovariance function can be estimated from observa-
tions or modeled. In SAI LSC predictions it was estimated from the
13 years of data, preceding the prediction interval.

2.4. Artificial neural networks

Neural Networks (NNET) are the powerful mathematical tools,
appeared with the development of brain studies through the at-
tempts to mathematically model the neurons, going back to the
works of McCulloch and Pitts, 1943, and Rosenblatt, 1957. Among
many applications, NNET are used for time series predictions [9,20].

Simple neuron can be represented by the equationy = f (i wiX;),
i=0

where w; are weights, (wg = 1 corresponds to the polarization xy =
b), x1...x, are the input vector values, f is a transfer (activation)
function. One neuron produces one scalar output y. Neurons can be
organized in layers. Every neuron in the layer has the same input
vector and transfer function; it produces one element (coordinate) of
the output. The dimensionality of the layer output is equal to the
number of neurons in it. The output of the previous layer sequentially
becomes an input of the next layer, etc. The final output of the network
has the dimensionality equal to the number of neurons in the output
layer. Three-layer network can be represented in vector-matrix form

y = f3(W3f(Wof (Wix))). (6)

Unknown parameters here are weight matrixes W;. They have to
be adjusted in the iterative learning procedure, called “back-propa-
gation”, based on misfit between the selected known answers
(learning sequence) and corresponding network responses. This
learning process requires all the transfer functions to be differentiable.
In such way the network is trained to provide desirable responses for
the learning sequence, then it is tested and used for real data.

To teach the network, we selected the sets of input vectors with
100 points from the previous 6.4 years of data, and used the next
single (101st) value as the desired output. After training the last
available 100 points were used as input, and future points were
predicted recursively one by one. We used linear neural network
composed of 15 neurons, organized in 3 layers as (7, 7, 1) [8].

3. Statistics and combined solution
3.1. Statistical indicators

As indicators of the prediction accuracy, the mean error (ME)
and root mean squared error (RMSE) were adopted:

1 n . .
ME =53 2 (s —ol) @

n
RMSE; = Jnlj 2; <p}: _ sz;)z (8)
Jj=

where, o is the EOP observation, p is the EOP prediction, i is the
prediction interval, n is the number of predictions used to calculate
the statistics.

We use ME and RMSE to characterize the discrepancy between
the predictions and real data from EOP C04 bulletin. It should be
mentioned, that ME and RMSE represent different characteristics
and sometimes even contradict each other. For example, some
changes in the prediction method can reduce ME, while RMSE may
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increase. ME can be treated as accuracy, RMSE precision. Thus, there
may be some trade-off between characteristics, and particular
consumer should choose which of them is more important for him.

The current IERS EOP C04 operational bulletin containing data up
to the last calendar date is used as an input for all the predictions made
for 90 days in the future. The statistics are calculated from comparison
of predictions with the data from a posteriori EOP C04 bulletin.

3.2. Combined solution

The combined solution is based on our four methods: LS + AR
predictions by SHAO and AR, LSC and NNET predictions by SAI. The
weights of particular predictions in combination were determined
from the mean ME and RMSE values, obtained at the test interval
01.2011-03.2012 and never changed during five-year campaign.

Supposing that both ME and RMSE are important for us, the
time-dependent weights for each t; moment in the future for I-th
forecast technique were calculated as:

k
ME,(t;)? + RMSE,(t;)?

wy(t;) = (9)

where k is selected to satisfy the normalization criteria > w,(t;) = 1.
[
4. Results

Figs. 1 and 2 represent the overall statistics for AR, LSC, NNET,
SHAO prediction methods and their combination COMB, calculated
in real time (operationally) at the 21.01.2012—24.05.2017 interval
(55947—-57896 M]D) with daily step. It can be seen, that COMB
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averages the mean error ME of other predictions, and its RMSE is at
the level of the best prediction method involved. Combination for
LOD is not presented since SHAO does not produce LS + AR pre-
dictions for LOD (it can be obtained as UT1-UTC derivative).

For better understanding, the “bounches” of the discrepancies
between the real data from EOP C04 bulletin and predictions for
PM X for one year 2016 are shown in Fig. 3. Quite symmetric dis-
tribution for all the components appears in result of large amount
of predictions.

The statistics of our combined prediction COMB was compared
with the Bulletin A prediction of the IERS Rapid Service/Prediction
Centre, made by U.S. Naval Observatory (USNO), and the results for
5.5-years (01.2012—05.2017) are shown in Table 1 and for 2016 year
only in Table 2. The RMSE values are given for 1, 5, 10, 20, 40, 90
days in the future.

We calculated the statistics of USNO prediction presented in
Table 1 based on 5 years (2012—2017, except 2016) of Bulletin A
predictions from archive [21]. It is quite similar to the statistics
presented in Explanatory notice 2014 [22].

The statistics of USNO prediction in Table 2 is taken from Table 3a
of IERS Annual Report 2016, section 3.5.2, Rapid Service/Prediction
Centre [23]. It is sufficiently better, then the statistics, presented in
IERS Annual Report for 2015 year and values recalculated in [1].

Our results are not as good as USNO's for 2012—2017 period
(Table 1), but they have the same order of magnitude. For year 2016
(Table 2) our results are almost as good as of Bulletin A, especially for
the horizon above 20 days in the future. Our COMB prediction even
overperforms those of USNO for long-term Y and 40-days UT1-UTC.
We want to note, that all our predictions were based on operational
EOP C04 bulletin Thus the predictions for 1 day in the future have

RMSE
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Fig. 1. Mean Error (left) and Root Mean Squared Error (right) for PM X (top) and PM Y (bottom) predictions made by AR, LSC, NNET, SHAO, and COMB methods at the interval of
21.01.2012—24.05.2017 (55947—57896 M]D). Vertical scales in milliseconds of arc. Horizontal scale shows the prediction interval from 1 to 90 days in the future.
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methods at the interval 21.01.2012—24.05.2017 (55947—57896 MJD). Vertical scales in milliseconds. Horizontal scale shows the prediction interval from 1 to 90 days in the future.
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Fig. 3. The “bounches” of discrepancies of X-coordinate predictions made by AR, LSC, NNET, SHAO, and COMB methods at the interval 01.01.2016—06.12.2016 (57388—57728 M]D).

Horizontal scale — days in the future, vertical scale — arc seconds.

Table 1
Comparison of COMB predictions statistics with USNO Bulletin A statistics for 2012—2017.

Days in the future ~ COMBPM  USNO PM X (0.001”)  COMBPM Y (0.001”)  USNO PM Y (0.001”)  COMB UT1-UTC (0.0001s)  USNO UT1-UTC (0.0001s)
X (0.001")

1 038 0.3 0.5 02 2.0 0.6
24 1.9 15 13 5.0 22

10 40 34 2.6 24 117 49

20 6.8 6.1 49 40 268 19.4

40 123 10,5 10.0 7.0 53.6 48.1

90 22.9 19.0 22.7 14.0 132.3 119.6
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Table 2
Comparison of COMB predictions statistics with USNO Bulletin A statistics for one year 2016.

489

Days in the future ~ COMBPM  USNO PM X (0.001”)  COMB PM Y (0.001”)  USNO PM Y (0.001”)  COMB UT1-UTC (0.0001s)  USNO UT1-UTC (0.0001s)
X (0.001”)
1 13 03 05 02 1.0 13
5 26 21 15 14 45 22
10 37 35 25 25 10.8 6.6
20 5.1 5.0 39 45 240 20.0
40 78 75 7.1 82 434 452
90 958 7.9 122 152 953 913

errors, depending on the last EOP C04 values errors. Predictions,
based on final EOPs bulletin, whose values are recalculated, based on
the following measurements, would have better statistics.

Finally, the color maps of discrepancies for PM X and Y obtained
by all five methods (AR, LSC, NNET, SHAO, and COMB) for 5.5 years
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are represented as an example in Fig. 4. The color scale shows the
deviation value in mas. It can be seen that there are temporal
waves, which means that at some intervals the prediction methods
have a tendency to overestimate (red) or underestimate (blue) real
data values. These waves can be related with the nonstationary
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Fig. 4. Color maps of prediction discrepancies for PM X, PM Y, obtained by AR, LSC, NNET, SHAO, methods and COMB at 21.01.2012—23.05.2017 (M]D 55947—57896). Horizontal
scale shows the starting date of prediction, vertical scale — days of prediction in the future from 1 (top) to 90 (bottom).



490 L. Zotov et al. / Geodesy and Geodynamics 9 (2018) 485—490

behavior of the original time series that do not follow any model,
adjusted for the previous data. This also illustrates that different
parts of data present different level of predictability [5].

5. Conclusions

This investigation describes the principles of LS, AR, LSC and
NNET models, which we used to generate EOP predictions for EOPC
PPP since 2012 till 2017. We developed the prediction, based on
combination of those four methods with weights (9) obtained from
ME and RMSE statistics at 2011—-2012 interval in result of some kind
of trade-off between them. More than 21600 predictions (1800
days x 4 methods x 3 parameters) were made in real time by SAI
and SHAO during five years and combined. Compared with EOP
predictions made by single model, the combined prediction is more
stable, it averages ME and has RMSE at the level of the best pre-
diction used. No single forecasting method performs as good for all
the parameters and time spans, as a combined solution, which in-
tegrates the advantages of different models and shows higher
stability with good precision.

The result of the presented work has been compared with the
statistics of IERS Bulletin A predictions, made by USNO. Generally,
being slightly less precise, since the excitation functions pre-
dictions were not used, our combined forecast has the same order
of error and even overperforms those of USNO for long-term Y and
UT1-UTC in particular year 2016. There are ways to improve our
predictions by including angular momentum forecasts [1] and
Chandler wobble envelope forecast [19]. Our presented statistics
is based on large amount of real-time predictions. It is robust and
stable. We propose our predictions to Russian and Chinese
customers.
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