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Abstract

Under certain initial conditions, we prove the existence of set-valued selectors
of univariate compact-valued multifunctions of bounded (Jordan) variation
when the notion of variation is defined taking into account only the Pompeiu
asymmetric excess between compact sets from the target metric space. For
this, we study subtle properties of the directional variations. We show by
examples that all assumptions in the main existence result are essential. As
an application, we establish the existence of set-valued solutions X(t) of
bounded variation to the functional inclusion of the form X(t) ⊂ F (t, X(t))
satisfying the initial condition X(t0) = X0.
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1. Introduction

This paper is devoted to the existence of (set-valued) selectors (or selec-
tions) with prescribed initial conditions of multifunctions (=set-valued map-
pings) with compact images from a metric space. Continuous and Lipschitz
continuous selectors exist, in general, for multifunctions with convex (and
closed) images from a Banach space ([2, 28, 31]). Many examples are known
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when a continuous (or even Hölder continuous) multifunction from a closed
interval T = [a, b] ⊂ R into a family of compact subsets of a ball in R

2, or a
Lipschitz continuous multifunction from R

3 into a family of compact subsets
of a ball in R

3 have no continuous selector ([1, 15, 23, 26, 28]).
In contrast to this, it was shown in [24] that a Lipschitz continuous mul-

tifunction F on [a, b] with compact images from R
N admits a Lipschitz con-

tinuous selector, whose Lipschitz constant does not exceed that of the mul-
tifunction; furthermore, if F is only continuous and of bounded (Jordan)
variation, then it admits a continuous selector. Similar assertions for Lips-
chitz and absolutely continuous multifunctions with convex and nonconvex
images from R

N were established in [22, 25, 27, 35]. The selector results from
[24] were extended in [29, Suppl. 1] for multifunctions F on [a, b] with com-
pact graphs and images in a Banach space, and in [33] for metric space valued
multifunctions with compact images. It is to be noted that the compactness
arguments in these references were based on Arzelà-Ascoli’s theorem.

Changing the compactness arguments to generalized Helly’s pointwise
selection principle, it was proved in [8] that a multifunction F on [a, b] of
bounded Jordan variation with compact images from a Banach space ad-
mits a selector, whose total Jordan variation does not exceed that of F and
passes through a given point in the graph of F . Thus, “nice” selectors of
compact-valued multifunctions inherit boundedness of variation rather than
continuity ([13]). The results of [8] were then extended to multifunctions
with compact images in a metric space and having certain regularity such
as absolute continuity, Lipschitz continuity, boundedness of Riesz-Orlicz-
Medvedev generalized variation, boundedness of essential variation, measura-
bility in the first variable and boundedness of variation in the second variable
([3, 9, 10, 11, 12, 13, 16, 18]). The existence of selections of bounded variation
was applied to the study of set-valued measure differential problems ([32]).

The notion of bounded variation of a multifunction F from a subset T ⊂ R

into a family of compact subsets of a metric space relies on the linear order
in the domain T of F and the Pompeiu-Hausdorff metric in the range of F ,
which is the maximum of two asymmetric excesses (cf. Section 2). In this
paper, we prove the existence of set-valued selectors (in particular, single-
valued selectors) of bounded Jordan variation (with respect to the Pompeiu-
Hausdorff metric) under milder assumptions of boundedness of directional
variations of F , to the right or to the left, with respect to the Pompeiu
excess only ([17] and Section 2). Our main result, Theorem 1 in Section 2,
extends the results of [17] for single-valued selectors, and some partial results
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of [34] concerning set-valued selectors.
This paper, along with [17], may be considered as part of analysis in

asymmetric spaces, giving an intuition of the notion of bounded variation in
the case when the distance function on the underlying space does not satisfy
the symmetry axiom (for asymmetric analysis in normed spaces, cf. [19]).

The paper is organized as follows. In Section 2, we review certain def-
initions and facts and present our main result, Theorem 1. Section 3 is
devoted to the (subtle) properties of directional variations, presented for
compact-valued multifunctions defined on an arbitrary subset of R (hence
suitable for linearly ordered sets as the domains). In Section 4, we prove
Theorem 1 and exhibit some of its consequences. We illustrate our result
by suitable examples in Section 5. In Section 6, we prove the existence of
set-valued solutions of bounded variation to the functional inclusion of the
form X(t)⊂F (t, X(t)) for all t∈T .

2. Main Result

We begin by reviewing certain definitions and facts needed for our results.
Throughout the paper (M, d) is a metric space with metric d.
Given two nonempty sets X, Y ⊂ M , the Pompeiu excess (écart, in

French) of X over Y is defined by ([30, pp. 281–282], [5, Chapter II])

e(X, Y ) ≡ ed(X, Y ) := sup
x∈X

d(x, Y ) = inf{r > 0 : X ⊂ Or(Y )},

where d(x, Y ) := infy∈Y d(x, y) is the distance1 from x ∈ M to Y , and the set
Or(Y ) := {x ∈ M : d(x, Y ) < r} is the open r-neighbourhood2 of Y , r > 0
(if Y = {y}, Or(y) ≡ Or(Y ) is simply the open ball of radius r centered at
y ∈ M). Note that e(X, Y ) 6= e(Y,X) in general.

The well-known properties of e(·, ·) are as follows. Given X, Y, Z ⊂ M :

(a) e(X, Y )=0 iff3 X⊂Y , where Y =
⋂

r>0Or(Y ) is the closure of Y inM ;

(b) e(X, Y ) ≤ e(X,Z) + e(Z, Y ) (triangle inequality for e);

(c) e(X, Y ) < +∞ provided X and Y are bounded (and, in particular
bounded and closed, or compact).

1d(x,∅) := +∞.
2Or(∅) :=∅ for r > 0; e(∅, Y ) := 0 for any Y ⊂ M , and e(X,∅) := +∞ if ∅ 6=X⊂M .
3‘iff’ means as usual ‘if and only if’.
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The Pompeiu-Hausdorff distance between two sets X, Y ⊂ M is defined
by (e.g., [30], [5, Chapter II])4

dH(X, Y ) := max{e(X, Y ), e(Y,X)}=inf{r>0 : X⊂Or(Y ) andY ⊂Or(X)}.

It follows from (a), (b), and (c) above that dH is a metric (with finite values),
called the Pompeiu-Hausdorff metric, on the family bcl(M) of all nonempty
bounded closed subsets of M and, in particular on the family c(M) of all
nonempty compact subsets of M .

A multifunction (or set-valued mapping) from a nonempty set T into M
is a rule F , which assigns to each t ∈ T a unique subset F (t) ⊂ M ; in
symbols, F : T → P(M), where P(M) is the power set of M (= the family
of all subsets of M). A multifunction Γ : T → P(M) is said to be a set-

valued selector of F : T → P(M) on T provided Γ(t) ⊂ F (t) for all t ∈ T .
Clearly, F is a set-valued selector of itself. If Γ : T → M is single-valued and
Γ(t) ∈ F (t) for all t ∈ T , then Γ is called a selector (or selection) of F on T .

Of main interest in this paper are multifunctions F : T → c(M) with T a
nonempty subset of the reals R. Such an F is said to be of bounded variation

(with respect to dH) provided its (total) Jordan variation

V(F, T ) := sup
π

m
∑

i=1

dH
(

F (ti−1), F (ti)
)

is finite (V(F,∅) := 0),

the supremum being taken over all partitions π of the set T ⊂ R, i.e., m ∈ N

and π = {ti}
m
i=0 ⊂ T such that ti−1 ≤ ti for all i ∈ {1, . . . , m}.

The following theorem on the existence of set-valued selectors of bounded
variation was established in [13, Theorems 10.1 and 5.1]:

Theorem A. Given T ⊂ R, t0 ∈ T , X0 ∈ c(M), and F : T → c(M)
such that V(F, T ) < +∞, there exists a set-valued selector Γ : T → c(M)
of F on T such that dH(X0,Γ(t0)) ≤ e(X0, F (t0)) and V(Γ, T ) ≤ V(F, T ).
(In particular, if X0 ⊂ F (t0), the first inequality above gives Γ(t0) = X0.)
Furthermore, if x0 ∈ M and X0 = {x0}, then Γ : T → M may be chosen to

be single-valued and such that d(x0,Γ(t0)) ≤ d(x0, F (t0)).

Theorem A already contains as particular cases many previously known
results [3], [8]–[12], [18, 22, 24, 29, 33], concerning single-valued selectors.

4Pompeiu [30] symmetrized the excess e by dP (X,Y ) :=e(X,Y )+e(Y,X) (cf. also [4]).
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The purpose of this paper is to drop the assumption V(F, T ) < +∞,
replacing it by ‘directional’ ones

−→
V(F, T )<+∞ or

←−
V(F, T )<+∞ (see below),

which, as will be shown, still guarantees the existence of set-valued selectors
Γ of F on T of bounded variation (with respect to dH).

In order to do it, given F : T → c(M), following [17] the quantities

−→
V(F, T ) :=sup

π

m
∑

i=1

e
(

F (ti−1), F (ti)
)

and
←−
V(F, T ) :=sup

π

m
∑

i=1

e
(

F (ti), F (ti−1)
)

are said to be the directional (or excess) variations of F to the right and to

the left, respectively (
−→
V(F,∅) =

←−
V(F,∅) := 0). Clearly,

max
{−→
V(F, T ),

←−
V(F, T )

}

≤ V(F, T ) ≤
−→
V(F, T ) +

←−
V(F, T ),

and so, V(F, T ) is finite iff both
−→
V(F, T ) and

←−
V(F, T ) are finite. Note that

if F : T → M is single-valued, the quantity V(F, T ) =
−→
V(F, T ) =

←−
V(F, T ) is

the usual (Jordan) variation of F on T (e.g., [9]).
Our first main result, extending Theorem A, is the following theorem on

the existence of set-valued selectors of bounded variation. For brevity, we
write TS := T ∩ S for S ⊂ R (e.g., T[t0,+∞) = T ∩ [t0,+∞) for t0 ∈ T , etc.).

Theorem 1. Suppose T ⊂ R, t0 ∈ T , X0 ∈ c(M), and F : T → c(M).

(a) Let a := inf T ∈ T . If
−→
V(F, T ) < +∞, then there exists a set-valued

selector of bounded variation Γ : T → c(M) of F on T such that

dH(X0,Γ(t0)) ≤ e(X0, F (t0)), V(Γ, T[a,t0)) ≤
−→
V(F, T[a,t0)), V(Γ, T[t0,+∞))

≤
−→
V(F, T[t0,+∞)), and

V(Γ, T )− Ja(Γ, t0) ≤
−→
V(F, T[a,t0)) +

−→
V(F, T[t0,+∞)) ≤

−→
V(F, T ), (2.1)

where Ja(Γ, t0) := 0 if t0 = a, and if t0 > a and s0 := supT[a,t0),

Ja(Γ, t0) :=

{

dH(Γ(s0),Γ(t0)), if s0 ∈ T[a,t0),

lim
T∋t→s0−0

V(Γ, T[t,t0]), if s0 /∈ T[a,t0).
(2.2)

In particular, if s0 = t0, then Ja(Γ, t0) = lim
T∋t→t0−0

dH(Γ(t),Γ(t0)).

(b) Let b := sup T ∈ T . If
←−
V(F, T ) < +∞, then there exists a set-valued

selector of bounded variation Γ : T → c(M) of F on T such that

5



dH(X0,Γ(t0)) ≤ e(X0, F (t0)), V(Γ, T(t0,b]) ≤
←−
V(F, T(t0,b]), V(Γ, T(−∞,t0])

≤
←−
V(F, T(−∞,t0]), and

V(Γ, T )− Jb(Γ, t0) ≤
←−
V(F, T(t0,b]) +

←−
V(F, T(−∞,t0]) ≤

←−
V(F, T ),

where Jb(Γ, t0) := 0 if t0 = b, and if t0 < b and s0 := inf T(t0,b],

Jb(Γ, t0) :=

{

dH(Γ(t0),Γ(s0)), if s0 ∈ T(t0,b],

lim
T∋t→s0+0

V(Γ, T[t0,t]), if s0 /∈ T(t0,b].

In particular, if s0 = t0, then Jb(Γ, t0) = lim
T∋t→t0+0

dH(Γ(t0),Γ(t)).

This theorem will be proved in Section 4, where it will also be shown that
Theorem 1 implies Theorem A. A somewhat free and intuitive interpretation
of Theorem 1 can be given as follows. We may imagine F to be a road with
the value F (t) as a section at a given coordinate t. If t increases, the section
F (t) moves in one direction, say, to the right. Theorem 1 asserts that if the
road F is properly built/controlled (i.e., its variation to the right is finite),
then an extended object (e.g., a car) can freely pass it.

3. Properties of Directional Variations

In this section, we gather auxiliary facts needed for the proof of Theo-
rem 1. Let T ⊂ R and F : T → c(M) be a multifunction.

3.1. Monotonicity of F

By the definition of V, V(F, T ) = 0 iff F is constant on T . The defi-
nition of

−→
V and property (a) of e in Section 2 imply

−→
V(F, T ) = 0 iff F is

nondecreasing on T in the sense that F (s) ⊂ F (t) for all s, t ∈ T with s ≤ t.
Similarly,

←−
V(F, T ) = 0 iff F is nonincresing on T , i.e., F (s) ⊃ F (t) for all

s, t ∈ T , s ≤ t.

3.2. Additivity of Variations

Since (c(M), dH) is a metric space, it is known (e.g., [7, 2.19], [8], [9])
that V is additive (in the second variable) in the sense that

V(F, T ) = V(F, T(−∞,t]) + V(F, T[t,+∞)) for all t ∈ T . (3.1)

We assert that the additivity property (3.1) holds also for
−→
V and

←−
V in place

of V. Since the Hausdorff excess e is not symmetric, we have to take care of
the order of its arguments. So, we explicitly verify (3.1) at least for

−→
V.
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Proof (of additivity of
−→
V). Given ξ, η ∈ R such that ξ <

−→
V(F, T(−∞,t])

and η <
−→
V(F, T[t,+∞)), there are m,n ∈ N, a partition {ti}

m
i=0 of T(−∞,t] with

tm = t and a partition {sj}
n
j=0 of T[t,+∞) with s0 = t such that

ξ <

m
∑

i=1

e(F (ti−1), F (ti)) and η <

n
∑

j=1

e(F (sj−1), F (sj)). (3.2)

Since {ti}
m
i=0∪{sj}

n
j=0 is a partition of T , we get, from (3.2), ξ+η <

−→
V(F, T ),

which, due to the arbitrariness of ξ and η as above, implies the inequality
−→
V(F, T(−∞,t]) +

−→
V(F, T[t,+∞)) ≤

−→
V(F, T ).

In order to prove the reverse inequality, let ξ ∈ R be arbitrary such that
ξ <

−→
V(F, T ). Then, there are m ∈ N and a partition π = {ti}

m
i=0 of T such

that the first inequality in (3.2) holds. If tm ≤ t, then π is a partition of
T(−∞,t], and if t ≤ t0, then π is a partition of T[t,+∞), and so, in the either
case, the first inequality in (3.2) implies

ξ <
−→
V(F, T(−∞,t]) +

−→
V(F, T[t,+∞)). (3.3)

Now, suppose tk−1 ≤ t ≤ tk for some k ∈ {1, . . . , m}. By the triangle
inequality for e, we have

e(F (tk−1), F (tk)) ≤ e(F (tk−1), F (t)) + e(F (t), F (tk)). (3.4)

Since {ti}
k−1
i=0 ∪ {t} is a partition of T(−∞,t] and {t} ∪ {ti}

m
i=k is a partition of

T[t,+∞), from the first inequality in (3.2) and (3.4), once again we get (3.3).

By the arbitrariness of ξ <
−→
V(F, T ), (3.3) implies

−→
V(F, T ) ≤

−→
V(F, T(−∞,t]) +

−→
V(F, T[t,+∞)),

which was to be proved.

3.3. Bounded Directional Variations

Recall that the function vF (t) := V(F, T(−∞,t]), t ∈ T , is said to be the
variation function of F on T . We define the variation function of F to the
right (to the left) by −→vF (t) :=

−→
V(F, T(−∞,t]) (by ←−vF (t) :=

←−
V(F, T(−∞,t]), re-

spectively) for all t ∈ T . Clearly, vF ,
−→vF ,

←−vF : T → [0,+∞] are nondecreasing
on T . If F is clear from the context, we omit the subscript F and write v,
−→v, and ←−v, respectively.

The following characterization holds for multifunctions of bounded direc-
tional variation (which will be useful in Section 6).
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Lemma 1. Given F : T → c(M),
−→
V(F, T ) < +∞ iff there is a nondecreasing

bounded function ϕ : T → R such that e(F (s), F (t)) ≤ ϕ(t) − ϕ(s) for all

s, t ∈ T with s ≤ t; moreover,
−→
V(F, T ) ≤ V(ϕ, T ). (A similar assertion holds

for
←−
V(F, T ) < +∞ if the inequality is written as e(F (t), F (s)) ≤ ϕ(t)−ϕ(s).)

Proof. (⇒) Let −→v(t) =
−→
V(F, T(−∞,t]), t ∈ T , be the variation function (to the

right) of F . It is nondecreasing on T and bounded: supt∈T
−→v(t) ≤

−→
V(F, T ).

Given s, t ∈ T , s ≤ t, the additivity of
−→
V implies

e(F (s), F (t)) ≤
−→
V(F, T[s,t]) =

−→
V(F, T(−∞,t])−

−→
V(F, T(−∞,s]) =

−→v(t)− −→v(s).

It remains to set ϕ := −→v.
(⇐) Let m ∈ N and π = {ti}

m
i=0 be a partition of T . Since ti−1 ≤ ti for

all i = 1, . . . , m, by the assumption we get

m
∑

i=1

e(F (ti−1), F (ti)) ≤
m
∑

i=1

(

ϕ(ti)− ϕ(ti−1)
)

= ϕ(tm)− ϕ(t0)

≤ sup
t∈T

ϕ(t)− inf
s∈T

ϕ(s) = V(ϕ, T ) < +∞.

It remains to take the supremum over all partitions π of T .

Remark 1. It is known ([7, 1.23], [12, Lemma 11]) that if F : T → c(M)
and V(F, T )<+∞, then the image F (T ) :=

⋃

t∈T F (t) is a totally bounded

(hence separable) subset of M (if, in addition, (M, d) is complete, then the
closure of F (T ) in M is compact). However, condition V(F, T )<+∞ cannot
be replaced neither by

−→
V(F, T )<+∞ nor by

←−
V(F, T )<+∞ (see Example 5).

3.4. Lower Semicontinuity of Variations

If a sequence {Fn}
∞
n=1 of multifunctions Fn : T → c(M) converges in c(M)

pointwise on T to F (i.e., dH(Fn(t), F (t)) → 0 as n → ∞ for all t ∈ T ), then

V(F, T ) ≤ lim inf
n→∞

V(Fn, T ). (3.5)

This property is known as the (sequential) lower semicontinuity of V (in the
first variable) for metric space valued functions; cf. [9, Proposition 2.1(V7)].

We assert that (3.5) is valid for
−→
V and

←−
V in place of V, as well.
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Proof (of lower semicontinuity of
−→
V). For any n ∈ N and s, t ∈ T , the

triangle inequality for e implies

|e(Fn(s), Fn(t))− e(F (s), F (t))| ≤ dH(Fn(s), F (s)) + dH(Fn(t), F (t)),

and so, by the pointwise convergence of Fn to F , e(Fn(s), Fn(t))→e(F (s), F (t))
as n → ∞. Given m ∈ N and a partition π = {ti}

m
i=0 of T , by definition of

−→
V,

m
∑

i=1

e(Fn(ti−1), Fn(ti)) ≤
−→
V(Fn, T ) for all n ∈ N.

Passing to the limit inferior as n → ∞, we get

m
∑

i=1

e(F (ti−1), F (ti)) ≤ lim inf
n→∞

−→
V(Fn, T ),

and it remains to take the supremum over all partitions π of T .

3.5. Limit Equalities for the Variations

The following equalities are known ([7, 8]) for (multi)functions F on T
with values in a metric space (in particular in c(M)):

if s=supT ∈R ∪ {+∞} and s /∈T , then V(F, T )= lim
T∋t→s

V(F, T(−∞,t]);

(3.6)

if i=inf T ∈ R ∪ {−∞} and i /∈T , then V(F, T )= lim
T∋t→i

V(F, T[t,+∞)).

(3.7)

We are going to show that these assertions hold for
−→
V and

←−
V as well.

Proof (of (3.6) for
−→
V). Since −→v is nondecreasing on T , the limit on the right

in (3.6) (with V replaced by
−→
V) exists in [0,+∞] and is equal to supt∈T

−→v(t).

Given t ∈ T , we have T(−∞,t] ⊂ T , and so, −→v(t) ≤
−→
V(F, T ), which implies

limT∋t→s
−→v(t) ≤

−→
V(F, T ). Conversely, given ξ ∈ R with ξ <

−→
V(F, T ), there are

m ∈ N and a partition π = {ti}
m
i=0 of T (and so, t0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm < s)

such that

ξ <

m
∑

i=1

e(F (ti−1), F (ti)) ≤
−→v(tm) ≤ lim

T∋t→s

−→v(t).

Passing to the limit as ξ →
−→
V(F, T ), we get

−→
V(F, T ) ≤ limT∋t→s

−→v(t).
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3.6. Jump Formulas for the Variations

We say that t ∈ R is a left (right) limit point of T if T(t−ε,t) 6= ∅ (respec-
tively, T(t,t+ε) 6= ∅) for all ε > 0. A point t ∈ T , which is not a left (or right)
limit point of T , is called the left (or right) isolated point of T .

By virtue of [9, Lemma 4.2], the following two assertions hold.

(a) If t ∈ T is a left limit point of T and V(F, T ) < +∞, then

v(t) = v(t− 0) + lim
T∋s→t−0

dH(F (s), F (t)).5 (3.8)

(b) If t ∈ T is a right limit point of T and V(F, T ) < +∞, then

v(t+ 0) = v(t) + lim
T∋s→t+0

dH(F (s), F (t)).6 (3.9)

The second limit in the right-hand side of (3.8) (of (3.9)) is known as the
left (right , respectively) jump of F at t.

Since dH is symmetric, the order of arguments F (s) and F (t) in (3.8) and
(3.9) does not matter. In the counterparts of (a) and (b) for

−→
V and

←−
V below,

we take care of the order of arguments in the excess e(·, ·).

Lemma 2. If t ∈ T is a left limit point of T , then7

(−→a) −→v(t) = −→v(t− 0) + lim sup
T∋s→t−0

e(F (s), F (t)) if
−→
V(F, T ) < +∞;

(←−a) ←−v(t) = ←−v(t− 0) + lim sup
T∋s→t−0

e(F (t), F (s)) if
←−
V(F, T ) < +∞.

If t ∈ T is a right limit point of T , then8

(
−→

b) −→v(t+ 0) = −→v(t) + lim sup
T∋s→t+0

e(F (t), F (s)) if
−→
V(F, T ) < +∞;

5v(t− 0) := limT∋s→t−0 v(s) is the left limit of v at t along T , i.e., v(t− 0) is the limit
of v(s) as s → t with s ∈ T(−∞,t).

6v(t+ 0) := limT∋s→t+0 v(s) = lims→t,s∈T(t,+∞)
v(s) is the right limit of F at t.

7The limit superior in (−→a) is the limit of sup{e(F (s), F (t)) : s ∈ T(t−ε,t)} as ε → +0;
in (←−a) the limit superior is understood similarly.

8The limit superior in (
−→

b) is the limit of sup{e(F (t), F (s)) : s ∈ T(t,t+ε)} as ε → +0;

the limit superior in (
←−

b) has a similar meaning.
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(
←−

b) ←−v(t+ 0) = ←−v(t) + lim sup
T∋s→t+0

e(F (s), F (t)) if
←−
V(F, T ) < +∞.

Proof. We concentrate on (−→a) and (
−→

b), making only remarks on (←−a) and (
←−

b).
(−→a) First, we prove inequality ≥ in (−→a). By the additivity of

−→
V, given

s ∈ T with s < t, we have

−→v(s) + e(F (s), F (t)) ≤ −→v(s) +
−→
V(F, T[s,t]) =

−→v(t).

Since −→v is nondecreasing and bounded on T (by
−→
V(F, T )), and t is a left

limit point of T , the left limit −→v(t − 0) exists in [0,+∞) and is equal to
sup{−→v(s) : s ∈ T, s < t}. Inequality ≥ in (−→a) follows now from the properties
of the limit superior as T ∋s→ t−0, since the right-hand side in (−→a) is equal
to

lim
T∋s→t−0

−→v(s)+ lim sup
T∋s→t−0

e(F (s), F (t))= lim sup
T∋s→t−0

(

−→v(s)+e(F (s), F (t))
)

≤ −→v(t).

Now we show that inequality ≤ holds in (−→a). By the definition of −→v(t),
which is finite, for any ξ ∈ R, ξ < −→v(t), there are m ∈ N and a partition
π = {ti}

m
i=0 ∪ {t} of T(−∞,t] with tm < t such that

ξ <
m
∑

i=1

e(F (ti−1), F (ti)) + e(F (tm), F (t)).

Given s ∈ T(tm,t), the triangle inequality for e implies

e(F (tm), F (t)) ≤ e(F (tm), F (s)) + e(F (s), F (t)),

and so, ξ < −→v(s) + e(F (s), F (t)). Passing to the limit superior as T ∋ s →
t− 0, we get

ξ ≤ −→v(t− 0) + lim sup
T∋s→t−0

e(F (s), F (t)).

It remains to take into account the arbitrariness of ξ < −→v(t).

(
−→

b) In order to prove inequality ≥ in (
−→

b), we make use of the additivity
of
−→
V to get

−→v(t) + e(F (t), F (s)) ≤ −→v(t) +
−→
V(F, T[t,s]) =

−→v(s) for all s ∈ T(t,+∞).

Now, it suffices to pass to the limit superior as T ∋ s → t+ 0.
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To show inequality ≤ in (
−→

b), we apply the additivity property of
−→
V several

times. To begin with, note that

−→
V(F, T[t,+∞)) =

−→
V(F, T )− −→v(t). (3.10)

Given ξ ∈ R with ξ <
−→
V(F, T[t,+∞)), there exist m ∈ N and a partition

{t} ∪ {ti}
m
i=0 of T[t,+∞) with t < t0 such that

ξ < e(F (t), F (t0)) +
m
∑

i=1

e(F (ti−1), F (ti)).

Since, for any s∈T(t,t0), e(F (t), F (t0))≤e(F (t), F (s))+e(F (s), F (t0)), we find

ξ + −→v(tm)−
−→
V(F, T ) ≤ ξ < e(F (t), F (s)) +

−→
V(F, T[s,tm])

= e(F (t), F (s)) + −→v(tm)−
−→v(s),

and so, −→v(s) ≤ (
−→
V(F, T ) − ξ) + e(F (t), F (s)). Passing to the limit superior

as T ∋ s → t+ 0, we get

−→v(t+ 0) ≤
−→
V(F, T )− ξ + lim sup

T∋s→t+0
e(F (t), F (s)).

It remains to let ξ tend to the value (3.10).

(←−a), (
←−

b) Here we note only that, by the additivity of
←−
V,

←−v(s) + e(F (t), F (s)) ≤ ←−v(s) +
←−
V(F, T[s,t]) =

←−v(t) ∀ s ∈ T(−∞,t),

←−v(t) + e(F (s), F (t)) ≤ ←−v(t) +
←−
V(F, T[t,s]) =

←−v(s) ∀ s ∈ T(t,+∞),

respectively.

As a corollary of (3.6), (3.7), and Lemma 2, we get the following lemma,
which is a generalization of Theorem 4.6 from [9].

Lemma 3. If t ∈ T is a left limit point of T , then

(−→a)
−→
V(F, T(−∞,t])=

−→
V(F, T(−∞,t))+ lim sup

T∋s→t−0
e(F (s), F (t)) if

−→
V(F, T )<+∞;

(←−a)
←−
V(F, T(−∞,t])=

←−
V(F, T(−∞,t))+ lim sup

T∋s→t−0
e(F (t), F (s)) if

←−
V(F, T ) < +∞.
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If t ∈ T is a right limit point of T , then

(
−→

b)
−→
V(F, T[t,+∞))=

−→
V(F, T(t,+∞))+ lim sup

T∋s→t+0
e(F (t), F (s)) if

−→
V(F, T )<+∞;

(
←−

b)
←−
V(F, T[t,+∞))=

←−
V(F, T(t,+∞))+ lim sup

T∋s→t+0
e(F (s), F (t)) if

←−
V(F, T ) < +∞.

Proof. As in the proof of Lemma 2, we concentrate on (−→a) and (
−→

b).
(−→a) This is a consequence of Lemma 2(−→a), since

−→
V(F, T(−∞,t]) =

−→v(t) and,

by virtue of (3.6),
−→
V(F, T(−∞,t)) =

−→v(t− 0).

(
−→

b) For every s ∈ T(t,+∞), the additivity of
−→
V implies

−→
V(F, T[t,+∞)) =

−→v(s)− −→v(t) +
−→
V(F, T[s,+∞)).

Passing to the limit as T ∋ s → t + 0, we get: by Lemma 2(
−→

b),

−→v(s)− −→v(t) → −→v(t+ 0)− −→v(t) = lim sup
T∋s→t+0

e(F (t), F (s)),

and by (3.7),
−→
V(F, T[s,+∞)) →

−→
V(F, T(t,+∞)).

3.7. Pointwise Selection Principle

In the proof of our main result (Theorem 1), we will need a compact-
ness theorem in the topology of pointwise convergence (cf. Section 3.4) for
a (approximating) sequence of multifunctions Fn : T → c(M), n ∈ N, refor-
mulated from [14] for the metric space (c(M), dH) under consideration.

Given F : T → c(M), its modulus of variation is the nondecreasing
sequence {νk(F, T )}

∞
k=1 ⊂ [0,+∞] defined by

νk(F, T ) := sup
k

∑

i=1

dH(F (si), F (ti)),

the supremum being taken over all collections s1, . . . , sk, t1 . . . , tk of 2k num-
bers from T such that s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sk−1 ≤ tk−1 ≤ sk ≤ tk. This
notion was introduced in [6] in the context of Fourier series and extensively
applied in [21, Section 11.3] for real valued functions. The general case of
metric space valued functions was considered in [14], whence we know that
νk(F, T ) ≤ V(F, T ) for all k ∈ N, and νk(F, T ) → V(F, T ) as k → ∞.

The following theorem, extending Helly’s Selection Theorem, is a point-

wise selection principle in terms of the modulus of variation:
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Theorem B ([14, Theorem 1]). Suppose {Fn}
∞
n=1 is a sequence of multi-

functions Fn : T → c(M) such that (a) lim supn→∞ νk(Fn, T ) = o(k)9, and
(b) the closure in c(M) of the set {Fn(t) : n ∈ N} is compact for all t ∈ T .
Then {Fn}

∞
n=1 admits a subsequence, which converges in c(M) pointwise on

T to a multifunction F : T → c(M) such that νk(F, T ) = o(k).

4. Proof of the Main Result

Proof of Theorem 1. We prove only item (a), item (b) being proved sim-
ilarly with corresponding modifications (‘to the left’). We divide the proof
into six steps for clarity. Recall that a = inf T ∈ T , and we set b := sup T .
In the first four steps, we prove the theorem in the case when t0 = a and
b ∈ T (so that T ⊂ [t0, b] is bounded), in step 5—when t0 = a and b /∈ T ,
and in step 6—when t0>a and T is arbitrary. We employ several ideas from
[3, 9], [13, Sections 5, 10].

Step 1. Suppose T ⊂ [t0, b] and t0, b ∈ T . Since
−→
V(F, T ) is finite and the

variation function of F to the right −→v : T → [0,+∞) is nondecreasing on T ,
the set of its points of discontinuity on T is at most countable. Denote by
TF the set of points t ∈ T , which are left limit points of T such that −→v(t) =
−→v(t− 0). It follows that T \ TF is at most countable and, by Lemma 2(−→a),

if t ∈ TF , then e(F (s), F (t)) → 0 as T ∋ s → t− 0. (4.1)

Furthermore, the set T0 of left isolated points of T (i.e., t ∈ T such that
T(t−ε,t) = ∅ for some ε > 0) is also at most countable (in fact, the intervals
of “emptiness from the left”, corresponding to different left isolated points
of T , are disjoint, and each such interval contains a rational number). Let Q
denote an at most countable dense subset of T . We set

S := {t0, b} ∪ (T \ TF ) ∪ T0 ∪Q

and note that S ⊂ T is dense in T and at most countable. With no loss
of generality we may assume that S is countable, say, S = {ti}

∞
i=0. Given

n ∈ N, the set πn = {ti}
n−1
i=0 ∪ {b} is a partition of T . Ordering the points in

πn in ascending order and denoting the resulting (ordered) partition of T by

9Equality µk = o(k) means as usual that limk→∞ µk/k = 0.
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πn = {tni }
n
i=0, we get

t0 = tn0 < tn1 < · · · < tnn−1 < tnn = b, and (4.2)

∀ t ∈ S ∃n0 = n0(t) ∈ N such that t ∈ πn for all n ≥ n0. (4.3)

Step 2. Let us construct an approximating sequence for the desired set-
valued selector of F . In order to do this, we need the following observation
from [13, assertion (10.2)]: given X, Y ∈ c(M),

there is Y ′ ∈ c(M) such that Y ′ ⊂ Y and dH(X, Y ′) ≤ e(X, Y ). (4.4)

In fact, it suffices to define Y ′ as the metric projection of X onto Y :

Y ′ = PrYX := {y ∈ Y : there is x ∈ X such that d(x, y) = d(x, Y )}. (4.5)

First, given n ∈ N, we define sets Y n
i ∈ c(M), i = 0, 1, . . . , n, inductively

as follows. Setting X = X0 and Y = F (t0) in (4.4), we choose Y0 := Y ′ ∈
c(M) such that Y0 ⊂ F (t0) and dH(X0, Y0) ≤ e(X0, F (t0)). We put Y n

0 := Y0

(for all n ∈ N). Now, suppose i ∈ {1, . . . , n} and the set Y n
i−1 ∈ c(M) such

that Y n
i−1 ⊂ F (tni−1) is already chosen. Then, we putX = Y n

i−1 and Y = F (tni )
in (4.4) and pick Y n

i := Y ′ ∈ c(M) such that Y n
i ⊂ F (tni ) and

dH(Y
n
i−1, Y

n
i ) ≤ e(Y n

i−1, F (tni )) ≤ e(F (tni−1), F (tni )). (4.6)

The approximating sequence Γn : T → c(M), n ∈ N, is defined as a
sequence of set-valued step functions of the form (cf. [13, equation (10.3)]):

Γn(t
n
i ) := Y n

i for all i = 0, 1, . . . , n; (4.7)

Γn(t) := Y n
i−1 for all t ∈ T ∩ (tni−1, t

n
i ) and i = 1, . . . , n (4.8)

(if T ∩ (tni−1, t
n
i ) = ∅, then Γn is left undefined on (tni−1, t

n
i )). Clearly,

Γn(t0) = Γn(t
n
0 ) = Y n

0 = Y0 ⊂ F (t0) for all n ∈ N.

Moreover, by the additivity of V and (4.6), we have

V(Γn, T ) =
n

∑

i=1

V(Γn, T ∩ [tni−1, t
n
i ]) =

n
∑

i=1

dH(Y
n
i−1, Y

n
i )

≤

n
∑

i=1

e(F (tni−1), F (tni )) ≤
−→
V(F, T ) for all n ∈ N. (4.9)
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Step 3. Let us show that {Γn}
∞
n=1 satisfies the assumptions of Theorem B.

By virtue of (4.9), we get

lim sup
n→∞

νk(Γn, T ) ≤
−→
V(F, T ) for all k ∈ N,

and so, condition (a) in Theorem B is satisfied. Now, we verify condition (b).
If t ∈ S, then, by (4.3), there is n0 = n0(t) ∈ N such that t ∈ πn for all

n ≥ n0. So, for each n ≥ n0 there is i = i(t, n) ∈ {0, 1, . . . , n} such that
t = tni . The definition of Γn implies

Γn(t) = Γn(t
n
i ) = Y n

i ⊂ F (tni ) = F (t) for all n ≥ n0. (4.10)

In other words, {Γn(t)}
∞
n=n0

⊂ c(F (t)). Since F (t) is a compact subset of
M , it follows from [5, II.1.4] that c(F (t)) is a compact subset of c(M), which
implies the desired property for {Fn(t)}

∞
n=1.

Suppose now that t ∈ T \ S. We have t ∈ TF ∩ (t0, b), i.e., by (4.1),

e(F (s), F (t)) → 0 as T(t0,b) ∋ s → t− 0, (4.11)

where t is a left limit point of T , and so, there is a sequence τk ∈ T , τk < t,
k ∈ N, such that τk → t as k → ∞. Since S is dense in T , given k ∈ N, there is
sk ∈ S such that |sk−τk| < t−τk, which implies sk < t, and sk → t as k → ∞.
From (4.3), for each k ∈ N choose a number n0(k) ∈ N (depending also on t)
such that sk ∈ πn for all n ≥ n0(k). We may assume (arguing inductively)
that the sequence {n0(k)}

∞
k=1 is strictly increasing. Given k ∈ N and n ≥

n0(k), since sk ∈ πn, there is a number j(k, n) ∈ {0, 1, . . . , n − 1} such that
sk = tnj(k,n) and, since sk < t, there is (unique) i(k, n) ∈ {j(k, n), . . . , n− 1}
such that

sk = tnj(k,n) ≤ tni(k,n) < t < tni(k,n)+1. (4.12)

By (4.7), (4.8), and (4.12), we find

Γn(t) = Y n
i(k,n) ⊂ F (tni(k,n)) for all k ∈ N and n ≥ n0(k). (4.13)

Setting n := n0(k) and pk := t
n0(k)
i(k,n0(k))

in (4.13), we have Γn0(k)(t) ⊂ F (pk)

for all k ∈ N, where, by virtue of (4.12) and property sk → t as k → ∞,

pk < t and pk → t as k → ∞. (4.14)

Applying (4.4), for each k ∈ N pick Yk(t) ∈ c(M) such that Yk(t) ⊂ F (t) and

dH(Γn0(k), Yk(t)) ≤ e(Γn0(k), F (t)) ≤ e(F (pk), F (t)). (4.15)
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It follows from (4.11) and (4.14) that the right-hand side in (4.15) tends to
zero as k → ∞. By the compactness of c(F (t)), we may assume (passing to a
subsequence of {Yk(t)}

∞
k=1 if necessary) that dH(Yk(t), Y (t)) → 0 as k → ∞

for some Y (t) ∈ c(M) such that Y (t) ⊂ F (t). Thus,

dH(Γn0(k)(t), Y (t))≤dH(Γn0(k)(t), Yk(t))+dH(Yk(t), Y (t))→0 as k→∞,

and so, (a subsequence of) the subsequence {Γn0(k)}
∞
k=1 of {Γn(t)}

∞
n=1 con-

verges in c(M). This finishes the proof of compactness of {Γn(t)}∞n=1 (the
closure being taken in c(M)).

Step 4. By Theorem B, there are a subsequence of {Γn}
∞
n=1, which we

denote by {Γl(n)}
∞
n=1 with strictly increasing l : N → N, and a multifunction

Γ : T → c(M) such that dH(Γl(n)(t),Γ(t)) → 0 as n → ∞ for all t ∈ T .
Let us show that Γ is a set-valued selector of F on T . It is clear from

(4.7) and (4.2) that Γ(t0) = Y0 ⊂ F (t0), and so (cf. Step 2),

dH(X0,Γ(t0)) ≤ e(X0, F (t0)). (4.16)

If t ∈ S, (4.3) implies t ∈ πn for some n0 = n0(t) ∈ N and all n ≥ n0.
Since l(n) ≥ l(n0) ≥ n0 for n ≥ n0, it follows from (4.10) that Γl(n)(t) ⊂ F (t),
and so (cf. properties (a) and (b) of e in Section 2),

e(Γ(t), F (t)) ≤ e(Γ(t),Γl(n)(t)) + e(Γl(n)(t), F (t))

= e(Γ(t),Γl(n)(t)) ≤ dH(Γ(t),Γl(n)(t)) → 0 as n → ∞.

This gives e(Γ(t), F (t)) = 0 implying Γ(t) ⊂ F (t).
Now suppose that t ∈ T \ S. Given k ∈ N, let n0(k) be the number (also

depending on t) from Step 3 such that sk ∈ πn for all n ≥ n0(k). Hence,
assertions (4.12) and (4.13) still hold. Setting n = N(k) := l(n0(k)) ≥ n0(k)

and qk := t
N(k)
i(k,N(k)) in (4.12) and (4.13), we find ΓN(k) ⊂ F (qk), where qk < t,

and qk → t as k → ∞. For each k ∈ N, thanks to (4.4), let Zk(t) ∈ c(M) be
such that Zk(t) ⊂ F (t) and

dH(ΓN(k)(t), Zk(t)) ≤ e(ΓN(k)(t), F (t)) ≤ e(F (qk), F (t)).

Noting that e(Zk(t), F (t)) = 0, we get

e(Γ(t), F (t)) ≤ e(Γ(t),ΓN(k)(t)) + e(ΓN(k)(t), Zk(t)) + e(Zk(t), F (t))
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with the right-hand side tending to zero as n→∞. Hence e(Γ(t), F (t))=0,
and so, Γ(t) ⊂ F (t). Thus, we have shown that Γ(t) ⊂ F (t) for all t ∈ T .

The lower semicontinuity of V and (4.9) imply

V(Γ, T ) ≤ lim inf
n→∞

V(Γl(n), T ) ≤
−→
V(F, T ).

Since T[a,t0)=∅ (recall that t0=a), T[t0,+∞)=T[t0,b]=T , and Ja(Γ, t0)=0, this
proves Theorem 1(a) in the case when t0 = a and b = supT ∈ T .

Remark. Note that if X0 ⊂ F (t0), we have, by (4.16), Γ(t0) = X0.

Step 5. Suppose t0 = a and b = sup T /∈ T , so that T[a,t0)=∅, T[t0,+∞)=T ,
and Ja(Γ, t0) = 0. Pick an increasing sequence {tk}

∞
k=1 ⊂ T such that tk → b

as k → ∞. Noting that
−→
V(F, T[t0,t1]) ≤

−→
V(F, T ) < +∞ and applying Steps

1–4 to F on T[t0,t1], we get a set-valued selector Γ0 : T[t0,t1] → c(M) of F on
T[t0,t1] such that

dH(X0,Γ0(t0)) ≤ e(X0, F (t0)) and V(Γ0, T[t0,t1]) ≤
−→
V(F, T[t0,t1]).

Inductively, if k ∈ N, and a set-valued selector Γk−1 of F on T[tk−1,tk ] is already

chosen, we note that
−→
V(F, T[tk,tk+1]) ≤

−→
V(F, T ) < +∞, again apply Steps 1–4,

and find a set-valued selector Γk of F on T[tk ,tk+1] such that Γk(tk) = Γk−1(tk)

and V(Γk, T[tk,tk+1]) ≤
−→
V(F, T[tk,tk+1]). Since tk → b as k → ∞, and b /∈ T , we

have T =
⋃∞

k=0 T[tk ,tk+1], so if t ∈ T and t ∈ T[tk ,tk+1] for some k ∈ {0} ∪ N,
we set Γ(t) := Γk(t). Clearly, Γ : T → c(M) is a well-defined set-valued
selector of F on T , inequality (4.16) holds, and, by (3.6) and the additivity
of V and

−→
V,

V(Γ, T ) = lim
n→∞

V(Γ, T(−∞,tn]) = lim
n→∞

n−1
∑

k=0

V(Γk, T[tk,tk+1])

≤ lim
n→∞

n−1
∑

k=0

−→
V(F, T[tk,tk+1]) = lim

n→∞

−→
V(F, T(−∞,tn]) =

−→
V(F, T ).

Step 6. Finally, suppose t0 > a. Since
−→
V(F, T[a,t0)) and

−→
V(F, T[t0,+∞))

do not exceed
−→
V(F, T ) < +∞, and X0 ∈ c(M), we apply Steps 1–5 twice:

first, to F on T[a,t0) with arbitrary K0 ∈ c(M) in order to obtain a set-valued
selector Γ1 of F on T[a,t0) such that

dH(K0,Γ1(a)) ≤ e(K0, F (a)) and V(Γ1, T[a,t0)) ≤
−→
V(F, T[a,t0)),
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and, second, to F on T[t0,+∞) in order to obtain a set-valued selector Γ2 of F
on T[t0,+∞) such that

dH(X0,Γ2(t0)) ≤ e(X0, F (t0)) and V(Γ2, T[t0,+∞)) ≤
−→
V(F, T[t0,+∞)).

Given t ∈ T , we set Γ(t) := Γ1(t) if t ∈ T[a,t0), and Γ(t) := Γ2(t) if t ∈ T[t0,+∞).
Clearly, Γ : T → c(M) is a set-valued selector of F on T , inequality (4.16)
holds, V(Γ, T[a,t0)) ≤

−→
V(F, T[a,t0)), and V(Γ, T[t0,+∞)) ≤

−→
V(F, T[t0,+∞)). Fur-

thermore, since
−→
V is additive, the second inequality in (2.1) holds (recall that

a = minT ):

−→
V(F, T[a,t0)) +

−→
V(F, T[t0,+∞)) ≤

−→
V(F, T[a,t0]) +

−→
V(F, T[t0,+∞)) =

=
−→
V(F, T[a,+∞)) =

−→
V(F, T ).

Let us prove the first inequality in (2.1).
Suppose s0 ∈ T[a,t0). Hence s0 = max T[a,t0) < t0, and so, T[a,t0) = T[a,s0]

and T[s0,t0] = {s0, t0} (two-point set). By the additivity of V,

V(Γ, T[a,t0]) = V(Γ, T[a,s0]) + V(Γ, T[s0,t0])

= V(Γ1, T[a,t0)) + dH(Γ1(s0),Γ2(t0)),

which implies

V(Γ, T ) = V(Γ, T[a,t0]) + V(Γ, T[t0,+∞))

= V(Γ1, T[a,t0)) + dH(Γ1(s0),Γ2(t0)) + V(Γ2, T[t0,+∞))

≤
−→
V(F, T[a,t0)) + dH(Γ(s0),Γ(t0)) +

−→
V(F, T[t0,+∞)).

This proves inequality (2.1) with Ja(Γ, t0) = dH(Γ(s0),Γ(t0)) from (2.2).
Now, suppose s0 /∈ T[a,t0). Note that s0 is a left limit point of T[a,s0) (and

so, of T[a,t0) and T as well). In fact, by the definition of s0, t < s0 for all
t ∈ T[a,s0), and, given ε > 0, there is tε ∈ T[a,s0) such that s0 − ε < tε. Hence
s0−ε < tε < s0, i.e., T[a,s0)∩(s0−ε, s0) 6= ∅ (and a fortiori T∩(s0−ε, s0) 6= ∅).

Let us show that the limit in the right-hand side of (2.2) exists in [0,+∞).
Since Γ = Γ1 on T[a,t0) and V(Γ1, T[a,t0)) ≤

−→
V(F, T[a,t0)), given t, t′ ∈ T[a,s0)

with t ≤ t′, the additivity of V implies (note again that a = minT )

0 ≤ V(Γ, T[t,t0])− V(Γ, T[t′,t0]) = V(Γ, T[t,t′])

= V(Γ1, T(−∞,t′])−V(Γ1, T(−∞,t]).
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By (3.6), the right-hand side here tends to V(Γ1, T[a,s0))−V(Γ1, T[a,s0)) = 0 as
T ∋ t, t′ → s0−0, and so, Cauchy’s criterion yields the existence of the limit.

Applying the additivity of V once again, we get

V(Γ, T[a,t0]) = V(Γ, T[a,t]) + V(Γ, T[t,t0]) for all t ∈ T[a,s0). (4.17)

Noting that s0 /∈ T[a,t0) implies T[a,s0) = T[a,t0), by virtue of (3.6), the limit of
the first term in (4.17) as T ∋ t → s0 − 0 is equal to

lim
T∋t→s0−0

V(Γ, T[a,t]) = lim
T∋t→s0−0

V(Γ1, T(−∞,t]) = V(Γ1, T[a,s0))

= V(Γ1, T[a,t0)) ≤
−→
V(F, T[a,t0)).

Taking into account (2.2), it follows from (4.17) that

V(Γ, T ) = V(Γ, T[a,t0]) + V(Γ, T[t0,+∞))

= lim
T∋t→s0−0

V(Γ, T[a,t]) + lim
T∋t→s0−0

V(Γ, T[t,t0]) + V(Γ2, T[t0,+∞))

= V(Γ1, T[a,t0)) + Ja(Γ, t0) + V(Γ2, T[t0,+∞))

≤
−→
V(F, T[a,t0)) + Ja(Γ, t0) +

−→
V(F, T[t0,+∞)).

This proves the first inequality in (2.1).
It remains to show that if s0 = t0, then Ja(Γ, t0) is the left jump of Γ at t0.

Noting that, by the additivity of V,

V(Γ, T[t,t0]) =
−→v(t0)−

−→v(t) for all t ∈ T[a,t0),

and, by (3.8),

−→v(t0) =
−→v(t0 − 0) + lim

T∋t→t0−0
dH(Γ(t),Γ(t0)),

and passing to the limit as T ∋ t → t0 − 0, we get

Ja(Γ, t0) = lim
T∋t→t0−0

V(Γ, T[t,t0]) =
−→v(t0)− lim

T∋t→t0−0

−→v(t)

= −→v(t0 − 0) + lim
T∋t→t0−0

dH(Γ(t),Γ(t0))−
−→v(t0 − 0)

= lim
T∋t→t0−0

dH(Γ(t),Γ(t0)).

This completes the proof of Theorem 1.

20



Now, we are in a position to show that Theorem 1 implies Theorem A.

Proof (of Theorem A). Setting T+ = T[t0,+∞) and T− = T(−∞,t0], we have
−→
V(F, T+) ≤ V(F, T+) ≤ V(F, T ) and

←−
V(F, T−) ≤ V(F, T−) ≤ V(F, T ).

Noting that t0 ∈ T+ ∩ T− and applying Theorem 1(a) to F on T+ and
Theorem 1(b) to F on T−, we obtain a set-valued selector Γ+ : T+ → c(M)
of F on T+ and a set-valued selector Γ− : T− → c(M) of F on T− such that

dH(X0,Γ+(t0))≤e(X0, F (t0)) and V(Γ+, T+)≤
−→
V(F, T+),

dH(Γ+(t0),Γ−(t0))≤e(Γ+(t0), F (t0))=0 and V(Γ−, T−)≤
←−
V(F, T−).

Noting that Γ−(t0) = Γ+(t0), we set Γ(t) := Γ+(t) if t ∈ T+, and Γ(t) := Γ−(t)
if t ∈ T− \ {t0}. Clearly, Γ : T → c(M) is a set-valued selector of F on T ,
dH(X0,Γ(t0)) ≤ e(X0, F (t0)) and, by the additivity of V,

V(Γ, T ) = V(Γ, T+) + V(Γ, T−) = V(Γ+, T+) + V(Γ−, T−)

≤
−→
V(F, T+) +

←−
V(F, T−) (4.18)

≤ V(F, T+) + V(F, T−) = V(F, T ).

This finishes the proof of Theorem A. Note that we have shown a little bit
more: inequality (4.18) holds provided

−→
V(F, T+) and

←−
V(F, T−) are finite.

Remark 2. If X0 = {x0} ⊂ M , a (single-valued) selector of bounded varia-
tion Γ : T →M of F on T may be chosen such that d(x0,Γ(t0))≤d(x0, F (t0))
and satisfying the rest of assertions in (a) and (b) of Theorem 1 (if we replace
dH by d everywhere). In order to see this, it suffices to pick only one element
in the corresponding metric projection. So (cf. Step 2 in the proof of The-
orem 1), choose y0 ∈ F (t0) such that d(x0, y0) = d(x0, F (t0)), set yn0 := y0,
and if i ∈ {1, . . . , n} and elements yni−1 ∈ F (tni−1) are already chosen, pick
yni ∈ F (tni ) such that d(yni−1, y

n
i ) = d(yni−1, F (tni )). Define Γn : T → M (as

in (4.7) and (4.8)) by Γn(t
n
i ) := yni for i = 0, 1, . . . , n, and Γn(t) := yni−1 if

t ∈ T ∩ (tni−1, t
n
i ) and i = 1, . . . , n. It remains to note (for T ⊂ [t0, b]) that

V(Γn, T ) = V(Γn, T ∩ [tni−1, t
n
i ]) =

n
∑

i=1

d(yni−1, y
n
i )

=

n
∑

i=1

d(yni−1, F (tni )) ≤

n
∑

i=1

e(F (tni−1), F (tni )) ≤
−→
V(F, T ).

In this way, Theorem 1 above is a generalization of [17, Theorem 1], treating
the existence of single-valued selectors on (connected) intervals T ⊂ R.
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5. Examples

In examples below, we show that all assumptions in Theorem 1 are es-
sential.

Let (B, | · |) be a Banach space with norm | · | (e.g., B = R), BN be the set
of all sequences x : N → B, and M = ℓ1(N;B) be the (infinite-dimensional)
Banach space of all summable sequences x ∈ B

N equipped with the norm
‖x‖ :=

∑∞

i=1 |x(i)| < +∞ and, hence, metric d(x, y) := ‖x−y‖ for x, y ∈ M .
Fix u ∈ B with |u| = 1 (e.g., u = 1 in R) and, for every n ∈ N, denote by un

the unit vector in M defined as usual by un(i) = 0 if i 6= n, and un(n) = u.

Example 1. A multifunction F on T ⊂ R with (only) bounded closed values
in M and

−→
V(F, T ) < +∞ may have no set-valued selectors Γ satisfying

V(Γ, T[t0,+∞)) ≤
−→
V(F, T[t0,+∞)) or dH(X0,Γ(t0)) ≤ e(X0, F (t0)) (5.1)

with t0 ∈ T and X0 ∈ c(M). In order to see this, we set T := [0, 1] and X :=
X0 ∪ Y , where X0 := {u1} and Y := {αnun : n ≥ 2} with αn := 1 + (1/n),
and note that X and Y are bounded and closed (but not compact) subsets of
M , whereas X0 ∈ c(M) and X0 ⊂ X . Define F : T → {X, Y } ⊂ P(M)\{∅}
by F (0) := X and F (t) := Y if 0 < t ≤ 1. (A similar example was given
in [3, Example 2] for F with V(F, T ) < +∞.) We have

−→
V(F, T ) = e(X, Y ),

where

e(X, Y ) = sup
x∈X

inf
y∈Y

d(x, y) = e(X \ Y, Y ) = e(X0, Y )

= inf
n≥2

(|u1|+ αn|un|) = 1 + inf
n≥2

(

1 +
1

n

)

= 2.

Since Y ⊂ X , F is nonincreasing on T (Section 3.1), and so,
←−
V(F, T ) = 0.

(a) Suppose t0 = 0, so that T[t0,+∞) = T . We have X0 ⊂ X = F (0), which
implies e(X0, F (0)) = 0. Let Γ : T → P(M)\{∅} be any set-valued selector
of F on T such that Γ(0) = X0. Since ∅ 6= Γ(1) ⊂ F (1) = Y , αnun ∈ Γ(1)
for some n ≥ 2. It follows that

V(Γ, T ) ≥ dH(Γ(0),Γ(1)) ≥ e(Γ(1),Γ(0)) = e(Γ(1), X0)

≥ d(αnun, u1) = αn + 1 > 2 =
−→
V(F, T ).

(b) Now, suppose 0 < t0 ≤ 1, and Γ : T → P(M) \ {∅} is a set-valued
selector of F on T . Since Γ(t0) ⊂ F (t0) = Y , we have αnun ∈ Γ(t0) for some
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n ≥ 2, and so,

dH(X0,Γ(t0)) ≥ e(Γ(t0), X0) ≥ d(αnun, u1) = αn + 1

> 2 = e(X0, Y ) = e(X0, F (t0)).

(c) The effect of nonexistence of set-valued selectors in (a) and (b) above
is due to the fact that PrYX0 = ∅ (cf. (4.5)): indeed, if y ∈ Y , then y = αnun

for some n ≥ 2, and so, for x ∈ X0 = {u1}, we have

d(x, y) = d(u1, αnun) = 1 + αn > 2 = e(X0, Y ) = d(u1, Y ) = d(x, Y ).

Example 2. This example is more subtle than Example 1: even if F (t) is
bounded and closed (but not compact) at a single point t ∈ T , inequalities
(5.1) may not hold in Theorem 1 (this is inspired by [13, Example 5.2]).

Let N ∈ N, N ≥ 2, be fixed and {αn}
∞
n=1 ⊂ R be a sequence such that

{|αn|}
∞
n=1 is strictly decreasing and inf

n≥N+1
|αn| > 0 (5.2)

(e.g., αn = α(n+1)/n with α 6= 0, n ∈ N). We set X := {αnun : 1 ≤ n ≤ N}
and Y := {αnun : n ≥ N + 1}. Clearly, X ∈ c(M), while Y /∈ c(M) is
bounded (by the first condition in (5.2)) and closed (by the second condition
in (5.2)) in M . Define F on T := [0, 1] by F (t) := X if 0 ≤ t < 1, and
F (1) := Y . We have

−→
V(F, T ) = e(X, Y ) = |α1|+ inf

n≥N+1
|αn|

and
←−
V(F, T ) = e(Y,X) = |αN+1|+ |αN |.

(a) Suppose 0 ≤ t0 < 1 and X0 := {α1u1}, so that T[t0,+∞) = [t0, 1] and
X0 ⊂ X = F (t0), which implies e(X0, F (t0)) = 0. Let Γ : T → P(M) \ {∅}
be a set-valued selector of F on T such that Γ(t0) = X0. Since Γ(1) ⊂ F (1) =
Y , we find αnun ∈ Γ(1) for some n ≥ N + 1, and so,

V(Γ, [t0, 1]) ≥ dH(Γ(t0),Γ(1)) ≥ e(Γ(1), X0) ≥ d(αnun, α1u1) = |αn|+ |α1|

> |α1|+ inf
i≥N+1

|αi| =
−→
V(F, T ) =

−→
V(F, [t0, 1]).
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(b) Suppose t0 = 1 and X0 := {α1u1}. If Γ : T → P(M) \ {∅} is a
set-valued selector of F on T , then Γ(1) ⊂ F (1) = Y implies αnun ∈ Γ(1)
for some n ≥ N + 1, and so,

dH(X0,Γ(1)) ≥ e(Γ(1), X0) ≥ d(αnun, α1u1) = |αn|+ |α1|

> |α1|+ inf
i≥N+1

|αi| = e(X, Y ) ≥ e(X0, Y ) = e(X0, F (t0)).

(c) Clearly, PrXX0 = X0. The non-existence of set-valued selectors in (a)
and (b) is again due to the fact that PrYX0 = ∅: in fact, if y ∈ Y , then
y = αnun for some n ≥ N + 1, and so, we have, for x ∈ X0 = {α1u1},

d(x, y)=d(α1u1, αnun)= |α1|+ |αn|> inf
i≥N+1

(|α1|+ |αi|)= inf
y∈Y

d(x, y)=d(x, Y ).

(d) We claim that Theorem 1(b) holds with t0 = 1 and Γ(1) = X0 (except
that Γ(1) ∈ c(M)) for every nonempty X0 ⊂ Y = F (1).

First, observe that PrXY0 = {αNuN} for every ∅ 6= Y0 ⊂ Y (recall that
X ∈ c(M), and PrXY0 is the set of those x ∈ X , for which d(y0, x) = d(y0, X)
for some y0 ∈ Y0). To see this, we set n0 := min{n ≥ N + 1 : αnun ∈ Y0} for
Y0 ⊂ Y . If y0 ∈ Y0, we have y0 = αnun for some n ≥ n0,

d(y0, X) = inf
x∈X

d(y0, x) = min
1≤i≤N

(|αn|+ |αi|) = |αn|+ |αN |,

and
d(y0, x) = |αn|+ |αi| if x = αiui ∈ X for some 1 ≤ i ≤ N .

If n = n0 and i = N , we find y0 = αn0
un0

∈ Y0, x = αNuN ∈ X , and

d(y0, x) = d(αn0
un0

, αNuN) = |αn0
|+ |αN | = d(y0, X),

which implies αNuN ∈ PrXY0. Now, if i < N , then |αi| > |αN |, and so, for
every y0 ∈ Y0, we get

d(y0, x) = |αn|+ |αi| > |αn|+ |αN | = d(y0, X).

Thus, αiui /∈ PrXY0 for all i = 1, . . . , N − 1, and we are through.
Taking the above into account, define a set-valued selector Γ of F on T

by Γ(t) := {αNuN} if 0 ≤ t < 1, and Γ(1) := X0 with X0 = Y0 ⊂ Y . It
remains to note that n0 ≥ N + 1 implies

←−
V(Γ, T ) = e(Y0, {αNuN}) = sup

y0∈Y0

d(y0, αNuN) = |αn0
|+ |αN |

≤ |αN+1|+ |αN | =
←−
V(F, T ).
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Example 3. Making use of an idea from [17, Example 3.1], here we present
an example of a multifunction F : T → c(M) with T := [0, 1] such that
−→
V(F, T ) < +∞ and

←−
V(F, T ) = +∞ (thus, Theorem 1(a) is applicable to F ,

whereas Theorem A is not).
Let N ∈ N and {αn}

∞
n=1 ⊂ (0,+∞) be a decreasing sequence such that

lim
n→∞

αn = 0 and

∞
∑

n=1

αnN = +∞ (5.3)

(e.g., αn = 1/n). Given n ∈ N, we set

Xn := {0} ∪ {αiui : 1 ≤ i ≤ nN}, and X∞ := {0} ∪ {αiui : i ∈ N}.

Clearly, Xn ∈ c(M) for all n ∈ N and, by the first assumption in (5.3), the set
X∞ is compact as well. Let {τn}

∞
n=0 ⊂ [0, 1) be a strictly increasing sequence

such that τ0 = 0 and limn→∞ τn = 1. Define F : T → c(M) by the rule:

F (t) := Xn if τn−1 ≤ t < τn for all n ∈ N, and F (1) := X∞.

Since Xn ⊂ Xn+1 ⊂ X∞ for all n ∈ N, F is nondecreasing on T (Section 3.1),
and so,

−→
V(F, T ) = 0. In order to see that

←−
V(F, T ) = +∞, given m ∈ N,

m ≥ 2, and partition πm = {τn}
m−1
n=0 ∪ {1} of T = [0, 1], we find

←−
V(F, T ) ≥

m−1
∑

n=1

e(F (τn), F (τn−1)) + e(F (1), F (τm−1))

=
m−1
∑

n=1

e(Xn+1, Xn) + e(X∞, Xm), (5.4)

where

e(Xn+1, Xn) = sup
nN+1≤k≤(n+1)N

(

|αk|+ inf
1≤i≤nN

|αi|
)

= αnN+1 + αnN

and
e(X∞, Xm) = sup

k≥mN+1

(

|αk|+ inf
1≤i≤mN

|αi|
)

= αmN+1 + αmN .

It follows that the quantity (5.4) is equal to

m
∑

n=1

αnN+1 +
m
∑

n=1

αnN → +∞ as m → ∞.
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Example 4. (a) By Theorem 1(a), given X0 ∈ c(M) such that X0 ⊂ X1 =
F (0), multifunction F from Example 3 has a constant set-valued selector
Γ : T → c(M) satisfying Γ(0) = X0 and V(Γ, T ) ≤

−→
V(F, T ) = 0. However, if

0 < t0 ≤ 1 and X0 ⊂ F (t0), there may be no set-valued selector Γ of F on
T such that Γ(t0) = X0 and V(Γ, T ) ≤

−→
V(F, T ). In fact, let t0 = τn for some

n ∈ N (cf. Example 3), so that F (t0) = F (τn) = Xn+1. Suppose now that
X0 ⊂ Xn+1 \ X1 ⊂ F (t0), Γ(t) ⊂ F (t) for all t ∈ T , and Γ(t0) = X0. Since
Γ(0) ⊂ F (0) = X1, we have αiui ∈ Γ(0) for some 1 ≤ i ≤ N , or 0 ∈ Γ(0)
(i.e., possibly, αi = 0), and so,

V(Γ, T ) ≥ dH(Γ(t0),Γ(0)) = dH(X0,Γ(0)) ≥ e(Γ(0), X0)

≥ d(αiui, X0) ≥ d(αiui, Xn+1 \X1)

= min
N+1≤k≤(n+1)N

(αi + αk) ≥ α(n+1)N > 0 =
−→
V(F, T ). (5.5)

(b) If t0 > a = inf T and Γ(t0) = X0, inequality V(Γ, T[a,t0)) ≤
−→
V(F, T[a,t0))

in Theorem 1(a) cannot in general be replaced by V(Γ, T[a,t0]) ≤
−→
V(F, T[a,t0]).

This can be seen from Example 4 and (5.5):

V(Γ, [0, t0]) ≥ dH(Γ(t0),Γ(0)) ≥ · · · ≥ α(n+1)N > 0 =
−→
V(F, [0, t0]).

This observation also makes it explicit that the “jump” Ja(Γ, t0) is essential
in the left-hand side of (2.1).

Example 5. This example is designed for Remark 1. Let T := [1,+∞) and
F : T → c(M) be given by F (t) :=Xn if n ∈ N and n ≤ t < n + 1, where
Xn :={ui : 1 ≤ i ≤ n}. We have Xn ∈ c(M), and F (s) ⊂ F (t) for all 1 ≤ s ≤
t < +∞, and so,

−→
V(F, T ) = 0. The image F (T ) =

⋃∞

n=1Xn = {ui : i ∈ N}
is bounded in M , but not totally bounded (i.e., cannot be covered by a
finite number of balls of arbitrarily small radius). Note that

←−
V(F, T ) = +∞

(consider a partition 1 < 2 < · · · < m − 1 < m of T with arbitrary m ∈ N

and observe that e(Xn+1, Xn) = 2 for all n ∈ N). This example is easily
adapted to the case when F maps [a, b) or [a, b] into c(M).

6. Functional Inclusion X(t) ⊂ F (t,X(t))

Assuming some interplay of the (uniform) boundedness of directional vari-
ations and (uniform) contractions, we have the following parametrized ver-
sion of Banach’s Contraction Theorem, extending Theorem 11.4 from [13].
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Theorem 2. Suppose a multifunction F : T×c(M)→c(M) is such that :

(a) there is a nondecreasing bounded function ϕ : T → R such that

e(F (s,X), F (t, X)) ≤ ϕ(t)− ϕ(s) for all s, t ∈ T , s ≤ T , and X ∈ c(M);

(b) there is a number 0 ≤ µ < 1 such that

e(F (t, X), F (t, Y )) ≤ µdH(X, Y ) for all t ∈ T and X, Y ∈ c(M);

(c) there is a multifunction K : T → c(M) such that

F (t, X) ⊂ K(t) for all t ∈ T and X ∈ c(M).

If t0 := inf T ∈ T and X0 ∈ c(M), then there is X : T → c(M) such that

(i) V(X, T ) ≤ V(ϕ, T )/(1− µ) < +∞; (ii) X(t) ⊂ F (t, X(t)) for all t ∈ T ;

(iii) dH(X0, X(t0)) ≤ e
(

X0, F (t0, X(t0))
)

.

In addition, if X0 ⊂ F (t0, X0), then (iii) can be replaced by X(t0) = X0.

Proof. First, observe that assumptions (a) and (b) and the triangle inequal-
ity for e imply, for all s, t ∈ T , s ≤ t, and X, Y ∈ c(M),

e(F (s,X), F (t, Y )) ≤ ϕ(t)− ϕ(s) + µdH(X, Y ). (6.1)

We setX0(t) :=X0 and F0(t) :=F (t, X0) for t ∈ T . We have F0 : T → c(M),
and assumption (a) and Lemma 1 imply

−→
V(F0, T ) ≤ V(ϕ, T ) < +∞. By The-

orem 1(a), there is X1 ≡ Γ : T = T[t0,+∞) → c(M) such that X1(t) ⊂ F0(t)

for all t ∈ T , dH(X0, X1(t0)) ≤ e(X0, F0(t0)), and V(X1, T ) ≤
−→
V(F0, T ) ≤

V(ϕ, T ). In what follows we apply the standard iteration procedure. Setting
F1(t) := F (t, X1(t)) for t ∈ T , we find F1 : T → c(M) and, by (6.1),

e(F1(s), F1(t)) ≤ ϕ(t)− ϕ(s) + µdH(X1(s), X1(t)) ∀ s, t ∈ T, s ≤ t.

Arguing with partitions of T , Lemma 1 implies

−→
V(F1, T ) ≤ V(ϕ, T ) + µV(X1, T ) ≤ (1 + µ)V(ϕ, T ).

Applying Theorem 1 again, we obtain X2 : T → c(M) such that X2(t) ⊂
F1(t) for all t ∈ T , dH(X0, X2(t0)) ≤ e(X0, F1(t0)), and

V(X2, T ) ≤
−→
V(F1, T ) ≤ (1 + µ)V(ϕ, T ).
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If F2(t) :=F (t, X2(t)), t ∈ T , then F2 : T → c(M) and, by (6.1),

e(F2(s), F2(t)) ≤ ϕ(t)− ϕ(s) + µdH(X2(s), X2(t)) ∀ s, t ∈ T, s ≤ t,

and so,

−→
V(F2, T ) ≤ V(ϕ, T ) + µV(X2, T ) ≤ (1 + µ+ µ2)V(ϕ, T ).

Arguing by induction, we obtain the sequence {Xn}
∞
n=1 of multifunctions

Xn : T → c(M) such that, given n ∈ N,

Xn(t) ⊂ Fn−1(t) :=F (t, Xn−1(t)) ⊂ K(t) for all t ∈ T , (6.2)

dH(X0, Xn(t0)) ≤ e(X0, Fn−1(t0))=e
(

X0, F (t0, Xn−1(t0))
)

, and (6.3)

V(Xn, T ) ≤

(n−1
∑

i=0

µi

)

V(ϕ, T ) ≤
1

1− µ
V(ϕ, T ). (6.4)

By (6.4), the sequence {Xn}
∞
n=1 is of uniformly bounded Jordan variation

with respect to dH , and so, condition (a) in Theorem B is satisfied, and by
(6.2), the closure {Xn(t) : n ∈ N} in c(M) is compact for every t ∈ T , and
so, condition (b) in Theorem B is fulfiled. By Theorem B, a subsequence of
{Xn}

∞
n=1, again denoted by {Xn}

∞
n=1, converges in c(M) pointwise on T to

a multifunction X : T → c(M), i.e., dH(Xn(t), X(t)) → 0 as n → ∞ for all
t ∈ T .

We are going to verify that X satisfies assertions (i), (ii), and (iii). As-
sertion (i) is a consequence of (6.4) and the lower semicontinuity (3.5) of V.
In order to see that (ii) holds, we make use of the following inequality (cf.
[13, inequality (11.7)]), which is valid for all X,X ′, Y, Y ′ ∈ c(M):

|e(X, Y )− e(X ′, Y ′)| ≤ dH(X,X ′) + dH(Y, Y
′). (6.5)

In fact, given t ∈ T , (6.2) implies e
(

Xn(t), F (t, Xn−1(t))
)

= 0, and so, taking
into account (6.5) and (6.1), we get

e(X(t), F (t, X(t)))=
∣

∣e(X(t), F (t, X(t)))−e(Xn(t), F (t, Xn−1(t)))
∣

∣

≤dH(X(t), Xn(t))+dH(F (t, X(t)), F (t, Xn−1(t)))

≤dH(X(t), Xn(t))+µdH(X(t), Xn−1(t)) → 0 as n → ∞.

Thus, e(X(t), F (t, X(t))) = 0, which implies (by properties of e) asser-
tion (ii).

28



To establish (iii), we note that (cf. (6.3) and (iii))

|dH(X0, Xn(t0))− dH(X0, X(t0))| ≤ dH(Xn(t0), X(t0)) → 0 as n → ∞,

and, by virtue of (6.5) and assumption (b),
∣

∣e(X0, F (t0, Xn−1(t0)))− e(X0, F (t0, X(t0)))
∣

∣

≤ dH(F (t0, Xn−1(t0)), F (t0, X(t0))) ≤ µdH(Xn−1(t0), X(t0)) → 0, n → ∞.

Passing to the limit as n → ∞ in (6.3), we arrive at (iii).
Finally, suppose X0⊂F (t0, X0). Hence X0⊂F0(t0) and e(X0, F0(t0))=0.

From the above, dH(X0, X1(t0)) ≤ e(X0, F0(t0)) = 0, and so, X1(t0) = X0.
Since

X0 ⊂ F0(t0) = F (t0, X0) = F (t0, X1(t0)) = F1(t0),

we find from dH(X0, X2(t0)) ≤ e(X0, F1(t0)) = 0 that X2(t0) = X0. By
induction, we deduce from (6.3) that Xn(t0) = X0 for all n ∈ N. Passing to
the lmit as n → ∞ in (6.3), we get dH(X0, X(t0)) ≤ e(X0, F (t0, X0)) = 0,
which yields X(t0) = X0.

Remark 3. If F (t, X) = F (t) is independent of X ∈ c(M) (or µ = 0),
Theorem 2 gives back Theorem 1(a): we may set ϕ = −→vF and K = F . On the
other hand, if F (t, X) = F (X) is independent of t ∈ T (or ϕ ≡ 0), Theorem 2
is a consequence of Banach’s Contraction Theorem (in fact, F : c(K) → c(K)
is a contraction on compact, hence complete, metric space (c(K), dH) with
K = K(t0)).

Example 6. The purpose of this example is to show that assumptions of
Theorem 2 can be fulfiled. Let M = B be a Banach space with norm | · | and
metric d(x, y) = |x−y|, x, y ∈ M , andK ∈ c(M). Suppose ϕ0 : T → [0,+∞)
is nondecreasing and µ :=supt∈T ϕ0(t) < 1. Define F : T × c(M) → c(M) by
F (t, X) := ϕ0(t)X for t ∈ T and X ∈ c(M). We have

e(F (s,X), F (t, X)) ≤
(

ϕ0(t)− ϕ0(s)
)

max
x∈X

|x| for all s, t ∈ T , s ≤ t,

and so, condition (a) in Theorem 2 is satisfied with ϕ(t) :=ϕ0(t)maxx∈K |x|,
t ∈ T , for all X ∈ c(K). Furthermore, given t ∈ T and X, Y ∈ c(K) ⊂ c(M),

e(F (t, X), F (t, Y )) = ϕ0(t)e(X, Y ) ≤ µdH(X, Y ),

and so, condition (b) in Theorem 2 is satisfied. Finally, setting K(t) :=
ϕ0(t)K, we find F (t, X) ⊂ K(t) for all t ∈ T and X ∈ c(K).
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Example 7. In Example 6, we set B := R, K := [0, 1], and ϕ0(t) := t for
t ∈ T := [0, 1/2] (hence µ = 1/2, ϕ = ϕ0, and V(ϕ, T ) = 1/2). Define F by

F (t, X) := (tX) ∪ (1− t + tX), t ∈ T, X ∈ c(K).

For instance, if X = [0, 1], we have F (0, X) = {0, 1}, F (1/2, X) = [0, 1], and
if 0 < t < 1/2, then F (t, X) = [0, t] ∪ [1 − t, 1], F (t, [0, t]) = [0, t2] ∪ [1 −
t, 1− t+ t2], F (t, [1− t, 1]) = [t− t2, t] ∪ [1− t2, 1], and so on. The iterative
construction of the classical Cantor (ternary) set corresponds to t = 1/3
(e.g., [20, p. 20]).

By Theorem 2, there isX : [0, 1/2] → c([0, 1]) such that V(X, [0, 1/2])≤1,
X(t) ⊂ (tX(t)) ∪ (1 − t + tX(t)) for all t ∈ [0, 1/2], and X(0) = {0, 1}. For
every t ∈ (0, 1/2), the compact set X(t) ⊂ [0, 1] is a Cantor-type perfect set.
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[4] V. Berinde, M. Păcurar, The role of the Pompeiu-Hausdorff metric in

fixed point theory, Creat. Math. Inform. 22 (2) (2013), 143–150.

[5] Ch. Castaing and V. Valadier, “Convex Analysis and Measurable Mul-
tifunctions”, Springer, Berlin, 1977.

[6] Z.A. Chanturiya, The modulus of variation of a function and its appli-

cation in the theory of Fourier series, Soviet Math. Dokl. 15 (1) (1974),
67–71.

[7] V.V. Chistyakov, “The Variation (Lecture Notes)”, University of Nizhny
Novgorod, Nizhny Novgorod, 1992 (in Russian).

[8] V.V. Chistyakov, On mappings of bounded variation, J. Dynam. Control
Systems 3 (2) (1997), 261–289.

30



[9] V.V. Chistyakov, On the theory of multivalued mappings of bounded var-

iation of one real variable, Sbornik Math. 189 (5/6) (1998), 797–819.

[10] V.V. Chistyakov, Mappings of bounded variation with values in a metric

space: generalizations, J. Math. Sci. (NY) 100 (6) (2000), 2700–2715.

[11] V.V. Chistyakov, Generalized variation of mappings with applications

to composition operators and multifunctions, Positivity 5 (4) (2001),
323–358.

[12] V.V. Chistyakov, On multi-valued mappings of finite generalized varia-

tion, Math. Notes 71 (3/4) (2002), 556–575.

[13] V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1)
(2004), 1–82.

[14] V.V. Chistyakov, The optimal form of selection principles for functions

of a real variable, J. Math. Anal. Appl. 310 (2) (2005), 609–625.

[15] V.V. Chistyakov and O.E. Galkin, On maps of bounded p-variation with

p > 1, Positivity 2 (1) (1998), 19–45.

[16] V.V. Chistyakov and A. Nowak, Regular Carathéodory-type selectors un-
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[17] V.V. Chistyakov and D. Repovš, Selections of bounded variation under

the excess restrictions, J. Math. Anal. Appl. 331 (2) (2007), 873–885.

[18] V.V. Chistyakov and A. Rychlewicz, On the extension and generation of

set-valued mappings of bounded variation, Studia Math. 153 (3) (2002),
235–247.
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