
Baltic J.  Modern Computing, Vol. 12 (2024), No. 1, 1-3 

New Storage Devices and the Future of Database 
Management 

S.D. Kuznetsov <kuzloc@ispras.ru> 

Ivannikov Institute for System Programming of the RAS, 
25 Alexander Solzhenitsyn Str., Moscow, 109004, Russia. 

Lomonosov Moscow State University, 
GSP-1, Leninskie Gory, Moscow, 119991, Russia. 

Moscow Institute of Physics and Technology (State University), 
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia 
National Research University Higher School of Economics (HSE) 

11 Myasnitskaya Str., Moscow, 101000, Russia 

kuzloc@ispras.ru 

Abstract. At the beginning of the paper, it is demonstrated that the technology of the most widely 
used SQL-oriented database management systems (DBMS) is inextricably linked with the 
technology of hard disk drives with movable heads (HDD). Features of HDD affect the data 
structures and algorithms for performing operations, methods of managing the buffer pool of the 
DBMS, transaction management, query optimization, etc. At present, new types of data storage 
hardware have appeared: block solid-state drives (SSD) and storage-class memory (SCM). SSD 
characteristics made it expedient to develop a DBMS in terms of their exclusive use, but so far, no 
such DBMS has been created, and SSDs are used simply instead of HDDs in DBMSs that do not 
take into account their features. The availability of SCM enables radical simplification of the 
architecture of the database systems and significantly improve their performance. To do this, we 
need to rethink many of the ideas used in disk-based databases. 

Keywords. SQL-oriented DBMS; hard disk drive with movable heads; cost-based query 
optimization; in-memory DBMS; flash-based solid-state drive; non-volatile main memory 

1. Introduction 

The technology of the most common SQL-oriented (traditionally called «relational») 
database management systems (DBMS) is inextricably linked with the technology of 
storage devices on magnetic disks with movable heads (Hard Disk Drive, HDD). The first 
HDDs were released by IBM in 1956. HDD technology overcame the shortcomings of the 
early data storage devices – magnetic tape data storage (purely sequential access) and 
magnetic drums memory (limited capacity), providing capacity less than for magnetic 
tapes, but much larger than magnetic drums, and the speed of arbitrary data exchanges 
between the main and external memory smaller than magnetic drums, but much bigger 
than magnetic tapes. If we add to this the moderate cost of HDD, then these devices were 
quite suitable for storing databases. 
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The technology of the DBMS was influenced by the technological features of the 
HDD. First, the HDD provides external memory, input/output (i/o) with which is usually 
conducted in blocks of bytes of the same size. This feature leads, at a minimum, to two 
architectural solutions. (1) To store databases and speed up the processing of queries, data 
structures and algorithms should be chosen, for which the block nature of external memory 
is natural. In particular, the most common data structures for indexes are varieties of B-
trees (Bayer and McCreight, 1972). (2) To balance the low speed of arbitrary i/o with 
external memory and relatively high speed of data processing in the main memory, the 
DBMS performs its own buffering (caching) of the external database memory blocks in 
the main memory (Hellerstein and Stonebraker, 2005), (Kuznetsov, 2012a). 

Secondly, when performing i/o with an external storage of HDD, the disk hardware 
performs three basic operations: moving the heads to the required cylinder of the disk 
packet (seek), rotating the disk packet to the required angle distance (latency), reading or 
writing data while transferring it to or from the main memory (data transfer). When 
executing arbitrary i/o, the execution time of the first two operations is measured in 
milliseconds, which means that the time of reading an arbitrary data block from external 
memory or its writing is longer by several decimal orders than the corresponding rewriting 
cycle in the main memory. Therefore, when executing any SQL-level operation on the 
database, the decisive overhead is the amount of required i/o with external memory. This 
observation is the basis of cost-based query optimization based on pioneer work (Selinger 
et al., 1979) and is used in all mature SQL-oriented DBMS. 

The above remarks are enough to be convinced of the deep dependence of the most 
common technology of SQL-oriented DBMSs on HDD features. Orientation to the use of 
these storage devices affects both the overall architecture of the DBMS, and the choice of 
the main data structures and algorithms. 

In the late 1970s - 1980s, attempts were made to create specialized hardware for use 
with DBMS, including data storage hardware with fixed-head disks (head-per-track disks). 
Moreover, there were prototypes of devices with special microprocessors built into the 
magnetic heads, filtering data "on the fly" when reading from the disk (processor-per-track 
systems and processor-per-head systems) (DeWitt and Hawthorn, 1981). However, by the 
beginning of the 1990s, it became clear that this approach was a dead end (DeWitt and 
Gray. 1992), and for the next two decades the technology of DBMS was based mainly on 
storage devices of HDD category. 

In the late 1980s - 1990s, an alternative database technology appeared and developed 
with the storage of databases in conventional volatile memory (in-memory DBMS) 
(DeWitt et al., 1984). In such DBMS data structures and algorithms for performing 
operations differ from those used in disk DBMSs. In particular, when choosing data 
structures, one must take into account the presence of cache memory in processors 
(Shaporenkov, 2006). The principles of query optimization should also differ, although 
there is almost no information about query optimizers in in-memory DBMS in the 
available literature (so it seems that these principles do not exist). 

Probably the most mature representatives of this category of DBMS are TimesTen 
(Lahiri et al., 2013), existing since 1996 and acquired by Oracle in 2005, and solidDB 
(Lindström et al., 2013), existing since 1992 and acquired by IBM in 2007. These systems 
support very fast execution of queries to databases (since the database and all indexes are 
entirely stored in the main memory), however, for performing database modification 
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operations, external memory accesses are required, so that the speed of such operations 
does not differ from the case when database is stored on disk. 

A special case of in-memory DBMS is VoltDB (Stonebraker and Weisberg, 2013), 
which is a transactional massively parallel system without shared resources. In this system, 
the durability of transactions is supported by replicating data in multiple nodes, and 
external memory is not used at all. For details of the VoltDB organization (and its 
prototype H-Store), see (Kuznetsov, 2011). 

According to rumors, the TimesTen is moving in a similar direction. These rumors are 
partially confirmed by the presence in the Oracle TimesTen In-Memory Database family 
of the High Availability option (Cheung et al., 2013) provided by replication in a clustered 
environment. Interestingly, although there are no similar rumors about solidDB at the time, 
the high availability option is also supported for this system (Salkosuo, 2010). 

It should be noted that despite the presence of a number of advantages of in-memory 
DBMS over disk DBMSs, at present there is practically no competition between them. 
This, first of all, is due to natural limitations on the size of databases inherent in in-memory 
DBMS. 

In the first decades of the 21st century, significant changes occurred (and continue to 
occur) in the technology of hardware storage. So-called block solid-state drives (Solid-
State Drive, SSD), based on flash memory technology and relatively quickly catching up 
with HDD in terms of maximum capacity (up to 60 terabytes in 2016), surpassed them in 
most other measures (losing mainly only in price). In the next section, we will briefly 
discuss the opportunities of using SSD in DBMS architecture, the components of DBMS 
that should be maximally affected by the transition from HDD to SSD, as well as the real 
state of affairs in DBMS technology 10 years after the SSD on flash memory became 
really available. 

In recent years, the prospect of the emergence of nonvolatile random access memory 
(NVRAM, also called, probably more expressively, Storage Class Memory, SCM) on the 
market became real. This memory allows byte addressing, directly accessible to processor 
instructions, but it preserves the contents after the power failure. 

Using SCM opens the way to building a database based on single-level memory. These 
databases can be much faster than disk-based ones while having a simpler organization. 
The third section of the article is devoted to the prospects of the appearance of such DBMS 
and existing problems. 

2. Flash-based Solid-State Disk Drives and DBMS Technology 

Like HDD, SSD is a block external storage device that saves data after turning off the 
power. The main differences between SSD and HDD are the following: 

 there are no mechanical components in the SSD, hence for any block the 
speed of i/o with the SSD is the same; 

 while the average exchange time with an arbitrary HDD block is about 10 
milliseconds for both reading and writing, the time for reading an arbitrary 
block in modern SSDs is about 20 microseconds (three decimal orders less 
than the HDD), and the writing time is about 200 microseconds (two decimal 
orders less than the HDD); 
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 while SSDs are more expensive than HDD (about 10 times in 2016), but the 
cost of HDD in terms of terabytes of supported memory has stabilized in 
recent years, and SSD is getting cheaper; 

 currently, SSDs are significantly less reliable than HDDs.  

2.1. SSD-oriented DBMS 

Only the last feature on the list can prevent the full-scale application of SSD in the DBMS 
in principle. It's unclear whether SSD developers will be able to get rid of this defect, but 
the first two characteristics seem so attractive that 10 years ago I tried (without much 
success) to persuade my students to study DBMS architecture in which SSDs are used to 
store databases. 

It is clear that the features of SSD could most of all affect the management of external 
memory, the management of main memory buffers and the query optimizer. In an existing 
disk DBMSs, since when executing queries it is often necessary to perform a full scan of 
tables without using indexes, one tends to place blocks of one table on the disk to avoid 
large movement of the magnetic heads when moving from the current block to the next 
one. In a DBMS exclusively based on the use of SSD, blocks of one table can be placed 
in an external memory in an arbitrary manner. 

The time of writing a block to external SSD memory is decimal order more than the 
block reading time due to the need for preparation of the external memory sector before 
writing to it (Novotný et al., 2015). When managing the main memory buffers in a DBMS 
designed for the use of SSD, it makes sense to prepare in advance for writing an external 
memory sector and then, when pushing the changed image of a previously read external 
memory block from the buffer to external storage, write it not to the sector from which it 
was read, but to some sector already prepared for writing. 

But the allocation of external memory and the management of main memory buffers 
are almost trivial compared to query optimization. As it was noted in the introduction, 
modern cost-based optimizers are based on the assumption that arbitrary i/o with external 
memory is so slow that the cost of the query execution plan can be estimated by the number 
of i/o required, neglecting the time that will be required for processing the data. However, 
reading from external SSD memory is 1000 times faster than on using an HDD. Therefore, 
when going from HDD to SSD, this assumption would have to be subjected to a rigorous 
revision. 

It means that the direct transfer of estimates of the query execution plans from the 
HDD environment to the SSD environment can lead to disastrous results. Incorrect 
accounting of the time spent on exchanges with external memory and processing of data 
in the main memory can lead to the selection by the query optimizer of obviously 
suboptimal plans for query execution, which will lead to underutilization of the SSD 
potential. Of course, the queries will not be executed slower than with the HDD, but that 
is not enough to change the external memory management hardware. In other words, for 
effective use of SSD, query optimizers need to be significantly redesigned. 

Despite the attractiveness of the idea of replacing HDD by SSD in hardware support 
of DBMS, there are practically no projects (neither commercial nor research) for 
development of SSD-oriented DBMSs. I managed to find only the FlashyDB project, run 
at the German Reutlingen University (Web (a)). The following project objectives were 
announced: 
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 explore the impact of flash-based SSD on the architecture and performance 
of existing database systems, relational data warehouses, and column store 
systems; 

 develop algorithms and data structures that ensure optimal use of the 
characteristics of SSD based on flash memory in OLTP and OLAP scenarios; 

 implement a prototype system. 
The list of research directions covered in the project includes database system 

architectures, transaction processing, multiple user access management, recovery after 
different failures, buffer management, indexing, query optimization, data placement. As 
can be seen, the general focus of the project is consistent with the above considerations. 
Apparently, one of the first paper devoted to the FlashyDB project was (Petrov et al., 
2015). A complete list of published papers is available on the project website (Web (a)). 
As this list shows, the project has achieved significant results in far from all of the areas 
of research identified. 

Perhaps the lack of activity of researchers to build true SSD-oriented DBMS is due to 
the fact that until recently the maximum capacity of storage devices in flash memory was 
limited to one terabyte. However, the technology is developing rapidly, and as early as 
2016 Samsung introduced a 32 TB SSD and promises to bring its SSD capacity up to 100 
TB. Seagate showed a SSD with a capacity of 60 TB. I think this will "spur" the database 
community. 

2.2. Two-level SSD-based cache 

In the time when the capacity of SSD was relatively small, the idea of using SSD as part 
of a hierarchical two-level buffer in a traditional HDD-oriented DBMS was rather popular 
(Kuznetsov and Prokhorov, 2012). The essence of the idea is simple enough. If for some 
reason we want to continue to use HDD to store databases, but at the same time receive 
sufficient benefit from SSD use, why don’t we temporarily store some of the database 
blocks that can be probably needed in this moment of time in flash memory. 

To implement this idea, it is enough to change only one component of the traditional 
HDD-based DBMS – the main memory buffer manager. The buffer becomes two-level: 
the first-level cache is located in the main memory, and the second-level cache is in the 
flash-based SSD. The database blocks required to perform operations on the database are 
read from the HDD-based external memory to the buffer pages of the first-level cache. If 
there is a lack of memory in the first-level cache, some buffer page is replaced. If the 
content of chosen page changed after reading from external memory, then the page moves 
to the second-level cache (taking into account the notes on buffer managing from 
subsection 2.1). If there is not enough memory in the second-level cache, the replaced 
block is moved to the external HDD-based memory. 

In (Kuznetsov and Prokhorov, 2012), an overview of algorithms for management of 
such two-level buffer pool is given. All known algorithms are complex and resource 
intensive. I do not know of any DBMS in which these algorithms were applied. 
Nevertheless, it seems that the introduction of a two-level cache with SSD in a disk-
oriented DBMS is the cheapest way to modify a DBMS to improve its performance by 
using SSD technology. 

In this case, the most frequently used blocks of the database gradually fall into the 
cache of the second level, access to which then occurs with the speed of SSD. In addition, 
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since the flash memory is non-volatile, there is no need to push pages out of the SSD-
based memory into the HDD-based memory in any case except for lack of space. 

However, this approach does not eliminate the need to develop true SSD-oriented 
DBMSs, in which the storage system characteristics are taken into account in all 
components. 

2.3. Hybrid drives 

The easiest way to get some gain in DBMS performance from using SSD technology is to 
simply replace HDD hardware with SSD hardware without any DBMS changes. As I 
mentioned in subsection 2.1, database operations after this will not become slower, and 
most likely they will be executed on average faster. 

If there are large databases, to change the hardware of data storage will be quite 
expensive, and vague promises of a better life (at a qualitative level) can hardly encourage 
managers to allow such expenses. In hybrid devices of data storage on hard disks (solid-
state hybrid drive, SSHD) technologies SSD and HDD are jointly used. 

Within SSHD, SSD is used to cache the contents of HDD blocks, which are most often 
accessed. As a result, SSHD often runs at SSD speed at a cost close to the cost of HDD. It 
is not so expensive to try to improve DBMS performance due to the transition from using 
HDD to SSHD, although, of course, this solution does not rely on any technological 
arguments and remains risky. 

3. Storage-Class memory: prospects for DBMS 

At present, three technologies can provide real SCM solutions: Phase-Change Memory 
(PCRAM) (Raoux et al., 2008), Resistive Random-Access Memory (RRAM) (Strukov et 
al., 2008) and Magnetoresistive Random-Access Memory (MRAM) (Chi et al., 2016).  

PCRAM is based on the behavior of chalcogenide1, which on heating can "switch" 
between two states: crystalline and amorphous. The crystalline and amorphous states of 
the chalcogenide are fundamentally different in electrical resistance. An amorphous state 
with a high resistance is used to represent a binary 0, and a crystalline state with a low 
resistance level represents 1. 

The main idea of RRAM is that dielectrics, which in the normal state have very high 
resistance, after applying a sufficiently high voltage can form inside themselves 
conductive low-resistance wires, and in fact turn from a dielectric into a conductor. By 
applying the appropriate voltage levels, the conductive wires can be destroyed (and the 
material will again become a dielectric) and formed again (and the material will again 
become a conductor). There are several state switching effects. One of them requires one 
voltage polarity for switching operations from low to high resistance level (bit clearing 
operation), and the opposite polarity for switching from high to low resistance (bit setting 
operation). 

                                                           

1 Binary chemical compounds of chalcogenes (elements of the 16th group of the periodic system, 
which include oxygen, sulfur, selenium, tellurium, polonium and livermorium) with metals. 
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Data in the MRAM is stored in magnetic memory elements. Magnetic elements are 
formed of two ferromagnetic layers separated by a thin layer of dielectric. One of the 
layers is a permanent magnet magnetized in a certain direction, and the magnetization of 
the other layer changes under the action of an external field. The memory device is 
organized on the principle of a grid consisting of separate «cells», each of which contain 
a memory element and a transistor. The technology of recording information and reading 
is based on a change in the magnitude of the magnetic field. 

I will not dwell on which computer companies prefer this or that SCM technology. For 
a couple of years, various large companies have promised to start producing corresponding 
chips in the near future. Recently SSDs based on SCM with block exchanges (not on flash 
memory) have appeared on the market. I think that the corresponding RAM will appear 
no later than 2018. 

It is interesting that in 2011 Russian state corporation Rosnano signed an agreement 
with the French company Crocus on setting up in Russia «the production of medium and 
high density MRAM memory based on the 90 and 65 nm manufacturing processes» (Web 
(b)). For fairness, it should be noted that Samsung plans to begin mass production of such 
memory based on 28-nanometer technology (Lin and Shen, 2017). 

Nevertheless, the choice to manufacture MRAM memory in Russia seems to be 
justified, since the MRAM’s expected read and write time is about 20 ns (less than today's 
DRAM) with endurance commensurate with the endurance of DRAM and HDD, and read 
time of PCRAM and RRAM is several times larger (and writing is slower than reading), 
and the endurance is much smaller (Arulraj and Pavlo, 2017). 

Of course, before the appearance of different types of SCM in the market it is 
impossible to reliably compare their characteristics, but there is a hope that MRAM with 
the promised characteristics will indeed appear, and I rely on it further on in this article. 

It should also be noted that nonvolatile random access memory will be used in 
computers whose processors are equipped with fully volatile caches. To ensure that 
transactions can be committed in SCM, two commands have been added to the Intel 
processor instruction set – CLWB and CLFLUSH (Web (c)). Both commands are designed 
to push data from caches of all levels into SCM, but the first command saves the data 
being ejected from the cache, and the second command forces to read data from the SCM 
during next access. 

3.1. SQL-oriented DBMSs based on SCM 

At first glance, it would be prudent to use any available in-memory DBMS as the base for 
developing a database system that uses only SCM to store data (and doesn’t use any 
external storage at all). Indeed, the in-memory DBMS, like the SCM-based database 
system, stores the entire database in the main memory. This determines the choice of main 
data structures and algorithms for performing operations, and the design of the query 
optimizer. 

However, there is a fundamental difference between an in-memory DBMS and a 
DBMS based on SCM, which does not allow simple reuse of existing solutions: in-
memory DBMSs are designed to use traditional volatile main memory, and SCM-based 
DBMSs use non-volatile main memory. To support the durability of transactions in in-
memory DBMSs, external memory is used (HDD or SSD – is not important here), that is, 
as in disk DBMSs, a two-level memory hierarchy is used, the first level of which contains 



8  Kuznetsov 

 

the volatile main memory, and on the second – non-volatile external memory. Unlike disk 
DBMS, in this case the main memory stores the entire database (and does not serve as a 
cache), and the external memory serves to support transaction durability2. 

When developing a DBMS based on SCM, we are dealing with a fundamentally one-
level database storage environment with byte addressing available. In this case, generally 
speaking, we can completely abandon the block structure and start allocating memory (for 
all purposes related to database support) in portions of arbitrary size. It is worthwhile to 
think about whether this can be useful and, if so, reflect on the non-volatile main memory 
allocation by fragments of arbitrary size: 

 how to deal with external fragmentation?  
 is data shuffling permissible?  
 is it worth using some kind of buddy system (for example, Fibonacci buddy 

system (Aho et al., 1983))? etc. 
It seems that, if there is no memory with block structure, there is also any no reason to 

use B-trees for organizing indexes3. Then new questions arise: 
 what is possible to use instead of B-trees?  
 is it worth to use some method of searching in  main memory based on trees 

(basically, binary trees are used in these methods) (Kuznetsov, 2003)?  
 whether is it better to use some hash-based search method (Kuznetsov, 2003)?  
 or is it better to look for or come up with something new? 

Transaction management should be deeply rethought. In particular, following 
questions should be resolved: 

 how to support transaction serialization in transactional systems?  
 should we use versioning algorithms and what should they be in this case?  
 is it worth saving on garbage collection in DBMS based on SCM, the need 

for which arises if we do not limit the number of versions of database objects?  
 how to manage logging in SCM?  
 do we need logical and physical logs?  
 what should be an elementary entry of the physical log? 

Finally, how to optimize queries? Query optimization should be fast and precise.  
 How to resolve this contradiction?  
 Should we continue to use cost-based optimization?  
 How to build cost formulas? 

There are a lot of questions, and all of them need to be answered correctly in order to 
obtain real benefits from the development of DBMS based on SCM. Unfortunately, 
although the need for a non-volatile main memory was noted back in 1987 by Michael 
Stonebraker during the development of Postgres (Stonebraker, 1987), currently there are 
practically no projects for full-scale development of SCM-based DBMS. This is in 
particular confirmed by the fact that at the SIGMOD conference in 2017 the tutorial "How 
to build a database management system in the main nonvolatile memory" (Arulraj and 

                                                           

2 As noted in Section 1, a special case is represented by the DBMS VoltDB that basically works in 
the shared nothing mode in a massively parallel environment. 
3 In general, it seems strange to use B-trees in an in-memory DBMS - after all, by its nature B-tree 
is a disk structure of memory 
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Pavlo, 2017) was presented by Joy Arulraj and Andrew Pavlo from the Carnegie Mellon 
University who are leaders of the Peloton project (Web (d)). 

The list of the main characteristics of the project includes native support for data 
storage technology based on the main nonvolatile memory. Unfortunately, as the name of 
the project shows, this project goal is not the main one. The main goal is the integration 
of artificial intelligence components to provide the possibility of autonomous (self) system 
optimizations depending on the current workload (Pavlo et al., 2017).  

Nevertheless, at present the project participants (Web (d)) seem to have the most 
extensive experience in developing DBMS based on SCM. It is absolutely necessary to 
start new projects, actively explore possible approaches, to hold special seminars and 
conferences to exchange ideas and experiences. 

To conclude this subsection it should be noted that potential advantages of SCM-based 
DBMS approach for transactional applications are obvious. The speed of processing 
transactions can be achieved almost equal the speed of main memory. This is a 
fundamentally new quality. As a hardware platform for SCM-based DBMSs computers 
are suitable whose processors have multi-core and / or multi-threaded organization, 
including powerful graphics accelerators. 

Unfortunately, it is hard to find a scenario, in which the use of SCM can provide 
significant advantages for analytical applications. It is a common vision that horizontally 
scalable analytical databases should be based on the use of massively parallel architectures 
and the principle of shared nothing (Kuznetsov, 2012b). Modern analytical databases are 
so large the database can completely place only in a cluster, whose nodes have very large 
storage capacities. The overhead of data transferring over the network can be unacceptable 
even with the use of disk memory. If SCM is used in the nodes, network overheads can 
negate all the benefits of SCM. 

3.2. SCM for object-oriented and XML-oriented DBMSs 

In the 21st century, object-oriented databases almost lost users. At the same time, various 
means of object-relational mapping (ORM) are actively used, which allow object-oriented 
applications in an object-like manner to interact with SQL-oriented databases (Neward, 
2006). In principle, it would be better to use object-oriented DBMS (OODBMS) for 
storage of objects, rather than ORM4. 

It seems that the prevalence of OODBMS was largely limited by the problem that is 
partly related to the object-oriented data model (Cattel and Barry, 2000). As widely 
known, one of the basic concepts of this data model is the Object Identifier (OID) that is 
automatically generated by the system when creating any object, uniquely distinguishes 
this object from all other objects of any object type, and serves as a kind of abstract pointer 
to the object. In particular, in the ODMG model, relationships between objects are formed 
with use of OIDs. 

When OODBMS uses block external memory to store databases, it is difficult to 
explicitly use ordinary pointers as OIDs. In addition, the problem of converting OIDs to 
regular pointers (swizzling) when moving objects from a database to an object-oriented 

                                                           

4 As (Kuznetsov, 2015) demonstrates, it is possible to use, with equal success, object capabilities 
of the SQL language itself, but this idea is not widely used. 
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environment of client applications has long been known (Kemper and Kossmann, 1995). 
If you base OODBMS on SCM, both problems seem to be greatly simplified, and the 
navigational nature of OODBMSs will not severely hamper its operation, since the costs 
of dereferencing OIDs can be reduced to almost zero. 

Likewise, the use of SCM can revive interest in XML-oriented DBMS, in which it is 
necessary to maintain a lot of links to support path expressions, etc., and to use more 
sophisticated storage schemes to ensure somewhat acceptable efficiency (Taranov, et al., 
2010). Obviously, with 64-bit addressing and a sufficient amount of basic non-volatile 
memory, XML-oriented DBMS can be dramatically simplified and accelerated. 

4. Conclusion 

As you can see, scenarios in which SCM can significantly improve the efficiency of 
DBMS and simplify their organization are more than enough. It is necessary to continue 
to analyze different branches of the discipline of data management, so as not to miss other 
favorable opportunities for SCM application. In particular, it would be very interesting to 
find ways to use SCM in analytical DBMS. And of course, a large number of research 
projects are required to find the right ways to develop a DBMS based on SCM. 

This paper is slightly modified English version of (Kuznetsov, 2017) presented at the 
APSSE'2017 International Conference. 
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