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Abstract

Bachet’s game is a variant of the game of Nim. There are 𝑛 objects
in one pile. Two players make moves one after another. On every move,
a player is allowed to take any positive number of objects not exceeding
some fixed number 𝑚. The player who takes the last object loses. We
consider a variant of Bachet’s game in which each move is a lottery over
set {1, 2, . . . ,𝑚}. Outcome of a lottery is the number of objects that
player takes from the pile. We show that under some nondegenericity
assumptions on the set of available lotteries the probability that the first
player wins in subgame perfect Nash equilibrium converges to 1/2 as 𝑛
tends to infinity.

Keywords: game theory; Bachet’s game; backward induction; lotteries.

1 Introduction and main result

Bachet’s game was formulated in [1] as follows. Starting from 1, two players add
one after another some integer number not exceeding 10 to the sum. The player
who is the first to reach 100, wins. This game can be considered as a variant
of the game of Nim [3] (other variants of the game of Nim can be found, for
example, in [6, 5, 2, 4]). One can easily find subgame perfect Nash equilibrium
(SPNE) in Bachet’s game with backward induction [1].

Now assume that at every move instead of choosing the exact number not
exceeding some 𝑚, the player chooses some lottery (i.e. probability distribu-
tion) over numbers {1, 2, . . . ,𝑚} from some set of available lotteries, observes
realization of the lottery and then makes the corresponding move. Below we
provide formal rules of the game that will be considered in this paper.

Bachet’s game with lottery moves (BGLM). The game is defined by
the natural number 𝑛 of objects in the pile, the natural number 𝑚 and a set of
available lotteries 𝐾 ⊂ 𝑆𝑚, where 𝑆𝑚 is a simplex of all lotteries over numbers
{1, 2, . . . ,𝑚}. Two players make moves one after another. On each move, the
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player chooses a lottery from the set 𝐾. After making the choice, the player
observes realization of the lottery and then takes the corresponding number of
objects from the pile. The player who takes the last object loses, including the
case when they have to take more objects than remains in the pile. Both players
want to maximize the probability of their own victory.

Our main result is the following theorem.

Theorem 1. Fix arbitrary integer 𝑚 > 1 and some compact set 𝐾 ⊂ 𝑆𝑚 with
the following properties:

𝜂 := max
(𝜋1,...,𝜋𝑚)∈𝐾

max
𝑖∈{1,...,𝑚}

𝜋𝑖 < 1; (1)

𝜈 := min
𝑖∈{1,...,𝑚}

max
(𝜋1,...,𝜋𝑚)∈𝐾

𝜋𝑖 > 0. (2)

For any initial number of objects 𝑛, consider BGLM with parameters 𝑛, 𝑚, 𝐾.
This game has a non-empty set of SPNE. Denote by 𝑝𝑛 the probability that the
first player wins in arbitrary SPNE.

Then 𝑝𝑛 does not depend on the choice of SPNE and

lim
𝑛→∞

𝑝𝑛 =
1

2
. (3)

Remark. It can be easily proved that if limit (3) exists, it has to be equal to 1/2.
The interesting part is the existence of this limit.

Remark. Theorem 1 allows the following interpretation. Assume that the play-
ers play classical Bachet’s game, but from time to time they make random mis-
takes. Condition (1) says that mistakes are unavoidable. Condition (2) says
that any move is allowed (with some probability). It follows that presence of
unavoidable mistakes drastically changes the analysis of the game for large 𝑛.

Conjecture. We believe Theorem 1 holds true even without assumption (2).

2 Proof of the main result

2.1 Existence of SPNE

We find SPNE by backward induction. Fix 𝑚 and 𝐾. Obviously, for 𝑛 = 1, any
move leads to losing, as the player has to take at least one object in any case.
Therefore, any move of the first player is in the set of all SPNE and 𝑝1 = 0.

For convenience reasons, put 𝑝𝑠 = 1 for any 𝑠 6 0.
Now assume we proved existence of SPNE for all BGLM with no more than

𝑛 = 𝑘 − 1 objects. Consider BGLM with 𝑛 = 𝑘 objects. Assume that after the
move of the first player, 𝑖 objects is taken from the pile. The second player now
plays BGLM with 𝑛 = 𝑘−𝑖 objects (becoming ‘first player’ in this subgame) and
wins it with probability 𝑝𝑘−𝑖 by induction hypothesis. If the second player wins,
the first player loses. Therefore, the probability that the first player wins in this
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case is 1 − 𝑝𝑘−𝑖. By the law of total probility, for move 𝜋 = (𝜋1, . . . , 𝜋𝑚) ∈ 𝐾,
the probability that the first player wins is given by:

̃︀𝑝𝑘(𝜋) = 1 −
𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖. (4)

The player wants to maximize this probability by choosing optimal 𝜋. Functioñ︀𝑝𝑘 is continuous with respect to 𝜋 and therefore attains its maximum value on
compact set 𝐾. Then

𝑝𝑘 = max
𝜋∈𝐾

̃︀𝑝𝑘(𝜋) (5)

and argmax𝜋 ̃︀𝑝𝑘(𝜋) is non-empty. Obviously, 𝑝𝑘 does not depend on the choice
of the move. After the move, the number of objects in the pile will be reduced,
hence, existence of SPNE now follows from the induction hypothesis.

2.2 Limit behaviour

In this section we prove (3).

2.2.1 Notation and idea of the proof

First, introduce some notation. Let

𝒟𝑛 := 𝑝𝑛 − 1

2
, ∆𝑛 := |𝒟𝑛|,

𝑊𝑘 = {𝑘, 𝑘 − 1, . . . , 𝑘 −𝑚 + 1}, ∆𝑘 = max
𝑗∈𝑊𝑘

∆𝑗 .

It is easy to show that sequence {∆𝑘} is non-increasing (see Lemma 1 and Corol-
lary 1). Our goal is to show that it is strictly decreasing and has zero limit.

Consider the state of game with 𝑘 + 1 objects in the pile. Due to (4)-(5),
𝒟𝑘+1 is a convex combination of values 𝒟𝑗 , 𝑗 ∈ 𝑊𝑘, taken with a negative
sign. If some of these values taken with nontrivial weights are less by absolute
value than their maximum possible value ∆𝑘, their convex combination is also
less than ∆𝑘 by absolute value and ∆𝑘+1 < ∆𝑘. Moreover, the gap can be
estimated from below. This suggests a way to prove that sequence {∆𝑘} is
strictly decreasing and tends to zero.

However, it is also possible that the convex combination for 𝒟𝑘+1 includes
(with nontrivial weights) only those 𝒟𝑗 ’s which absolute values are (almost)
equal to ∆𝑘. In this case, ∆𝑘+1 ≈ ∆𝑘 and no significant drop occurs. Such
cases should be considered separately.

Due to condition (2), the player is allowed to put nontrivial weight on any
move 𝑗. Due to rationality, the player tends to put larger weights on moves with
smaller 𝒟𝑗 ’s. The ‘worst case’ scenario is when all 𝒟𝑗 ’s, 𝑗 ∈ 𝑊𝑘, are positive
and (almost) equal to ∆𝑘. We show that in this case 𝒟𝑘−𝑚 should be negative
and significantly larger by absolute value than ∆𝑘, see details in Lemma 3. This
gives us a drop between ∆𝑘−𝑚 and ∆𝑘+1.
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Another case that needs special attention is when there are several negative
values of 𝒟𝑗 ≈ −∆𝑗 , 𝑗 ∈ 𝑊𝑘. This case is covered by Lemma 6. There we
prove that significant drops in ∆𝑘 occur at least for every additional 3𝑚 objects
in the pile, and the sequence {∆𝑘} can be estimated from above by decreasing
geometric progression. This finishes the poof.

2.2.2 Preliminary considerations

Lemma 1 (Monotonicity lemma). For every integer 𝑘 > 1, ∆𝑘 6 ∆𝑘−1.

Proof. It follows from (4)-(5) that

𝑝𝑘 = 1 −
𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖.

for some 𝜋 ∈ 𝑆. We have:

∆𝑘 = |𝒟𝑘| =

⃒⃒⃒⃒
𝑝𝑘 − 1

2

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒12 −

𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑖=1

𝜋𝑖

(︂
1

2
− 𝑝𝑘−𝑖

)︂⃒⃒⃒⃒
⃒ 6

𝑚∑︁
𝑖=1

𝜋𝑖

⃒⃒⃒⃒
1

2
− 𝑝𝑘−𝑖

⃒⃒⃒⃒
=

𝑚∑︁
𝑖=1

𝜋𝑖∆𝑘−𝑖 6
𝑚∑︁
𝑖=1

𝜋𝑖∆𝑘−1 = ∆𝑘−1. (6)

Corollary 1. For every integer 𝑘 > 1, ∆𝑘 6 ∆𝑘−1.

Proof. Indeed,

∆𝑘 = max{∆𝑘,∆𝑘−1, . . . ,∆𝑘−𝑚+1} 6 max{∆𝑘−1,∆𝑘−1, . . . ,∆𝑘−𝑚+1} =

max{max{∆𝑘−1, . . . ,∆𝑘−𝑚},∆𝑘−1, . . . ,∆𝑘−𝑚+1} =

max{∆𝑘−1, . . . ,∆𝑘−𝑚} = ∆𝑘−1. (7)

Lemma 2 (No long winning series). Assume that for some integer 𝑘 > 𝑚 and
for all 𝑗 ∈ 𝑊𝑘, 𝑝𝑗 >

1
2 . Then

𝑝𝑘+1 <
1

2
(8)

and

𝑝𝑘−𝑚 6
1

2
. (9)

Proof. First, let us prove (8). Indeed, for some 𝜋 ∈ 𝐾,

𝑝𝑘+1 = 1 −
𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖+1 < 1 −
𝑚∑︁
𝑖=1

𝜋𝑖
1

2
= 1 − 1

2
=

1

2
.

Now prove (9) by contradiction. Assume 𝑝𝑘−𝑚 > 1
2 . Then one can apply (8)

with 𝑘 decreased by 1 and prove that 𝑝𝑘 have to be less than 1
2 . Contradiction.
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2.2.3 Worst case analysis

Lemma 3. Assume that for some κ ∈ (0, 1), for some integer 𝑘 > 1 and for
all 𝑗 ∈ 𝑊𝑘 the following inequality holds:

𝑝𝑗 >
1

2
+ (1 − κ)∆𝑘+1. (10)

Then the following inequality holds:

∆𝑘+1 6
𝜂

(2 − 𝜂)(1 − κ)
∆𝑘−𝑚. (11)

Proof. First note that due to Lemma 2, 𝑝𝑘−𝑚 6 1
2 and therefore 𝑝𝑘−𝑚 = 1

2 −
∆𝑘−𝑚. Now consider strategy 𝜋 = (𝜋1, . . . , 𝜋𝑚) ∈ 𝐾 that allows the player
facing 𝑘 object to reach the winning probability of 𝑝𝑘. It follows from definition
that

𝑝𝑘 = 1 −

(︃
𝜋𝑚

(︂
1

2
− ∆𝑘−𝑚

)︂
+

𝑚−1∑︁
𝑖=1

𝑝𝑘−𝑖𝜋𝑖

)︃
. (12)

Then,

𝜋𝑚∆𝑘−𝑚 = 𝑝𝑘 − 1 +
𝜋𝑚

2
+

𝑚−1∑︁
𝑖=1

𝑝𝑘−𝑖𝜋𝑖 >

1

2
+ (1 − κ)∆𝑘+1 − 1 +

𝜋𝑚

2
+ (1 − 𝜋𝑚)

(︂
1

2
+ (1 − κ)∆𝑘+1

)︂
, (13)

where the inequality follows from the lemma assumption (10). Simplifying the
right-hand side of inequality, we get:

𝜋𝑚∆𝑘−𝑚 > ∆𝑘+1(1 − κ)(2 − 𝜋𝑚),

or

∆𝑘−𝑚 > (1 − κ)
2 − 𝜋𝑚

𝜋𝑚
∆𝑘+1 > (1 − κ)

2 − 𝜂

𝜂
∆𝑘+1 (14)

(from definition of 𝜂 and Theorem assumption (see (1)), it follows that 𝜋𝑚 6
𝜂 < 1). Then (11) follows from (14).

2.2.4 Drop down for losing positions

In this part we show that for every losing position (i.e. position with winning
probability less than 1/2), there is a ‘drop down’ in the value of ∆𝑘.

Lemma 4. There exists 𝛿 < 1 such that the following holds: if 𝑝𝑘+1 < 1/2 for
some 𝑘, then

∆𝑘+1 6 𝛿∆𝑘−𝑚. (15)

We need the following lemma for the proof.
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Lemma 5 (Corridor lemma). Assume 𝑝𝑘+1 < 1/2. Then

max
𝑖∈𝑊𝑘

(︂
𝑝𝑖 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
>

𝜈

1 − 𝜈
max
𝑖∈𝑊𝑘

(︂
1

2
+ ∆𝑘+1 − 𝑝𝑖

)︂
. (16)

The proof of Lemma 5 is rather technical. It can be found in Section 2.2.6.

Proof of Lemma 4. Fix arbitrary 𝜏 such that

0 < 𝜏 <
𝜈

1 − 𝜈

2 − 2𝜂

2 − 𝜂
. (17)

Such 𝜏 exists since 𝜈 ∈ (0, 1) and 𝜂 ∈ (0, 1). We show that

𝛿 := max

{︂
𝜂

2 − 𝜂

𝜈

𝜈 − 𝜏 + 𝜈𝜏
,

1

1 + 𝜏

}︂
satisfy (15). Due to (17), 0 < 𝛿 < 1.

Consider separately two cases.

Case 1. For all 𝑗 ∈ 𝑊𝑘

𝑝𝑗 −
1

2
6 (1 + 𝜏)∆𝑘+1. (18)

This inequality can be rewritten as

𝑝𝑗 −
(︂

1

2
+ ∆𝑘+1

)︂
6 𝜏∆𝑘+1 (19)

Since the latter inequality is true for any 𝑗 ∈ 𝑊𝑘, we obtain:

max
𝑗∈𝑊𝑘

(︂
𝑝𝑗 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
6 𝜏∆𝑘+1 (20)

According to Corridor lemma 5,

max
𝑗∈𝑊𝑘

(︂
𝑝𝑗 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
>

𝜈

1 − 𝜈
max
𝑗∈𝑊𝑘

(︂
1

2
+ ∆𝑘+1 − 𝑝𝑗

)︂
. (21)

From (20) and (21) it follows that

max
𝑗∈𝑊𝑘

(︂
1

2
+ ∆𝑘+1 − 𝑝𝑗

)︂
6

1 − 𝜈

𝜈
𝜏∆𝑘+1. (22)

Hence, for any 𝑗 ∈ 𝑊𝑘 it is true that

1

2
+ ∆𝑘+1 − 𝑝𝑗 6

1 − 𝜈

𝜈
𝜏∆𝑘+1, (23)

or

𝑝𝑗 >
1

2
+

(︂
1 − 1 − 𝜈

𝜈
𝜏

)︂
∆𝑘+1. (24)
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Applying Lemma 3 with κ = 1−𝜈
𝜈 𝜏 , we obtain that

∆𝑘+1 6
𝜂

(2 − 𝜂)
(︀
1 − 1−𝜈

𝜈 𝜏
)︀∆𝑘−𝑚, (25)

or
∆𝑘+1 6

𝜂

2 − 𝜂

𝜈

𝜈 − 𝜏 + 𝜈𝜏
∆𝑘−𝑚 6 𝛿∆𝑘−𝑚 6 𝛿∆𝑘−𝑚. (26)

Case 2. There exists 𝑖 ∈ 𝑊𝑘 such that

𝑝𝑖 −
1

2
> (1 + 𝜏)∆𝑘+1. (27)

Then,

∆𝑘+1 <
1

1 + 𝜏

(︂
𝑝𝑖 −

1

2

)︂
6 𝛿∆𝑖 6 𝛿∆𝑖 6 𝛿∆𝑘−𝑚. (28)

The last inequality is due to Corollary 1 and the fact that 𝑖 > 𝑘 −𝑚.

2.2.5 Drop down for any positions

Lemma 6. For 𝛿 from Lemma 4 and for all integer 𝑘 > 2𝑚,

∆𝑘+1 6 𝛿∆𝑘−2𝑚. (29)

To prove Lemma 6 we have to introduce new notation and prove auxiliary
proposition. Let

∆−
𝑘 = max

{︂
0,

1

2
− 𝑝𝑘

}︂
, ∆+

𝑘 = max

{︂
0, 𝑝𝑘 − 1

2

}︂
,

∆
−
𝑘 = max

𝑖∈𝑊𝑘

∆−
𝑖 , ∆

+

𝑘 = max
𝑖∈𝑊𝑘

∆+
𝑖 .

Obviously, ∆𝑘 = max{∆
−
𝑘 ,∆

+

𝑘 }.

Proposition 1. For any natural 𝑘 the following holds:

∆+
𝑘+1 6 ∆

−
𝑘 .

Proof. If 𝑝𝑘+1 6 1/2, then ∆+
𝑘+1 = 0 6 ∆

−
𝑘 by definition of ∆

−
𝑘 . Consider case

𝑝𝑘+1 > 1/2. Then for some 𝜋 ∈ 𝐾,

𝑝𝑘+1 −
1

2
=

1

2
−

𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖+1 =

𝑚∑︁
𝑖=1

𝜋𝑖

(︂
1

2
− 𝑝𝑘−𝑖+1

)︂

6
𝑚∑︁

𝑖=1,
𝑝𝑘−𝑖+161/2

𝜋𝑖

(︂
1

2
− 𝑝𝑘−𝑖+1

)︂
6

𝑚∑︁
𝑖=1,

𝑝𝑘−𝑖+161/2

𝜋𝑖∆̄
−
𝑘

6
𝑚∑︁
𝑖=1

𝜋𝑖∆̄
−
𝑘 = ∆̄−

𝑘 . (30)
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Now we can prove Lemma 6.

Proof of Lemma 6. If 𝑝𝑘+1 < 1/2, Lemma 4 implies:

∆𝑘+1 6 𝛿∆𝑘−𝑚 6 𝛿∆𝑘−2𝑚

and lemma is proved. (The last inequality is due to Corollary 1.)

Now assume 𝑝𝑘+1 > 1/2. In this case ∆𝑘+1 = ∆+
𝑘+1 6 ∆

−
𝑘 due to Proposi-

tion 1. For all 𝑗 ∈ 𝑊𝑘 such that 𝑝𝑗 < 1/2, Lemma 4 implies:

∆−
𝑗 = ∆𝑗 6 𝛿∆𝑗−1−𝑚 6 𝛿∆𝑘−2𝑚.

Again, the last inequality is due to Corollary 1 since 𝑗 > 𝑘 −𝑚 + 1. Therefore,

∆
−
𝑘 6 𝛿∆𝑘−2𝑚. This finishes proof of Lemma 6.

Corollary 2. For all integer 𝑘 > 3𝑚, ∆𝑘 6 𝛿∆𝑘−3𝑚.

Proof. From definition of ∆𝑘, Lemma 6 and Corollary 1 it follows that

∆𝑘 = max(∆𝑘, . . . ,∆𝑘−𝑚+1) 6 𝛿 max(∆𝑘−2𝑚−1, . . . ,∆𝑘−3𝑚) = 𝛿∆𝑘−3𝑚.

Now we are ready to finish the proof of the main result. Let 𝑘𝑁 = 1 + 3𝑚𝑁
for arbitrary integer 𝑁 . Inductive application of Corollary 2 implies:

∆𝑘𝑁
6 𝛿𝑁∆1 =

1

2
𝛿𝑁 → 0 as 𝑁 → ∞.

Due to monotonicity of ∆𝑘, this implies:

lim
𝑘→∞

∆𝑘 → 0.

By definition of ∆𝑘, ∆𝑘 6 ∆𝑘 and therefore:

lim
𝑘→∞

∆𝑘 → 0

which is equivalent to (3). Theorem 1 is proved modulo Lemma 5.

2.2.6 Technical considerations

In this section we prove Lemma 5.

Proof. Take any 𝜋 = (𝜋1, . . . , 𝜋𝑚) ∈ 𝐾. Since the players are rational (5),

𝑝𝑘+1 > 1 −
𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖+1,

or
𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖+1 > 1 − 𝑝𝑘+1 = 1 −
(︂

1

2
− ∆𝑘+1

)︂
=

1

2
+ ∆𝑘+1.
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Then, the following inequality holds:

𝑚∑︁
𝑖=1

𝜋𝑖

(︂
𝑝𝑘−𝑖+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
=

𝑚∑︁
𝑖=1

𝜋𝑖𝑝𝑘−𝑖+1 −
𝑚∑︁
𝑖=1

𝜋𝑖

(︂
1

2
+ ∆𝑘+1

)︂
>(︂

1

2
+ ∆𝑘+1

)︂
−
(︂

1

2
+ ∆𝑘+1

)︂
= 0. (31)

Now take arbitrary

𝑗 ∈ argmax
16𝑖6𝑚

(︂
1

2
+ ∆𝑘+1 − 𝑝𝑘−𝑖+1

)︂
. (32)

By definition of 𝜈 and theorem assumption 𝜈 > 0 (see (2)), there exists a strategŷ︀𝜋 = (̂︀𝜋1, . . . , ̂︀𝜋𝑚) ∈ 𝐾 such that ̂︀𝜋𝑗 > 𝜈 > 0 (33)

From (31), it follows that∑︁
16𝑖6𝑚
𝑖 ̸=𝑗

̂︀𝜋𝑖

(︂
𝑝𝑘−𝑖+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
+ ̂︀𝜋𝑗

(︂
𝑝𝑘−𝑗+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
> 0.

By rearranging the terms, we get

− ̂︀𝜋𝑗

(︂
𝑝𝑘−𝑗+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
6

∑︁
16𝑖6𝑚
𝑖 ̸=𝑗

̂︀𝜋𝑖

(︂
𝑝𝑘−𝑖+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
6

∑︁
16𝑖6𝑚
𝑖 ̸=𝑗

̂︀𝜋𝑖 max
16𝑡6𝑚

(︂
𝑝𝑘−𝑡+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
=

⎛⎜⎜⎝ ∑︁
16𝑖6𝑚
�̸�=𝑗

̂︀𝜋𝑖

⎞⎟⎟⎠ · max
16𝑡6𝑚

(︂
𝑝𝑘−𝑡+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
=

(1 − ̂︀𝜋𝑗) max
16𝑡6𝑚

(︂
𝑝𝑘−𝑡+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
, (34)

where the last equality follows from the fact that
𝑚∑︁
𝑖=1

̂︀𝜋𝑖 = 1.

From (34) we derive the lower estimate for the left-hand side of the Corridor
lemma inequality (16):

max
16𝑡6𝑚

(︂
𝑝𝑘−𝑡+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
> − ̂︀𝜋𝑗

1 − ̂︀𝜋𝑗

(︂
𝑝𝑘−𝑗+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
=

̂︀𝜋𝑗

1 − ̂︀𝜋𝑗

(︂
1

2
+ ∆𝑘+1 − 𝑝𝑘−𝑗+1

)︂
. (35)
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Note that
1

2
+ ∆𝑘+1 − 𝑝𝑘−𝑗+1 > 0.

Indeed, otherwise, from (32) it would follow that for all 𝑖 = 1, . . . ,𝑚

1

2
+ ∆𝑘+1 − 𝑝𝑘−𝑖+1 < 0

or

𝑝𝑘−𝑖+1 >
1

2
+ ∆𝑘+1.

However, this is impossible because any strategy would lead to 𝑝𝑘+1 < 1
2 −∆𝑘+1

whereas 𝑝𝑘+1 = 1
2 − ∆𝑘+1 by definition.

Then, applying (33) to (35), we obtain

max
16𝑡6𝑚

(︂
𝑝𝑘−𝑡+1 −

(︂
1

2
+ ∆𝑘+1

)︂)︂
>

𝜈

1 − 𝜈

(︂(︂
1

2
+ ∆𝑘+1

)︂
− 𝑝𝑘−𝑗+1

)︂
=

𝜈

1 − 𝜈
max

16𝑡6𝑚

(︂
1

2
+ ∆𝑘+1 − 𝑝𝑘−𝑡+1

)︂
. (36)

The last equality follows from (32). This finished the proof of the Lemma and
the Main Result (Theorem 1).
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