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We study the Landau levels (LLs) of a Weyl semimetal with two adjacent Weyl nodes. We consider different
orientations η = ∠(B,k0) of magnetic field B with respect to k0, the vector of Weyl node splitting. A magnetic
field facilitates the tunneling between the nodes, giving rise to a gap in the transverse energy of the zeroth LL.
We show how the spectrum is rearranged at different η and how this manifests itself in the change of behavior
of the differential magnetoconductance dG(B)/dB of a ballistic p-n junction. Unlike the single-cone model
where Klein tunneling reveals itself in positive dG(B)/dB, in the two-cone case, G(B) is nonmonotonic with a
maximum at Bc ∝ �0k

2
0/ ln(k0lE) for large k0lE , where lE = √

h̄v/|e|E, with E for the built-in electric field and
�0 for the magnetic flux quantum.
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I. INTRODUCTION

Since the discovery of time-reversal invariant topological
insulators (see Ref. [1] and references therein) the topolog-
ical properties of the electronic band structure of crystalline
materials have been enjoying a lot of attention. After Ref. [2]
indicated the possibility of a Weyl semimetal (WSM) state
for pyrochlore iridates, the quest for model Hamiltonians and
material candidates ensued [3–6].

The WSM state was first discovered in TaAs [7,8] and
TaP [9]. First-principles calculations [10,11] (confirmed by
later experiments) revealed that in both materials all Weyl
nodes form a set of closely positioned pairs of opposite
chirality in momentum space. Recently, active experimental
research [12–17] shifted from the initial band-structure study
to the surface and transport phenomena: A significant amount
of attention was devoted to magnetotransport, which was
addressed theoretically [18–21] and experimentally [22–25].

One of the manifestations of the gapless band structure
is Klein tunneling, which reveals itself in transport through
a p-n junction. The recent study in Ref. [20] was devoted
to the magnetoconductance of a p-n junction realized in
WSM. The authors showed that in the case of a longitudinally
aligned external magnetic field, B ‖ E, where E is a junction’s
built-in electric field, the differential magnetoconductance
dG(B)/dB is positive. This situation is opposite from the
ordinary semiconductor p-n junction [26–28].

The treatment of Ref. [20] was done in the approximation
of well-separated (in momentum space) Weyl nodes. Usually,
the influence of a pairwise [29] structure of WSM nodes on
transport phenomena is accounted for by the simple multipli-
cation of a single point contribution by the number of cones
in the spectrum. This approach, however, breaks down in
strong magnetic fields. When the cyclotron radius of a particle

Rc ∼ h̄ck0/|e|B with momentum k0 becomes of the order of
its coordinate uncertainty k−1

0 , internode coupling must be
taken into account. For example, in TaAs [8] the momentum
distance between the Weyl nodes in a pair is 2k0 = 0.0183 Å−1

and it happens at fields of order B � �0k
2
0 � 17 T. Indeed,

such field-induced tunneling between two nodes in a pair has
already been observed experimentally [30]. Since the distance
between the pairs of Weyl nodes is usually much larger than
the internode distance inside a pair, we consider the nodes to be
pairwise. A generic low-energy Hamiltonian for such a system
was derived in Ref. [31],

H = � + h̄2

2m

(
k̂2
x − k2

0

)
σx + h̄v(k̂yσy + k̂zσz), (1)

where � is the Weyl node energy measured from the chemical
potential and v stands for the Fermi velocity. In what follows,
we drop out the energy offset � (it only matters in the
estimation of a heterojunction’s built-in potential [20]).

The problem of field-induced internode tunneling was
addressed in a semiclassical approximation [32]. Recently,
the same problem was analyzed numerically for a magnetic
field perpendicular to the node splitting [30,33], and the
angular dependence has been studied within the ab initio
tight-binding model [34]. It was discovered that magnetically
induced tunneling opens a gap in a Landau level (LL) zeroth
mode.

In the framework of a model described by Hamiltonian
Eq. (1), our results are as follows. We present an analytical
theory of the spectrum of the LLs and its dependence on
angle η between the magnetic field B and k0. In particular,
we show that for η = π/2 the problem of LLs is reduced to the
supersymmetric quantum mechanics of a particle in a quadratic
superpotential. The lowest LL energy is indeed exponentially
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FIG. 1. Magnetoconductance G(B)
G(0) vs dimensionless magnetic

field ζ vB

cE
plotted from Eq. (18) with parameter ζk0lE = 2. The dashed

line represents the result of Ref. [20] and the black line depicts first
term of the sum (17).

close to zero and nonperturbative in the magnetic field,

ε0 = (h̄k0)2

m

√
B

πB0
exp

(
−2B0

3B

)
, B0 = ζ

�0k
2
0

π
, (2)

where ζ ≡ vx

vy
= h̄k0

mv
is the anisotropy parameter. The numer-

ically computed dependence of LLs on angle η between the
magnetic field B and k0 is shown in Fig. 3.

We have also studied the magnetoconductance of a WSM-
based ballistic p-n junction for E ‖ B ⊥ k0 and found that the
magnetoconductance becomes a nonmonotonic function of B

(see Fig. 1). We found the field corresponding to the maximum
of G(B) to be

Bc ∼ 2

3

B0

ln(ζk0lE)
, ζ k0lE 	 1, (3)

where lE = √
h̄v/|e|E is the built-in electric field length.

This Rapid Communication is organized as follows:
Section II explores the structure of LLs in the two-conical sys-
tem of Eq. (1), Sec. III is dedicated to the magnetoconductance
of a ballistic p-n junction realized in such a system, and the
conclusions are drawn in Sec. IV.

II. LANDAU LEVELS

We begin our analysis with the search for an energy
dispersion law in the presence of the magnetic field starting
from Hamiltonian (1). We orient the coordinates so that the x

axis points in the direction of the Weyl node separation k0. The
magnetic field B = B(cos η,0, sin η) is inclined at an angle η

with respect to the x axis (see the Supplemental Material [35]
for an illustration), so that the field is described by the potential
A = B(−y sin η,0,y cos η). At first, we solve an eigenvalue
problem in two limiting cases η = 0, π

2 analytically and then
provide numerical solutions for arbitrary angles.

Field parallel to node splitting. We start from the case η =
∠(B,k0) = 0. After the shift of the variable y 
→ y − kzl

2
B ,

where lB = √
h̄c/|e|B is the magnetic length, and the unitary

rotation ψ 
→ 1√
2
(1 + iσy)ψ , the Hamiltonian transforms to

H = h̄v

(
− h̄

2mv

(
k2
x − k2

0

)
yl−2

B − ∂y

yl−2
B + ∂y

h̄
2mv

(
k2
x − k2

0

)). (4)

FIG. 2. Landau levels for η = ∠(B,k0) = 0 plotted from Eq. (6).
The magnetic field is supposed to satisfy lBa < l2

E and electro-
chemical potentials from different sides of the junction are noted as
μ± = μ(±∞).

Eigenfunctions are expressed through the Hermite functions
ψosc

n (y) = (2nn!
√

πlB)−1/2
e−y2/2Hn(y) as

ψn
=0 =
(

c1
nψ

osc
|n|

(
yl−1

B

)
c2
nψ

osc
|n|−1

(
yl−1

B

)), ψ0 =
(

ψosc
0

(
yl−1

B

)
0

)
, (5)

where n ∈ Z and coefficients ci
n are determined as eigenvectors

of (4) with
√

2|n|/lB instead of yl−2
B ± ∂y . As a result, we find

εn
=0(kx) = h̄v sgn(n)

√√√√2|n|
l2
B

+
(

h̄
(
k2
x − k2

0

)
2mv

)2

,

ε0(kx) = − h̄2

2m

(
k2
x − k2

0

)
, n ∈ Z. (6)

We present the plot of LLs in Fig. 2. It is important to note that
the zeroth LL is independent of magnetic field. It leads to a
linear-in-B magnetoconductance G(B) for large B in such an
orientation (see Sec. III). A similar scheme of LLs was obtained
in Ref. [36] for η = 0 and an almost identical Hamiltonian.

Field perpendicular to node splitting. For the case η =
∠(B,k0) = π

2 , after the shift y 
→ y + kxl
2
B , the Hamiltonian

becomes

H = h̄v

(
kz Q

Q† −kz

)
, Q = W (y) − ip̂y . (7)

Hamiltonian (7) can be analyzed in terms of supersym-
metric quantum mechanics where the function W (y) =

h̄
2mv

(y2l−4
B − k2

0) plays the role of a superpotential. To find the
eigenvectors one may factorize the y-dependent part of the ψ

function as the solution of

Qχ2
n = −l−1

B εnχ
1
n

Q†χ1
n = −l−1

B εnχ
2
n

, ψn =
(

c1
nχ

1
|n|

(
y

lB

)
c2
nχ

2
|n|

(− y

lB

)). (8)

When χ1,2
n (y) is found, vectors cn can be determined from

Hcn = εncn with Q and Q+ replaced with −ε|n|. Transverse
energies then are given by

εn(kz) = h̄v sgn(n)

√
ε2
|n|
l2
B

+ k2
z , n = ±0,±1, . . . , (9)

where ±0 denotes the ground states for electrons and holes,
respectively, with the convention sgn(±0) = ±1.
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FIG. 3. Energy vs momentum along the magnetic field k ‖ B dependence (computed numerically) with parameters ζ = 1.6 and k0lB = 1.4
for different angles η = π/6, π/3, π/2. Material parameters are taken for TaAs, h̄2k2

0/2m � 12 meV, and the magnetic field is set to B � 34
T to make the gap visible at η = π/2.

We still have to solve the eigenproblem (8) to determine
εn. The spectrum of the problem can be found analytically for
k0lB 	 1. In the limit of k0 → +∞ with ζ fixed, the Weyl
cones become separated and the ψ function near each Weyl
point is given [20] by an appropriate combination of Hermite
functions ψosc

n (y) with εn = √
2ζn. To solve the present prob-

lem, we introduce a coupling constant g ≡ (4ζk2
0 l

2
B)

−1 � 1
and rescale y 
→ y/

√
ζ . Using Eq. (11) we write down the

corresponding Schrödinger equation,[
−∂2

y + g

(
y2 − 1

4g

)2

∓ 2
√

gy

]
χ1,2 = 2νχ1,2, (10)

where we denoted 2ν ≡ ε2
n/ζ . For g → 0 we have two in-

dependent harmonic oscillators with eigenvalues νn = � n
2 �,

n ∈ N0 (so that ν0 = 0, ν1 = ν2 = 1, ν3 = 2, etc.).
Let us show that at small g there are no perturbative

corrections to the ground-state energy of Eq. (10). To this end,
it is convenient to reconsider the original Eqs. (8) and decouple
them via

Q†Qχ1
n =

(
εn

lB

)2

χ1
n , QQ†χ2

n =
(

εn

lB

)2

χ2
n . (11)

Thus, we obtained Schrödinger equation (10) with a supersym-
metric potential [37]. One can thus try to construct an exact
ground state of Q†Q,

Qχ0(y) = 0 ⇔ χε=0 = exp

(
−y2

+
2

− √
g

y3
+
3

)
, (12)

where y+ = y − 1
2
√

g
is measured from the Weyl node.

This solution, although formally of zero energy, is not nor-
malizable. On the other hand, it can be expanded in powers of√

g to produce the nth-order perturbation theory result for (10),
implying that perturbatively ε

(n)
0 = 0. Non-normalizability of

this solution implies that there exist nonperturbative contri-
butions to the ground-state energy, since operator Q+Q is
semipositive.

Let us first discuss the zeroth level. In order to find a
nonperturbative correction, we resort to standard Wentzel-
Kramers-Brillouin (WKB) technique (see the Supplemental
Material [35] for details and a related discussion in Ref. [38])
and obtain for the zeroth level,

ε0 =
√

ζ

π
e−1/6g, (13)

to recover the ground-state energy (2). Result (2) is valid up to
g < 1

4 (i.e., for magnetic fields up to B0) with an error of less
than 3%. Higher levels are shifted by the anharmonicity of the
potential and splitted according to

ε2k − ε2k−1 =
√

ζ

π

(
2

g

)k
e−1/6g

k!
, k ∈ N+. (14)

In Eqs. (13) and (14) only the leading term in the semiclassical
expansion is retained.

Finally, let us consider intermediate values of angle η. We
numerically computed the LL dependence on the longitudinal
(along the magnetic field) momentum ε(k‖) (see Fig. 3). One
observes an interesting crossover from a field-independent
level at η = 0 [Eq. (6)] to a level, weakly depending on the
magnetic field [Eq. (9)].

For arbitrary η we define the effective gap as an energy of the
transversal motion at the Weyl node �eff ≡ ε0(k‖ = k0 cos η).
It vanishes at η = 0 and attains its maximal value at η = π/2.
The evolution of �eff with η is shown in Fig. 4.

III. MAGNETOCONDUCTANCE

We now evaluate the conductance in the presence of a
magnetic field perpendicular to the p-n junction. We will
make use of the Landauer formalism and solve the scattering
problem for electrons moving from conductance to a valence
band through the p-n junction.

For η = 0 in the transversal motion there exists a
field-independent mode [see Eq. (6)]. After substitution
ψ 
→ 1√

2
(1 + iσy)ψ and separation of variables ψ1,2(x,y) =

ψ1,2
n (y)φ1,2(x) with functions ψn given by (5), the scattering

FIG. 4. Effective gap �eff as a function of orientation η.
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problems reads[
h̄2

(
k̂2
x − k2

0

)
2m

σz + h̄v

lB

√
2nσx + U (x)

]
φ = εφ. (15)

The potential U (x) is determined by the dopant density deep
in the doping region. The relevant screening problem was
discussed in Ref. [20]. For numerical estimates, below we will
consider the case of moderate doping, εF � �, where εF is a
doping level [for �, see Eq. (1)].

The transmission coefficient for the zeroth level is B

independent and for a smooth potential is T0 ≈ 1 (the slight
suppression from unity is due to internode scattering induced
by the built-in electric field). After accounting for LL degener-
acy this results in a linear contribution to magnetoconductance,
G(B) ∝ (e2/h)(BS/�0)T0, lB � lE , where S stands for the
area of the junction. Thus, for η = 0 the presence of a second
nearby Weyl node does not change the magnetoconductance
qualitatively, as long as the built-in electric field does not
transfer particles between the nodes.

The situation is very different for the junction perpendicular
(η = π

2 ) to k0. Longitudinal (z) and transverse (x,y) variables
can be again separated in the Landau gauge A = (−By,0,0).
Substitution ψ1,2 = eikxxχ1,2

n (yl−1
B − kxlB)φ1,2(zl−1

E ) leads to
transverse equations which are the same as (8), and the
following scattering problem,

[(−i∂z)σz + (lE/ lB)εnσx + z]φ(z) = 0, (16)

where we linearized the potential U (z) = −eEz in the vicinity
of the crossing points. The problem is equivalent to the
Landau-Zener one [39] with the transmission coefficient T =
exp [−π (lE/ lB)2ε2

n].
Producing a summation over Landau levels,

G(B) = e2

h

S

2πl2
B

∑
εn

exp

[
−π

l2
E

l2
B

ε2
n

]
, (17)

where we set εn ≈ √
2ζn for n > 0 and use Eq. (13) for ε0, we

obtain the dependence G(B) depicted in Fig. 1,

G(B) = 2πG0b

[
exp

(−be− 4
3

a
b

) + exp(−πb)

2 sinh(πb)

]
, (18)

where we have introduced

G0 ≡ 2

ζ

e2

h

S

(2πlE)2
, a ≡ (ζk0lE)2, b ≡ ζ

l2
E

l2
B

. (19)

In the two-cone model magnetoconductance has a maximum
at the magnetic field given by Eq. (3), whose dependence is
pictured in Fig. 1.

To test the feasibility of the found results we take numerical
values for TaAs [8] and TaP [9,30] and estimate the critical
parameters. We suppose doping is weak enough to estimate
E � �2/(h̄v)3/2 according to Ref. [20].

TABLE I. Numerical values, taken from Ref. [8] for TaAs, and
Refs. [9,30] for TaP.

TaAs (W2) TaP (W1)

2k0 (Å−1) 0.0183 0.021
� (meV) 2 �2
ζ = vx/vy 1.65 1.6
lE (Å) 470 720
B0 (T) 9 11
Bc (T) 3 3.7

The numbers presented in Table I show that the situation
we consider is indeed possible in an experimental setup. As
Bc < B0, the effective coupling constant g corresponding to
the position of the maximum is indeed small and our WKB
calculation is valid for such fields.

IV. CONCLUSIONS

To conclude, we have studied the LL structure in WSM
analytically (η = 0,π/2) and numerically (0 < η < π/2). Our
analytical results are summarized in Eqs. (2) and (3) as well as
Fig. 3. We believe that the predicted gap in the LL spectrum
has already been observed in the experiment in Ref. [30].

We found that the tunneling between Weyl nodes leads to
the appearance of the characteristic field Bc [Eq. (3)] at which
the differential magnetoconductance changes its sign. We
believe the same feature would exist at intermediate angles, but
due to the absence of a separation of longitudinal and transver-
sal motion at 0 < η < π/2 in the two-cone approximation, we
were not able to study this problem in more detail.

In our treatment, we have completely discarded the influ-
ence of disorder and interaction. It means that the characteristic
traversal time through a p-n junction should be smaller than
the quasiparticle relaxation time. The transport relaxation time
in TaAs was estimated in, i.e., Ref. [40], τ = 7×10−13 s and
vF ≈ 0.5×106 m/s. Then the width of the p-n junction should
be less than ∼1 μm. We have also neglected the Zeeman
splitting which is negligible as long as the magnetic field is
smaller than the spin-orbit interaction scale which produces
the spin-orbit splitting of the quasiparticle bands. For TaAs the
corresponding magnetic field is estimated [41,42] to be around
50 T. Therefore there exists plenty of space for purely orbital
magnetic-induced tunneling in the framework of low-energy
Hamiltonian Eq. (1).

Overall, we are positive that the analysis undertaken helps
to shed some light on the structure of a realistic WSM
in moderate and strong magnetic fields, and hope that the
predicted behavior of magnetoconductance of p-n junctions
is going to be measured in future experiments.
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