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Abstract

Deep neural networks are typically trained by
optimizing a loss function with an SGD vari-
ant, in conjunction with a decaying learning
rate, until convergence. We show that simple
averaging of multiple points along the trajec-
tory of SGD, with a cyclical or constant learn-
ing rate, leads to better generalization than
conventional training. We also show that this
Stochastic Weight Averaging (SWA) procedure
finds much broader optima than SGD, and ap-
proximates the recent Fast Geometric Ensem-
bling (FGE) approach with a single model.
Using SWA we achieve notable improvement
in test accuracy over conventional SGD train-
ing on a range of state-of-the-art residual net-
works, PyramidNets, DenseNets, and Shake-
Shake networks on CIFAR-10, CIFAR-100,
and ImageNet. In short, SWA is extremely
easy to implement, improves generalization,
and has almost no computational overhead.

1 INTRODUCTION

With a better understanding of the loss surfaces for mul-
tilayer networks, we can accelerate the convergence, sta-
bility, and accuracy of training procedures in deep learn-
ing. Recent work [Garipov et al., 2018, Draxler et al.,
2018] shows that local optima found by SGD can be con-
nected by simple curves of near constant loss. Building
upon this insight, Garipov et al. [2018] also developed
Fast Geometric Ensembling (FGE) to sample multiple
nearby points in weight space to create high performing
ensembles in the time required to train a single DNN.

FGE uses a high frequency cyclical learning rate with
SGD to select networks to ensemble. In Figure 1 (left)

∗Equal contribution.

we see that the weights of the networks ensembled by
FGE are on the periphery of the most desirable solu-
tions. This observation suggests it is promising to aver-
age these points in weight space, and use a network with
these averaged weights, instead of forming an ensemble
by averaging the outputs of networks in model space. Al-
though the general idea of maintaining a running aver-
age of weights traversed by SGD dates back to Ruppert
[1988], this procedure is not typically used to train neural
networks. It is sometimes applied as an exponentially de-
caying running average in combination with a decaying
learning rate (where it is called an exponential moving
average), which smooths the trajectory of conventional
SGD but does not perform very differently. However, we
show that an equally weighted average of the points tra-
versed by SGD with a cyclical or constant learning rate,
which we refer to as Stochastic Weight Averaging (SWA),
has many surprising and promising features for training
deep neural networks, leading to a better understanding
of the geometry of their loss surfaces. Indeed, SWA with
cyclical or constant learning rates can be used as a drop-
in replacement for standard SGD training of multilayer
networks — but with improved generalization and essen-
tially no overhead. In particular:

• We show that SGD with cyclical [e.g., Loshchilov
and Hutter, 2017] and constant learning rates tra-
verses regions of weight space corresponding to
high-performing networks. We find that while these
models are moving around this optimal set they
never reach its central points. We show that we can
move into this more desirable space of points by av-
eraging the weights proposed over SGD iterations.

• While FGE ensembles [Garipov et al., 2018] can
be trained in the same time as a single model, test
predictions for an ensemble of k models requires k
times more computation. We show that SWA can
be interpreted as an approximation to FGE ensem-
bles but with the test-time, convenience, and inter-
pretability of a single model.
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Figure 1: Illustrations of SWA and SGD with a Preactivation ResNet-164 on CIFAR-1001. Left: test error surface
for three FGE samples and the corresponding SWA solution (averaging in weight space). Middle and Right: test
error and train loss surfaces showing the weights proposed by SGD (at convergence) and SWA, starting from the same
initialization of SGD after 125 training epochs.

• We demonstrate that SWA leads to solutions corre-
sponding to wider optima than SGD. Keskar et al.
[2017] and Hochreiter and Schmidhuber [1997]
conjecture that the width of the optima is critically
related to generalization. We illustrate that the loss
on the train is shifted with respect to the test er-
ror (Figure 1, middle and right panels, and sections
3, 4). We show that SGD generally converges to
a point near the boundary of the wide flat region
of optimal points. SWA on the other hand is able
to find a point centered in this region, often with
slightly worse train loss but with substantially bet-
ter test error.

• SWA achieves notable improvement for training
a broad range of architectures over several con-
sequential benchmarks. In particular, running
SWA for just 10 epochs on ImageNet we are
able to achieve 0.8% improvement for ResNet-
50 and DenseNet-161, and 0.6% improvement for
ResNet-150. We achieve improvement of over 1.3%
on CIFAR-100 and of over 0.4% on CIFAR-10
with Preactivation ResNet-164, VGG-16 and Wide
ResNet-28-10. We also achieve substantial im-
provement for the recent Shake-Shake Networks
and PyramidNets.

• SWA is extremely easy to implement and has vir-
tually no computational overhead compared to the
conventional training schemes.

• We provide our implementation of SWA at
https://github.com/timgaripov/swa.

2 RELATED WORK

This paper is fundamentally about better understanding
the geometry of loss surfaces and generalization in deep
learning. We follow the trajectory of weights traversed
by SGD, leading to new geometric insights and the in-
tuition that SWA will lead to better results than standard
training. Empirically, we make the discovery that SWA

notably improves training of many state-of-the-art deep
neural networks over a range of consequential bench-
marks, with essentially no overhead.

The procedures for training neural networks are con-
stantly being improved. New methods are being pro-
posed for architecture design, regularization and opti-
mization. The SWA approach is related to work in both
optimization and regularization.

In optimization, there is great interest in how different
types of local optima affect generalization in deep learn-
ing. Keskar et al. [2017] claim that SGD is more likely to
converge to broad local optima than batch gradient meth-
ods, which tend to converge to sharp optima. Moreover,
they argue that the broad optima found by SGD are more
likely to have good test performance, even if the training
loss is worse than for the sharp optima. On the other hand
Dinh et al. [2017] argue that all the known definitions of
sharpness are unsatisfactory and cannot on their own ex-
plain generalization. Chaudhari et al. [2017] propose the
Entropy-SGD method that explicitly forces optimization
towards wide valleys. They report that although the op-
tima found by Entropy-SGD are wider than those found
by conventional SGD, the generalization performance is
still comparable.

The SWA method is based on averaging multiple points
along the trajectory of SGD with cyclical or constant
learning rates. The general idea of maintaining a running
average of weights proposed by SGD was first consid-
ered in convex optimization by Ruppert [1988] and later
by Polyak and Juditsky [1992]. However, this procedure
is not typically used to train neural networks. Practi-

1 Suppose we have three weight vectors w1, w2, w3. We set
u = (w2−w1), v = (w3−w1)−〈w3− w1, w2− w1〉/‖w2−
w1‖2 · (w2 − w1). Then the normalized vectors û = u/‖u‖,
v̂ = v/‖v‖ form an orthonormal basis in the plane contain-
ing w1, w2, w3. To visualize the loss in this plane, we define
a Cartesian grid in the basis û, v̂ and evaluate the networks
corresponding to each of the points in the grid. A point P
with coordinates (x, y) in the plane would then be given by
P = w1 + x · û+ y · v̂.

https://github.com/timgaripov/swa


tioners instead sometimes use an exponentially decay-
ing running average of the weights found by SGD with
a decaying learning rate, which smooths the trajectory of
SGD but performs comparably.

SWA is making use of multiple samples gathered through
exploration of the set of points corresponding to high per-
forming networks. To enforce exploration we run SGD
with constant or cyclical learning rates. Mandt et al.
[2017] show that under several simplifying assumptions
running SGD with a constant learning rate is equivalent
to sampling from a Gaussian distribution centered at the
minimum of the loss, and the covariance of this Gaussian
is controlled by the learning rate. Following this expla-
nation from [Mandt et al., 2017], we can interpret points
proposed by SGD as being constrained to the surface of
a sphere, since they come from a high dimensional Gaus-
sian distribution. SWA effectively allows us to go inside
the sphere to find higher density solutions.

In a procedure called Fast Geometric Ensembling (FGE),
Garipov et al. [2018] showed that using a cyclical learn-
ing rate it is possible to gather models that are spatially
close to each other but produce diverse predictions. They
used the gathered models to train ensembles with no
computational overhead compared to training a single
DNN model. In recent work Neklyudov et al. [2018]
also discuss an efficient approach for model averaging
of Bayesian neural networks. SWA was inspired by fol-
lowing the trajectories of FGE proposals, in order to find
a single model that would approximate an FGE ensem-
ble, but provide greater interpretability, convenience, and
test-time scalability.

Dropout [Srivastava et al., 2014] is an extremely popu-
lar approach to regularizing DNNs. Across each mini-
batch used for SGD, a different architecture is created
by randomly dropping out neurons. The authors make
analogies between dropout, ensembling, and Bayesian
model averaging. At test time, an ensemble approach
is proposed, but then approximated with similar results
by multiplying each connection by the dropout rate. At a
high level, SWA and Dropout are both at once regulariz-
ers and training procedures, motivated to approximate an
ensemble. Each approach implements these high level
ideas quite differently, and as we show in our experi-
ments, can be combined for improved performance.

3 STOCHASTIC WEIGHT AVERAGING

We present Stochastic Weight Averaging (SWA) and an-
alyze its properties. In section 3.1, we consider trajec-
tories of SGD with a constant and cyclical learning rate,
which helps understand the geometry of SGD training
for neural networks, and motivates the SWA procedure.
Then in section 3.2 we present the SWA algorithm in

detail, in section 3.3 we derive its complexity, and in
section 3.4 we analyze the width of optima found by
SWA versus conventional SGD training. In section 3.5
we then examine the relationship between SWA and the
recently proposed Fast Geometric Ensembling [Garipov
et al., 2018]. Finally, in section 3.6 we consider SWA
from the perspective of stochastic convex optimization.

We note the name SWA has two meanings: on the one
hand, it is an average of SGD weights. On the other,
with a cyclical or constant learning rate, SGD proposals
are approximately sampling from the loss surface of the
DNN, leading to stochastic weights.

3.1 ANALYSIS OF SGD TRAJECTORIES

SWA is based on averaging the samples proposed by
SGD using a learning rate schedule that allows explo-
ration of the region of weight space corresponding to
high-performing networks. In particular we consider
cyclical and constant learning rate schedules.

The cyclical learning rate schedule that we adopt is in-
spired by Garipov et al. [2018] and Smith and Topin
[2017]. In each cycle we linearly decrease the learning
rate from α1 to α2. The formula for the learning rate at
iteration i is given by

α(i) = (1− t(i))α1 + t(i)α2,

t(i) =
1

c
(mod(i− 1, c) + 1) .

The base learning rates α1 ≥ α2 and the cycle length c
are the hyper-parameters of the method. Here by itera-
tion we assume the processing of one batch of data. Fig-
ure 2 illustrates the cyclical learning rate schedule and
the test error of the corresponding points. Note that un-
like the cyclical learning rate schedule of Garipov et al.
[2018] and Smith and Topin [2017], here we propose to
use a discontinuous schedule that jumps directly from
the minimum to maximum learning rates, and does not
steadily increase the learning rate as part of the cycle.
We use this more abrupt cycle because for our purposes
exploration is more important than the accuracy of indi-
vidual proposals. For even greater exploration, we also
consider constant learning rates α(i) = α1.

We run SGD with cyclical and constant learning rate
schedules starting from a pretrained point for a Preacti-
vation ResNet-164 on CIFAR-100. We then use the first,
middle and last point of each of the trajectories to de-
fine a 2-dimensional plane in the weight space contain-
ing all affine combinations of these points. In Figure 3
we plot the loss on train and error on test for points in
these planes. We then project the other points of the tra-
jectory to the plane of the plot. Note that the trajectories
do not generally lie in the plane of the plot, except for the
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Figure 2: Top: cyclical learning rate as a function of
iteration. Bottom: test error as a function of iteration
for cyclical learning rate schedule with Preactivation-
ResNet-164 on CIFAR-100. Circles indicate iterations
corresponding to the minimum learning rates.

first, last and middle points, showed by black crosses in
the figure. Therefore for other points of the trajectories it
is not possible to tell the value of train loss and test error
from the plots.

The key insight from Figure 3 is that both methods ex-
plore points close to the periphery of the set of high-
performing networks. The visualizations suggest that
both methods are doing exploration in the region of space
corresponding to DNNs with high accuracy. The main
difference between the two approaches is that the indi-
vidual proposals of SGD with a cyclical learning rate
schedule are in general much more accurate than the pro-
posals of a fixed-learning rate SGD. After making a large
step, SGD with a cyclical learning rate spends several
epochs fine-tuning the resulting point with a decreasing
learning rate. SGD with a fixed learning rate on the other
hand is always making steps of relatively large sizes, ex-
ploring more efficiently than with a cyclical learning rate,
but the individual proposals are worse.

Another important insight we can get from Figure 3 is
that while the train loss and test error surfaces are quali-
tatively similar, they are not perfectly aligned. The shift
between train and test suggests that more robust central
points in the set of high-performing networks can lead to
better generalization. Indeed, if we average several pro-
posals from the optimization trajectories, we get a more
robust point that has a substantially higher test perfor-
mance than the individual proposals of SGD, and is es-
sentially centered on the shifted mode for test error. We
further discuss the reasons for this behaviour in sections
3.4, 3.5, 3.6.

3.2 SWA ALGORITHM

We now present the details of the Stochastic Weight Av-
eraging algorithm, a simple but effective modification for
training neural networks, motivated by our observations
in section 3.1.

Following Garipov et al. [2018], we start with a pre-
trained model ŵ. We will refer to the number of epochs
required to train a given DNN with the conventional
training procedure as its training budget and will denote
it by B. The pretrained model ŵ can be trained with the
conventional training procedure for full training budget
or reduced number of epochs (e.g. 0.75B). In the lat-
ter case we just stop the training early without modify-
ing the learning rate schedule. Starting from ŵ we con-
tinue training, using a cyclical or constant learning rate
schedule. When using a cyclical learning rate we capture
the models wi that correspond to the minimum values of
the learning rate (see Figure 2), following Garipov et al.
[2018]. For constant learning rates we capture models
at each epoch. Next, we average the weights of all the
captured networks wi to get our final model wSWA.

Note that for cyclical learning rate schedule, the SWA
algorithm is related to FGE [Garipov et al., 2018], except
that instead of averaging the predictions of the models,
we average their weights, and we use a different type of
learning rate cycle. In section 3.5 we show how SWA
can approximate FGE, but with a single model.

Batch normalization. If the DNN uses batch normal-
ization [Ioffe and Szegedy, 2015], we run one additional
pass over the data, as in Garipov et al. [2018], to compute
the running mean and standard deviation of the activa-
tions for each layer of the network with wSWA weights
after the training is finished, since these statistics are
not collected during training. For most deep learning li-
braries, such as PyTorch or Tensorflow, one can typically
collect these statistics by making a forward pass over the
data in training mode.

The SWA procedure is summarized in Algorithm 1.

3.3 COMPUTATIONAL COMPLEXITY

The time and memory overhead of SWA compared to
conventional training is negligible. During training, we
need to maintain a copy of the running average of DNN
weights. Note however that the memory consumption
in storing a DNN is dominated by its activations rather
than its weights, and thus is only slightly increased by the
SWA procedure, even for large DNNs (e.g., on the order
of 10%). After the training is complete we only need to
store the model that aggregates the average, leading to
the same memory requirements as standard training.
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Figure 3: The L2-regularized cross-entropy train loss and test error surfaces of a Preactivation ResNet-164 on CIFAR-
100 in the plane containing the first, middle and last points (indicated by black crosses) in the trajectories with (left
two) cyclical and (right two) constant learning rate schedules.

Algorithm 1 Stochastic Weight Averaging

Require:
weights ŵ, LR bounds α1, α2,
cycle length c (for constant learning rate c = 1), num-
ber of iterations n

Ensure: wSWA
w ← ŵ {Initialize weights with ŵ}
wSWA ← w
for i← 1, 2, . . . , n do
α← α(i) {Calculate LR for the iteration}
w ← w − α∇Li(w) {Stochastic gradient update}
if mod(i, c) = 0 then
nmodels ← i/c {Number of models}
wSWA ← wSWA·nmodels+w

nmodels+1 {Update average}
end if

end for
{Compute BatchNorm statistics for wSWA weights}

During training extra time is only spent to update the ag-
gregated weight average. This operation is of the form

wSWA ←
wSWA · nmodels + w

nmodels + 1
,

and it only requires computing a weighted sum of the
weights of two DNNs. As we apply this operation at
most once per epoch, SWA and SGD require practically
the same amount of computation. Indeed, a similar op-
eration is performed as a part of each gradient step, and
each epoch consists of hundreds of gradient steps.

3.4 OPTIMA WIDTH

Keskar et al. [2017] and Chaudhari et al. [2017] conjec-
ture that the width of a local optimum is related to gen-
eralization. The general explanation for the importance
of width is that the surfaces of train loss and test error
are shifted with respect to each other and it is thus de-
sirable to converge to the modes of broad optima, which
stay approximately optimal under small perturbations. In
this section we compare the solutions found by SWA and
SGD and show that SWA generally leads to much wider
optima.

Let wSWA and wSGD denote the weights of DNNs trained
using SWA and conventional SGD, respectively. Con-
sider the rays

wSWA(t, d) = wSWA + t · d,
wSGD(t, d) = wSGD + t · d,

which follow a direction vector d on the unit sphere,
starting at wSWA and wSGD, respectively. In Figure 4
we plot train loss and test error of wSWA(t, di) and
wSGD(t, di) as a function of t for 10 random directions
di, i = 1, 2, . . . , 10 drawn from a uniform distribution
on the unit sphere. For this visualization we use a Preac-
tivation ResNet-164 on CIFAR-100.

First, while the loss values on train for wSGD and wSWA
are quite similar (and in fact wSGD has a slightly lower
train loss), the test error for wSGD is lower by 1.5% (at
the converged value corresponding to t = 0). Further,
the shapes of both train loss and test error curves are con-
siderably wider for wSWA than for wSGD, suggesting that
SWA indeed converges to a wider optimum: we have to
step much further away from the solution found by wSWA
to increase error by a given amount. We even see the
error curve for SGD has an inflection point that is not
present for these distances with SWA.

Notice that in Figure 4 any of the random directions from
wSGD increase test error. However, we know that the di-
rection from wSGD to wSWA would decrease test error,
since wSWA has considerably lower test error than wSGD.
In other words, the path from wSGD to wSWA is qualita-
tively different from all directions shown in Figure 4, be-
cause along this direction wSGD is far from optimal. We
therefore consider the line segment connecting wSGD and
wSWA:

w(t) = t · wSGD + (1− t) · wSWA .

In Figure 5 we plot the train loss and test error of w(t)
as a function of signed distance from wSWA for Preacti-
vation ResNet-164 and VGG-16 on CIFAR-100.

We can extract several key insights aboutwSWA andwSGD
from Figure 5. First, the train loss and test error plots
are indeed substantially shifted, and the point obtained
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and SGD solutions on CIFAR-100. Left: Preactivation ResNet-164. Right: VGG-16.

by minimizing the train loss is far from optimal on test.
Second, wSGD lies near the boundary of a wide flat region
of the train loss. Further, the loss is very steep nearwSGD.

Keskar et al. [2017] argue that the loss near sharp op-
tima found by SGD with very large batches are actually
flat in most directions, but there exist directions in which
the optima are extremely steep. They conjecture that be-
cause of this sharpness the generalization performance
of large batch optimization is substantially worse than
that of solutions found by small batch SGD. Remark-
ably, in our experiments in this section we observe that
there exist directions of steep ascent even for small batch
optima, and that SWA provides even wider solutions (at
least along random directions) with better generalization.

3.5 CONNECTION TO ENSEMBLING

Garipov et al. [2018] proposed the Fast Geometric En-
sembling (FGE) procedure for training ensembles in the
time required to train a single model. Using a cyclical
learning rate, FGE generates a sequence of points that
are close to each other in the weight space, but produce
diverse predictions. In SWA instead of averaging the pre-
dictions of the models we average their weights. How-
ever, the predictions proposed by FGE ensembles and
SWA models have similar properties.

Let f(·) denote the predictions of a neural network

parametrized by weights w. We will assume that f is
a scalar (e.g. the probability for a particular class) twice
continuously differentiable function with respect to w.

Consider points wi proposed by FGE. These points are
close in the weight space by design, and concentrated
around their average wSWA = 1

n

∑n
i=1 wi. We denote

∆i = wi − wSWA. Note
∑n

i=1 ∆i = 0. Ensembling the
networks corresponds to averaging the function values

f̄ =
1

n

n∑
i=1

f(wi).

Consider the linearization of f at wSWA.

f(wj) = f(wSWA) + 〈∇f(wSWA),∆j〉+O(‖∆j‖2),

where 〈·, ·〉 denotes the dot product. Thus, the difference
between averaging the weights and averaging the predic-
tions

f̄ − f(wSWA) =
1

n

n∑
i=1

(
〈∇f(wSWA),∆i〉+O(‖∆i‖2)

)
=

〈
∇f(wSWA),

1

n

n∑
i=1

∆i

〉
+O(∆2) = O(∆2),

where ∆ = maxn
i=1 ‖∆i‖. Note that the difference be-

tween the predictions of different perturbed networks is

f(wi)− f(wj) = 〈∇f(wSWA),∆i −∆j〉+O(∆2),



and is thus of the first order of smallness, while the
difference between averaging predictions and averaging
weights is of the second order of smallness. Note that for
the points proposed by FGE the distances between pro-
posals are relatively small by design, which justifies the
local analysis.

To analyze the difference between ensembling and av-
eraging the weights of FGE proposals in practice, we
run FGE for 20 epochs and compare the predictions of
different models on the test dataset with a Preactivation
ResNet-164 [He et al., 2016] on CIFAR-100. The norm
of the difference between the class probabilities of con-
secutive FGE proposals averaged over the test dataset is
0.126. We then average the weights of the proposals
and compute the class probabilities on the test dataset.
The norm of difference of the probabilities for the SWA
model and the FGE ensemble is 0.079, which is substan-
tially smaller than the difference between the probabili-
ties of consecutive FGE proposals. Further, the fraction
of objects for which consecutive FGE proposals output
the same labels is not greater than 87.33%. For FGE
and SWA the fraction of identically labeled objects is
95.26%.

The theoretical considerations and empirical results pre-
sented in this section suggest that SWA can approximate
the FGE ensemble with a single model.

3.6 CONNECTION TO CONVEX
MINIMIZATION

Mandt et al. [2017] showed that under strong simplify-
ing assumptions SGD with a fixed learning rate approx-
imately samples from a Gaussian distribution centered
at the minimum of the loss. Suppose this is the case
when we run SGD with a fixed learning rate for train-
ing a DNN.

Let us denote the dimensionality of the weight space of
the neural network by d. Denote the samples produced
by SGD by wi, i = 1, 2, . . . , k. Assume the points wi

are concentrated around the local optimum ŵ. The SWA
solution is given by wSWA = 1

n

∑k
i=1 wi. The points wi

are samples from a multidimensional GaussianN (ŵ,Σ)
for some covariance matrix Σ defined by the curvature of
the loss, batch size and the learning rate. Note that the
samples from a multidimensional Gaussian are concen-
trated on the ellipsoid{

z ∈ Rd| ‖Σ− 1
2 (z − ŵ)‖ =

√
d
}
,

and the probability mass for a sample to end up inside the
ellipsoid near ŵ is negligible. On the other hand, wSWA
is guaranteed to converge to ŵ as k →∞.

Moreover, Polyak and Juditsky [1992] showed that aver-
aging SGD proposals achieves the best possible conver-

gence rate among all stochastic gradient algorithms. The
proof relies on the convexity of the underlying problem
and in general there are no convergence guarantees if the
loss function is non-convex [see e.g. Ghadimi and Lan,
2013]. While DNN loss functions are known to be non-
convex [e.g. Choromanska et al., 2015], over the trajec-
tory of SGD these loss surfaces are approximately con-
vex [e.g. Goodfellow et al., 2015]. However, even when
the loss is locally non-convex, SWA can improve gen-
eralization. For example, in Figure 5 we see that SWA
converges to a central point of the training loss.

4 EXPERIMENTS

We compare SWA against conventional SGD training
on CIFAR-10, CIFAR-100 and ImageNet ILSVRC-2012
[Russakovsky et al., 2012]. We also compare to Fast Ge-
ometric Ensembling (FGE) [Garipov et al., 2018], but
we note that FGE is an ensemble whereas SWA corre-
sponds to a single model. Conventional SGD training
uses a standard decaying learning rate schedule (details
in the Appendix) until convergence. We found an ex-
ponentially decaying average of SGD to perform com-
parably to conventional SGD at convergence. We re-
lease the code for reproducing the results in this paper
at https://github.com/timgaripov/swa.

4.1 CIFAR DATASETS

For the experiments on CIFAR datasets we use VGG-
16 [Simonyan and Zisserman, 2014], a 164-layer
Preactivation-ResNet [He et al., 2016] and Wide ResNet-
28-10 [Zagoruyko and Komodakis, 2016] models. Ad-
ditionally, we experiment with the recent Shake-Shake-
2x64d [Gastaldi, 2017] on CIFAR-10 and PyramidNet-
272 (bottleneck, α = 200) [Han et al., 2016] on CIFAR-
100. All models are trained using L2-regularization, and
VGG-16 also uses dropout.

For each model we define budget as the number of
epochs required to train the model until convergence with
conventional SGD training, such that we do not see im-
provement with SGD beyond this budget. We use the
same budgets for VGG, Preactivation ResNet and Wide
ResNet models as Garipov et al. [2018]. For Shake-
Shake and PyramidNets we use the budgets indicated by
the papers that proposed these models [Gastaldi, 2017,
Han et al., 2016]. We report the results of SWA training
within 1, 1.25 and 1.5 budgets of epochs.

For VGG, Wide ResNet and Preactivation-ResNet mod-
els we first run standard SGD training for ≈ 75% of the
training budget, and then use the weights at the last epoch
as an initialization for SWA with a fixed learning rate
schedule. We ran SWA for 0.25, 0.5 and 0.75 budget
to complete the training within 1, 1.25 and 1.5 budgets

https://github.com/timgaripov/swa


Table 1: Accuracies (%) of SWA, SGD and FGE methods on CIFAR-100 and CIFAR-10 datasets for different training
budgets. Accuracies for the FGE ensemble are from Garipov et al. [2018].

SWA
DNN (Budget) SGD FGE (1 Budget) 1 Budget 1.25 Budgets 1.5 Budgets

CIFAR-100
VGG-16 (200) 72.55± 0.10 74.26 73.91± 0.12 74.17± 0.15 74.27± 0.25

ResNet-164 (150) 78.49± 0.36 79.84 79.77± 0.17 80.18± 0.23 80.35± 0.16
WRN-28-10 (200) 80.82± 0.23 82.27 81.46± 0.23 81.91± 0.27 82.15± 0.27

PyramidNet-272 (300) 83.41± 0.21 – – 83.93± 0.18 84.16± 0.15
CIFAR-10

VGG-16 (200) 93.25± 0.16 93.52 93.59± 0.16 93.70± 0.22 93.64± 0.18
ResNet-164 (150) 95.28± 0.10 95.45 95.56± 0.11 95.77± 0.04 95.83± 0.03
WRN-28-10 (200) 96.18± 0.11 96.36 96.45± 0.11 96.64± 0.08 96.79± 0.05

ShakeShake-2x64d (1800) 96.93± 0.10 – – 97.16± 0.10 97.12± 0.06

respectively.

For Shake-Shake and PyramidNet architectures we do
not report the results in one budget. For these models
we use a full budget to get an initialization for the proce-
dure, and then train with a cyclical learning rate schedule
for 0.25 and 0.5 budgets. We used long cycles of small
learning rates for Shake-Shake, because this architecture
already involves many stochastic components.

We present the details of the learning rate schedules for
each of these models in the Appendix.

For each model we also report the results of conventional
SGD training, which we denote by SGD. For VGG, Pre-
activation ResNet and Wide ResNet we also provide the
results of the FGE method with one budget reported in
Garipov et al. [2018]. Note that for FGE we report the
accuracy of an ensemble of 6 to 12 networks, while for
SWA we report the accuracy of a single model.

We summarize the experimental results in Table 1. For
all models we report the mean and standard deviation
of test accuracy over 3 runs. In all conducted experi-
ments SWA substantially outperforms SGD in one bud-
get, and improves further, as we allow more training
epochs. Across different architectures we see consis-
tent improvement by ≈ 0.5% on CIFAR-10 (excluding
Shake-Shake, for which SGD performance is already ex-
tremely high) and by 0.75-1.5% on CIFAR-100. Amaz-
ingly, SWA is able to achieve comparable or better per-
formance than FGE ensembles with just one model. On
CIFAR-100 SWA usually needs more than one budget
to get results comparable with FGE ensembles, but on
CIFAR-10 even with 1 budget SWA outperforms FGE.

4.2 IMAGENET

On ImageNet we experimented with ResNet-50, ResNet-
152 [He et al., 2016] and DenseNet-161 [Huang et al.,

2017]. For these architectures we used pretrained mod-
els from PyTorch.torchvision. For each of the
models we ran SWA for 10 epochs with a cyclical learn-
ing rate schedule with the same parameters for all models
(the details can be found in the Appendix), and report the
mean and standard deviation of test error averaged over
3 runs. The results are shown in Table 2.

Table 2: Accuracies (%) on ImageNet dataset for SWA
and SGD with different architectures.

SWA
DNN SGD 5 epochs 10 epochs

ResNet-50 76.15 76.83± 0.01 76.97± 0.05
ResNet-152 78.31 78.82± 0.01 78.94± 0.07

DenseNet-161 77.65 78.26± 0.09 78.44± 0.06

For all 3 architectures SWA provides consistent improve-
ment by 0.6-0.9% over the pretrained models.

4.3 EFFECT OF THE LEARNING RATE
SCHEDULE

In this section we explore how the learning rate schedule
affects the performance of SWA. We run experiments on
Preactivation ResNet-164 on CIFAR-100. For all sched-
ules we use the same initialization from a model trained
for 125 epochs using the conventional SGD training. As
a baseline we use a fully-trained model trained with con-
ventional SGD for 150 epochs.

We consider a range of constant and cyclical learning
rate schedules. For cyclical learning rates we fix the cy-
cle length to 5, and consider the pairs of base learning
rate parameters (α1, α2) ∈ {(10−1, 10−3), (5 · 10−2, 5 ·
10−4), (10−2, 10−4), (5 · 10−3, 5 · 10−5)}. Among the
constant learning rates we consider α1 ∈ {10−1, 5 ·
10−2, 10−2, 10−3}.

http://pytorch.org/docs/master/torchvision/models.html
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Figure 6: Test error as a function of training epoch for
SWA with different learning rate schedules with a Preac-
tivation ResNet-164 on CIFAR-100.

We plot the test error of the SWA procedure for different
learning rate schedules as a function of the number of
training epochs in Figure 6.

We find that in general the more aggressive constant
learning rate schedule leads to faster convergence of
SWA. In our experiments we found that setting the learn-
ing rate to some intermediate value between the largest
and the smallest learning rate used in the annealing
scheme in conventional training usually gave us the best
results. The approach is however universal and can work
well with different learning rate schedules tailored for
particular tasks.

4.4 DNN TRAINING WITH A FIXED
LEARNING RATE
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Figure 7: Test error as a function of training epoch for
constant (green) and decaying (blue) learning rate sched-
ules for a Wide ResNet-28-10 on CIFAR-100. In red we
average the points along the trajectory of SGD with con-
stant learning rate starting at epoch 140.

In this section we show that it is possible to train DNNs
from scratch with a fixed learning rate using SWA. We
run SGD with a fixed learning rate of 0.05 on a Wide
ResNet-28-10 [Zagoruyko and Komodakis, 2016] for
300 epochs from a random initialization on CIFAR-100.

We then averaged the weights at the end of each epoch
from epoch 140 and until the end of training. The final
test accuracy of this SWA model was 81.7.

Figure 7 illustrates the test error as a function of the num-
ber of training epochs for SWA and conventional train-
ing. The accuracy of the individual models with weights
averaged by SWA stays at the level of ≈ 65% which is
16% less than the accuracy of the SWA model. These re-
sults correspond to our intuition presented in section 3.6
that SGD with a constant learning rate oscillates around
the optimum, but SWA converges.

While being able to train a DNN with a fixed learning
rate is a surprising property of SWA, for practical pur-
poses we recommend initializing SWA from a model pre-
trained with conventional training (possibly for a reduced
number of epochs), as it leads to faster and more stable
convergence than running SWA from scratch.

5 DISCUSSION

We have presented Stochastic Weight Averaging (SWA)
for training neural networks. SWA is extremely easy to
implement, architecture-agnostic, and improves general-
ization performance at virtually no additional cost over
conventional training.

There are so many exciting directions for future research.
SWA does not require each weight in its average to corre-
spond to a good solution, due to the geometry of weights
traversed by the algorithm. It therefore may be possible
to develop SWA for much faster convergence than stan-
dard SGD. One may also be able to combine SWA with
large batch sizes while preserving generalization perfor-
mance, since SWA discovers much broader optima than
conventional SGD training. Furthermore, a cyclic learn-
ing rate enables SWA to explore regions of high poste-
rior density over neural network weights. Such learning
rate schedules could be developed in conjunction with
stochastic MCMC approaches, to encourage exploration
while still providing high quality samples. One could
also develop SWA to average whole regions of good
solutions, using the high-accuracy curves discovered in
Garipov et al. [2018].

A better understanding of the loss surfaces for multilayer
networks will help continue to unlock the potential of
these rich models. We hope that SWA will inspire further
progress in this area.
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