
CHAPTER II

STOCHASTIC CALCULUS

§ 1. Stochastic integration with respect to Brownian motion

In this section we present the basic facts of the theory of stochastic integration
in the case when the integrator is a Brownian motion W . Let (Ω,F , {Ft},P) be a
filtered probability space satisfying the usual conditions (see § 4 Ch. I) and W (t),
t ∈ [0, T ], be an Ft-measurable Brownian motion in this space. We also assume
that for all v > t the increments W (v) −W (t) are independent of the σ-algebra
Ft. For {Ft} one can take the completed natural filtration, i.e., the family of the
σ-algebras Gt0 = σ{W (s), s ∈ [0, t]}, generated by the Brownian motion W up to
the time t.

The goal is to give some meaning to the stochastic integrals of the type

t∫
0

f(s) dW (s). (1.1)

Since the Brownian motion W has an infinite variation on any interval, it is not
possible to define such integrals by means of classical approaches of the theory of
integration. The approach proposed here is that the stochastic integral (1.1) can
be defined via an isometry. The notion to which this approach leads us is called the
Itô integral and the theory is called stochastic calculus. For a nonrandom function
f , the integral (1.1) can be considered (see § 9 Ch. I) as the integral with respect
to the orthogonal stochastic measure defined by Z(∆) := W (b)−W (a), ∆ = [a, b),
and having the structure function G(∆) = b− a.

Consider the class H2[0, T ] of progressively measurable with respect to {Ft}
stochastic processes f(t), t ∈ [0, T ], satisfying the condition

T∫
0

Ef2(s) ds <∞. (1.2)

In the present description we does not exclude the case T = ∞. In this case the
interval [0, T ] is replaced by [0,∞).

Consider the class of simple processes of the form

f̄(s) =
m−1∑
k=0

fk1I[sk,sk+1)(s), s ∈ [0, T ], (1.3)

where 0 = s0 < s1 < · · · < sm = T , the random variables fk are Fsk
-measurable,

and Ef2
k < ∞, k = 0, . . .m− 1. In the case T = ∞, we set fm−1 ≡ 0. Obviously,

the function f̄ belongs to H2[0, T ].
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The stochastic integral of f̄ with respect to W is defined to be

T∫
0

f̄(s) dW (s) :=
m−1∑
k=0

fk(W (sk+1)−W (sk)). (1.4)

For arbitrary constants α and β,

T∫
0

(αf̄1(s) + βf̄2(s)) dW (s) = α

T∫
0

f̄1(s) dW (s) + β

T∫
0

f̄2(s) dW (s). (1.5)

The mean of the stochastic integral defined by (1.4) equals zero, i.e.,

E

T∫
0

f̄(s) dW (s) = 0. (1.6)

Indeed, since fk is Fsk
-measurable, the variables fk and W (sk+1) − W (sk) are

independent. Therefore, in view of (10.3) Ch. I, we have

E{fk(W (sk+1)−W (sk))} = EfkE(W (sk+1)−W (sk)) = 0.

Hence the expectation of the sum (1.4) is zero and (1.6) holds.
For the variance of the stochastic integral we have

E
( T∫

0

f̄(s) dW (s)
)2

=

T∫
0

Ef̄2(s) ds. (1.7)

Indeed, since fk and W (sk+1)−W (sk) are independent, by (10.3) Ch. I, we have

E{f2
k (W (sk+1)−W (sk))2} = Ef2

kE(W (sk+1)−W (sk))2 = Ef2
k (sk+1 − sk).

For k < l the random variables fk(W (sk+1)−W (sk))fl are Fsl
-measurable and the

increments W (sl+1)−W (sl) are independent of Fsl
. Therefore,

Ik,l := E{fk(W (sk+1)−W (sk))fl(W (sl+1)−W (sl))}

= E{fk(W (sk+1)−W (sk))fl}E(W (sl+1)−W (sl)) = 0.

Here to prove that the expectation is finite we used the estimate

E|fk(W (sk+1)−W (sk))fl| ≤ E1/2{f2
k (W (sk+1)−W (sk))2}E1/2{f2

l }

= E1/2{f2
k}(sk+1 − sk)1/2E1/2{f2

l } <∞.
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Now it is easy to check (1.7):

E
( T∫

0

f̄(s) dW (s)
)2

= E
(m−1∑
k=0

fk(W (sk+1)−W (sk))
)2

=
m−1∑
k=0

E{f2
k (W (sk+1)−W (sk))2}+ 2

∑
0≤k<l≤m−1

Ik,l

=
m−1∑
k=0

Ef2
k (sk+1 − sk) =

T∫
0

Ef̄2(s) ds.

Formula (1.7) is of key importance for the definition of the stochastic integral for
the class of random processes H2[0, T ].

Let L2(P) be the space of square integrable random variables. Then L2(P) is a
Hilbert space when equipped with the norm (EX2)1/2, X ∈ L2(P).

For a function f ∈ H2[0, T ], the norm is
( T∫

0

Ef2(s) ds
)1/2

.

In view of (1.7), for a class of simple processes f̄ ∈ H2[0, T ] the mapping

f̄ →
T∫

0

f̄(s) dW (s) (1.8)

is an isometry from a subset of H2[0, T ] into L2(P).

Proposition 1.1. The set of simple processes is dense in the space H2[0, T ],
i.e., for any process f ∈ H2[0, T ] there exists a sequence of simple processes f̄n ∈
H2[0, T ] such that

lim
n→∞

T∫
0

E(f(s)− f̄n(s))2 ds = 0. (1.9)

Proof. Without loss of generality, we can assume that f is bounded. Otherwise
we set fN (t) := f(t)1I[−N,N ](f(t)) and use the fact that

lim
N→∞

T∫
0

E(f(s)− fN (s))2 ds = 0.

For a continuous bounded f , set f̄n(s) := f([ns]/n), where [a] denotes the
largest integer not exceeding a. Then (1.9) follows from the Lebesgue dominated
convergence theorem for integrals of uniformly bounded functions.

Now to prove Proposition 1.1 it is enough to approximate a bounded progres-
sively measurable process f by continuous processes. Such processes are

f̂n(s) := n

s∫
(s−1/n)+

f(v) dv, n = 1, 2, . . . .



88 II STOCHASTIC CALCULUS

where a+ = max{0, a}. It is clear that f̂n, n = 1, 2, . . . , are uniformly bounded
progressively measurable processes, because they are continuous. Set F (s) :=
s∫

0

f(v) dv. Then F is a.s. a function of bounded variation. By the Lebesgue dif-

ferentiation theorem, for almost all s ∈ [0, T ] there exists F ′(s) and the equality
f(s) = F ′(s) = lim

n→∞
f̂n(s) holds. By the Lebesgue dominated convergence theo-

rem,

lim
n→∞

T∫
0

E(f(s)− f̂n(s))2 ds = 0.

This completes the proof. �

In view of Proposition 1.1, the linear isometry (1.8) can be extended uniquely to
a linear isometry from the whole H2[0, T ] into L2(P), thus defining the stochastic
integral of f ∈ H2[0, T ] with respect to the Brownian motion.

This means the following. Consider the sequence {fn} of functions, satisfying
(1.9). Using the inequality

T∫
0

E(f̄m(s)− f̄n(s))2 ds ≤ 2

T∫
0

E(f(s)− f̄m(s))2 ds+ 2

T∫
0

E(f(s)− f̄n(s))2 ds

and formulas (1.5), (1.7), we have

E
( T∫

0

f̄m(s) dW (s)−
T∫

0

f̄n(s) dW (s)
)2

=

T∫
0

E(f̄m(s)− f̄n(s))2 ds −→
m→∞
n→∞

0.

Thus the sequence
T∫
0

f̄n(s) dW (s) is Cauchy for the mean square convergence.

Therefore, there exists a limit, which is assigned to be the stochastic integral of f
with respect to the Brownian motion W .

Thus, for a function f ∈ H2[0, T ] such that (1.9) holds we set

T∫
0

f(s) dW (s) := l. i.m.

T∫
0

f̄n(s) dW (s), (1.10)

where l. i.m. denotes the limit in mean square.

By (1.10), the properties (1.5)–(1.7) are valid for all processes from the space
H2[0, T ]:
1) for any constants α and β,

T∫
0

(αf1(s) + βf2(s)) dW (s) = α

T∫
0

f1(s) dW (s) + β

T∫
0

f2(s) dW (s) a.s.;
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2) the mean of the stochastic integral equals zero, i.e.,

E

T∫
0

f(s) dW (s) = 0; (1.11)

3) the variance of the stochastic integral satisfies the relation

E
( T∫

0

f(s) dW (s)
)2

=

T∫
0

Ef2(s) ds; (1.12)

4) if

lim
n→∞

T∫
0

E(f(s)− fn(s))2 ds = 0,

then
T∫

0

f(s) dW (s) = l. i.m.

T∫
0

fn(s) dW (s). (1.13)

In addition to the first property, from the construction of the stochastic integral
one can deduce that for any bounded Fv-measurable random variable ξ and any
t > v

T∫
0

ξ1I[v,t)(s)f(s) dW (s) = ξ

T∫
0

1I[v,t)(s)f(s) dW (s) a.s. (1.14)

§ 2. Stochastic integrals with variable upper limit

Define a family of stochastic integrals with variable upper limit by setting

t∫
0

f(s) dW (s) :=

T∫
0

1I[0,t)(s)f(s) dW (s), for every t ∈ [0, T ]. (2.1)

Then the following problem arises. Formula (1.10) defines the stochastic integral
uniquely up to a set Λf of probability zero. This set depends on the integrand.
Definition (2.1) involves a whole family of integrands depending on the time pa-
rameter t. Therefore, it is possible that the probability of the union of sets Λ1I[0,t)f

is not zero. In this case the integrals are not determined as a function of t on a set
of nonzero probability. We overcome this difficulty by proving that the stochastic
integral, as a function of t, is a.s. continuous Ft-measurable martingale.

For v < t it is natural to set

t∫
v

f(s) dW (s) :=

T∫
0

1I[v,t)(s)f(s) dW (s). (2.2)
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Then
t∫
v

f(s) dW (s) =

t∫
0

f(s) dW (s)−
v∫

0

f(s) dW (s),

since 1I[v,t)(s) = 1I[0,t)(s)− 1I[0,v)(s) and the linearity property holds.
The following generalizations of the properties 2), 3) of § 1 hold: for every v < t

E
{ t∫
v

f(s) dW (s)
∣∣∣∣Fv} = 0 a.s., (2.3)

E
{( t∫

v

f(s) dW (s)
)2∣∣∣∣Fv} =

t∫
v

E
{
f2(s)|Fv

}
ds a.s. (2.4)

Indeed, for any Fv-measurable bounded random variable ξ we have

E
{
ξE
{ t∫
v

f(s) dW (s)
∣∣∣∣Fv}} = E

{
E
{
ξ

t∫
v

f(s) dW (s)
∣∣∣∣Fv}}

= E
{
ξ

T∫
0

1I[v,t)(s)f(s) dW (s)
}

= E

T∫
0

ξ1I[v,t)(s)f(s) dW (s) = 0,

where (1.14) and (1.11) were used. Since the random variable ξ is arbitrary, this
implies (2.3).

Similarly, using (1.14) and (1.12), we have

E
{
ξ2E

{( t∫
v

f(s) dW (s)
)2∣∣∣∣Fv}} = E

( T∫
0

ξ1I[v,t)(s)f(s) dW (s)
)2

=

T∫
0

E
{
ξ21I[v,t)(s)f2(s)

}
ds = E

{
ξ2

t∫
v

f2(s) ds
}

= E
{
ξ2

t∫
v

E
{
f2(s)|Fv

}
ds

}
.

This implies (2.4).

Theorem 2.1. Let f ∈ H2[0, T ]. Then the process I(t) :=
t∫

0

f(s) dW (s),

t ∈ [0, T ], is an a.s. continuous martingale such that for any ε > 0

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f(s) dW (s)
∣∣∣∣ ≥ ε

)
≤ 1

"2

T∫
0

Ef2(s) ds, (2.5)
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E sup
0≤t≤T

∣∣∣∣
t∫

0

f(s) dW (s)
∣∣∣∣2 ≤ 4

T∫
0

Ef2(s) ds. (2.6)

Proof. The case T = ∞ can be considered as the limiting case for Tn = n. So
we can assume that T < ∞. We first prove the theorem for the simple processes
defined by (1.3). For such processes, for t ∈ [sl, sl+1), l = 0, . . . ,m− 1, we have

I(t) =

T∫
0

1I[0,t)(s)f̄(s) ds =
l−1∑
k=0

fk(W (sk+1)−W (sk)) + fl(W (t)−W (sl)). (2.7)

Since the Brownian motion is a.s. continuous, the process I(t) is also continuous.
From (2.3) it follows that for v < t

E
{ t∫

0

f̄(s) dW (s)
∣∣∣∣Fv} =

v∫
0

f̄(s) dW (s),

i.e., for simple processes I(t) is a martingale. By Doob’s inequality for martingales
(5.11), p = 2, Ch. I,

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄(s) dW (s)
∣∣∣∣ ≥ ε

)
≤ 1

"2
E
( T∫

0

f̄(s) dW (s)
)2

= 1

"2

T∫
0

Ef̄2(s) ds.

The equality on the right-hand side is due to (1.7). This proves (2.5). Similarly,
from the second Doob inequality for martingales (see (5.12), p = 2, Ch. I) it follows
that (2.6) is also valid. Thus for simple processes the theorem is proved.

For an arbitrary f ∈ H2[0, T ], using (1.9) we can choose a subsequence of the
integer numbers nk such that

T∫
0

E(f(s)− f̄nk
(s))2 ds ≤ 1

2k
.

Then
T∫

0

E(f̄nk+1(s)− f̄nk
(s))2 ds ≤ 2

T∫
0

E(f(s)− f̄nk+1(s))
2 ds

+2

T∫
0

E(f(s)− f̄nk
(s))2 ds ≤ 3

2k
.

The process f̄nk+1(s)− f̄nk
(s) is simple, therefore, (2.5) applies. We have

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄nk+1(s) dW (s)−
t∫

0

f̄nk
(s) dW (s)

∣∣∣∣ ≥ 1

k2

)
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= P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

(
f̄nk+1(s)− f̄nk

(s)
)
dW (s)

∣∣∣∣ ≥ 1

k2

)

≤ k4

T∫
0

E(f̄nk+1(s)− f̄nk
(s))2 ds ≤ 3k4

2k
.

Since the series of these probabilities converges, the first part of the Borel–Cantelli
lemma, shows that there exists a.s. a number k0 = k0(ω) such that for all k > k0

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄nk+1(s) dW (s)−
t∫

0

f̄nk
(s) dW (s)

∣∣∣∣ < 1

k2
.

Then the sequence of integrals

t∫
0

f̄nm
(s) dW (s) =

t∫
0

f̄n0(s) dW (s) +
m−1∑
k=0

( t∫
0

f̄nk+1(s) dW (s)−
t∫

0

f̄nk
(s) dW (s)

)
converges a.s. uniformly in [0, T ] to some limit, which, by definition, is a stochastic
integral I(t), i.e.,

sup
0≤t≤T

∣∣∣∣I(t)−
t∫

0

f̄nm
(s) dW (s)

∣∣∣∣→ 0, as m→∞.

Since a uniform limit of continuous functions is continuous, the process I(t), t ∈
[0, T ] is a.s. continuous. From (2.3) it follows that I(t) is a martingale and the
estimates (2.5), (2.6) hold. �

A very important property of stochastic integrals follows from (2.5) and (2.6).
Let

lim
n→∞

T∫
0

E(f(s)− fn(s))2 ds = 0, fn, f ∈ H2[0, T ].

Then

sup
t∈[0,T ]

∣∣∣∣
t∫

0

f(s) dW (s)−
t∫

0

fn(s) dW (s)
∣∣∣∣→ 0 as n→∞ (2.8)

in probability and in mean square.
This property enables us to justify the passage to a limit in different schemes

involving stochastic integrals.

Here is a simple example of an interesting class of Gaussian processes expressed
via the stochastic integral. For nonrandom functions h(s) and g(s), s ∈ [0, T ], set

W (t) := x+ h(t) +

t∫
0

g(s) dW (s).
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It is clear that W (t), t ∈ [0, T ], is a Gaussian process with the mean x+ h(t) and
the covariance

Cov(W (s),W (t)) =

s∫
0

g2(v) dv, for s ≤ t.

This is a process with independent increments, it is identical in law to the process

h(t) +W
( t∫
0

g2(s) ds
)
, W (0) = x.

It is easy to understand (see (11.21) Ch. I) that for h(0) = 0 the process

W
◦
x,t,z(s) := W (s)−

s∫
0

g2(v) dv

t∫
0

g2(v) dv

(W (t)− z) (2.9)

is the bridge from x to z of the process W .

For every µ ∈ R, the process W with h(t) = µ

t∫
0

g2(s) ds has the same bridge as

for µ = 0.

Exercises.

2.1. Compute the conditional distribution of
t∫

0

s dW (s) given W (t) = z.

2.2. Check whether the following equalities hold true for some ε > 0:

1) E
{ t∫
v

f(s) dW (s)
∣∣∣Fv+ε} = 0 a.s.

2) E
{( t∫

v

f(s) dW (s)
)2∣∣∣Fv+ε} =

t∫
v

E
{
f2(s)|Fv+ε

}
ds a.s.

3) E
{ t∫
v

f(s) dW (s)
∣∣∣Fv−ε} = 0 a.s.

4) E
{( t∫

v

f(s) dW (s)
)2∣∣∣Fv−ε} =

t∫
v

E
{
f2(s)|Fv−ε

}
ds a.s.

2.3. Prove directly from the definition of the Itô integral that

t∫
0

s dW (s) = tW (t)−
t∫

0

W (s) ds

(the integration by parts formula).
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2.4. Deduce directly from the definition of the Itô integral that

2

t∫
s

W (v) dW (v) = W 2(t)−W 2(s)− (t− s).

Hint: Use the result about the quadratic variation of the Brownian motion.

§ 3. Extension of the class of integrands

The condition that processes from H2[0, T ] must have a finite second moment
is rather restrictive. Using an approach based on the truncation of integrands,
the definition of the stochastic integral can be generalized to a class of stochastic
processes broader than H2[0, T ].

Let L2[0, T ] be a class of progressively measurable with respect to the filtration
{Ft} stochastic processes f(t), t ∈ [0, T ], satisfying the condition

P
( T∫

0

f2(s) ds <∞
)

= 1. (3.1)

Clearly, H2[0, T ] ⊂ L2[0, T ].

For simple processes from L2[0, T ] of the form (1.3), where it is not supposed
that the second moments of fk, k = 0, . . .m− 1, are finite, the stochastic integral
with variable upper limit is defined by (2.7).

For further arguments we need the following estimate. For any simple process
f̄ ∈ L2[0, T ] and any C > 0, N > 0,

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄(s) dW (s)
∣∣∣∣ ≥ C

)
≤ P

( T∫
0

f̄2(s) ds > N

)
+ N

C2 . (3.2)

To prove this inequality define fN (t) := f̄(t)1I[0,N ]

( t∫
0

f̄2(v) dv
)
. It is clear that

the process fN (t) is progressively measurable with respect to the σ-algebras {Ft}

and
T∫
0

f̄2
N (s) ds ≤ N . Therefore, fN (t) ∈ H2[0, T ] and the estimate (2.5) can be

applied. Then

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄(s) dW (s)
∣∣∣∣ ≥ C

)
≤ P

(
sup

0≤t≤T

∣∣∣∣
t∫

0

fN (s) dW (s)
∣∣∣∣ ≥ C

)

+P
(
f̄(t) 6= fN (t) for some t ∈ [0, T ]

)
≤ N

C2 + P
( T∫

0

f̄2(s) ds > N

)
.
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Here the obvious inclusion{ t∫
0

f̄2(s) ds > N for some t ∈ [0, T ]
}
⊆
{ T∫

0

f̄2(s) ds > N

}
was taken into account. The inequality (3.2) is proved.

Proposition 3.1. The set of simple processes is dense in the space L2[0, T ], i.e.,
for any process f ∈ L2[0, T ] there exists a sequence of simple processes f̄n ∈ L2[0, T ]
such that

lim
n→∞

T∫
0

(f(s)− f̄n(s))2 ds = 0 a.s. (3.3)

The proof of this statement is analogous to the proof of Proposition 1.1. It is
only necessary to replace the mean square convergence by the a.s. convergence.

From (3.3) it follows that
T∫

0

(f̄m(s)− f̄n(s))2 ds→ 0, as m→∞, n→∞,

in probability. For every m, n, ε > 0 and δ > 0, letting in (3.2) C = ε, N = δε2,
we have

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f̄m(s) dW (s)−
t∫

0

f̄n(s) dW (s)
∣∣∣∣ ≥ ε

)

≤ P
( T∫

0

(f̄m(s)− f̄n(s))2 ds > δε2
)

+ δ. (3.4)

Letting first m → ∞, n → ∞, and then δ → 0, we obtain that the sequence of

processes
t∫

0

f̄n(s) dW (s), t ∈ [0, T ], is Cauchy in the uniform norm sup
t∈[0,T ]

| · | for

the convergence in probability.
Therefore, there exists a stochastic process I(t), t ∈ [0, T ], such that

sup
t∈[0,T ]

∣∣∣∣I(t)−
t∫

0

f̄n(s) dW (s)
∣∣∣∣→ 0

in probability. We set I(t) :=
t∫

0

f(s) dW (s).

Since according to Proposition 1.1 in Ch. I the convergence in probability is
equivalent to a.s. convergence for some subsequences, we see that the process I(t)
is a.s. continuous.

Now we can prove by passage to the limit as n → ∞ in (3.2), applied for the
processes f̄n, that (3.2) is also valid for all processes f ∈ L2[0, T ].

As a result, we have the following theorem.
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Theorem 3.1. Let f∈L2[0, T ]. Then the process I(t) =
t∫

0

f(s)dW (s), t ∈ [0, T ],

is a.s. continuous, and for any C > 0, N > 0,

P
(

sup
0≤t≤T

∣∣∣∣
t∫

0

f(s) dW (s)
∣∣∣∣ ≥ C

)
≤ P

( T∫
0

f2(s) ds > N

)
+ N

C2 . (3.5)

We conclude by pointing out an important property following from (3.5). Let

lim
n→∞

T∫
0

(f(s)− fn(s))2 ds = 0, fn, f ∈ L2[0, T ],

in probability. Then

sup
t∈[0,T ]

∣∣∣∣
t∫

0

f(s) dW (s)−
t∫

0

fn(s) dW (s)
∣∣∣∣→ 0 as n→∞, (3.6)

in probability.

In addition to the stochastic integral with variable upper limit, we define an
integral with a random upper limit.

Let ρ be a stopping time with respect to the filtration {Ft, t ∈ [0,∞)}. Let
f(s), s ∈ [0,∞), be a progressively measurable stochastic process satisfying the
condition

P
( ∞∫

0

f2(s) ds <∞
)

= 1. (3.7)

Then
ρ∫

0

f(s) dW (s) :=

∞∫
0

1I[0,ρ)(s)f(s) dW (s). (3.8)

Note that, by the definition of a stopping time, {ρ ≤ s} ∈ Fs for every s. Then
1I[0,ρ)(s) = 1 − 1I[0,s](ρ) is an Fs-measurable right continuous process. Therefore,
it is progressively measurable and the stochastic integral on the right-hand side of

(3.8) is well defined. The variable
�∫
0

f(s) dW (s) has mean zero, if
∞∫
0

Ef2(s) ds <∞,

and it is Fρ-measurable, because the integral as the process of the upper limit is
continuous.

For finite stopping times (P(ρ <∞) = 1) instead of (3.7) it is enough to assume
that for any T > 0

P
( T∫

0

f2(s) ds <∞
)

= 1, (3.9)
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since in this case

P
( ∞∫

0

1I[0,ρ)(s)f2(s) ds <∞
)

= 1.

§ 4. Itô’s formula

It is often of interest to study the properties of the process f(W (t)), t ≥ 0, where
f is a given smooth function. For the investigation of such processes the technique
of stochastic differentiation is very effective. Here we present some results due to
K. Itô.

Let W (t), t ∈ [0, T ], be a Brownian motion adapted to the filtration {Ft} and
let for all v > t the increments W (v)−W (t) be independent of the σ-algebra Ft.

Let the stochastic processes a(s), b(s), s ∈ [0, T ], be progressively measurable
with respect to the σ-algebras {Fs}.

Assume that

T∫
0

|a(s)| ds <∞,

T∫
0

b2(s) ds <∞, a.s.,

i.e.,
√
|a(·)| ∈ L2[0, T ], b(·) ∈ L2[0, T ].

Let X(t), t ∈ [0, T ], be a stochastic process such that X(0) is F0-measurable. If

X(t) = X(0) +

t∫
0

a(v) dv +

t∫
0

b(v) dW (v) (4.1)

holds a.s. for all t ∈ [0, T ], then we say that X(t) has a stochastic differential of
the form

dX(t) = a(t) dt+ b(t) dW (t). (4.2)

Formula (4.2) is the brief symbolic notation for (4.1).

Theorem 4.1 (Itô’s formula). Let f(x), x ∈ R, be a twice continuously
differentiable function. Then

df(W (t)) = f ′(W (t)) dW (t) + 1

2
f ′′(W (t)) dt. (4.3)

Proof. According to the definition of the stochastic differential, it is sufficient to
prove that for all 0 ≤ t ≤ T

f(W (t))− f(W (0)) =

t∫
0

f ′(W (v)) dW (v) + 1

2

t∫
0

f ′′(W (v)) dv a.s. (4.4)
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The stochastic integral is well defined because f ′(W (·)) ∈ L2[0, T ]. If equality (4.4)
holds a.s. for a fixed t, then it holds a.s. for all t ∈ [0, T ], because all terms figuring
in it are continuous processes.

We first assume that f(x), x ∈ R, is a three times continuously differentiable
function with bounded derivatives f ′, f ′′, f ′′′.

Consider an arbitrary sequence of subdivisions 0 = tn,0 < tn,1 < · · · < tn,n = t
of the interval [0, t], satisfying the condition

lim
n→∞

max
0≤k≤n−1

|tn,k+1 − tn,k| = 0. (4.5)

We use the equality

f(W (t))− f(W (0)) =
n−1∑
k=0

(
f(W (tn,k+1))− f(W (tn,k))

)
.

Applying Taylor’s formula to the function f(x), x ∈ R, we have that for every
k = 0, . . . , n− 1

f(W (tn,k+1))− f(W (tn,k)) = f ′(W (tn,k))(W (tn,k+1)−W (tn,k))

+1

2
f ′′(W (tn,k))(W (tn,k+1)−W (tn,k))2 + 1

6
f ′′′(W (t̃n,k))(W (tn,k+1)−W (tn,k))3,

where t̃n,k is some random point in the interval [tn,k, tn,k+1].
By summing these expressions, we obtain

f(W (t))− f(W (0)) =
n−1∑
k=0

f ′(W (tn,k))(W (tn,k+1)−W (tn,k))

+1

2

n−1∑
k=0

f ′′(W (tn,k))(tn,k+1 − tn,k) + 1

6

n−1∑
k=0

f ′′′(W (t̃n,k))(W (tn,k+1)−W (tn,k))3

+1

2

n−1∑
k=0

f ′′(W (tn,k))
[
(W (tn,k+1)−W (tn,k))2 − (tn,k+1 − tn,k)

]
=: In,1 + In,2 + In,3 + In,4. (4.6)

Since

tn(v) :=
n−1∑
k=0

tn,k1I[tn,k,tn,k+1)(v) → v as n→∞

uniformly in v ∈ [0, t], using the continuity of Brownian motion paths and of f ′,
we get

t∫
0

(
f ′(W (v))− f ′(W (tn(v)))

)2
dv → 0 as n→∞, a.s.
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By the definition of the stochastic integral,

In,1 =

t∫
0

f ′(W (tn(v))) dW (v) →
t∫

0

f ′(W (v)) dW (v) as n→∞, (4.7)

in probability.
Since f ′′ is continuous,

In,2 = 1

2

t∫
0

f ′′(W (tn(v))) dv →
1

2

t∫
0

f ′′(W (v)) dv as n→∞, a.s. (4.8)

Using the assumption that |f ′′′(x)| ≤ C for all x ∈ R, we obtain

|In,3| ≤
C

6

n−1∑
k=0

|W (tn,k+1)−W (tn,k)|3

≤ C

6
max

0≤k≤n−1
|W (tn,k+1)−W (tn,k)|

n−1∑
k=0

|W (tn,k+1)−W (tn,k)|2.

By the continuity of Brownian motion paths and condition (4.5) on the sequence
of subdivisions of {tn,k}, we have

max
0≤k≤n−1

|W (tn,k+1)−W (tn,k)| → 0 a.s.

Since the Brownian motion W has the finite quadratic variation (see (10.23) Ch. I),

n−1∑
k=0

|W (tn,k+1)−W (tn,k)|2 → t as n→∞,

in mean square. Therefore, In,3 → 0 in probability.
To prove the convergence In,4 → 0 in probability we estimate EI2

n,4:

EI2
n,4 ≤

1

4

n−1∑
k=0

E
{
(f ′′(W (tn,k)))2

[
(W (tn,k+1)−W (tn,k))2 − (tn,k+1 − tn,k)

]2}
+1

2

∑
0≤k<l≤n−1

E
{
f ′′(W (tn,k))

[
(W (tn,k+1)−W (tn,k))2−(tn,k+1−tn,k)

]
f ′′(W (tn,l))

×
[
(W (tn,l+1)−W (tn,l))2 − (tn,l+1 − tn,l)

]}
. (4.9)

For k < l the random variables

f ′′(W (tn,k))
[
(W (tn,k+1)−W (tn,k)2 − (tn,k+1 − tn,k)

]
f ′′(W (tn,l)) (4.10)
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are Ftn,l
-measurable and the increments W (tn,l+1) −W (tn,l) are independent of

Ftn,l
. Therefore, the expectation after the sign of the double sum is equal to the

product of the expectations of the random variables (4.10), and the expectation

E{(W (tn,l+1)−W (tn,l))2 − (tn,l+1 − tn,l)} = 0.

Thus the second sum on the right-hand side of (4.9) equals zero. Since |f ′′(x)| ≤ C,
x ∈ R, we obtain

EI2
n,4 ≤

C2

4

n−1∑
k=0

E
[
(W (tn,k+1)−W (tn,k))2 − (tn,k+1 − tn,k)

]2

= C2

4

n−1∑
k=0

Var{(W (tn,k+1)−W (tn,k))2} ≤
C2

2
max

0≤k≤n−1
|tn,k+1 − tn,k| t.

Here we used the estimate (10.24) Ch. I. Using condition (4.5), we finally have

In,4 → 0 (4.11)

in mean square and, consequently, in probability.
From (4.6), using the limits (4.7), (4.8) and the convergence of the random

variables In,3, In,4 to zero in probability, we get (4.4).

The convergence (4.11) plays a very important role in the whole theory of sto-
chastic differentiation, because it enables us to replace the second-order increments
(W (tn,k+1)−W (tn,k))2 by the first-order ones tn,k+1−tn,k, when applying Taylor’s
formula. In the limiting case this can be expressed as follows: the square of the dif-
ferential of the Brownian motion

(
(dW (t))2

)
coincides with dt, i.e., (dW (t))2 = dt.

To prove (4.4) without the assumption that the derivatives f ′, f ′′, and f ′′′

are bounded, we can use the approximation of f by a sequence of functions with
bounded derivatives up to the third order.

We first prove (4.4) for a twice continuously differentiable function f with
bounded support. Set

f̂n(x) = n

x∫
x−1/n

f(v) dv, n = 1, 2, . . . .

These functions are three times continuously differentiable. They have bounded
support and bounded third derivative. The first and the second derivatives are
uniformly bounded and

f̂n(x) → f(x), f̂ ′n(x) → f ′(x), f̂ ′′n (x) → f ′′(x), as n→∞

uniformly in x ∈ R.
Indeed, by the mean value theorem for integrals, we have f̂n(x) = f(xn),

f̂ ′n(x) = f(x)− f(x− 1=n)

1=n
= f ′(x̃n), f̂ ′′n (x) = f ′(x)− f ′(x− 1=n)

1=n
= f ′′(x̂n),
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where xn, x̃n, x̂n, are some points from the interval [x, x−1/n]. Using the fact that
f and its derivatives f ′, f ′′ are uniformly continuous because they have bounded
support, we obtain the desired approximation.

For the functions f̂n(x) equality (4.4) holds. Now, taking into account (3.6) and
the continuity of the Brownian motion, we can pass to the limit in (4.4) for the
functions f̂n(x). This proves (4.4) for twice continuously differentiable functions f
with bounded support.

As the second step we approximate a twice continuously differentiable function
f by the functions

fn(x) = f(x)1I[−n,n](x) + gn(x)1I(n,n+1](x) + gn(x)1I[−n−1,−n)(x)

with bounded support. Here the functions gn(x) are such that fn(x), x ∈ R, is
twice continuously differentiable function for every n.

From (2.5) for f ≡ 1 it follows that

P
(

sup
0≤t≤T

|W (t)| ≥ n
)
≤ T

n2
. (4.12)

Then for any ε > 0

P
( T∫

0

(f ′(W (v))−f ′n(W (v)))2 dv > ε

)
≤ P

(
sup

0≤t≤T
|W (t)| ≥ n

)
≤ T

n2
→ 0 (4.13)

as n→∞. Similarly,

P
( T∫

0

|f ′′(W (v))− f ′′n (W (v))| dv > ε

)
→ 0 as n→∞. (4.14)

Taking into account these estimates and (3.6), we can pass to the limit in (4.4) for
functions fn. Thus (4.4) holds for twice continuously differentiable functions and
this completes the proof. �

Remark 4.1. The main feature of Itô’s formula is that the second derivative
appears in the expression for the first differential. This is impossible in the standard
analysis. In stochastic analysis it is the consequence of the properties of Brownian
motion.

The analog of (4.4) holds even if the function f has no second derivative.

Theorem 4.2. Let f(x), x ∈ R, be a differentiable function, whose first deriv-
ative has the form

f ′(x) = f ′(0) +

x∫
0

g(y)dy, (4.15)
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where g(x), x ∈ R, is a measurable function bounded on any finite interval. Then
a.s. for all 0 ≤ t ≤ T

f(W (t))− f(W (0)) =

t∫
0

f ′(W (v)) dW (v) + 1

2

t∫
0

g(W (v)) dv. (4.16)

Proof. It is sufficient to prove (4.16) for a function g with bounded support. Oth-
erwise g(x), x ∈ R, can be approximated by the functions gn(x) = g(x)1I[−n,n](x)
and we can apply the arguments used before in (4.12)–(4.14) for the proof of The-
orem 4.1.

Assume that {x : g(x) 6= 0} ⊆ [a, b] for some a < b. Set

f̂n(x) := n

x∫
x−1/n

f(y) dy, n = 1, 2, . . . .

These are the twice continuously differentiable functions and

f̂n(x) → f(x), f̂ ′n(x) → f ′(x)

uniformly in x ∈ R. Moreover,

f̂ ′′n (x) = n

x∫
x−1/n

g(y) dy → g(x)

for almost all x.
Then

T∫
0

E|g(W (s))− f̂ ′′n (W (s))| ds ≤
T∫

0

b∫
a

|g(x)− f̂ ′′n (x)| e
−(x−x0)

2=2s
√
2�s

dxds→ 0

as n→∞, where W (0) = x0.
For the functions f̂n(x) equality (4.4) holds and we can pass to the limit. This

proves the theorem. �

Further, we derive Itô’s formula for the case when f depends also on the time
parameter t.

Theorem 4.3. Let f(t, x), (t, x) ∈ [0, T ]×R, be a continuous function with con-

tinuous partial derivatives
@

@t
f(t, x), @

@x
f(t, x) and with continuous partial deriva-

tives
@2

@x2
f(t, x) for x 6= xk, where min

k∈Z
(xk+1−xk) ≥ δ > 0 for some δ > 0. Assume

that at the points xk the second order partial derivatives have left and right limits
uniformly bounded in [0, T ]. Then

df(t,W (t)) = @

@t
f(t,W (t)) dt+ @

@x
f(t,W (t)) dW (t) + 1

2

@2

@x2
f(t,W (t)) dt, (4.17)
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where at the points xk the second partial derivatives are treated as the left limits
of the corresponding derivatives.

Proof. According to the definition of a stochastic differential it is sufficient to
prove that for all 0 ≤ t ≤ T ,

f(t,W (t))− f(0,W (0)) =

t∫
0

@

@v
f(v,W (v)) dv

+

t∫
0

@

@x
f(v,W (v)) dW (v) + 1

2

t∫
0

@2

@x2
f(v,W (v)) dv. (4.18)

We first prove (4.18) for the case when f(t, x) = σ(t)g(x) and there exists the
continuous derivatives σ′ and g′. Moreover, we assume that exists the continuous
derivative g′′(x) for x ∈ R \ {xk}k∈Z with bounded left and right limits at the
points xk. Using subdivisions of the interval [0, t], as in the proof of Theorem 4.2,
we can write

σ(t)g(W (t))−σ(0)g(W (0)) =
n−1∑
k=0

(
σ(tn,k+1)g(W (tn,k+1))−σ(tn,k)g(W (tn,k))

)

=
n−1∑
k=0

g(W (tn,k+1))(σ(tn,k+1)− σ(tn,k)) +
n−1∑
k=0

σ(tn,k)(g(W (tn,k+1))− g(W (tn,k))).

(4.19)
By Theorem 4.2,

g(W (tn,k+1))− g(W (tn,k)) =

tn,k+1∫
tn,k

g′(W (v)) dW (v) + 1

2

tn,k+1∫
tn,k

g′′(W (v)) dv.

Set

t+n (v) :=
n−1∑
k=0

tn,k+11I[tn,k,tn,k+1)(v).

Then using the representation

σ(tn,k+1)− σ(tn,k) =
tn,k+1∫
tn,k

σ′(v) dv

and the notation tn(v) introduced in the proof of Theorem 4.1, one can write (4.19)
in the form

σ(t)g(W (t))− σ(0)g(W (0)) =

t∫
0

σ′(v)g(W (t+n (v)) dv
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+

t∫
0

σ(tn(v))g′(W (v)) dW (v) + 1

2

t∫
0

σ(tn(v))g′′(W (v)) dv. (4.20)

Since tn(v) → v and t+n (v) → v uniformly in v ∈ [0, t], the passage to the limit
in (4.20) proves (4.18) for the special case f(t, x) = σ(t)g(x). Here to justify the
passage to the limit for the stochastic integral we can apply (3.6).

It is clear that (4.18) is valid for the functions

fn(t, x) :=
n∑
k=0

σn,k(t)gn,k(x), (4.21)

where the functions gn,k have the same properties as the function g above.
For an arbitrary smooth function f(t, x) there exists a sequence of functions

fn(t, x), of the form (4.21), such that for any N > 0

lim
n→0

sup
0≤t≤T

sup
|x|≤N

(
|f(t, x)− fn(t, x)|+

∣∣∣ @
@t
f(t, x)− @

@t
fn(t, x)

∣∣∣) = 0,

lim
n→0

sup
0≤t≤T

sup
|x|≤N

∣∣∣ @
@x
f(t, x)− @

@x
fn(t, x)

∣∣∣ = 0,

lim
n→0

sup
0≤t≤T

sup
|x|≤N,x6∈D

∣∣∣ @2
@x2

f(t, x)− @2

@x2
fn(t, x)

∣∣∣ = 0,

where D := {xk}k∈Z. Using arguments similar to those stated in (4.12)–(4.14), it
is not difficult to complete the proof of the theorem for the general case. �

We now consider the general form of the Itô formula for twice continuously
differentiable functions of several arguments.

Theorem 4.4. Let f(t, ~x), (t, ~x) ∈ [0, T ] × Rd, be a continuous function with

continuous partial derivatives
@

@t
f(t, ~x), @

@xi
f(t, ~x), @2

@xi@xj
f(t, ~x), i, j = 1, . . . , d.

Suppose that the coordinates of the vector process
→
X(t), x ∈ [0, T ], have the

stochastic differentials

dXi(t) = ai(t) dt+ bi(t) dW (t), i = 1, . . . , d,

where the functions ai(t) and bi(t), t ∈ [0, T ], are right continuous and have left
limits.

Then the process f(t,
→
X(t)), x ∈ [0, T ], has the stochastic differential given by

df(t,
→
X(t)) = @

@t
f(t,

→
X(t)) dt+

d∑
i=1

ai(t)
@

@xi
f(t,

→
X(t)) dt

+
d∑
i=1

bi(t)
@

@xi
f(t,

→
X(t)) dW (t) + 1

2

d∑
i=1

d∑
j=1

bi(t)bj(t)
@2

@xi@xj
f(t,

→
X(t)) dt. (4.22)
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Remark 4.2. One can prove (4.22) under the assumption that the second-order

partial derivatives @2

@xi@xj
f(t, ~x), i, j = 1, . . . , d, do not exist at vector points ~xk,

k ∈ Z, with coordinates satisfying for some δ > 0 the inequality

min
1≤i≤d,k∈Z

(xi,k+1 − xi,k) ≥ δ > 0.

Proof of Theorem 4.4. According to the definition of the stochastic differential,
it is sufficient to prove that a.s. for all 0 ≤ t ≤ T

f(t,
→
X(t))− f(0,

→
X(0)) =

t∫
0

@

@v
f(v,

→
X(v)) dv +

d∑
i=1

t∫
0

ai(v)
@

@xi
f(v,

→
X(v)) dv

+
d∑
i=1

t∫
0

bi(v)
@

@xi
f(v,

→
X(v)) dW (v) + 1

2

d∑
i=1

d∑
j=1

t∫
0

bi(v)bj(v)
@2

@xi@xj
f(v,

→
X(v)) dv.

(4.23)
We prove first (4.23) in the case when the processes ai and bi, i = 1, . . . , d, are
simple. Without loss of generality we can assume that the intervals of constancy
are the same for all processes ai, bi, i.e.,

ai(s) =
m−1∑
k=0

ai,k1I[sk,sk+1)(s), bi(s) =
m−1∑
k=0

bi,k1I[sk,sk+1)(s), i = 1, . . . , d,

where 0 = s0 < s1 < · · · < sl < · · · < sm = T , and the random variables ai,k, bi,k
are Fsk

-measurable, k = 0, . . .m− 1, i = 1, . . . , d.
In this case the coordinate process Xi for v ∈ [sk, sk+1) has the form

Xi(v) = Xi(sk) + ai,k(v − sk) + bi,k(W (v)−W (sk)), i = 1, . . . , d.

Set for v ∈ [sk, sk+1)

g(v, x) := f(v,
→
X(sk) + ~ak(v − sk) +~bk(x−W (sk))),

where ~ak = (a1,k, . . . , ad,k), ~bk = (b1,k, . . . , bd,k).
We can apply Theorem 4.3, although in the definition of the function g we have

the random variables Xi(sk), W (sk), ai,k, and bi,k (however, it is important that
these random variables are Fsk

-measurable). Since

@

@v
g = @

@v
f +

d∑
i=1

ai,k
@

@xi
f,

@

@x
g =

d∑
i=1

bi,k
@

@xi
f,

@2

@x2
g =

d∑
i=1

d∑
j=1

bi,kbj,k
@2

@xi@xj
f
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for v ∈ [sk, sk+1), using (4.18) we have

f(sk+1,
→
X(sk+1))− f(sk,

→
X(sk)) = g(sk+1,W (sk+1))− g(sk,W (sk))

=

sk+1∫
sk

@

@v
g(v,W (v)) dv +

sk+1∫
sk

@

@x
g(v,W (v)) dW (v) + 1

2

sk+1∫
sk

@2

@x2
g(v,W (v)) dv

=

sk+1∫
sk

@

@v
f(v,

→
X(v))dv +

sk+1∫
sk

d∑
i=1

ai(v)
@

@xi
f(v,

→
X(v)) dv

+

sk+1∫
sk

d∑
i=1

bi(v)
@

@xi
f(v,

→
X(v))dW (v) + 1

2

sk+1∫
sk

d∑
i=1

d∑
i=j

bi(v)bj(v)
@2

@xi@xj
f(v,

→
X(v))dv.

If t ∈ [sl, sl+1) for some l, then summing these equalities for k = 0, . . . , l − 1, and
adding the analogous equality for the interval [sl, t), we obtain (4.23) in the case
when ai and bi, i = 1, . . . , d, are simple processes.

In the general case we can approximate Xi, i = 1, . . . , d, by the processes

Xi,n(t) = Xi(0) +

t∫
0

ai,n(v) dv +

t∫
0

bi,n(v) dW (v),

where the simple processes ai,n and bi,n are such that

t∫
0

|ai(v)− ai,n(v)| dv → 0,

t∫
0

(bi(v)− bi,n(v))2 dv → 0, as n→∞ a.s.

Passage to the limit as n → ∞ in (4.23), done for
→
Xn(t) = (X1,n(t), . . . , Xd,n(t)),

completes the proof. �

Notice that for bi(t) ≡ 0, t ∈ [0, T ], i = 1, . . . , d, formula (4.22) turns into the
classical formula of differentiation of composition of functions. However, in the case
when the stochastic differential is included, the second derivatives of functions with
respect to the spatial variables play an important role. This is due to the fact that
when computing the principal values of the increments of functions of stochastic
processes one can use Taylor’s formula. Thus, when considering the squares of
stochastic differentials, the term (dW (t))2 has, in fact, the first order equal to dt.

We now give an informal description of the generalized Itô’s formula, using the
following rule:
the differential of function of several stochastic processes is computed by applying
Taylor’s formula, where one sets (dt)2 = 0, dt dW (t) = 0, (dW (t))2 = dt, and the
differentials of higher orders must be equal to zero.

To illustrate this rule, consider a function with two spatial variables. Let
f(t, x, y), t ∈ [0,∞), x, y ∈ R, be a continuous function with continuous partial
derivatives f ′t , f

′
x, f

′
y, f

′′
x,x, f

′′
x,y, and f ′′y,y.
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Suppose that the processes X and Y have the stochastic differentials

dX(t) = a(t) dt+ b(t) dW (t), dY (t) = c(t) dt+ q(t) dW (t).

Then according to the rule stated above,

(dX(t))2 = (a(t))2(dt)2 + 2a(t)b(t) dt dW (t) + (b(t))2(dW (t))2 = b2(t) dt.

Similarly, (dY (t))2 = q2(t) dt , dX(t)dY (t) = b(t)q(t) dt. It is clear that the
differentials of higher orders of the processes X, Y are equal to zero.

Applying Taylor’s formula, we obtain

df(t,X(t), Y (t)) = f ′t(t,X(t), Y (t)) dt+ f ′x(t,X(t), Y (t)) dX(t)

+ f ′y(t,X(t), Y (t)) dY (t) + 1

2
f ′′x,x(t,X(t), Y (t))(dX(t))2

+ f ′′x,y(t,X(t), Y (t))dX(t)dY (t) + 1

2
f ′′y,y(t,X(t), Y (t))(dY (t))2.

Therefore,

df(t,X(t), Y (t)) = f ′t(t,X(t), Y (t)) dt+ f ′x(t,X(t), Y (t)){a(t) dt+ b(t) dW (t)}

+ f ′y(t,X(t), Y (t)){c(t) dt+ q(t) dW (t)}+ 1

2
f ′′x,x(t,X(t), Y (t))b2(t) dt

+ f ′′x,y(t,X(t), Y (t))b(t)q(t)dt+ 1

2
f ′′y,y(t,X(t), Y (t))q2(t) dt. (4.24)

Remark 4.3. One can consider independent Brownian motions W1(t) and
W2(t), t ≥ 0. Suppose that the processes X the Y have the stochastic differentials

dX(t) = a(t) dt+ b(t) dW1(t), dY (t) = c(t) dt+ q(t) dW2(t).

In this case dX(t)dY (t) = 0, since one must set dW1(t)dW2(t) = 0. This is a
consequence of the fact that for any s < t

E{(W1(t)−W1(s))(W2(t)−W2(s))} = E(W1(t)−W1(s))E(W2(t)−W2(s)) = 0.

This feature must be taken into account when applying Taylor’s formula for com-
puting the differential df(t,X(t), Y (t)).

As an application of Theorem 4.4, we derive the Burkholder–Davis–Gundy in-
equality for stochastic integrals.

Lemma 4.1. Let h(v), v ∈ [s, t], be a progressively measurable process. Then
for k = 1, 2, . . . the inequality

E sup
s≤u≤t

( u∫
s

h(v) dW (v)
)2k

≤ 2kk2k
(

2k

2k − 1

)(2k−1)k

E
( t∫
s

h2(v) dv
)k

(4.25)
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holds.

Proof. Set

Z(u) :=

u∫
s

h(v) dW (v), s ≤ u ≤ t,

and τN := inf{u ≥ s : |Z(u)| = N}, assuming τN = t for sup
s≤u≤t

|Z(u)| < N . Then

{τN ≥ v} =
{

sup
s≤u≤v

|Z(u)| ≤ N
}
∈ Fv for every v ∈ [0, t].

For a fixed s the process

Z(u ∧ τN ) =

u∫
s

1I{v≤τN}h(v) dW (v), s ≤ u ≤ t,

is a martingale with respect to the family of σ-algebras {Fu}. By Doob’s inequality
for martingales (see (5.12) Ch. I),

E sup
s≤u≤t∧τN

Z2k(u) = E sup
s≤u≤t

Z2k(u ∧ τN ) ≤
(

2k

2k − 1

)2k

EZ2k(t ∧ τN ). (4.26)

Applying to the process Z2k(t) Itô’s formula and substituting t ∧ τN instead of t,
we have

Z2k(t∧τN ) = 2k

t∫
s

1I{v≤τN}Z
2k−1(v)h(v) dW (v)+k(2k−1)

t∧τN∫
s

Z2k−2(v)h2(v) dv.

Since the expectation of the stochastic integral is zero,

EZ2k(t ∧ τN ) = k(2k − 1)E
( t∧τN∫

s

Z2k−2(v)h2(v) dv
)
.

Next applying Hölder’s inequality, we obtain

EZ2k(t ∧ τN ) ≤ k(2k − 1)E
(

sup
s≤u≤t∧τN

Z2k−2(u)

t∫
s

h2(v)) dv
)

≤ k(2k − 1)E(k−1)/k
(

sup
s≤u≤t∧τN

Z2k−2(u)
)k/(k−1)

E1/k

( t∫
s

h2(v)) dv
)k
.

In view of (4.26), this yields

E sup
s≤u≤t∧τN

Z2k(u)≤2k2
(

2k

2k − 1

)2k−1

E(k−1)/k sup
s≤u≤t∧τN

Z2k(u)E1/k

( t∫
s

h2(v)) dv
)k
,
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or

E1/k sup
s≤u≤t∧τN

Z2k(u) ≤ 2k2
(

2k

2k − 1

)2k−1

E1/k

( t∫
s

h2(v)) dv
)k
.

By raising both sides of this inequality to the power k, letting N →∞ and applying
Fatou’s lemma (see (5.18) Ch. I), we get (4.25). �

As it was noticed by R. L. Stratonovich (1966), for special integrands it is
possible to define a stochastic integral different from Itô’s integral.

Example 4.1. Let f(x), x ∈ R, be a continuously differentiable function. Let
0 = tn,0 < tn,1 < · · · < tn,n = T be an arbitrary sequence of subdivisions of the
interval [0, T ], satisfying (4.5). Then the limits in probability
T∫

0

f(W (t))�dW (t) := lim
n→∞

n−1∑
k=0

f(W (tn,k+1))(W (tn,k+1)−W (tn,k)), (4.27)

T∫
0

f(W (t)) ◦ dW (t) := lim
n→∞

n−1∑
k=0

f
(
W
( tn;k + tn;k+1

2

))
(W (tn,k+1)−W (tn,k)) (4.28)

exist.
The existence is due to (4.11). Indeed, assuming that f is a twice continuously

differentiable function with bounded second derivative f ′′ and applying Taylor’s
formula, we have
n−1∑
k=0

f(W (tn,k+1))(W (tn,k+1)−W (tn,k)) =
n−1∑
k=0

f(W (tn,k))(W (tn,k+1)−W (tn,k))

+
n−1∑
k=0

f ′(W (tn,k))(W (tn,k+1)−W (tn,k))2+ 1

2

n−1∑
k=0

f ′′(W (t̃n,k))(W (tn,k+1)−W (tn,k))3.

The last sum tends to zero in probability analogously to In,3. In view of (4.11),

the second sum on the right-hand side of this equality tends to
T∫
0

f ′(W (t)) dt. We

conclude that the limit (4.27) exists and
T∫

0

f(W (t)) � dW (t) =

T∫
0

f(W (t)) dW (t) +

T∫
0

f ′(W (t)) dt. (4.29)

Analogously,
n−1∑
k=0

f
(
W
( tn;k + tn;k+1

2

))
(W (tn,k+1)−W (tn,k))=

n−1∑
k=0

f(W (tn,k))(W (tn,k+1)−W (tn,k))

+
n−1∑
k=0

f ′(W (tn,k))
(
W
( tn;k + tn;k+1

2

)
−W (tn,k)

)
(W (tn,k+1)−W (tn,k))

+ 1

2

n−1∑
k=0

f ′′(W (t̃n,k))
(
W
( tn;k + tn;k+1

2

)
−W (tn,k)

)2(W (tn,k+1)−W (tn,k)).
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The main quantities on the right-hand side of this equality are the first sum, which
tends to Itô’s integral, and the term

n−1∑
k=0

f ′(W (tn,k))
(
W
( tn;k + tn;k+1

2

)
−W (tn,k)

)2
,

which tends to 1

2

T∫
0

f ′(W (t)) dt. Therefore,

T∫
0

f(W (t)) ◦ dW (t) =

T∫
0

f(W (t)) dW (t) + 1

2

T∫
0

f ′(W (t)) dt. (4.30)

Exercises.

4.1. Use Itô’s formula to prove that for a Brownian motion W with W (0) = 0,

t∫
0

W 4(s) dW (s) = 1

5
W 5(t)− 2

t∫
0

W 4(s) ds.

4.2. Use Itô’s formula to compute the differentials:

1) d
(
W 3(t)− t2

2
+

t∫
0

W 2(s) dW (s)
)
;

2) d
(
W (t) shW (t)

)
, where shx := ex − e−x

2
;

3) d exp
(
W 2(t) +W 3(t)

)
.

4.3. Prove that the process et/2 cosW (t), t ≥ 0, is a martingale.

4.4. Use Itô’s formula to compute the differentials:

1) d exp
(
W 5(t) +

t∫
0

W 4(s) dW (s)
)
;

2) d
(
W 3(t) exp

(
W 2(t)

))
.

4.5. Suppose that the process V has the differential

dV (t) = µV (t) dt+ σV (t) dW (t), V (0) = x > 0.

Write out lnV (t).

4.6. Suppose that the process Z has the differential

dZ(t) =
(
nσ2 − 2γZ(t)

)
dt+ 2σ

√
Z(t) dW (t).
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Compute d
√
Z(t).

4.7. Prove that the following stochastic processes are martingales:

1)
(
c+ 1

3
W (t)

)3 − 1

3

t∫
0

(
c+ 1

3
W (s)

)
ds for any c ∈ R;

2) (W (t) + t) exp
(
−W (t)− 1

2
t
)
.

§ 5. Brownian local time. Tanaka’s formula

Let X(t), t ∈ [0, T ], be a progressively measurable with respect to a filtration
{Ft} stochastic process. The occupation measure of the process X up to the time
t is the measure µt defined by

µt(∆) :=

t∫
0

1I∆(X(s))ds, ∆ ∈ B(R), 0 ≤ t ≤ T, (5.1)

where 1I∆(·) is the indicator function.
In other words, µt(∆) is equal to the Lebesgue measure (mes) of the time spent

by a sample path of the process X in the set ∆ up to the time t (µt(∆) = mes{s :
X(s) ∈ ∆, s ∈ [0, t]}). This is a random measure that depends on the path of the
process.

If a.s. for every t the measure µt has a density, i.e., there exists a nonnegative
random function `(t, x) such that

µt(∆) =
∫
∆

`(t, x) dx (5.2)

for any Borel set ∆, then the density `(t, x) is called the local time of the process
X at the level x up to the time t.

In the special case when in (5.2) the process `(t, x) is continuous in x, one has
the following equivalent definition: if a.s. for all (t, x) ∈ [0, T ]×R there exists the
limit

`(t, x) = lim
δ↓0

lim
ε↓0

1

� + "

t∫
0

1I[x−δ,x+ε)(X(s))ds a.s., (5.3)

then `(t, x) is called the local time of the process X.
From (5.3) it follows that for any fixed x the local time `(t, x) is a nondecreasing

random function with respect to t, which increases only on the set {t : X(t) = x}.
As a rule, the Lebesgue measure of this set is zero and the most natural measure
for such a set turned out to be the local time at the level x.

From the definition of µt it obviously follows that the support of µt is included
in the set {

x : inf
0≤s≤t

X(s) ≤ x ≤ sup
0≤s≤t

X(s)
}
.
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If the process X has continuous paths, the support of µt is a.s. finite. Then

t∫
0

f(X(s))ds =

∞∫
−∞

f(x)µt(dx) a.s. (5.4)

for any locally integrable function f . Indeed, by (5.1),

t∫
0

1I∆(X(s))ds =

∞∫
−∞

1I∆(x)µt(dx)

and f can be approximated by the functions
n∑
k=1

cn,k1I∆n,k
(x), ∆n,k ∈ B(R).

In particular, if the local time `(t, x) exists, then

t∫
0

f(X(s))ds =

∞∫
−∞

f(x)`(t, x)dx a.s. (5.5)

Let W (t), t ∈ [0, T ], be a Brownian motion adapted to a filtration {Ft} and
let for all v > t the increment W (v) −W (t) be independent of the σ-algebra Ft.
Assume that W (0) = x0.

The concept of a local time was introduced by P. Lévy (1939). G. Trotter
(1958) proved that for a Brownian motion there exists a continuous local time (the
Brownian local time). The following result is due to H. Tanaka.

Theorem 5.1 (Tanaka’s formula). The Brownian local time `(t, x) exists.
The local time `(t, x) is an a.s. jointly continuous process in (t, x) ∈ [0, T ]×R, and

(W (t)− x)+ − (W (0)− x)+ =

t∫
0

1I[x,∞)(W (s)) dW (s) + 1

2
`(t, x), (5.6)

where a+ = max{a, 0}.

Proof. We prove first that for the process

Jx(t) :=

t∫
0

1I[x,∞)(W (s)) dW (s)

there exist a modification that is continuous in (t, x) ∈ [0, T ]×R.
Note first that for a fixed x the process Jx(t) is continuous in t by the property

of the stochastic integral as a function of the upper limit. Let us consider Jx(·)
as a random variable taking values in the space of continuous functions on [0, T ].
This space is a Banach space when equipped with the norm ‖f‖ := sup

t∈[0,T ]

|f(t)|.
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Analogously to the proof of Theorem 3.2 Ch. I for real-valued processes one
can derive Kolmogorov’s continuity criterion for processes with values in a Banach
space.

This criterion implies that for any N > 0 the process Jx, x ∈ [−N,N ] is a.s.
continuous with respect to the norm ‖ · ‖ if there exist positive constants α, β, and
MN such that

E‖Jx − Jy‖α ≤MN |x− y|1+β , |x|, |y| ≤ N. (5.7)

For any 0 < γ < β/α, the sample paths of the process Jx, x ∈ [−N,N ] a.s. satisfy
the Hölder condition

‖Jx − Jy‖ ≤ LN,γ(ω)|x− y|γ . (5.8)

Indeed, from the proof of the analog of Theorem 3.2 Ch. I it follows that (5.8) is
true for the set D of dyadic rational points. By Cauchy’s criterion, the process
Jy, y ∈ D

⋂
[−N,N ], can be extended by continuity to the whole interval [−N,N ].

Since

lim
y→x

T∫
0

E
(
1I[y,∞)(W (s))− 1I[x,∞)(W (s))

)2
ds = 0,

we have by (2.8) that for all x ∈ [−N,N ] the process Jx has the desired form as a
stochastic integral. Moreover, in view of the a.s. continuity of stochastic integrals
for a countable number of particular integrands and the uniform convergence in
t ∈ [0, T ], the process Jx(t), t ∈ [0, T ], is a.s. continuous with respect to t for all x
simultaneously.

We now prove (5.7). We have

E‖Jx − Jy‖4 = E sup
t∈[0,T ]

∣∣∣∣
t∫

0

1I[x,y)(W (s)) dW (s)
∣∣∣∣4 for x < y.

By (4.25), k = 2,

E‖Jx − Jy‖4 ≤ 360E
∣∣∣∣
T∫

0

1I[x,y)(W (s)) ds
∣∣∣∣2

= 720

T∫
0

ds

T∫
s

duE
[
1I[x,y)(W (s))1I[x,y)(W (u))

]

= 720

T∫
0

ds

T∫
s

du

y∫
x

y∫
x

e−(x1−x0)
2=2s

√
2�s

e−(x2−x1)2=2(u−s)√
2�(u− s)

dx1dx2

≤ 360

�
|x− y|2

T∫
0

ds

T∫
s

du
1√

s(u− s)
= MT |x− y|2.

Thus for the process Jx the Hölder condition (5.8) holds for 0 < γ < 1/4.
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Applying (4.25) for an arbitrary even power, we can prove the estimate

E‖Jx − Jy‖2k ≤Mk,T |x− y|k, k = 1, 2, . . . .

Therefore (5.8) holds for any 0 < γ < 1/2.
The continuity of Jx(t) in (t, x) follows from (5.8), because

|Jx(t)− Jy(s)| ≤ |Jx(t)− Jx(s)|+ ‖Jx(·)− Jy(·)‖.

We now prove that for arbitrary r ∈ R there the limit

`(t, r) := lim
α↑r

lim
β↓r

1

� − �

t∫
0

1I[α,β)(W (s))ds a.s. (5.9)

exists uniformly in t ∈ [0, T ] and (5.6) holds for x = r.
Set

fα,β(x) :=

x∫
−∞

z∫
−∞

1I[�;�)(y)

� − �
dy dz.

By the formula of stochastic differentiation (4.16), a.s. for all t ∈ [0, T ],

1

2

t∫
0

1I[�;�)(W (s))

� − �
ds = fα,β(W (t))− fα,β(W (0))−

t∫
0

f ′α,β(W (s)) dW (s). (5.10)

It is clear that

f ′α,β(x) =

x∫
−∞

1I[�;�)(y)

� − �
dy =


1, β ≤ x,
x− �

� − �
, α < x < β,

0, x ≤ α,

−→
α↑r, β↓r

1I[r,∞)(x), for x 6= r,

fα,β(x) =

x∫
−∞

z∫
−∞

1I[�;�)(y)

� − �
dy dz =


x− � + �

2
, β ≤ x,

(x− �)2

2(� − �)
, α < x < β,

0, x ≤ α,

−→
α↑r, β↓r

(x− r)+.

Since
|1I[r,∞)(x)− f ′α,β(x)| ≤ 1I[α,β)(x), α < r < β,

and, consequently,
|(x− r)+ − fα,β(x)| ≤ |β − α|,

we have

sup
t∈[0,T ]

∣∣(W (t)− r)+ − fα,β(W (t))
∣∣ ≤ |β − α| −→

α↑r, β↓r
0 a.s. (5.11)
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Let us prove that

t∫
0

f ′α,β(W (s)) dW (s) = 1

� − �

β∫
α

Jy(t) dy a.s. (5.12)

It is clear that

f ′α,β(x) =

x∫
−∞

1I[�;�)(y)

� − �
dy = 1

� − �

β∫
α

1I[y,∞)(x) dy.

Then (5.12) can be written in the form

1

� − �

t∫
0

β∫
α

1I[y,∞)(W (s)) dy dW (s) = 1

� − �

β∫
α

t∫
0

1I[y,∞)(W (s)) dW (s) dy

and this is the switching the order of integration formula (analog of Fubini’s theo-
rem) and for the stochastic integral such formula must be proved.

Set
qn(x) = 1

� − �

∑
α≤k/n≤β

1I[k/n,∞)(x)
1

n
.

Since ∣∣∣∣qn(x)− 1

� − �

β∫
α

1I[[yn]/n,∞)(x) dy
∣∣∣∣ ≤ 2

n(� − �)
,

we have
|f ′α,β(x)− qn(x)| ≤

3

n(� − �)
. (5.13)

Using the continuity of Jx in x, we obtain

t∫
0

qn(W (s)) dW (s) = 1

� − �

∑
α≤k/n≤β

t∫
0

1I[k/n,∞)(W (s)) dW (s) 1
n

= 1

� − �

∑
α≤k/n≤β

Jk/n(t)
1

n
−→
n→∞

1

� − �

β∫
α

Jy(t) dy.

This together with (5.13) imply (5.12).

Substituting (5.12) into (5.10), we have

1

2

t∫
0

1I[�;�)(W (s))

� − �
ds = fα,β(W (t))− fα,β(W (0))− 1

� − �

β∫
α

Jy(t) dy.
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Applying (5.11) and taking into account the continuity of Jx (see (5.8)), we see
that the limit (5.9) exists uniformly in t ∈ [0, T ], and (5.6) holds for x = r. The
statement that equality (5.6) holds for all t and x simultaneously follows from the
continuity of Jx(t) and (W (t) − x)+ in (t, x). This also implies the continuity of
`(t, x) in (t, x) ∈ [0, T ]×R.

Moreover, since
sup
z∈R

|(z − x)+ − (z − y)+| ≤ |x− y|,

from (5.6) and (5.8), it follows that for any 0 < γ < 1/2 and N > 0

‖`(·, x)− `(·, y)‖ ≤ BN,γ(ω)|x− y|γ , x, y ∈ [−N,N ]. (5.14)

We can prove that Brownian local time paths with respect to x are a.s. nowhere
locally Hölder continuous of order γ ≥ 1/2 (see Ch. V § 11). In particular, they are
nowhere differentiable in x. The theorem is proved. �

Since the local time has the finite support{
x : inf

0≤s≤t
W (s) ≤ x ≤ sup

0≤s≤t
W (s)

}
,

from (5.5) it follows that for any locally integrable function f and any t > 0,

t∫
0

f(W (s)) ds =

∞∫
−∞

f(x)`(t, x) dx a.s., (5.15)

and the integral on the right-hand side is finite.

From (5.9) we have

E`(t, x) = lim
α↑x

lim
β↓x

t∫
0

E
(
1I[�;�)(W (s))

� − �

)
ds =

t∫
0

1
√
2�s

e−(x−x0)
2/2s ds. (5.16)

Here 1
√
2�s

e−(x−x0)
2/2s is the density of the variable W (s), W (0) = x0.

Using Tanaka’s formula (5.6) one can generalize Itô’s formula (4.16) as follows.

Theorem 5.2. Let b be a function of bounded variation on any finite interval.
Set

f(x) := f0 +

x∫
0

b(y)dy, (5.17)

where f0 is a constant.
Then a.s. for all t ∈ [0, T ],

f(W (t))− f(W (0)) =

t∫
0

b(W (s)) dW (s) + 1

2

∞∫
−∞

`(t, x) b(dx), (5.18)
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where b(dx) is the signed measure (charge) associated to b via its representation as
a difference of two nondecreasing functions.

Remark 5.1. The differential form of (5.18) is the following formula:

df(W (t)) = b(W (t)) dW (t) + 1

2

∞∫
−∞

`(dt, x) b(dx).

Remark 5.2. If b(dx) has a bounded density, then b(dx) = g(x) dx, b(x) =
f ′(x) and, in view of (5.15), formula (5.18) transforms into (4.16).

Remark 5.3. Let the function f be twice continuously differentiable except at
the finite number of points x1 < x2 < · · · < xm, in which f is assumed to have the
right and left derivatives. Then from (5.18) it follows that

f(W (t))− f(W (0)) =

t∫
0

m∑
k=0

f ′(W (s))1I(xk,xk+1)(W (s)) dW (s)

+ 1

2

t∫
0

m∑
k=0

f ′′(W (s))1I(xk,xk+1)(W (s)) ds

+ 1

2

m∑
k=1

(f ′(xk + 0)− f ′(xk − 0))`(t, xk) a.s., (5.19)

where we set x0 = −∞, xm+1 = ∞.

Proof of Theorem 5.2. It suffices to prove (5.18) only for a nondecreasing func-
tion b, since any function of bounded variation is the difference of two nondecreasing
functions.

For the functions

bn(x) :=
n∑
k=1

cn,k1I[rn,k,∞)(x) (5.20)

equality (5.18) follows from Tanaka’s formula (5.6).
Now set

fn(x) := f0 +

x∫
0

bn(y)dy = f0 +
n∑
k=1

cn,k(x− rn,k)+.

Then, by (5.6),

fn(W (t))− fn(W (0)) =

t∫
0

bn(W (s)) dW (s) + 1

2

∞∫
−∞

`(t, x) bn(dx) a.s. (5.21)
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It is clear that any nondecreasing function can be uniformly approximated on
any compact set by functions of the form (5.20), i.e., for any N > 0

sup
|x|≤N

|b(x)− bn(x)| → 0 as n→∞. (5.22)

One can ensure that bn(N) = b(N) and bn(−N) = b(−N). Of course, the sequence
of functions bn depends on N . It is clear that

sup
|x|≤N

|f(x)− fn(x)| ≤ 2N sup
|x|≤N

|b(x)− bn(x)|. (5.23)

Since, by (4.12),
P
(

sup
0≤t≤T

|W (t)| ≥ N
)
≤ T

N2 , (5.24)

and by the choice of N , this probability can be made sufficiently small, we can
restrict ourselves to the consideration of the set ΩN =

{
sup

0≤t≤T
|W (t)| < N

}
. From

(5.23), (5.22), and (3.6) it follows that

sup
t∈[0,T ]

|f(W (t))− fn(W (t))| −→
n→∞

0, |f(W (0))− fn(W (0))| −→
n→∞

0, (5.25)

sup
t∈[0,T ]

∣∣∣∣
t∫

0

b(W (s)) dW (s)−
t∫

0

bn(W (s)) dW (s)
∣∣∣∣ −→
n→∞

0 (5.26)

in probability given the set ΩN .
Let us prove that

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, x) b(dx)−
N∫

−N

`(t, x) bn(dx)
∣∣∣∣ −→
n→∞

0 a.s. (5.27)

By (5.14),

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, x) b(dx)−
N∫

−N

`(t, [xm]
m ) b(dx)

∣∣∣∣
≤ sup

|x|≤N
‖`(·, x)− `(·, [xm]

m )‖(b(N)− b(−N)) ≤ BN;
(!)

m

(b(N)− b(−N)).

Analogously, in view of (5.22),

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, x) bn(dx)−
N∫

−N

`(t, [xm]
m ) bn(dx)

∣∣∣∣
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≤ sup
|x|≤N

‖`(·, x)− `(·, [xm]
m )‖(bn(N)− bn(−N)) ≤ BN;
(!)

m

(b(N)− b(−N)).

In addition, we have the estimate

sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, [xm]
m ) b(dx)−

N∫
−N

`(t, [xm]
m ) bn(dx)

∣∣∣∣
= sup
t∈[0,T ]

∣∣∣∣
N∫

−N

`(t, [xm]
m ) (b(dx)− bn(dx))

∣∣∣∣
≤

[Nm]∑
k=−[Nm]

`(T, km )
∣∣b(k+1

m )− b( km )− bn(k+1
m ) + bn( km )

∣∣.
Now letting first n→∞ and then m→∞, we obtain (5.27).

Taking into account (5.24)–(5.27) we see that the passage to the limit in (5.21)
leads to (5.18). �

Similarly, we can prove the following generalization of the special case of Theo-
rem 4.3 where f(t, x) = σ(t)f(x).

Theorem 5.3. Let f be the function defined by (5.17) and σ(t), t ≥ 0, be a
function with locally integrable derivative.

Then a.s. for all t ∈ [0, T ],

σ(t)f(W (t))− σ(0)f(W (0)) =

t∫
0

σ′(s)f(W (s)) ds

+

t∫
0

σ(s)b(W (s)) dW (s) + 1

2

∞∫
−∞

t∫
0

σ(s)`(ds, x) b(dx). (5.28)

Proof. We can apply the method used to establish formulas (4.19) and (4.20).
Considering subdivisions of [0, t], as in the proof of Theorem 4.1, we can write,
according to (5.18), that

f(W (tn,k+1))−f(W (tn,k))=

tn,k+1∫
tn,k

f ′(W (v)) dW (v)+1

2

∞∫
−∞

(`(tn,k+1, x)−`(tn,k)) b(dx).

The analog of (4.20) is the relation

σ(t)f(W (t))− σ(0)f(W (0)) =

t∫
0

σ′(v)f(W (t+n (v)) dv
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+

t∫
0

σ(tn(v))f ′(W (v)) dW (v) + 1

2

∞∫
−∞

t∫
0

σ(tn(v))`(dv, x) b(dx). (5.29)

The function σ(v), v ∈ [0, T ], is uniformly continuous with a modulus of continuity
∆(δ) → 0 as δ → 0. Using this, we have

∣∣∣∣
t∫

0

(σ(tn(v))− σ(v))`(dv, x)
∣∣∣∣ ≤ ∆

(
max

1≤k≤n
|tn,k − tn,k−1|

)
`(t, x).

The subdivisions of the interval [0, t] satisfy (4.5), therefore in (5.29) we can pass
to the limit and get (5.28). �

Example 5.1. Compute for b > 0 the stochastic differential d| |W (t)− a| − b |.
It is obvious that

| |x− a| − b | = (a− x− b)1I(−∞,a−b)(x) + (x− a+ b)1I[a−b,a)(x)

+ (a− x+ b)1I[a,a+b)(x) + (x− a− b)1I[a+b,∞)(x).

Applying (5.19), we have

d| |W (t)− a| − b | =
(
1I(a+b,∞)(W (t))− 1I(a,a+b)(W (t)) + 1I(a−b,a)(W (t))

−1I(−∞,a−b)(W (t))
)
dW (t) + `(dt, a+ b)− `(dt, a) + `(dt, a− b).

Since the expectation of a stochastic integral equals zero, from (5.16) it follows
that

d

dt
Ex0 ||W (t)−a|−b| = 1

√
2�t

e−(a−b−x0)
2/2t+ 1

√
2�t

e−(a+b−x0)
2/2t− 1

√
2�t

e−(a−x0)
2/2t,

where the subscript in the expectation means that it is computed with respect to
the process W with W (0) = x0.

Exercises.

5.1. Compute the differentials

1) d exp
(
|W (t)|3 +

t∫
0

W 2(s) dW (s)
)

;

2) d
(
|W (t)|e|W (t)−r|);

3) d| |W (t)− a|3 − b3|, 0 < b < a.
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§ 6. Stochastic exponent

Let (Ω,F , {Ft},P) be a filtered probability space and W (t), t ∈ [0, T ], be a
Brownian motion adapted to the filtration {Ft}. Let for all v > t the increments
W (v)−W (t) be independent of the σ-algebra Ft.

For an arbitrary b ∈ L2[0, T ], consider the stochastic exponent

ρ(t) := exp
( t∫

0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
, t ∈ [0, T ]. (6.1)

Let us compute the stochastic differential of the process ρ. Applying Itô’s formula
(4.22), d = 1, for f(t, x) = ex and the process

X(t) =

t∫
0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds,

we have

dρ(t) = ρ(t)
[
b(t) dW (t)− 1

2
b2(t) dt+ 1

2
b2(t) dt

]
= ρ(t)b(t) dW (t).

Therefore,
dρ(t) = ρ(t)b(t) dW (t), ρ(0) = 1. (6.2)

The process ρ is called the stochastic exponent by analogy with the classical expo-

nent ρ̃(t) = exp
( t∫
0

b(s) ds
)
, which is the solution of the equation

dρ̃(t) = ρ̃(t)b(t) dt, ρ̃(0) = 1.

Equation (6.2) is the simplest form of so-called stochastic differential equation (see
§ 7). According to the definition of stochastic differentials, (6.2) is equivalent to
the equation

ρ(t) = 1 +

t∫
0

ρ(s)b(s) dW (s), t ∈ [0, T ]. (6.3)

We will prove that, under some conditions, ρ(t) is a nonnegative martingale with
respect to the filtration {Ft}, with mean value Eρ(t) = 1 for every t ∈ [0, T ].

Proposition 6.1. Let b be a continuous stochastic process from L2[0, T ]. Sup-
pose that for some δ > 0

E exp
(
(1 + δ)

T∫
0

b2(s) ds
)
<∞, (6.4)
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or
sup

0≤s≤T
Eeδb

2(s) <∞. (6.5)

Then for any 0 ≤ t1 < t2 ≤ T ,

E exp
( t2∫
t1

b(s) dW (s)− 1

2

t2∫
t1

b2(s) ds
)

= 1, (6.6)

and, in addition,

E
{

exp
( t2∫
t1

b(s) dW (s)− 1

2

t2∫
t1

b2(s) ds
)∣∣∣Ft1} = 1 a.s. (6.7)

Remark 6.1. The relations (6.6) and (6.7) are valid (see Novikov (1972),
Liptser and Shiryaev (1974)) for an arbitrary process from L2[0, T ] under weaker
assumptions than (6.4), (6.5), which are taken from Gihman and Skorohod (1972).
In (6.4) the factor 1+ δ can be replaced by the factor 1/2, but to improve it to the
factor 1/2− δ is not possible.

Proof of Proposition 6.1. We assume first that b(s) = b̄(s), s ∈ [0, T ], is a simple
process defined by (1.3) and sup

0≤s≤T
|b̄(s)| ≤M , where M is nonrandom. Then

E exp
( t2∫
t1

b̄(s) dW (s)
)
≤ eM

2(t2−t1)/2.

This means that for every m > 0

E exp
(
m

t2∫
t1

b(s) dW (s)
)
≤ em

2M2(t2−t1)/2. (6.8)

Indeed, since on the interval [sk, sk+1), s0 = t1, sm = t2, k = 1, . . . ,m − 1, the
process b̄ is equal to the Fsk

-measurable random variable bk, using the properties
of conditional expectations, and (10.9) Ch. I we have

E exp
( t2∫
t1

b̄(s) dW (s)
)

= E
{
E
{

exp
(m−1∑
k=0

bk(W (sk+1)−W (sk))
)∣∣∣Fsm−1

}}

= E
{

exp
(m−2∑
k=0

bk(W (sk+1)−W (sk))
)

exp
(
b2m−1(sm − sm−1)/2

)}

≤ eM
2(sm−sm−1)/2E exp

(m−2∑
k=0

bk(W (sk+1)−W (sk))
)
≤ eM

2(t2−t1)/2.
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By (6.3),

exp
( t2∫
t1

b̄(s) dW (s)− 1

2

t2∫
t1

b̄2(s) ds
)
− 1

=

t2∫
t1

exp
( t∫
t1

b̄(s) dW (s)− 1

2

t∫
t1

b̄2(s) ds
)
b̄(t) dW (t).

Since
t2∫
t1

E
{(

exp
( t∫
t1

b̄(s) dW (s)− 1

2

t2∫
t1

b̄2(s) ds
)
b̄(t)
)2}

dt <∞,

the expectation of the stochastic integral is zero, and

E exp
( t2∫
t1

b̄(s) dW (s)− 1

2

t2∫
t1

b̄2(s) ds
)

= 1. (6.9)

Thus (6.6) is proved for bounded simple processes. Now, by (2.3), equation (6.3)
and inequality (6.8), we get E{ρ(t2)|Ft1} = ρ(t1) a.s. Hence, (6.7) holds for the
simple processes.

We turn to the proof of the statement for a continuous process b. Let b(s) = 0
for s < 0. We construct for the process b a sequence of bounded simple processes
bn(s), s ∈ [0, T ], such that

b
2

n(s) ≤ b2(s− 1/n) (6.10)

and

lim
n→∞

T∫
0

(b(s)− bn(s))2 dt = 0 a.s. (6.11)

For s ∈ [0, 1/n), we set bn(s) = 0. For s ∈ [k/n, (k+1)/n), k = 1, 2, . . . , [nT ], we
set bn(s) := min

{
inf

(k−1)/n≤s≤k/n
b(s), n

}
if inf

(k−1)/n≤s≤k/n
b(s) > 0, we set bn(s) :=

max
{

sup
(k−1)/n≤s≤k/n

b(s),−n
}

, if sup
(k−1)/n≤s≤k/n

b(s) < 0, and we set bn(s) = 0 if in

at least one point of the interval [(k− 1)/n, k/n] the process b becomes equal zero.
The simple bounded processes bn are adapted to the filtration {Ft} and (6.10) is
satisfied. Then (6.11) holds, because the process b is uniformly continuous on [0, T ].

In view of (6.11) and (3.6), the sequence of random variables

exp
( t2∫
t1

bn(s) dW (s)− 1

2

t2∫
t1

b
2

n(s) ds
)

converges in probability to the variable

exp
( t2∫
t1

b(s) dW (s)− 1

2

t2∫
t1

b2(s) ds
)
.
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If we prove that this sequence of random variables is uniformly integrable (see § 1
Ch. I), then by Proposition 1.3 of Ch. I, we can pass to the limit in (6.9), applied
to the simple processes bn and get (6.6). Equality (6.7) is proved analogously with
the help of property 7′) of the conditional expectations (see § 2 Ch. I).

Choose γ > 0 such that (1 + γ)2(1 + γ/2) = 1 + δ. Using Hölder’s inequality
and (6.9), we get

E
(

exp
( t2∫
t1

b̄n(s) dW (s)− 1

2

t2∫
t1

b̄2n(s) ds
))1+γ

= E
{
exp

(
(1+γ)

t2∫
t1

b̄n(s) dW (s)− (1 + 
)3

2

t2∫
t1

b̄2n(s) ds+ 
(1 + 
)(2 + 
)

2

t2∫
t1

b̄2n(s) ds
)}

≤
[
E
(

exp
(

(1 + γ)2
t2∫
t1

b̄n(s) dW (s)− (1 + 
)4

2

t2∫
t1

b̄2n(s) ds
)]1/(1+γ)

×
[
E exp

(
(1 + 
)2(2 + 
)

2

t2∫
t1

b̄2n(s) ds
)]γ/(1+γ)

≤
[
E exp

(
(1 + δ)

t2−1/n∫
t1−1/n

b2(s) ds
)]γ/(1+γ)

<∞.

By Proposition 1.2 Ch. I with G(x) = x1+γ , this implies that the corresponding
sequence of random variables is uniformly integrable. Proposition 6.1 is proved
under the condition (6.4).

We turn to the proof of this assertion under the condition (6.5).
Since the function g(x) := ex is convex, by Jensen’s inequality for the integral

of the normalized measure (see (1.4) Ch. I), we have that for v < u and δ > 0

exp
(
(1+δ)

u∫
v

b2(s) ds
)

=exp
( u∫
v

(1+δ)(u−v)b2(s) ds

u− v

)
≤

u∫
v

e(1+δ)(u−v)b
2(s) ds

u− v
.

By (6.5), for any 0 < u− v ≤ �

1 + �
there holds the estimate

E exp
(

(1 + δ)

u∫
v

b2(s) ds
)
≤ 1

u− v

u∫
v

Eeδb
2(s) ds <∞.

This is exactly the condition (6.4), therefore by the assertion proved above, we
have for any 0 < u− v ≤ �

1 + �
the equality

E
{

exp
( u∫
v

b(s) dW (s)− 1

2

u∫
v

b2(s) ds
)∣∣∣∣Fv} = 1. (6.12)
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Divide the interval [t1, t2] by points t1 = v0 < v1 < · · · < vm = t2 such that
max

1≤r≤m
(tk − tk−1) ≤

�

1 + �
. Under the assumption that (6.12) is proved for v = v0,

u = vm−1, we prove (6.12) for v = v0, u = vm. Since (6.12) holds for v = vm−1,
u = vm, we have

E
{

exp
( vm∫
v0

b(s) dW (s)− 1

2

vm∫
v0

b2(s) ds
)∣∣∣∣Fv0}

= E
{

exp
( vm−1∫

v0

b(s) dW (s)− 1

2

vm−1∫
v0

b2(s) ds
)

×E
{

exp
( vm∫
vm−1

b(s) dW (s)− 1

2

vm∫
vm−1

b2(s) ds
)∣∣∣∣Fvm−1

}∣∣∣∣Fv0}

= E
{

exp
( vm−1∫

v0

b(s) dW (s)− 1

2

vm−1∫
v0

b2(s) ds
)∣∣∣∣Fv0} = 1 .

The induction base for v = v0, u = v1 is also valid. Therefore (6.7) holds. Propo-
sition 6.1 is proved. �

Remark 6.2. Suppose that the process b(s), s ∈ [0, T ], is adapted to the filtra-
tion {Fs}, and sup

0≤s≤T
|b(s)| ≤ M for some nonrandom constant M . Then for any

m > 0

E exp
(
m

t2∫
t1

b(s) dW (s)
)
≤ em

2M2(t2−t1)/2. (6.13)

Indeed, according to Proposition 1.1, the process b can be approximated by
a sequence of bounded simple processes bn such that (2.8) holds. For a simple
processes bn we have (6.8). By Proposition 1.2 Ch. I with G(x) = x1+γ , γ > 0,
the corresponding sequence of random variables is uniformly integrable. Therefore,
we can pass to the limit under the expectation sign in (6.8) applied for bn. This
implies (6.13).

Equation (6.3) gives us the iterative procedure

ρ(t) = 1 +

t∫
0

(
1 +

t1∫
0

ρ(s)b(s) dW (s)
)
b(t1) dW (t1) = 1 +

t∫
0

b(t1) dW (t1)

+

t∫
0

t1∫
0

(
1 +

t2∫
0

ρ(s)b(s) dW (s)
)
b(t2) dW (t2)b(t1) dW (t1)
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= 1 +

t∫
0

dW (t1) b(t1) +

t∫
0

dW (t1) b(t1)

t1∫
0

dW (t2) b(t2)

+

t∫
0

dW (t1) b(t1)

t1∫
0

dW (t2) b(t2)

t2∫
0

dW (t3) b(t3) + · · · .

Formally, we have the series

ρ(t) =
∞∑
n=0

ρn(t), (6.14)

where ρ0(t) ≡ 1 and

ρn(t) :=

t∫
0

dW (t1) b(t1)

t1∫
0

dW (t2) b(t2) · · ·
tn−1∫
0

dW (tn) b(tn).

This is equivalent to the equality

ρn(t) =

t∫
0

ρn−1(t1)b(t1) dW (t1). (6.15)

Of course, we need to prove that the series (6.14) converges a.s. We assume this
first. Therefore, the stochastic exponent is represented as the sum of multiple Itô
integrals of the process b(t), t ∈ [0, T ].

The usual multiple integral has a simple expression, i.e.,

t∫
0

dt1 b(t1)

t1∫
0

dt2 b(t2) · · ·
tn−1∫
0

dtn b(tn) = 1

n!

( t∫
0

b(s) ds
)n
.

For a multiple stochastic integral ρn(t) the formula is not so simple. To derive it,
we proceed as follows.

For further purposes we consider the Hermite polynomials

Hen(t, x) := (−t)nex
2/2t d

n

dxn
e−x

2/2t = n!
∑

0≤k≤n/2

(−1)kxn−2ktk

2kk!(n− 2k)!
, n = 0, 1, 2, . . . .

As to the right-hand side of this equality, see the corresponding example of for-
mula 5 in Appendix 6. We set He0(t, x) := 1. It is easy to compute that
He1(t, x) = x, He2(t, x) = x2 − t, He3(t, x) = x3 − 3xt, He4(t, x) = x4 − 6x2t+ 3t2.

The generating function of the Hermite polynomials is determined by the formula

∞∑
n=0


n

n!
Hen(t, x) = eγx−γ

2t/2, γ ∈ R. (6.16)
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To prove (6.16), we note that the Taylor expansion of the function e−(x+∆)2/2t is

e−(x+∆)2/2t =
∞∑
n=0

�n

n!

dn

dxn
e−x

2/2t, x ∈ R.

Multiplying this equality by ex
2/2t and setting ∆ = −γt, we have (6.16):

eγx−γ
2t/2 =

∞∑
n=0

(−
t)n

n!
ex

2/2t d
n

dxn
e−x

2/2t.

Using the generating function (6.16), it is easy to derive the formulas

@

@t
Hen(t, x) = −n(n− 1)

2
Hen−2(t, x),

@k

@xk
Hen(t, x) = n!

(n− k)!
Hen−k(t, x), k = 1, 2, . . . . (6.17)

Substituting x =
t∫

0

b(s) dW (s), t =
t∫

0

b2(s) ds in (6.16), we have

exp
(
γ

t∫
0

b(s) dW (s)− 
2

2

t∫
0

b2(s) ds
)

=
∞∑
n=0


n

n!
Hen

( t∫
0

b2(s) ds,

t∫
0

b(s) dW (s)
)
.

(6.18)
The series on the right-hand side converges a.s., since (6.16) converge for all x ∈ R
and t > 0. The left-hand side of (6.18) is the stochastic exponent ρ(γ)(t) defined
in (6.1) with the function γb(t) instead of b(t). For this stochastic exponent the
equality (6.14) has the form

ρ(γ)(t) =
∞∑
n=0

γnρn(t), (6.19)

where ρn(t) is defined by (6.15). Comparing (6.19) with (6.18) we come to the
conclusion that the multiple Itô integral ρn(t) must be equal to

ρn(t) = 1

n!
Hen

( t∫
0

b2(s) ds,

t∫
0

b(s) dW (s)
)
, n = 1, 2, . . . . (6.20)

Below we prove (6.20) directly, using Itô’s differentiation formula. Then this implies
that the series (6.19) converges a.s for arbitrary γ, since the series (6.18) converges
a.s., and our assumption on the convergence of the series (6.14) will be proved.

We prove (6.20) by induction. It is clear that (6.20) holds for n = 0 and n = 1.
Suppose that it holds for index n−1 and let us prove it for index n. It is also evident
that (6.20) holds for t = 0, since Hen(0, 0) = 0, n = 1, 2, . . . . The last equality
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follows from (6.16). Now it is sufficient to prove that the stochastic differentials of
both sides of (6.20) coincide.

According to (6.15) and the induction hypothesis, the stochastic differential on
the left-hand side of (6.20) equals

dρn(t) = ρn−1(t)b(t) dW (t) = 1

(n− 1)!
Hen−1 b(t) dW (t). (6.21)

Here and in what follows we omit the arguments
t∫

0

b2(s) ds,
t∫

0

b(s) dW (s) in the

notation of the Hermite polynomials in (6.20).

Applying Itô’s formula (4.22) for
→
X =

( t∫
0

b2(s) ds,
t∫

0

b(s) dW (s)
)

and taking into

account formulae (6.17), we obtain the following expression for the differential on
the right-hand side (6.20):

dHen = @

@t
Hen b2(t) dt+ @

@x
Hen b(t) dW (t) + 1

2

@2

@x2
Hen b2(t) dt

= −n(n− 1)

2
Hen−2 b2(t) dt+ nHen−1 b(t) dW (t) + n(n− 1)

2
Hen−2 b2(t) dt

= n Hen−1 b(t) dW (t).

After normalization by n! this stochastic differential coincides with (6.21) and,
consequently, (6.20) is proved, because ρn(0) = 0 and Hen(0, 0) = 0 for n ≥ 1. �

Proposition 6.2. Let b(s), s ∈ [0, t], be a stochastic process from L2[0, T ].
Then

0.3E
( t∫

0

b2(s) ds
)2

≤ E
( t∫

0

b(s) dW (s)
)4

≤ 30E
( t∫

0

b2(s) ds
)2

. (6.22)

Proof. Since He4(t, x) = x4 − 6x2t+ 3t2, we have

24ρ4(t) =
( t∫

0

b(s) dW (s)
)4

− 6
( t∫

0

b(s) dW (s)
)2

t∫
0

b2(s) ds+ 3
( t∫

0

b2(s) ds
)2

.

We can assume that the function b is bounded, otherwise we can apply the trun-
cation procedure. Let sup

0≤s≤t
|b(s)| ≤ M . According to (6.15) and the definition of

the stochastic integral, in order to take the expectation of ρ4(t) we need to be sure

that
t∫

0

E(ρ3(t1)b(t1))2 dt1 <∞. In view of (6.15) and (1.12), the required estimate

follows from the inequalities

t∫
0

E(ρ3(t1)b(t1))2 dt1 ≤M2

t∫
0

E(ρ3(t1))2 dt1 = M2

t∫
0

dt1

t1∫
0

E(ρ2(t2)b(t2))2 dt2



§ 7. STOCHASTIC DIFFERENTIAL EQUATIONS 129

≤M6

t∫
0

dt1

t1∫
0

dt2

t2∫
0

E(ρ1(t3))2 dt3 ≤M8

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3

t3∫
0

dt4 = M8t4

4!
.

Since the expectation of a stochastic integral is zero, we have Eρ4(t) = 0. Now,
from the expression for 24ρ4(t) it follows that

E
( t∫

0

b(s) dW (s)
)4

= 6E
{( t∫

0

b(s) dW (s)
)2

t∫
0

b2(s) ds
}
− 3E

( t∫
0

b2(s) ds
)2

.

Applying Hölder’s inequality, we get

E
( t∫

0

b(s) dW (s)
)4

≤ 6E1/2

( t∫
0

b(s) dW (s)
)4

E1/2

( t∫
0

b2(s) ds
)2

− 3E
( t∫

0

b2(s) ds
)2

.

Set

z := E1/2

( t∫
0

b(s) dW (s)
)4/

E1/2

( t∫
0

b2(s) ds
)2

.

Then the previous inequality can be written in the form z2 − 6z + 3 ≤ 0. This
is equivalent to 3 −

√
6 ≤ z ≤ 3 +

√
6. For nonnegative z this is equivalent to

15− 6
√

6 ≤ z2 ≤ 15 + 6
√

6. Finally this implies 0.3 ≤ z2 ≤ 30, and hence (6.22) is
proved. �

Exercises.

6.1. Let b(s), s ∈ [0, t], be a stochastic process from L2[0, T ]. Prove the estimate

c1 E
( t∫

0

b2(s) ds
)3

≤ E
( t∫

0

b(s) dW (s)
)6

≤ c2 E
( t∫

0

b2(s) ds
)3

for some positive constants c1 and c2.

§ 7. Stochastic differential equations

Let (Ω,F ,P) be a probability space. Let W (t), t ∈ [0, T ], be a Brownian motion
with a starting point x ∈ R, and ξ ∈ R be a random variable independent of W .
Let Ft := σ{ξ,W (s), 0 ≤ s ≤ t} be the σ-algebra of events generated by the
random variable ξ and by the Brownian motion in the interval [0, t].

Let a(t, x) and b(t, x), t ∈ [0, T ], x ∈ R, be measurable functions.
A process X(t), t ∈ [0, T ], X(0) = ξ, is said to be a strong solution of the

stochastic differential equation

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = ξ, (7.1)
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if X is a continuous Ft-adapted process such that a.s. for all t ∈ [0, T ]

t∫
0

(|a(s,X(s))|+ |b(s,X(s))|2) ds <∞ (7.2)

and

X(t) = ξ +

t∫
0

a(s,X(s)) ds+

t∫
0

b(s,X(s)) dW (s). (7.3)

Note that due to (7.2) the integrals in (7.3) are well defined. In this section we
follow the presentation in the book Gihman and Skorohod (1972).

1. Existence and uniqueness of solution.

Theorem 7.1. Suppose that functions a and b satisfy the Lipschitz condition:
there exists a constant CT such that for all t ∈ [0, T ] and x, y ∈ R,

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ CT |x− y|, (7.4)

and the linear growth condition: for all t ∈ [0, T ] and x ∈ R

|a(t, x)|+ |b(t, x)| ≤ CT (1 + |x|). (7.5)

Let Eξ2 <∞.
Then there exists a unique strong solution of (7.1) satisfying the condition

sup
0≤t≤T

EX2(t) <∞. (7.6)

Remark 7.1. Condition (7.5) follows from (7.4) if |a(t, 0)| + |b(t, 0)| ≤ CT for
all t ∈ [0, T ].

Remark 7.2. Conditions (7.4) and (7.5) are rather essential even for determin-
istic equations.

Indeed, the equation

dX(t)

dt
= X2(t), X(0) = 1

has the unique solution X(t) = 1

1− t
, t ∈ [0, 1]. Thus it is impossible to find a

solution, for example, in the interval [0, 2].
Generally speaking, condition (7.5) that the functions increase no faster than

linearly guarantees that the solution X of (7.3) does not explode, i.e., |X(t)| does
not tend to ∞ in a finite time.

Another important example concerns the fact that for t ∈ [0, T ] the equation

dX(t)

dt
= 3X2/3(t), X(0) = 0,
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has more than one solution. Indeed, for any t0 ∈ [0, T ] the function

X(t) =
{

0, for 0 ≤ t ≤ t0,

(t− t0)3, for t0 ≤ t ≤ T,

is a solution. In this case the Lipschitz condition (7.4) is not satisfied.

Proof of Theorem 7.1. We first prove the uniqueness. Suppose that there are
two continuous solutions satisfying (7.3) and (7.6), i.e.,

Xl(t) = ξ +

t∫
0

a(s,Xl(s)) ds+

t∫
0

b(s,Xl(s)) dW (s), l = 1, 2.

Then using the inequality (g + h)2 ≤ 2g2 + 2h2, we get

E(X1(t)−X2(t))2 ≤ 2E
( t∫

0

(a(s,X1(s))− a(s,X2(s))) ds
)2

+ 2E
( t∫

0

(b(s,X1(s))− b(s,X2(s))) dW (s)
)2

.

Applying the Hölder inequality for the first term and the isometry property (1.12)
for the second one, we have

E(X1(t)−X2(t))2 ≤ 2t

t∫
0

E(a(s,X1(s))− a(s,X2(s))2 ds

+ 2

t∫
0

E(b(s,X1(s))− b(s,X2(s)))2 ds.

Now using the Lipschitz condition (7.4) we obtain

E(X1(t)−X2(t))2 ≤ L

t∫
0

E(X1(s)−X2(s))2 ds for all t ∈ [0, T ], (7.7)

where L = 2(T + 1)C2
T .

We will often use Gronwall’s lemma.

Lemma 7.1 (Gronwall). Let g(t) and h(t), 0 ≤ t ≤ T , be bounded measurable
functions and let for some K > 0 and all t ∈ [0, T ]

g(t) ≤ h(t) +K

t∫
0

g(s) ds.
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Then

g(t) ≤ h(t) +K

t∫
0

eK(t−s)h(s) ds, t ∈ [0, T ]. (7.8)

If h is nondecreasing, then

g(t) ≤ h(t) eKt, t ∈ [0, T ]. (7.9)

Proof. Set

ψ(t) := h(t) +K

t∫
0

eK(t−s)h(s) ds, ∆(t) := ψ(t)− g(t),

and note that the function ∆(t), t ∈ [0, T ], is bounded. Since

( t∫
0

eK(t−s)h(s) ds
)′

= h(t) +K

t∫
0

eK(t−s)h(s) ds = ψ(t),

the function ψ satisfies the equation

ψ(t) = h(t) +K

t∫
0

ψ(s) ds,

and

∆(t) ≥ K

t∫
0

∆(s) ds, t ∈ [0, T ].

Since K > 0, by iteration, we get

∆(t) ≥ K2

t∫
0

s∫
0

∆(u) du ds=K2

t∫
0

(t− u)∆(u) du ≥ K3

t∫
0

(t− u)

u∫
0

∆(s) ds du

= K3

t∫
0

(t− u)2

2
∆(s) ds ≥ · · · ≥ Kn+1

n!

t∫
0

(t− s)n∆(s) ds.

The last term tends to zero as n→∞, consequently, ∆(t) ≥ 0, t ∈ [0, T ], and (7.8)
holds. For a nondecreasing function h inequality (7.9) is a simple consequence of
(7.8), because

g(t) ≤ h(t) +Kh(t)

t∫
0

eK(t−s) ds = h(t) eKt.

�
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Since sup
0≤s≤T

E
{
X2

1 (t) +X2
2 (t)

}
<∞, using Gronwall’s lemma for h ≡ 0, we deduce

from (7.7) that E(X1(t) − X2(t))2 = 0 and, consequently, P(X1(t) = X2(t)) = 1
for every t ∈ [0, T ]. Therefore, the solutions X1, X2 coincide a.s. for all rational
moments of time, and by the continuity of paths P

(
sup

0≤t≤T
|X1(t)−X2(t)| = 0

)
= 1.

The uniqueness is proved.

To prove that there exists a solution of the stochastic equation (7.3) we apply
the method of successive approximations.

Set X0(t) := ξ,

Xn(t) := ξ +

t∫
0

a(s,Xn−1(s)) ds+

t∫
0

b(s,Xn−1(s)) dW (s). (7.10)

Note that Xn(t) is a continuous Ft-adapted process for every n.
By the linear growth condition (7.5), analogously to (7.7), we have

E(X1(t)−X0(t))2 ≤ 2t

t∫
0

Ea2(s, ξ) ds+ 2

t∫
0

Eb2(s, ξ) ds ≤ Lt(1 + Eξ2) = KLt.

We now make the inductive assumption that for k = n− 1

E(Xk+1(t)−Xk(t))2 ≤
K(Lt)k+1

(k + 1)!
for all t ∈ [0, T ]. (7.11)

Then analogously to (7.7) we have

E(Xn+1(t)−Xn(t))2 ≤ L

t∫
0

E(Xn(s)−Xn−1(s))2 ds

≤ KLn+1

n!

t∫
0

sn ds = K(Lt)n+1

(n+ 1)!
.

Thus (7.11) holds for k = n and the proof of (7.11) for all k = 0, 1, 2 . . . is completed
by induction.

The estimate (7.11) will enable us to prove that the processes Xn(t) converge
a.s. uniformly in t ∈ [0, T ] to a limit. We apply the estimate

sup
0≤t≤T

|Xn+1(t)−Xn(t)| ≤
T∫

0

|a(s,Xn(s))− a(s,Xn−1(s))| ds

+ sup
0≤t≤T

∣∣∣∣
t∫

0

(b(s,Xn(s))− b(s,Xn−1(s))) dW (s)
∣∣∣∣.
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Then using Doob’s inequality (2.6) and (1.12), we obtain

E sup
0≤t≤T

|Xn+1(t)−Xn(t)|2 ≤ 2E
( T∫

0

|a(s,Xn(s))− a(s,Xn−1(s))|ds
)2

+8

T∫
0

E(b(s,Xn(s))− b(s,Xn−1(s)))2 ds ≤ 4L

t∫
0

E(Xn(s)−Xn−1(s))2 ds

≤ KLn+1Tn+1

(n+ 1)!
.

By the Chebyshev inequality,

P
(

sup
0≤t≤T

|Xn+1(t)−Xn(t)| >
1

n2

)
≤ 4n4K

Ln+1Tn+1

(n+ 1)!
.

Since the series of these probabilities converge, by the first part of the Borel–Cantelli
lemma, there exists a.s. a number n0 = n0(ω) such that for all n > n0

sup
0≤t≤T

|Xn+1(t)−Xn(t)| ≤
1

n2
.

This implies that the random variables

Xn(t) = ξ +
n−1∑
k=0

(
Xk+1(t)−Xk(t)

)
(7.12)

converge uniformly in t ∈ [0, T ] to

X(t) = ξ +
∞∑
k=0

(
Xk+1(t)−Xk(t)

)
i.e.,

P
(

lim
n→∞

sup
0≤t≤T

|Xn(t)−X(t)| = 0
)

= 1.

Therefore X(t), t ∈ [0, T ], is a continuous Ft-adapted process and, in view of (7.5),
we see that (7.2) holds.

Using (7.4) and the uniform convergence of Xn to X, one can pass to the limit
in (7.10). We have a(t,Xn(t)) → a(t,X(t)) and b(t,Xn(t)) → b(t,X(t)) a.s. uni-
formly in t ∈ [0, T ], and

T∫
0

(
b(t,Xn(t))− b(t,X(t))

)2
dt→ 0 a.s.

We now can apply (3.6) and, by passage to the limit in (7.10), prove that the
process X is the solution of equation (7.3).
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To complete the proof of Theorem 7.1 it remains to prove that this solution
satisfies (7.6).

From the inequality
( n∑
k=1

ck

)2

≤n
n∑
k=1

c2k, and (7.11), (7.12) we get that EX2
n(t)≤

C(n+ 1) for some C. From (7.10) we have

EX2
n+1(t) ≤ 3Eξ2 + 3E

( t∫
0

a(s,Xn(s)) ds
)2

+ 3E
( t∫

0

b(s,Xn(s)) dW (s)
)2

.

Applying Hölder’s inequality to the second term and the isometry property (1.12)
to the third term, and using (7.5), we obtain

EX2
n+1(t) ≤ 3Eξ2 + 3T

t∫
0

Ea2(s,Xn(s)) ds+ 3

t∫
0

Eb2(s,Xn(s)) ds

≤ 3Eξ2 + 3L

t∫
0

(1 + EX2
n(s)) ds ≤M +M

t∫
0

EX2
n(s) ds.

for some constant M . By iteration, we get that for all t ∈ [0, T ]

EX2
n+1(t) ≤M +M2t+M3 t

2

2!
+ · · ·+Mn+2 tn+1

(n+ 1)!
.

Therefore, EX2
n+1(t) ≤MeMt. By Fatou’s lemma,

EX2(t) ≤MeMt. (7.13)

This proves (7.6). �

2. Local dependence of solutions on coefficients.
The meaning of the assertions presented below is the following. If for two sto-

chastic differential equations with the same initial value the coefficients coincide for
all time moments and for the spatial variable from some interval, then the solutions
of these equations coincide up to the first exit time from this interval.

Theorem 7.2. Suppose that the coefficients a1, b1 and a2, b2 of the stochastic
differential equations

dXl(t) = al(t,Xl(t)) dt+ bl(t,Xl(t)) dW (t), Xl(0) = ξ, (7.14)

l = 1, 2, satisfy conditions (7.4), (7.5) and a1(t, x) = a2(t, x), b1(t, x) = b2(t, x), for
(t, x) ∈ [0, T ]× [−N,N ] with some N > 0. Let Eξ2 <∞.

Let Xl, l = 1, 2, be the strong solutions of (7.14) and Hl := max{t ∈ [0, T ] :
sup

0≤s≤t
|Xl(s)| ≤ N}. Then P(H1 = H2) = 1 and

P
(

sup
0≤s≤H1

|X1(s)−X2(s)| = 0
)

= 1. (7.15)
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Proof. Set

ϕ1(t) =


1, if sup

0≤s≤t
|X1(s)| ≤ N,

0, if sup
0≤s≤t

|X1(s)| > N.

It is clear that ϕ1(t) = 1 iff t ∈ [0,H1]. Since given the event {ϕ1(t) = 1} we have
a1(s,X1(s)) = a2(s,X1(s)) and b1(s,X1(s)) = b2(s,X1(s)) for all s ∈ [0, t], one
can write

ϕ1(t)(X1(t)−X2(t)) = ϕ1(t)

t∫
0

(a2(s,X1(s))− a2(s,X2(s))) ds

+ϕ1(t)

t∫
0

(b2(s,X1(s))− b2(s,X2(s))) dW (s).

Since the equality ϕ1(t) = 1 implies ϕ1(s) = 1 for all s ≤ t, using the Lipschitz
condition (7.4), we obtain analogously to (7.7) that for all t ∈ [0, T ]

E
{
ϕ1(t)(X1(t)−X2(t))2

}
≤ L

t∫
0

E
{
ϕ1(s)(X1(s)−X2(s))2

}
ds. (7.16)

By Gronwall’s lemma, E
{
ϕ1(t)(X1(t) − X2(t))2

}
= 0. Since the processes X1(t)

and X2(t) are continuous, we get

P
(

sup
0≤t≤T

(ϕ1(t)(X1(t)−X2(t))2) = 0
)

= 1.

This implies that in the interval [0,H1] the processes X1(t) and X2(t) coincide a.s.
Therefore, H2 ≥ H1 a.s. Switching the indices 1 and 2, we have that H1 ≥ H2 a.s.
Consequently, H1 = H2 a.s. and (7.15) holds. �

3. Local Lipschitz condition.
In Theorem 7.1 condition (7.4) can be weakened to the local Lipschitz condition.

Theorem 7.3. Suppose that the functions a(t, x) and b(t, x) satisfy the local
Lipschitz condition: for every N > 0 there exists a constant CN,T such that for all
t ∈ [0, T ] and x, y ∈ [−N,N ]

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ CN,T |x− y|, (7.17)

and the linear growth condition: for all t ∈ [0, T ] and x ∈ R

|a(t, x)|+ |b(t, x)| ≤ CT (1 + |x|). (7.18)

Then there exists a unique strong solution of (7.1).

Remark 7.3. The condition (7.17) holds if there exists @

@x
a(t, x) and @

@x
b(t, x)

continuous in (t, x) ∈ [0, T ]×R.
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Proof of Theorem 7.3. The proof involves a truncation procedure. We prove
first the existence of a solution of (7.1).

Set
ξN := ξ1I{|ξ|≤N} +N sign ξ1I{|ξ|>N},

aN (t, x) := a(t, x)1I[0,N ](|x|) + a(t,N signx)1I(N,∞)(|x|)

and
bN (t, x) := b(t, x)1I[0,N ](|x|) + b(t,N signx)1I(N,∞)(|x|).

Let XN (t) be a solution of the stochastic differential equation

dXN (t) = aN (t,XN (t)) dt+ bN (t,XN (t)) dW (t), XN (0) = ξN . (7.19)

For equation (7.19) all conditions of Theorem 7.1 holds. Therefore there exists a
unique continuous solution of this equation satisfying the estimate

sup
0≤t≤T

EX2
N (t) <∞.

Set HN := max{t ∈ [0, T ] : sup
0≤s≤t

|XN (s)| ≤ N}. Since for N ′ > N we have

aN (t, x) = aN ′(t, x) and bN (t, x) = bN ′(t, x) for x ∈ [−N,N ], by Theorem 7.2,
XN (t) = XN ′(t) for all t ∈ [0,HN ] a.s. Therefore,

{HN = T} ⊆
{

sup
N ′>N

sup
0≤t≤T

|XN (t)−XN ′(t)| = 0
}

and, consequently,

P
(

sup
N ′>N

sup
0≤t≤T

|XN (t)−XN ′(t)| > 0
)
≤ P(HN < T ) = P

(
sup

0≤t≤T
|XN (t)| > N

)
.

Next we will prove that

lim
N→∞

P
(

sup
0≤t≤T

|XN (t)| > N
)

= 0. (7.20)

Once this is done, then from the previous estimate and the first part of the Borel–
Cantelli lemma, it follows that for a sufficiently scarce subsequence Nn there exists
a.s. a number n0 = n0(ω) such that for all Nn ≥ Nn0

sup
N ′>Nn

sup
0≤t≤T

|XNn
(t)−XN ′(t)| = 0.

Therefore, by Cauchy’s criterion, the sequence of processes XNn
(t), t ∈ [0, T ], is

Cauchy in the uniform norm for the a.s. convergence. Thus, XNn
(t) converges to

a limit process X(t) uniformly in t ∈ [0, T ]. In the stochastic equation

XN (t) = ξN +

t∫
0

aN (s,XN (s)) ds+

t∫
0

bN (s,XN (s)) dW (s). (7.21)
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we can pass to the limit as Nn → ∞. The usual integral converges in view of the
estimates (7.17), (7.18). To justify the convergence of the stochastic integral we
can use the same estimates and (3.6). As a result, we see that the process X(t),
t ∈ [0, T ], is the strong solution of equation (7.1).

Thus it is enough to prove (7.20). Using (7.21), it is easy to prove that for any
t ∈ [0, T ]

sup
0≤s≤t

|XN (s)|2 ≤ 3ξ2N + 3T

t∫
0

a2
N (s,XN (s)) ds+ 3 sup

0≤s≤t

( s∫
0

bN (u,XN (u)) dW (u)
)2

.

We multiply this inequality by ψ(ξ), where ψ(x) = 1

1 + x2
. Then using (2.6), (7.18)

and the estimate ξ2Nψ(ξ) ≤ 1, we get

E
{
ψ(ξ)X2

N (t)
}
≤ E

{
ψ(ξ) sup

0≤s≤t
X2
N (s)

}
≤ 3 + 3TC2

T

t∫
0

E
{
ψ(ξ)(1 +X2

N (s))
}
ds

+12C2
T

t∫
0

E
{
ψ(ξ)(1 +X2

N (s))
}
ds.

By Gronwall’s lemma, we have E
{
ψ(ξ)X2

N (t)
}
≤ C for t ∈ [0, T ] and for some

constant C. Consequently,

E
{
ψ(ξ) sup

0≤s≤T
X2
N (s)

}
≤ C1

for some constant C1 independent of N .
One has the estimates

P
(

sup
0≤t≤T

|XN (t)| > N
)

= P
(
ψ(ξ) sup

0≤t≤T
X2
N (t) > N2ψ(ξ)

)
≤ P

(
ψ(ξ) sup

0≤t≤T
X2
N (t) > δN2

)
+ P(ψ(ξ) ≤ δ) ≤ C1

�N2 + P(ψ(ξ) ≤ δ),

for any δ > 0. This implies

lim sup
N→∞

P
(

sup
0≤t≤T

|XN (t)| > N
)
≤ P(ψ(ξ) ≤ δ) = P(ξ2 ≥ (1− δ)/δ).

But lim
δ↓0

P(ξ2 ≥ (1− δ)/δ) = 0. This proves (7.20) and, consequently, the existence

of the solution of (7.1).
We now prove uniqueness of a solution of (7.1). Let X1(t) and X2(t) be two a.s.

continuous solutions of (7.1), satisfying the initial condition X1(0) = X2(0) = ξ.
Set

ϕN (t) := 1I[0,N ]

(
sup

0≤v≤t
|X1(v)|

)
1I[0,N ]

(
sup

0≤v≤t
|X2(v)|

)
.
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Using the local Lipshitz condition, the isometry property (1.12) for stochastic in-
tegrals, and the fact that the equality ϕN (t) = 1 implies the equalities ϕN (s) = 1
for all s ≤ t, we can obtain (see the analogous estimate (7.7))

E
{
ϕN (t)(X1(t)−X2(t))2

}
≤ 2t

t∫
0

E
{
ϕN (s)(a(s,X1(s))− a(s,X2(s)))2

}
ds

+2

t∫
0

E
{
ϕN (s)(b(s,X1(s))− b(s,X2(s)))2

}
ds

≤ 2(T + 1)C2
N

t∫
0

E
{
ϕN (s)(X1(s)−X1(s))2

}
ds.

By Gronwall’s lemma, E
{
ϕN (t)(X1(t)−X2(t))2

}
= 0. Therefore, for arbitrary N

P
(

sup
0≤t≤T

|X1(t)−X2(t)| > 0
)
≤ P

(
sup

0≤t≤T
|X1(t)| > N

)
+P

(
sup

0≤t≤T
|X2(t)| > N

)
.

From the continuity of the solutions X1 and X2 it follows that their suprema are
finite. This implies that the probabilities on the right-hand side of this estimate
tend to zero as N →∞. Thus P

(
sup

0≤t≤T
|X1(t)−X2(t)| = 0

)
= 1, and this means

uniqueness of the solution of (7.1). �

It is convenient to have estimates for the moments of even order of the solution
of the stochastic differential equation (7.1).

Theorem 7.4. Suppose that the functions a(t, x) and b(t, x) satisfy the condi-
tions of Theorem 7.3. Let Eξ2m <∞, where m is a positive integer. Then

EX2m(t) ≤
(
Eξ2m +Kt

)
e2Kt, (7.22)

and for s < t

E(X(t)−X(s))2m ≤ K̃T
(
1 +Kt+ Eξ2m

)
(1 + (t− s)m)(t− s)me2Kt, (7.23)

for some constants K and K̃, depending only on m and CT .

Proof. We use the notations from the proof of Theorem 7.3. Since, by (7.18), the
variables ξN and the functions aN and bN are bounded by the constant CT (1+N),
then from (7.21) and (4.25) it follows that EX2m

N (t) ≤ CTN
2m(1+ t2m). Applying

Itô’s formula to X2m
N (t), we get

X2m
N (t) = ξ2mN

+

t∫
0

(
2mX2m−1

N (s)aN (s,XN (s)) +m(2m− 1)X2m−2
N (s)b2N (s,XN (s))

)
ds
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+

t∫
0

2mX2m−1
N (s)bN (s,XN (s)) dW (s).

Then

EX2m
N (t) = Eξ2mN +

t∫
0

(
2mE

{
X2m−1
N (s)aN (s,XN (s))

}

+m(2m− 1)E
{
X2m−2
N (s)b2N (s,XN (s))

})
ds

≤ Eξ2m + (2m+ 3)mC2
T

t∫
0

E
{(

1 +X2
N (s)

)
X2m−2
N (s)

}
ds.

Applying the obvious inequality x2m−2 ≤ 1 + x2m, we have

EX2m
N (t) ≤ Eξ2m + (2m+ 3)mC2

T t+ 2(2m+ 3)mC2
T

t∫
0

EX2m
N (s) ds.

By Gronwall’s lemma (see (7.9)),

EX2m
N (t) ≤

(
Eξ2m + (2m+ 3)mC2

T t
)
exp

(
2(2m+ 3)mC2

T t
)
.

Therefore, by Fatou’s lemma this implies (7.22), since XN (t) → X(t).
We now prove (7.23). Obviously

E(X(t)−X(s))2m ≤ E
( t∫
s

a(v,X(v)) dv +

t∫
s

b(v,X(v)) dW (v)
)2m

≤ 22m−1

(
E
( t∫
s

a(v,X(v)) dv
)2m

+ E
( t∫
s

b(v,X(v)) dW (v)
)2m)

.

Using (4.25) with Lk = 2kk2k
(

2k

2k − 1

)(2k−1)k

, Hölder’s inequality, (7.18), and
(7.22), we get

E(X(t)−X(s))2m≤(2(t−s))2m−1

t∫
s

Ea2m(v,X(v)) dv+LmE
( t∫
s

b2(v,X(v)) dv
)m

≤ (2(t− s))2m−1

t∫
s

Ea2m(v,X(v)) dv + Lm(t− s)m−1

t∫
s

Eb2m(v,X(v)) dv
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≤ 22m−1C2m
T (Lm + (t− s)m)(t− s)m−1

t∫
s

(1 + EX2m(v)) dv

≤ 24m−2(t− s)m−1C2m
T (Lm + (t− s)m)

t∫
s

(
1 + (Eξ2m +Kv)e2Kv

)
dv

≤ C2m
T LmK24m−1(1 + (t− s)m)(t− s)m(1 +Kt+ Eξ2m)e2Kt.

�

4. Multi-dimensional stochastic differential equations.

Consider the vector-valued stochastic differential equations.
Let

→
W (t) = (W1(t), . . . ,Wm(t)), t ∈ [0, T ], be m-dimensional Brownian motion

with independent coordinates, which are one-dimensional Brownian motions with
the initial values Wk(0) = xk, k = 1, 2, . . . ,m. Let the random vector ~ξ ∈ Rn be
independent of the process

→
W and let Ft := σ{~ξ,

→
W (s), 0 ≤ s ≤ t} be the σ-algebra

of events generated by ~ξ and the Brownian motions Wk, k = 1, 2, . . . ,m, in [0, t].
Let ~a(t, ~x), t ∈ [0, T ], ~x ∈ Rn, be a measurable function with the state space Rn

and B(t, ~x) be an n×m matrix with measurable real-valued functions as elements.

Denote by |~a| the Euclidean norm of the vector ~a. Set |B| :=
( n∑
k=1

m∑
l=1

b2k,l

)1/2

for

matrixes B with elements {bk,l}n,mk=1,l=1.
Consider the n-dimensional stochastic differential equation

d
→
X(t) = ~a(t,

→
X(t)) dt+ B(t,

→
X(t)) d

→
W (t),

→
X(0) = ~ξ. (7.24)

In coordinates this equation becomes the system of stochastic differential equations

dXk(t) = ak(t,X1(t), . . . , Xn(t))dt

+
m∑
l=1

bk,l(t,X1(t), . . . , Xn(t))dWl(t), Xk(0) = ξk, k = 1, 2, . . . , n.

The process
→
X is a strong solution of (7.24) if it is a continuous Ft-adapted process

such that a.s. for all t ∈ [0, T ],

t∫
0

(
|~a(s,

→
X(s))|+ |B(s,

→
X(s))|2

)
ds <∞ (7.25)

and
→
X(t) = ~ξ +

t∫
0

~a(s,
→
X(s)) ds+

t∫
0

B(s,
→
X(s)) d

→
W (s). (7.26)
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Theorem 7.5. Suppose that ~a(t, ~x) and B(t, ~x) satisfy the Lipschitz condition:
there exists a constant CT such that for all t ∈ [0, T ] and ~x, ~y ∈ Rn

|~a(t, ~x)− ~a(t, ~y)|+ |B(t, ~x)− B(t, ~y)| ≤ CT |~x− ~y|, (7.27)

and the condition: for all t ∈ [0, T ] and ~x ∈ Rn

|~a(t, ~x)|+ |B(t, ~x)| ≤ CT (1 + |~x|). (7.28)

Let E|~ξ|2 < ∞. Then there exists a unique strong solution of (7.24) satisfying
the condition

sup
0≤t≤T

E|
→
X(t)|2 <∞. (7.29)

By standard techniques of linear algebra, the proof of this theorem follows es-
sentially the proof of Theorem 7.1 for the one-dimensional case.

Remark 7.4. The m-dimensional Brownian motion
→
W ◦(t), t ∈ [0, T ], with

dependent coordinates can be obtained from
→
W (t) with independent coordinates

by a linear transformation. This means that there exists an m×m matrix C such
that

→
W ◦(t) = C

→
W (t).

This is due to the fact that the matrix of variances of the Brownian motion→
W ◦(t) is positive definite, and then

Var(
→
W ◦(1)) = CT C

for some matrix C. Here the symbol T stands for the transposition of matrices. It
is unnecessary to consider the analog of equation (7.24) for the Brownian motion
→
W ◦, since

B(t,
→
X(t)) d

→
W ◦(t) = B(t,

→
X(t))C d

→
W (t).

Exercises.

7.1. Let
→
W (t), t ∈ [0, T ], be an m-dimensional Brownian motion with inde-

pendent coordinates and Ft := σ{
→
W (s), 0 ≤ s ≤ t} be the σ-algebra of events

generated by the Brownian motions Wk, k = 1, 2, . . . ,m, in [0, t].
Let B(t), be an n×mmatrix with progressively measurable processes as elements.
Let

d
→
X(t) = B(t) d

→
W (t),

→
X(0) = ~x0.

Prove that the process

M(t) := |
→
X(t)|2 −

t∫
0

|B(s)|2ds

is a martingale with respect to the filtration Ft.
7.2. Under the assumptions of Exercise 7.1, prove for r ∈ N the formula

d|
→
X(t)|2r = 2r|

→
X(t)|2r−2(

→
X(t))TB(t) d

→
W (t)

+
(
2r(r − 1)|

→
X(t)|2r−4|(

→
X(t))TB(t)|2 + r|

→
X(t)|2r−2|B(t)|2

)
dt.
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§ 8. Methods of solving of stochastic differential equations

1. Stochastic exponent. We already have an example of a stochastic differ-
ential equation and its solution. This is the stochastic exponent (see § 6)

ρ(t) = exp
( t∫

0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
,

which is the solution of the equation

dρ(t) = b(t)ρ(t) dW (t), ρ(0) = 1. (8.1)

The state space of the solution of this stochastic equation is the positive real line.

2. Linear stochastic differential equation. The general form of the linear
stochastic differential equation is

dX(t) = (a(t)X(t) + r(t)) dt+ (b(t)X(t) + q(t)) dW (t), X(0) = x0. (8.2)

This equation also has an explicit solution.
For the product of the stochastic exponent ρ(t) and the ordinary exponent

ρ0(t) = exp
( t∫
0

a(s) ds
)

we have

d
(
ρ0(t)ρ(t)

)
= ρ(t) dρ0(t) + ρ0(t) dρ(t) = ρ0(t)ρ(t)

(
a(t) dt+ b(t) dW (t)

)
.

Therefore, the solution of the homogeneous linear stochastic differential equation

dY (t) = a(t)Y (t) dt+ b(t)Y (t) dW (t), Y (0) = 1. (8.3)

is the product of the ordinary exponent and the stochastic one:

Y (t) = exp
( t∫

0

b(s) dW (s) +

t∫
0

(
a(s)− 1

2
b2(s)

)
ds

)
.

It is well known how the solutions of the ordinary nonhomogeneous linear equations
are expressed via the solutions of homogeneous ones. We can expect that the
solution of equation (8.2) has the same structure. It can be checked by direct
computation that the solution of (8.2) is

X(t) = Y (t)
{
x0 +

t∫
0

q(s)Y −1(s) dW (s) +

t∫
0

(r(s)− b(s)q(s))Y −1(s) ds
}
. (8.4)

Indeed,

dX(t) = X(t){a(t) dt+ b(t) dW (t)}+ q(t) dW (t) + (r(t)− b(t)q(t)) dt
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+b(t)q(t) dt = (a(t)X(t) + r(t)) dt+ (b(t)X(t) + q(t)) dW (t).

Note that for the case q(t) ≡ 0 and r(t) ≥ 0, t ≥ 0, the state space of the linear
stochastic differential equation with initial value x0 > 0 is the positive real line.

If the ratio q(t)/b(t) is well defined for all t ≥ 0, then equation (8.2) can be
transformed to the equation with q(t) ≡ 0 by means of a shift of the variable X.
Indeed, (8.2) can be rewritten in the form

dX(t)=
{
a(t)

(
X(t)+ q(t)

b(t)

)
+r(t)−a(t) q(t)

b(t)

}
dt+b(t)

(
X(t)+ q(t)

b(t)

)
dW (t), X(0)=x0.

Setting Z(t) := X(t) + q(t)

b(t)
and assuming that q(t)

b(t)
is a differentiable function, we

have

dZ(t) =
{
a(t)Z(t)+r(t)−a(t) q(t)

b(t)
+
(
q(t)

b(t)

)′}
dt+b(t)Z(t) dW (t), Z(0) = x0+

q(0)

b(0)
.

(8.5)
Therefore, by (8.4) with q(s) ≡ 0, the solution of (8.2) can be written in the form

X(t) = Y (t)
{
x0 + q(0)

b(0)
+

t∫
0

(
r(s)− a(s) q(s)

b(s)
+
(
q(s)

b(s)

)′)
Y −1(s) ds

}
− q(t)

b(t)
. (8.6)

For the case when r(t)− a(t) q(t)
b(t)

+
(
q(t)

b(t)

)′
≡ 0, t ≥ 0, or, equivalently,

q(t)

b(t)
= q(0)

b(0)
exp

( t∫
0

a(s) ds
)
−

t∫
0

r(s) exp
( t∫
s

a(v) dv
)
ds,

we have the shifted stochastic exponent

X(t) =
(
x0 + q(0)

b(0)

)
exp

( t∫
0

b(s) dW (s) +

t∫
0

(
a(s)− 1

2
b2(s)

)
ds

)
− q(t)

b(t)

as the solution of equation (8.2).

3. Nonrandom time change. For a nonrandom function h(t) that is different

from zero for all t ≥ 0 and satisfies
t∫

0

h2(s) ds < ∞, the processes
t∫

0

h(s) dW (s)

and W
( t∫
0

h2(s) ds
)
, W (0) = 0, are identical in law. Indeed, they are Gaussian

processes with mean 0 and the variance
t∫

0

h2(s) ds. Also, these processes have

independent increments.



§ 8. METHODS OF SOLVING OF EQUATIONS 145

Moreover, we can write

t∫
0

h(s) dW̃ (s) = W

( t∫
0

h2(s) ds
)

for some new Brownian motion W̃ (t), t ≥ 0. Indeed,

W̃ (t) =

t∫
0

h−1(s) dW
( s∫

0

h2(v) dv
)
.

The process W
( t∫
0

h2(s) ds
)

has independent increments, and there are well-develo-

ped techniques of integration with respect to such processes (see § 9 Ch. I).

Making the time substitution t→
t∫

0

h2(s) ds in the stochastic differential equa-

tion
dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = x0, (8.7)

we have that the process V (t) := X
( t∫
0

h2(s) ds
)

satisfies the following stochastic

differential equation:

dV (t) = a

( t∫
0

h2(s) ds, V (t)
)
h2(t) dt+b

( t∫
0

h2(s) ds, V (t)
)
h(t) dW̃ (t), V (0) = x0.

(8.8)
Such a time substitution enables us to change the coefficients a(t, x) and b(t, x) as
functions of the time variable.

4. Random time change. Let W (t), t ∈ [0,∞), be a Brownian motion
adapted to the filtration {Ft}t≥0. Suppose that the increments W (v) −W (t) are
independent of the σ-algebra Ft for all v > t.

Let b(t), t ∈ [0,∞), be a progressively measurable with respect to the filtration

{Ft}t≥0 process such that θ(t) :=
t∫

0

b2(s) ds <∞ a.s. for every t > 0. Consider the

stochastic integral Y (t) :=
t∫

0

b(s) dW (s), t ∈ [0,∞). Suppose that
∞∫
0

b2(s) ds = ∞.

Let θ(−1)(t) := min{s : θ(s) = t} be the left continuous inverse function to θ,
defined for all t ≥ 0. Since for every s

{θ(−1)(t) > s} =
{ s∫

0

b2(v) dv < t

}
∈ Fs,

the variable θ(−1)(t) is a stopping time with respect to the filtration {Fs}s≥0.
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Theorem 8.1 (Lévy). The process W̃ (t) := Y (θ(−1)(t)), t ≥ 0 is a Brownian
motion.

Proof. For ~γ := (γ1, . . . , γn) ∈ Rn and 0 < t1 < · · · < tn denote B :=
n∑
k=1

n∑
l=1

γkγl(tk ∧ tl), where s ∧ t := min{s, t}. To prove that W̃ (t), t ∈ [0,∞),

is a Brownian motion, it is enough to verify the following formula for the charac-
teristic function:

ϕ(~γ) := E exp
(
i
n∑
k=1

γkW̃ (tk)
)

= e−B/2,

since then W̃ is a Gaussian process with mean zero and the covariance function
Cov(W̃ (s), W̃ (t)) = s ∧ t, but it is a Brownian motion.

We have

ϕ(~γ)eB/2 = E exp
(
i
n∑
k=1

γk

θ(−1)(tk)∫
0

b(s) dW (s) + 1

2

n∑
k=1

n∑
l=1

γkγl(tk ∧ tl)
)

= E exp
(
i

n∑
k=1

γk

θ(−1)(tk)∫
0

b(s) dW (s) + 1

2

n∑
k=1

n∑
l=1

γkγl

θ(−1)(tk)∧θ(−1)(tl)∫
0

b2(s) ds
)

= E exp
(
i

∞∫
0

g(s) dW (s) + 1

2

∞∫
0

g2(s) ds
)
,

where g(s) := b(s)
n∑
k=1

γk1I[0,θ(−1)(tk)](s). Note that from the above transformations

it follows that
∞∫
0

g2(s) ds = B. The process

ρ(t) := E exp
(
i

t∫
0

g(s) dW (s) + 1

2

t∫
0

g2(s) ds
)

is a uniformly integrable stochastic exponent (in formula (6.1) instead of b(s) we
have ig(s)). By (6.3) and (6.4), it is a complex-valued martingale (the real and the
imaginary parts are martingales), and Eρ(t) = 1 for every t. Letting here t→ ∞,
we get Eρ(∞) = 1. As a result, we have that ϕ(~γ)eB/2 = 1. This proves the
theorem. �

Consider a nonhomogeneous stochastic differential equation

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t), X(0) = x0, (8.9)

with b(t, x) > 0 for all (t, x) ∈ [0,∞)×R.
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Let θ(t) :=
t∫

0

b2(s,X(s)) ds < ∞ a.s. for every t > 0 and θ(∞) = ∞. Let

θ(−1)(t) := min{s : θ(s) = t}, t ≥ 0, be the left continuous function inverse of θ.

Set Y (t) := X(θ(−1)(t)), W̃ (t) :=
�(−1)(t)∫

0

b(s,X(s)) dW (s). By Theorem 8.1, the

process W̃ is a Brownian motion. In equation (8.9) we can make the random time
substitution. This yields

Y (t)− Y (0) =

θ(−1)(t)∫
0

a(s,X(s)) ds+

θ(−1)(t)∫
0

b(s,X(s)) dW (s)

=

t∫
0

a(θ(−1)(s), X(θ(−1)(s))) dθ(−1)(s) + W̃ (t) =

t∫
0

a(�(−1)(s); Y (s))

b2(�(−1)(s); Y (s))
ds+ W̃ (t),

because
dθ(−1)(s) = ds

�′(�(−1)(s))
= ds

b2(�(−1)(s); Y (s))
.

Thus in equation (8.9), by the random time substitution, the coefficient before the
stochastic differential is transformed to 1. We get the equation

dY (t) = a(�(−1)(t); Y (t))

b2(�(−1)(t); Y (t))
dt+ dW̃ (t), Y (0) = x0. (8.10)

A feature of this equation is that the coefficient a(�(−1)(t); Y (t))

b2(�(−1)(t); Y (t))
depends on the

stopping time θ(−1)(t). Since these stopping times are increasing in t, there exists
an increasing family of σ-algebras At := Fθ(−1)(t) connected with them (see § 4
Ch. I). The process θ(−1)(t), t ≥ 0, is adapted (see property 8 § 4 Ch. I) to the

filtration {At}t≥0. Since the process
t∫

0

b(s,X(s)) dW (s) is progressively measurable

with respect to the filtration {Ft}t≥0, the Brownian motion W̃ (t) is also adapted
to the filtration {At}t≥0 (see § 4 Ch. I). In addition, for all v > t the increments
W̃ (v) − W̃ (t) are independent of the σ-algebra At. This can be proved in the
following way. Analogously to the proofs of properties (2.3) and (2.4), we can
verify that a.s.

E
{
W̃ (v)− W̃ (t)

∣∣At} = E

{ θ(−1)(v)∫
θ(−1)(t)

b(s,X(s)) dW (s)

∣∣∣∣∣At
}

= 0,

E
{
(W̃ (v)− W̃ (t))2

∣∣At} = E

{( θ(−1)(v)∫
θ(−1)(t)

b(s,X(s)) dW (s)

)2∣∣∣∣∣At
}
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= E

{ θ(−1)(v)∫
θ(−1)(t)

b2(s,X(s)) ds

∣∣∣∣∣At
}
ds = v − t.

Since the process of W̃ is continuous, by Lévy’s characterization (see Theorem 10.1
Ch. I) these two properties guarantee that W̃ is a Brownian motion. This is a
different proof than the one given above in Theorem 8.1. At the end of the proof
of Theorem 10.1 Ch. I it was established that for any 0 ≤ t < v and α ∈ R,

E
{
eiα(W̃ (v)−W̃ (t))

∣∣At} = e−α
2(v−t)/2 a.s.

This equality is equivalent to the fact that the random variables W̃ (v)− W̃ (t) are
independent of the σ-algebra At.

The adaptivity of the random coefficient of equation (8.10) with the filtration
{At}t≥0 and the independence of W̃ (v)− W̃ (t) for every v > t of the σ-algebra At
enables us to prove that there exists a unique solution of such an equation.

5. Reduction to linear stochastic differential equations. Consider the
homogeneous stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = x0, (8.11)

where the coefficients a and b are independent of the time variable.

For this equation we describe a method of reduction to a linear stochastic dif-
ferential equation. Let f(x), x ∈ R, be a twice continuously differentiable function
which has the inverse f (−1)(x).

Set X̃(t) := f(X(t)), t ≥ 0. Write out the stochastic differential equation for
the process X̃(t). Applying Itô’s formula, we have

df(X(t)) = f ′(X(t))a(X(t)) dt+ f ′(X(t))b(X(t)) dW (t) + 1

2
f ′′(X(t))b2(X(t)) dt.

Setting

ã(x) := f ′(f (−1)(x))a(f (−1)(x)) + 1

2
f ′′(f (−1)(x))b2(f (−1)(x)), (8.12)

b̃(x) := f ′(f (−1)(x))b(f (−1)(x)), (8.13)

and using the equality X(t) = f (−1)(X̃(t)), we obtain

dX̃(t) = ã(X̃(t)) dt+ b̃(X̃(t)) dW (t), X̃(0) = f(x0). (8.14)

Therefore, the substitution X̃(t) = f(X(t)) reduces equation (8.11) to equation
(8.14).

We derive conditions on the coefficients a(x) and b(x), x ∈ R, under which
equation (8.11) can be further reduced to a linear one, i.e., ã(x) = αx + r and
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b̃(x) = βx + q for some constants α, β, r, and q. For these coefficients the linear
stochastic differential equation has (see (8.6)) the solution of the form

X̃(t) =
(
f(x0) + q

�

)
eβ(W (t)−W (0))+(α−β2/2)t

+ �r − �q

�

t∫
0

eβ(W (t)−W (s))+(α−β2/2)(t−s) ds− q

�
.

Using expressions (8.12) and (8.13), for the coefficients ã and b̃, we get

f ′(x)a(x) + 1

2
f ′′(x)b2(x) = αf(x) + r, (8.15)

f ′(x)b(x) = βf(x) + q. (8.16)

Suppose that b(x) is a continuously differentiable function such that b(x) 6= 0 for
all x from the state space of the process X.

In the case β 6= 0 the first-order differential equation (8.16) has the solution

f(x) = c

�
exp

(
β

x∫
x0

dy

b(y)

)
− q

�
, (8.17)

where c is some constant and x0 is the starting point of X.
By (8.16),

f ′′(x)b(x) + b′(x)f ′(x) = βf ′(x),

or
f ′′(x)b2(x) = (β − b′(x))(βf(x) + q). (8.18)

Substituting this expression in equation (8.15), we have(
a(x)

b(x)
+ 1

2
(β − b′(x))

)
(βf(x) + q) = αf(x) + r, (8.19)

or (
a(x)

b(x)
− b′(x)

2
+ �

2
− �

�

)(
f(x) + q

�

)
= �r − �q

�2
.

In the case β = 0 equation (8.16) has the solution

f(x) = q

x∫
x0

dy

b(y)
+ h, (8.20)

where h is some constant, and (8.19) for β = 0 is transformed to the equality

a(x)

b(x)
− b′(x)

2
= α

x∫
x0

dy

b(y)
+ �h+ r

q
. (8.21)

Thus, we can formulate the following statement.
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Proposition 8.1. For a continuously differentiable coefficient b(x) that is dif-
ferent from zero for all x from the state space of X, the homogeneous stochastic
differential equation (8.11) is reducible to the homogeneous linear stochastic dif-
ferential equation in the following cases.

If for some constants α, r, q and β 6= 0, c 6= 0

a(x) = b(x)
(
b′(x)

2
+ �

�
− �

2
+ �r − �q

�c
exp

(
− β

x∫
x0

dy

b(y)

))
, (8.22)

then the process X̃(t) := c

�
exp

(
β

X(t)∫
x0

dy

b(y)

)
− q

�
satisfies the equation

dX̃(t) = (αX̃(t) + r) dt+ (βX̃(t) + q) dW (t), X̃(0) = c− q

�
. (8.23)

If for some constants α, r, h, and q 6= 0,

a(x) = b(x)
(
b′(x)

2
+ α

x∫
x0

dy

b(y)
+ �h+ r

q

)
, (8.24)

then the process X̃(t) := q

X(t)∫
x0

dy

b(y)
+ h satisfies the equation

dX̃(t) = (αX̃(t) + r) dt+ q dW (t), X̃(0) = h. (8.25)

6. Reduction to ordinary differential equations. Consider a nonhomoge-
neous stochastic differential equation

dX(t) = a(t,X(t)) dt+ b(t)X(t) dW (t), X(0) = x0. (8.26)

Here it is important that the coefficient in front of the stochastic differential is
linear. Let ρ(t) be the stochastic exponent

ρ(t) = exp
( t∫

0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
.

Compute the stochastic differential of the process X(t)ρ−1(t). By Itô’s formula,

d(X(t)ρ−1(t)) = ρ−1(t){a(t,X(t)) dt+ b(t)X(t) dW (t)}

−X(t)ρ−2(t)b(t)ρ(t) dW (t) +X(t)ρ−3(t)b2(t)ρ2(t) dt

−ρ−2(t)b(t)X(t)b(t)ρ(t) dt = ρ−1(t)a(t,X(t)) dt.
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Setting Z(t) := X(t)ρ−1(t), we see that this process satisfies the ordinary differen-
tial equation

Z ′(t) = ρ−1(t) a(t, ρ(t)Z(t)), Z(0) = x0. (8.27)

Therefore, multiplying the solution of equation (8.26) by the factor ρ−1(t), we
transform this stochastic differential equation into the “deterministic” differential
equation, which is valid for each sample path of the process ρ(t), t ≥ 0.

Equation (8.27) is rather complicated for the investigations, since it has nowhere
differentiable coefficient ρ(t). An example of the class of functions a(t, x), t ≥ 0,
x ≥ 0, for which it has an explicit solution is

a(t, x) = a(t)xγ .

Nevertheless, equation (8.27) can be useful for numerical computations.

Combining the approaches described above and in Subsection 5, we can reduce
an arbitrary homogeneous stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = x0, (8.28)

with continuously differentiable coefficient b(x) that is different from zero for all x
from the state space of X, to a “deterministic” differential equation, which is valid
for each sample path of the process.

Consider the function f , defined by (8.17) for q = 0, β = 1 and c = 1, i.e.,

f(x) = exp
( x∫
x0

dy

b(y)

)
. (8.29)

The functionB(x) :=
x∫

x0

dy

b(y)
has the inverseB(−1)(x). This implies that the function

f(x) has the inverse f (−1)(x) = B(−1)(lnx).
According to (8.12), (8.16), and (8.18), the process X̃(t) = exp(B(X(t))) satis-

fies the stochastic differential equation

dX̃(t) = ã(X̃(t)) dt+ X̃(t) dW (t), X̃(0) = 1, (8.30)

where
ã(x) = x

(
a(B(−1)(lnx)))

b(B(−1)(lnx)))
+ 1

2
− b′(B(−1)(lnx)))

2

)
. (8.31)

Then equation (8.30) takes the form (8.26) with b(t) ≡ 1. Therefore, the process
Z(t) = X̃(t) eW (0)−W (t)+t/2 satisfies the ordinary differential equation

Z ′(t) = eW (0)−W (t)+t/2 ã(Z(t) eW (t)−W (0)−t/2), Z(0) = 1. (8.32)

Finally,

X(t) = B(−1)(ln X̃(t)) = B(−1)(lnZ(t) +W (t)−W (0)− t/2).
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Exercises.
8.1. Solve the linear stochastic differential equation

dV (t) = µV (t) dt+ σV (t) dW (t), V (0) = x0 > 0.

8.2. Solve the linear stochastic differential equation

dU(t) = −γU(t) dt+ σ dW (t), U(0) = x0 > 0.

8.3. Solve the linear stochastic differential equation

dZ(t) = (βZ(t) + σ) dW (t), Z(0) = x0 > 0.

8.4. Solve the stochastic differential equation

dX(t) = 1

X(t)
dt+ βX(t) dW (t), X(0) = x0 > 0.

8.5. Solve the stochastic differential equation

dX(t) = X−γ(t) dt+ βX(t) dW (t), X(0) = x0 > 0.

8.6. Solve the stochastic differential equation

dX(t) = aX(t)(1− gX(t)) dt+ bX(t) dW (t), X(0) = x0 > 0.

8.7. Let σ(x), x ∈ R, be a function with bounded derivative such that the
integral

S(x) :=

x∫
x0

1

�(y)
dy

is finite for all x ∈ R.
Let the process X(t), t ∈ [0, T ], be a solution of the stochastic differential

equation

dX(t) = 1

2
σ(X(t))σ′(X(t)) dt+ σ(X(t)) dW (t), X(0) = x0.

Prove that Z(t) := S(X(t)), t ∈ [0, T ], is a Brownian motion.

8.8. Solve for γ 6= 1 the stochastic differential equation

dX(t) =
(
aX(t)− gXγ(t)

)
dt+ bX(t) dW (t), X(0) = x0 > 0.

8.9. Solve for integer m 6= 1 the stochastic differential equation

dX(t) =
(
m

2
X2m−1(t) + µXm(t)

)
dt+Xm(t) dW (t), X(0) = x0 > 0.
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8.10. Under what conditions on the parameters a, b, n, for m 6= 1 is the
stochastic differential equation

dX(t) = aXn(t) dt+ bXm(t) dW (t), X(0) = x0 > 0.

reducible to the linear one? What is the solution?

8.11. Let X(t) be a solution of the stochastic differential equation

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), X(0) = x0,

with a continuously differentiable coefficient b(x) different from zero for all x from
the state space of X.

Compute the function f(x) such that the process X̃(t) = f(X(t)), t ≥ 0, satisfies
the equation containing only the pure stochastic differential (the factor before dt
is zero).

§ 9. Dependence of solutions of stochastic
differential equations on initial values

Consider a stochastic differential equation with nonrandom initial value:

dXx(t) = a(t,Xx(t)) dt+ b(t,Xx(t)) dW (t), Xx(0) = x. (9.1)

The integral analog of this equation is the following:

Xx(t) = x+

t∫
0

a(s,Xx(s)) ds+

t∫
0

b(s,Xx(s)) dW (s). (9.2)

1. Continuous dependence of solutions on initial values. We want to
consider solutions of (9.2) for all x ∈ R simultaneously. Moreover, it is better to
consider them as a process of (t, x).

Then the following problem arises. A solution of the stochastic differential equa-
tion (9.2), as it was proved in § 7, exists a.s. It can depend on the initial value.
Therefore, there is a set Λx of probability zero, where the solution does not ex-
ists. The probability of the union of the sets Λx can be nonzero. In this case the
solutions of (9.2) are not determined as a function of x on a set of nonzero proba-
bility. We had the analogous situation when considering the stochastic integral as
a function of the variable upper limit.

The main approach to overcome this difficulty is to prove that the process Xx(t),
(t, x) ∈ [0, T ]×R, can be chosen to be continuous.

Theorem 9.1. Suppose that the functions a(t, x) and b(t, x) satisfy the condi-
tions (7.4) and (7.5). Then there exist a modification Xx(t) of a solution of (9.1)
a.s. jointly continuous in (t, x) ∈ [0, T ]×R.
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If X(t), t ∈ [0, T ], is the solution of the equation

X(t) = ξ +

t∫
0

a(s,X(s)) ds+

t∫
0

b(s,X(s)) dW (s), (9.3)

with a square integrable random initial value ξ independent of the process W (t),
t ∈ [0, T ], then

P
(

sup
0≤t≤T

|X(t)−Xξ(t)| = 0
)

= 1. (9.4)

Proof. From (9.2) it is easy to derive that

sup
0≤v≤t

|Xx(v)−Xy(v)| ≤ |x− y|+
t∫

0

|a(s,Xx(s))− a(s,Xy(s))| ds

+ sup
0≤v≤t

∣∣∣ v∫
0

(b(s,Xx(s))− b(s,Xy(s))) dW (s)
∣∣∣.

Applying Doob’s inequality (2.6) and estimating as in (7.7), we get

E sup
0≤v≤t

(Xx(v)−Xy(v))2 ≤ 3|x−y|2+3E
( t∫

0

|a(s,Xx(s))−a(s,Xy(s))| ds
)2

+12

t∫
0

E(b(s,Xx(s))−b(s,Xy(s)))2ds≤ 3|x−y|2+3(T+4)C2
T

t∫
0

E(Xx(s)−Xy(s))2ds

≤ 3|x− y|2 + 3(T + 4)C2
T

t∫
0

E sup
0≤v≤s

(Xx(v)−Xy(v))2ds.

By (7.6), from the second inequality it follows that E sup
0≤v≤t

(Xx(v) − Xy(v))2,

t ∈ [0, T ], is bounded. Then by Gronwall’s lemma (see (7.9)),

E sup
0≤v≤t

(Xx(v)−Xy(v))2 ≤ 3|x− y|2e3(T+4)C2
T t, t ∈ [0, T ]. (9.5)

Now we can apply arguments similar to those used to prove the continuity of
Jx(t), (t, x) ∈ [0, T ]×R, in § 5. For every fixed x the process Xx(t) is continuous in
t. Let us consider Xx(·) as a random variable taking values in the space C([0, T ]) of
continuous functions on [0, T ]. This space, when equipped with the uniform norm
‖f‖ := sup

t∈[0,T ]

|f(t)| is a Banach space. Then (9.5) can be written as

E‖Xx −Xy‖2 ≤MT |x− y|2. (9.6)
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Applying Kolmogorov’s continuity criterion in the form (5.7), (5.8), we obtain that
for any 0 < γ < 1/2 and N > 0 a.s.

‖Xx −Xy‖ ≤ LN,γ(ω)|x− y|γ , x, y ∈ D
⋂

[−N,N ], (9.7)

where D is the set of dyadic (binary rational) points k/2n of R. Since D is count-
able, Theorem 7.1 shows that a.s. for every y ∈ D and for all t ∈ [0, T ] there exists
a unique solution Xy(t) of the equation

Xy(t) = y +

t∫
0

a(s,Xy(s)) ds+

t∫
0

b(s,Xy(s)) dW (s). (9.8)

Using (9.7) we can a.s. extend the processes Xy from the dyadic set D to the whole
real line by setting Xx(t) = lim

y→x,y∈D
Xy(t). This limit is uniform in t ∈ [0, T ],

therefore, Xx(t) is a.s. continuous in t ∈ [0, T ] simultaneously for all x. Due to
this, (7.4), and (3.6), the passage to the limit in (9.8) as y → x, y ∈ D, proves that
Xx(t) is a.s. the solution of equation (9.2) for all (t, x) ∈ [0, T ]×R.

From (9.7) we get that for any 0 < γ < 1/2 the processes Xx a.s. satisfy the
Hölder condition

sup
0≤t≤T

|Xx(t)−Xy(t)| ≤ LN,γ(ω)|x− y|γ , x, y ∈ [−N,N ], (9.9)

for all integer N .

The joint continuity of the solution Xx(t) in (t, x) follows from (9.9) and from
the continuity of Xx(t) in t for all x. Indeed, for arbitrary x, y ∈ [−N,N ] and
s, t ∈ [0, T ]

|Xx(t)−Xy(s)| ≤ |Xx(t)−Xx(s)|+ ‖Xx(·)−Xy(·)‖. (9.10)

Substituting in (9.2) instead of x the random variable ξ, satisfying the condition
of Theorem 9.1, we have a.s for all t ∈ [0, T ]

Xξ(t) = ξ +

t∫
0

a(s,Xξ(s)) ds+

t∫
0

b(s,Xξ(s)) dW (s). (9.11)

To explain this equality we do the following. Set ξn(ω) :=
∞∑
−∞

k
n1IΩk,n

(ω), where

Ωk,n =
{
ω : ξ(ω) ∈

[
k
n ,

k+1
n

)}
. Then from (9.2), applied for x = k

n and a.s. all
ω ∈ Ωk,n, we have for all t ∈ [0, T ] the equation

Xξn(t) = ξn +

t∫
0

a(s,Xξn(s)) ds+

t∫
0

b(s,Xξn(s)) dW (s).
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Since |ξ − ξn| ≤ 1/n, applying (9.9), we can pass to the limit in this equation. As
a result, we have (9.11). This stochastic equation coincides with (9.3), therefore
by the uniqueness of the solution, the processes Xξ(t) and X(t), t ∈ [0, T ], are
indistinguishable in the sense of (9.4). �

Now we are going to prove a generalization of Theorem 9.1. Consider the family
Xs,x(t), 0 ≤ s ≤ t ≤ T , of solutions of the stochastic differential equation

Xs,x(t) = x+

t∫
s

a(q,Xs,x(q)) dq +

t∫
s

b(q,Xs,x(q)) dW (q), t ∈ [s, T ]. (9.12)

Theorem 9.2. Suppose that the functions a(t, x) and b(t, x) satisfy conditions
(7.4), (7.5). Then there exists a modification Xs,x(t) of a solution of (9.12) a.s.
jointly continuous in (s, t, x), 0 ≤ s ≤ t ≤ T , x ∈ R. Moreover, for the solution
X(t), t∈ [0, T ], of equation (9.3) the following equality holds a.s. for all s∈ [0, T ] :

X(t) = Xs,X(s)(t), t ∈ [s, T ], (9.13)

Proof. The main approach to the proof of this result is the same as for Theo-
rem 9.1, but there are some technical differences. Set as(q, x) := a(q, x)1I[s,∞)(q),
bs(q, x) := b(q, x)1I[s,∞)(q). Consider the stochastic differential equation

X̃s,x(t) = x+

t∫
0

as(q, X̃s,x(q)) dq +

t∫
0

bs(q, X̃s,x(q)) dW (q), t ∈ [0, T ]. (9.14)

The conditions of Theorem 7.1 and 7.4 are satisfied, so there exists a unique strong
solution of (9.14), obeying the estimate

sup
0≤t≤T

EX̃2m
s,x (t) < Km,x,T , (9.15)

where m is a positive integer. It is clear that X̃s,x(t) = x1I[0,s](t)+Xs,x(t)1I[s,T ](t).
From (9.14) we deduce the estimate

sup
0≤v≤t

|X̃s,x(v)− X̃u,y(v)| ≤ |x− y|+
t∫

0

|as(q, X̃s,x(q))− au(q, X̃u,y(q))| dq

+ sup
0≤v≤t

∣∣∣∣
v∫

0

(bs(q, X̃s,x(q))− bu(q, X̃u,y(q))) dW (q)
∣∣∣∣.

Note that for s < u

as(q, x)− au(q, y) = a(q, x)1I[s,u](q) + (a(q, x)− a(q, y))1I[u,T ](q).
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Using conditions (7.4), (7.5), we have

|as(q, x)− au(q, y)| ≤ CT ((1 + |x|)1I[s,u](q) + |x− y|).

Then, applying the analogous inequality for bs(q, x), (4.25), (9.15) and the Hölder
inequality, we get for x, y ∈ [−N,N ] and for t ∈ [0, T ] the estimate

E sup
0≤v≤t

(X̃s,x(v)− X̃u,y(v))2m

≤ Km,T,N

(
|x− y|2m + |u− s|m +

t∫
0

E
(
X̃s,x(q)− X̃u,y(q)

)2m
dq

)
.

≤ Km,T,N

(
|x− y|2m + |u− s|m +

t∫
0

E sup
0≤v≤q

(
X̃s,x(v)− X̃u,y(v)

)2m
dq

)
.

Finally, by Gronwall’s lemma (see (7.9)),

E sup
0≤v≤t

(X̃s,x(v)− X̃u,y(v))2m ≤ K̃m,T,N

(
|x− y|2m + |u− s|m

)
.

Applying Kolmogorov’s continuity criterion (the analog of Theorem 3.3 for pro-
cesses with values in Banach spaces), we deduce that for every 0 < γ < 1/2 and
N > 0, a.s. for all s, u ∈ D

⋂
[0, T ] and x, y ∈ D

⋂
[−N,N ]

sup
0≤v≤t

∣∣X̃s,x(v)− X̃u,y(v)
∣∣ ≤ LN,T,γ(ω)

(
|u− s|γ + |x− y|γ

)
, (9.16)

where D is the set of dyadic (binary rational) points.
Using (9.16) we can a.s. extend the processes X̃u,y from the dyadic set D ×D

to the whole real plane by setting

X̃s,x(t) = lim
y→x,y∈D

lim
u→s,u∈D

X̃u,y(t), s ∈ [0, T ], x ∈ [−N,N ].

This limit is uniform in t ∈ [0, T ], therefore X̃s,x(t) is a.s. continuous in t ∈ [0, T ]
for all s, x simultaneously. Due to this, (7.4), and (3.6), the passage to the limit
in (9.14) as sn → s, xn → x, (sn, xn) ∈ D × D, proves that X̃s,x(t) is a.s. the
solution of equation (9.14) for all (s, t, x) ∈ [0, T ]2 × R. Analogously to the proof
of Theorem 9.1, one establishes that the process X̃s,x(t), (s, t, x) ∈ [0, T ]2 × R, is
continuous and, consequently, the same is true for the process Xs,x(t), 0 ≤ s ≤ t ≤
T , x ∈ R. The equality (9.13) also holds (see the end of the proof of Theorem 9.1).

�

Remark 9.1. Let τ be a stopping time with respect to the filtration Ft :=
σ{ξ,W (s), 0 ≤ s ≤ t}, where ξ is a random variable independent of the Brownian
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motion W . Then for the set {τ ≤ t ≤ T} the following stochastic differential
equation

Xτ,x(t) = x+

t∫
τ

a(q,Xτ,x(q)) dq +

t∫
τ

b(q,Xτ,x(q)) dW (q), t ∈ [τ, T ], (9.17)

makes sense.

This is due to the fact that for a fixed x the processes aτ (q, x) := a(q, x)1I[τ,∞)(q)
and bτ (q, x) := b(q, x)1I[τ,∞)(q) are adapted to the filtration Fq, q ≥ 0.

2. Differentiability of solutions with respect to the initial value. Con-
sider the question of differentiability of the solution Xx with respect to the initial
value x. Since Xx is a random function, we should treat the derivative with respect
to x in the mean square sense. If for a random function Z(x), x ∈ R, there exists
the random function V (x) such that

lim
∆→0

E
(
Z(x+�)− Z(x)

�
− V (x)

)2

= 0,

we call V (x) the mean square derivative of Z and set d

dx
Z(x) := V (x).

The mean square differentiability is important, for example, for the proof that
the function u(x) := Ef(Xx(t)) is continuously differentiable, where f(x), x ∈ R,
has a continuous bounded first derivative.

Theorem 9.3. Suppose that the functions a(t, z) and b(t, z), (t, z) ∈ [0, T ]×R,
are continuous, and have continuous bounded partial derivatives a′z(t, z) and b′z(t, z)
with respect to z.

Then the continuous solution Xx(t) of (9.1) has a stochastically continuous in

(t, x) ∈ [0, T ] × R mean square derivative X(1)
x (t) := d

dx
Xx(t), which satisfies the

equation

X(1)
x (t) = 1 +

t∫
0

a′z(s,Xx(s))X(1)
x (s) ds+

t∫
0

b′z(s,Xx(s))X(1)
x (s) dW (s). (9.18)

Remark 9.2. Under the assumptions of Theorem 9.3, the functions a and b
satisfy the Lipschitz condition (7.4) and the linear growth condition (7.5).

Remark 9.3. The function X(1)
x (t) satisfying equation (9.18) has the form (see

(8.3))

X(1)
x (t) = exp

( t∫
0

b′z(s,Xx(s)) dW (s) +

t∫
0

{
a′z(s,Xx(s))−

1

2

(
b′z(s,Xx(s)

)2}
ds

)
.

(9.19)
This derivative is positive and, therefore for every fixed t, the process Xx(t) is a.s.
an increasing function with respect to x.

Proof of Theorem 9.3. We start with an auxiliary result.
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Lemma 9.1. Let a∆(t) and b∆(t), t ∈ [0, T ], ∆ ∈ [−1, 1], be a family of uni-
formly bounded progressively measurable processes, i.e., |a∆(t)| ≤ K, |b∆(t)| ≤ K
for all t ∈ [0, T ] and some nonrandom constant K. Suppose that for every ∆ a
progressively measurable process Y∆(t), t ∈ [0, T ], satisfies the equation

Y∆(t) = 1 +

t∫
0

a∆(s)Y∆(s) ds+

t∫
0

b∆(s)Y∆(s) dW (s). (9.20)

Then for any p ∈ R,
EY p∆(t) ≤ e|p|(|p|K+1)Kt. (9.21)

If a∆(t) → a0(t) and b∆(t) → b0(t) as ∆ → 0 in probability for every t ∈ [0, T ],
then Y∆(t) → Y0(t) in probability and in mean square, where Y0 is the solution of
(9.20) for ∆ = 0.

Proof. We note first that Y∆(t) can be represented (see (8.3)) in the form

Y∆(t) = exp
( t∫

0

b∆(s) dW (s) +

t∫
0

(
a∆(s)− 1

2
b2∆(s)

)
ds

)
(9.22)

and, consequently, Y∆(t) is a nonnegative process.
Using the Hölder inequality and (6.13), we have

EY p∆(t) ≤ E1/2 exp
(

2p

t∫
0

b∆(s) dW (s)
)
E1/2 exp

(
2p

t∫
0

a∆(s) ds
)
≤ ep

2K2te|p|Kt.

Note that the estimate (9.21) is valid for both positive and negative p.
Since the coefficients a∆ and b∆, ∆ ∈ [−1, 1], are uniformly bounded and they

converge in probability, they converge also in mean square. Therefore,

lim
∆→0

t∫
0

E(b∆(s)− b0(s))2 ds = 0, lim
∆→0

t∫
0

E|a∆(s)− a0(s)| ds = 0.

Then, in view of (2.8), we can pass to the limit in (9.22) and get that Y∆(t) → Y0(t)
in probability.

For arbitrary ε > 0, we have

E(Y∆(t)− Y0(t))2 = E{1I[0,ε](|Y∆(t)− Y0(t)|)(Y∆(t)− Y0(t))2}
+ E{1I(ε,∞)(|Y∆(t)− Y0(t)|)(Y∆(t)− Y0(t))2} =: I1,∆ + I2,∆.

Using the convergence Y∆(t) → Y0(t) in probability, we see that the first term
on the right-hand side of this equality tends to zero by the Lebesgue dominated
convergence theorem. The second term is estimated by Hölder’s inequality as
follows:

I2,∆ ≤ P1/2(|Y∆(t)− Y0(t)| > ε)E1/2(Y∆(t)− Y0(t))4.
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This term also tends to zero in view of (9.21), p = 4, and the convergence Y∆(t) →
Y0(t) in probability. Consequently, Y∆(t) → Y0(t) in mean square. Lemma 9.1 is
proved. �

We continue the proof of the theorem. Since a(t, x), b(t, x) have bounded deriva-
tives with respect to x, the functions

ã(t, x, y) := a(t; y)− a(t; x)

y − x
, b̃(t, x, y) := b(t; y)− b(t; x)

y − x
, x 6= y,

can be extended continuously to the diagonal x = y by setting ã(t, z, z) := a′z(t, z),
b̃(t, z, z) := b′z(t, z).

For a fixed x and ∆ 6= 0, set Y∆(t) := Xx+�(t)−Xx(t)

�
, t ∈ [0, T ]. Since

Xx+∆(t)−Xx(t) = ∆ +

t∫
0

(a(s,Xx+∆(s))− a(s,Xx(s))) ds

+

t∫
0

(b(s,Xx+∆(s))− b(s,Xx(s))) dW (s),

the process Y∆(t) satisfies equation (9.20) with the coefficients

a∆(t) := ã(t,Xx+∆(t), Xx(t)), b∆(t) := b̃(t,Xx+∆(t), Xx(t)).

These coefficients are uniformly bounded, because the functions a(t, z) and b(t, z)
have continuous bounded derivatives with respect to z.

By (9.9), Xx+∆(t) −→ Xx(t) as ∆ → 0 a.s. Therefore,

a∆(t) → a′z(t,Xx(t)), b∆(t) → b′z(t,Xx(t)) as ∆ → 0 a.s.

Finally, applying Lemma 9.1, we have that as ∆ → 0 the variables Y∆(t) converge
in probability and in mean square to the limit Y0(t) which is said to be the derivative
X(1)
x (t) = d

dx
Xx(t). The limit process X(1)

x (t) satisfies (9.19) and (9.18).
In view of (9.9), the conditions on the coefficients a, b, and (3.6),

sup
t∈[0,T ]

∣∣∣∣
t∫

0

b′z(t,Xy(t)) dW (s)−
t∫

0

b′z(t,Xx(t)) dW (s)
∣∣∣∣ −→ 0 as y → x

in probability. The ordinary integral in (9.19) is also continuous with respect
to x, uniformly in t ∈ [0, T ]. This and (9.19) imply that the process X(1)

x (t),
(t, x) ∈ [0, T ]×R, is stochastically continuous, and so continuous in mean square.

�

Remark 9.4. Under the assumptions of Theorem 9.3,

E
(
X(1)
x (t)

)p ≤ e|p|(|p|K+1)Kt (9.23)

for any p ∈ R.

Indeed, (9.23) is a consequence of (9.21) and Fatou’s lemma.

3. Second derivative of a solution with respect to the initial value.
Similarly to the proof of Theorem 9.3, we can prove the following result concerning
the second-order derivative of Xx(t) with respect to the initial value x.
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Theorem 9.4. Suppose that the functions a(t, z) and b(t, z), (t, z) ∈ [0, T ]×R,
are continuous, and have continuous partial derivatives a′z(t, z), b

′
z(t, z), a

′′
zz(t, z),

b′′zz(t, z) with respect to z.
Then the continuous solution Xx(t) of equation (9.1) has a stochastically con-

tinuous in (t, x) ∈ [0, T ] × R mean square second-order derivative X(2)
x (t) :=

d2

dx2
Xx(t) = d

dx
X(1)
x (t), which satisfies the equation

X(2)
x (t) =

t∫
0

a′′zz(s,Xx(s))(X(1)
x (s))2 ds+

t∫
0

a′z(s,Xx(s))X(2)
x (s) ds

+

t∫
0

b′′zz(s,Xx(s))(X(1)
x (s))2 dW (s) +

t∫
0

b′z(s,Xx(s))X(2)
x (s) dW (s). (9.24)

Remark 9.5. The function X(2)
x (t) satisfying this equation has (see (8.4)) the

form

X(2)
x (t) = X(1)

x (t)
{ t∫

0

b′′zz(s,Xx(s))X(1)
x (s) dW (s)

+

t∫
0

(
a′′zz(s,Xx(s))− b′z(s,Xx(s))b′′zz(s,Xx(s))

)
X(1)
x (s) ds

}
. (9.25)

Proof of Theorem 9.4. From (9.18) for ∆ ∈ [−1, 1], it follows that

X(1)

x+∆(t)−X(1)
x (t) =

t∫
0

(
a′z(s,Xx+∆(s))X(1)

x+∆(s)− a′z(s,Xx(s))X(1)
x (s)

)
ds

+

t∫
0

(
b′z(s,Xx+∆(s))X(1)

x+∆(s)− b′z(s,Xx(s))X(1)
x (s)

)
dW (s). (9.26)

Since a(t, x) and b(t, x) have bounded second derivatives with respect to x, the
functions

ã′(t, x, y) :=
a′y(t; y)− a′x(t; x)

y − x
, b̃′(t, x, y) :=

b′y(t; y)− b′x(t; x)

y − x
, x 6= y,

can be extended continuously to the diagonal x = y by the equalities ã′(t, z, z)
:= a′′zz(t, z), b̃

′(t, z, z) := b′′zz(t, z). We also denote

a′∆(t) := ã′(t,Xx+∆(t), Xx(t)), b′∆(t) := b̃′(t,Xx+∆(t), Xx(t)).
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These coefficients are uniformly bounded, because the functions a(t, x) and b(t, x)
have continuous bounded second derivatives with respect to x.

For a fixed x and ∆ 6= 0 we set Z∆(t) :=
X(1)
x+�(t)−X(1)

x (t)

�
and, as in the proof

of Theorem 9.3, we set Y∆(t) := Xx+�(t)−Xx(t)

�
, t ∈ [0, T ].

Then (9.26) can be rewritten in the form

Z∆(t) =

t∫
0

a′∆(s)Y∆(s)X(1)

x+∆(s) ds+

t∫
0

b′∆(s)Y∆(s)X(1)

x+∆(s) dW (s)

+

t∫
0

a′z(s,Xx(s))Z∆(s) ds+

t∫
0

b′z(s,Xx(s))Z∆(s) dW (s). (9.27)

This stochastic differential equation, as equation for the process Z∆, has the form
(8.2). The coefficients of its linear homogeneous part are of the same form as in
(9.18). Therefore, according to (8.4) and the fact that in this case (8.3) is exactly
(9.18), the solution (9.27) has the form

Z∆(t) = X(1)
x (t)

{ t∫
0

b′∆(s)Y∆(s)X(1)

x+∆(s)
(
X(1)
x (s)

)−1
dW (s)

+

t∫
0

(
a′∆(s)− b′z(s,Xx(s)) b′∆(s)

)
Y∆(s)X(1)

x+∆(s)
(
X(1)
x (s)

)−1
ds

}
. (9.28)

Using this representation, it is not hard to get the estimate

sup
0≤∆≤1

sup
0≤t≤T

EZ2n
∆ (t) <∞ (9.29)

for any positive integer n.
Indeed, taking into account the boundedness of the functions a′∆, b′∆, b′z, the

estimate (4.25), and the nonnegativity of the processes Y∆, X(1)
x , we get

EZ2n
∆ (t) ≤ 22n−1C̃

{
E
( t∫

0

Y 2
∆(s)

(
X(1)

x+∆(s)X
(1)
x (t)

X(1)
x (s)

)2

ds

)n

+E
( t∫

0

Y∆(s)X(1)

x+∆(s)X
(1)
x (t)

X(1)
x (s)

ds

)2n}
≤ Cn

t∫
0

E
(
Y∆(s)X(1)

x+∆(s)X
(1)
x (t)

X(1)
x (s)

)2n

ds.

Applying Hölder’s inequality, we obtain

EZ2n
∆ (t) ≤ C

t∫
0

E1/4Y 8n
∆ (s)E1/4

(
X(1)

x+∆(s)
)8n

E1/4
(
X(1)
x (t)

)8n
E1/4

(
X(1)
x (s)

)−8n
ds.
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Now we can use estimates (9.21), (9.23), which leads to (9.29). The estimate (9.29)
guarantees (see Proposition 1.1 Ch. I) the uniform integrability of the family of
random variables

{
Z2

∆(t)
}

∆>0
for every t ∈ [0, T ].

By (9.9), Xx+∆(t) → Xx(t) as ∆ → 0 a.s. Therefore,

a′∆(t) → a′′zz(t,Xx(t)), b′∆(t) → b′′zz(t,Xx(t)) as ∆ → 0 a.s.

In turn, Y∆(t) converges as ∆ → 0 in probability and in mean square to the
derivative X(1)

x (t), and X(1)

x+∆(t) → X(1)
x (t). Consequently, in (9.28) we can pass

to the limit as ∆ → 0. Then we see that the processes Z∆(t) converge as ∆ → 0
in probability and in mean square to the limit Z0(t), which is called the second-

order derivative X(2)
x (t) = @2

@x2
Xx(t). The limit process X(2)

x (t) satisfies (9.25), and
hence it satisfies (9.24). By (9.25) and (9.29), X(2)

x (t) is stochastically continuous in
(t, x) ∈ [0, T ]×R, and it is continuous in the mean square, since the processes Xx(t)
and X(1)

x (t) are stochastically continuous with respect to x uniformly in t ∈ [0, T ].
�

Remark 9.6. Under the assumptions of Theorem 9.4,

sup
0≤t≤T

E
(
X(2)
x (t)

)2n
<∞ (9.30)

for any positive integer n.

Indeed, (9.30) is a consequence of (9.29) and Fatou’s lemma.

§ 10. Girsanov’s transformation

To clarify the subject of this section we start with a simple example.
Let (Ω,F ,P) be a probability space. Let ζ = ζ(ω) be a Gaussian random

variable with mean zero and variance 1. The characteristic function of this variable
is given by the formula

Eeizζ =
∫
Ω

eizζ(ω)P(dω) =

∞∫
−∞

eizx
1

√
2�
e−x

2/2 dx = e−z
2/2, z ∈ R. (10.1)

This equality holds also for a complex z.
Define a new probability measure by setting

P̃(A) :=
∫
A

exp
(
− µζ(ω)− �2

2

)
P(dω)

for sets A ∈ F . This relation has a brief expression in terms of the Radon–Nikodým
derivative

dP̃

dP
:= P̃(d!)

P(d!)
= exp

(
− µζ(ω)− �2

2

)
.

Note that P̃(Ω) = 1, since by (10.1), for z = iµ we have P̃(Ω) = e−µ
2/2Ee−µζ = 1.
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Proposition 10.1. The random variable ζ̃ = ζ+µ with respect to the measure

P̃ is the Gaussian random variable with mean zero and variance 1.

Proof. Denote by Ẽ the expectation with respect to the measure P̃. Then for
an arbitrary bounded random variable η,

Ẽη :=
∫
Ω

η(ω) P̃(dω) =
∫
Ω

η(ω) exp
(
− µζ(ω)− �2

2

)
P(dω) = E

{
η exp

(
− µζ − �2

2

)}
.

Using this, we have

Ẽeizζ̃ = Ẽeiz(ζ+µ) = E
{
eiz(ζ+µ) exp

(
− µζ − �2

2

)}
= e−µ

2/2

∞∫
−∞

eiz(x+µ)e−µx
1

√
2�
e−x

2/2 dx

=

∞∫
−∞

eiz(x+µ) 1
√
2�
e−(x+µ)2/2 dx =

∞∫
−∞

eizy
1

√
2�
e−y

2/2 dy = e−z
2/2.

This proves the statement. �

The main point of Proposition 10.1 can be formulated as follows: a special choice
of the probability measure can compensate the shift of a Gaussian random variable.

The distribution of a random variable is uniquely determined by the character-
istic function or by the family of expectations of a bounded measurable functions
of this variable. The statement that the random variable ζ̃ = ζ + µ with respect
to the measure P̃ is again distributed as ζ can be expressed as follows: for an
arbitrary bounded measurable function f we have Ẽf(ζ̃) = Ef(ζ), or, in view of
the definitions of Ẽ and ζ̃,

E
{
f(ζ + µ) exp

(
− µζ − �2

2

)}
= Ef(ζ). (10.2)

As we saw, if instead of the abstract expectation with respect to the probabil-
ity measure P we write (10.2) in terms of integrals with respect to the Gaussian
distribution function dG(x) = 1

√
2�
e−x

2/2 dx, then formula (10.2) turns to the inte-

gration by substitution formula. We can rewrite (10.2) in another way. We apply
(10.2) to the function f(x)eµx−µ

2/2 instead of f(x) and get

Ef(ζ + µ) = E
{
f(ζ) exp

(
µζ − �2

2

)}
.

For f(x) = 1IA(x), A ∈ F , this formula has the brief equivalent

dP�+�

dP�
= exp

(
µζ − �2

2

)
,

where Pζ+µ is the measure corresponding to the variable ζ + µ and Pζ is the
measure corresponding to the variable ζ.
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Results analogous to Proposition 10.1 hold also for some random variables taking
values in functional spaces, i.e., for stochastic processes. The next result concerns
the Brownian motion.

Let (Ω,F , {Ft},P) be a filtered probability space. Let W (t), t ∈ [0, T ], be a
Brownian motion adapted to the filtration {Ft}. Suppose that for all v > t the
increments W (v)−W (t) are independent of the σ-algebra Ft.

For an arbitrary b ∈ L2[0, T ], consider the stochastic exponent

ρ(t) := exp
(
−

t∫
0

b(s) dW (s)− 1

2

t∫
0

b2(s) ds
)
, t ∈ [0, T ].

Here compared with the exponent from § 6 we take the process −b(s) instead of
b(s). The stochastic differential of ρ is

dρ(t) = −ρ(t)b(t) dW (t). (10.3)

Therefore,

ρ(t) = 1−
t∫

0

ρ(v)b(v) dW (v).

Suppose that for some δ > 0

E exp
(

(1 + δ)

T∫
0

b2(s) ds
)
<∞,

or
sup

0≤s≤T
Eeδb

2(s) <∞.

Then the stochastic exponent ρ(t), t ∈ [0, T ], is (see Proposition 6.1) a nonnegative
martingale with the mean Eρ(t) = 1 for every t ∈ [0, T ].

Define the probability measure P̃ by setting

P̃(A) :=
∫
A

ρ(T, ω)P(dω)

for A ∈ F . Note that P̃(Ω) = Eρ(T ) = 1.
Denote by Ẽ the expectation with respect to the measure P̃. Then

Ẽη :=
∫
Ω

η(ω) P̃(dω) =
∫
Ω

η(ω)ρ(T, ω)P(dω) = E{ηρ(T )}.
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Proposition 10.2. For any bounded Ft-measurable random variable η the fol-
lowing equalities hold:

Ẽη = E{ηρ(t)}, (10.4)

and for s < t,

Ẽ{η|Fs} = 1

�(s)
E{ηρ(t)|Fs}. (10.5)

Proof. Indeed, using the martingale property of ρ(t), t ∈ [0, T ], we have

Ẽη = E{E{ηρ(T )|Ft}} = E{ηE{ρ(T )|Ft}} = E{ηρ(t)}.

To prove (10.5) we consider an arbitrary bounded Fs-measurable random variable
ξ. We compute the expectation Ẽ{ξη} in two different ways. Using the properties
of the conditional expectation and (10.4), we have

Ẽ{ξη} = Ẽ{Ẽ{ξη|Fs}} = Ẽ{ξẼ{η|Fs}} = E{ξρ(s)Ẽ{η|Fs}}. (10.6)

On the other hand, first applying (10.4) and then using the properties of the con-
ditional expectation, we obtain

Ẽ{ξη} = E{ξηρ(t)} = E{E{ξηρ(t)|Fs}} = E{ξE{ηρ(t)|Fs}}. (10.7)

Since ξ is an arbitrary bounded Fs-measurable random variable, the coincidence
of the right-hand sides of (10.6) and (10.7) implies (10.5). �

The following result is due to I. V. Girsanov (1960) (for nonrandom b see
Cameron and Martin (1945)).

Theorem 10.1. The process W̃ (t) = W (t) +
t∫

0

b(s) ds is a Brownian motion

with respect to the measure P̃.

Proof. By the characterization property (10.9) Ch. I, to prove that the process
W̃ is a Brownian motion it is sufficient to verify that for any s < t and z ∈ R,

Ẽ{exp(iz(W̃ (t)− W̃ (s)))|Fs} = e−z
2(t−s)/2 a.s. (10.8)

We prove (10.8). We first assume that sup
0≤s≤T

|b(s)| ≤ M for some nonrandom

constant M . For any fixed s and t ≥ s, we set

η(t) := exp
(
iz(W̃ (t)− W̃ (s))

)
= exp

(
iz(W (t)−W (s)) + iz

t∫
s

b(u) du
)
.

Note that η(s) = 1. According to (10.5),

g(t) := Ẽ{η(t)|Fs} = 1

�(s)
E{η(t)ρ(t)|Fs}.
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We fix s and for t > s apply Itô’s formula (4.24) for

f(t, x, y) = exy, X(t) = iz(W (t)−W (s)) + iz

t∫
s

b(u) du, Y (t) = ρ(t).

Then taking into account (10.3), we obtain

d(η(t)ρ(t)) = η(t)ρ(t){iz dW (t) + izb(t) dt}

− η(t)ρ(t)b(t) dW (t)− 1

2
z2η(t)ρ(t) dt− izη(t)ρ(t)b(t) dt.

In the integral form this is written as follows: for every t ≥ s,

η(t)ρ(t) = ρ(s) + iz

t∫
s

η(u)ρ(u) dW (u)−
t∫
s

η(u)ρ(u)b(u) dW (u)− z2

2

t∫
s

η(u)ρ(u) du.

Since |η(t)| ≤ 1 and, by (6.13), the estimate E(ρ(u)b(u))2 ≤ M2e2M
2u holds, we

can use (2.3) and get

E{η(t)ρ(t)|Fs} = ρ(s)− z2

2

t∫
s

E{η(u)ρ(u)|Fs} du a.s.

Using the definition of the function g, this can be written in the form

g(t) = 1− z2

2

t∫
s

g(u) du, t ≥ s.

The solution of this differential equation is g(t) = e−z
2(t−s)/2, which is the required

result (10.8).
We will prove (10.8) for an arbitrary process b ∈ L2[0, T ], satisfying the assump-

tions stated above. There exists a sequence of bounded processes bn ∈ L2[0, T ],
such that

lim
n→∞

T∫
0

(b(s)− bn(s))2 ds = 0 a.s.

Then the processes W̃n(t) = W (t) +
t∫

0

bn(s) ds converge to the process W̃ . We

denote ρn(t) the stochastic exponent corresponding to the process bn. Then, in
view of (3.6), ρn(t) → ρ(t) in probability for every t. Since Eρn(t) = Eρ(t) = 1,
we have

E|ρn(t)− ρ(t)| = E
(
|ρ(t)− ρn(t)|+ ρ(t)− ρn(t)

)
= 2E(ρ(t)− ρn(t))+.
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Since (ρ(t) − ρn(t))+ ≤ ρ(t), by the Lebesgue dominated convergence theorem,
ρn(t) → ρ(t) in mean. For the processes bn the equality (10.8) has been already
proved, i.e., in view of (10.5),

E{exp(iz(W̃n(t)− W̃n(s)))ρn(t)|Fs} = ρn(s)e−z
2/2(t−s).

By property 7′) of conditional expectations (see § 2 Ch. I), we can pass to the limit
in this equality and obtain (10.8) for the process b. �

Remark 10.1. For a nonrandom function b Theorem 10.1 was first proved by
Cameron and Martin (1945).

Girsanov’s theorem can be presented in another form. Let C([0, T ]) be the
space of continuous functions on [0, T ]. When equipped with the uniform norm
C([0, T ]) becomes a Banach space. Instead of an abstract probability measure P
we can consider the Wiener measure PW , which for cylinder sets is determined by
(10.1) Ch. I. Although the Wiener measure is concentrated on the sets of nowhere
differentiable paths, it can be extended to the σ-algebra B(C([0, T ])) of Borel sets
of the space C([0, T ]). This measure can be characterized by the expectations of a
bounded measurable functionals of Brownian motion.

Girsanov’s theorem can be recast as.

Theorem 10.2. Let ℘(X(s), 0 ≤ s ≤ t) be a bounded measurable functional
on C([0, t]). Then

E
{
℘

(
W (s) +

s∫
0

b(u) du, 0 ≤ s ≤ t

)
ρ(t)

}
= E℘(W (s), 0 ≤ s ≤ t). (10.9)

Proof. Indeed, the statement of Theorem 10.1 is equivalent to the following: for
any bounded measurable functional ℘(X(s), 0 ≤ s ≤ t),

Ẽ℘(W̃ (s), 0 ≤ s ≤ t) = E℘(W (s), 0 ≤ s ≤ t).

In view of (10.4), the left-hand side of this equality coincides with the left-hand
side of (10.9). �

Let us consider a very important application of Girsanov’s transformation.
Let X(t) and Y (t), t ∈ [0, T ], be solutions of the stochastic differential equations

dX(t) = σ(t,X(t)) dW (t) + µ1(t,X(t)) dt, (10.10)

dY (t) = σ(t, Y (t)) dW (t) + µ2(t, Y (t)) dt, (10.11)

with the same nonrandom initial values. Suppose that the coefficients σ, µ1, µ2

satisfy the conditions of Theorem 7.1. Assume also that σ(t, x) 6= 0 for all (t, x) ∈
[0, T ]×R.

Let Gt0 = σ(W (s), 0 ≤ s ≤ t) be the σ-algebra of events generated by the
Brownian motion up to the time t. It was proved in § 7 that the processes X and
Y are adapted to the natural filtration Gt0, i.e., for every t the variables X(t) and
Y (t) are measurable with respect to Gt0.
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Theorem 10.3. Let α(t, x) := �1(t; x)− �2(t; x)

�(t; x)
, be a continuous function of the

variables (t, x) ∈ [0, T ]×R. Denote

ρ(t) := exp
(
−

t∫
0

α(s,X(s)) dW (s)− 1

2

t∫
0

α2(s,X(s)) ds
)

and suppose that for some δ > 0

E exp
(

(1 + δ)

T∫
0

α2(t,X(t)) dt
)
<∞ or sup

0≤t≤T
Eeδα

2(t,X(t)) <∞.

Then for any bounded measurable functional ℘(Z(s), 0 ≤ s ≤ t) on C([0, t]),

E℘(Y (s), 0 ≤ s ≤ t) = E
{
℘
(
X(s), 0 ≤ s ≤ t

)
ρ(t)

}
(10.12)

for every t ∈ [0, T ].

Remark 10.2. Let PX and PY be the measures associated with the processes
X(t) and Y (t), t ∈ [0, T ], respectively. Then from (10.12) for the functional

℘(Z(s), 0 ≤ s ≤ t) = 1IA(Z(s), 0 ≤ s ≤ t), A ∈ B(C[0, t]),

it follows that the measure PY is absolutely continuous with respect to PX when
restricted to Gt0 and there exists the Radon–Nikodým derivative

dPY

dPX

∣∣∣
Gt

0

= ρ(t) a.s. (10.13)

Proof of Theorem 10.3. Since α is a continuous function, the process α(t,X(t)),
t ∈ [0, T ], is progressively measurable with respect to the filtration {Gt0}.

By Theorem 10.1, the process

W̃ (t) = W (t) +

t∫
0

α(s,X(s)) ds

is a Brownian motion with respect to the measure P̃. Since

dX(t) = σ(t,X(t)) dW̃ (t) + µ2(t,X(t)) dt

and this stochastic differential equation coincides with (10.11), the finite-dimensio-
nal distributions of the process X with respect to the measure P̃ coincide with
those of the process Y with respect to the measure P. This implies that

E℘(Y (s), 0 ≤ s ≤ t) = Ẽ℘(X(s), 0 ≤ s ≤ t).
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In view of (10.4), the right-hand side of this equality coincides with the right-hand
side of (10.12). �

The Radon–Nikodým derivative (10.13) can be rewritten as a functional of X.
Indeed, from (10.10) it follows that

dW (t) = 1

�(t;X(t))
(dX(t)− µ1(t,X(t)) dt).

Then

t∫
0

α(s,X(s)) dW (s) =

t∫
0

�(s;X(s))

�(t;X(t))
dX(s)−

t∫
0

�(s;X(s))�1(s;X(s))

�(t;X(t))
ds.

As a result, we have

ρ(t) = exp
( t∫

0

�2(s;X(s))− �1(s;X(s))

�2(s;X(s))
dX(s)− 1

2

t∫
0

�22(s;X(s))− �21(s;X(s))

�2(s;X(s))
ds

)
.

Consider the particular case when σ(t, x) ≡ 1, µ1(t, x) ≡ 0, µ2(t, x) ≡ µ(x).
Suppose that for some δ > 0

E exp
(

(1 + δ)

T∫
0

µ2(W (t)) dt
)
<∞ or sup

0≤t≤T
Eeδµ

2(W (t)) <∞.

Then for the process Y (t) = W (t) +
t∫

0

µ(Y (s)) ds, t ∈ [0, T ], we have

dPY

dPW

∣∣∣
Gt

0

= exp
( t∫

0

µ(W (s)) dW (s)− 1

2

t∫
0

µ2(W (s)) ds
)

= exp
( W (t)∫
W (0)

µ(y)dy − 1

2

t∫
0

µ2(W (s)) ds− 1

2

t∫
0

µ′(W (s))ds
)

a.s. (10.14)

Here the second equality follows from the Itô formula under the assumption that
the function µ is differentiable.

In particular, for the Brownian motion with linear drift µ(x) ≡ µ, i.e., for the
process W (µ)(t) = µt+W (t) with W (0) = x, formula (10.14) has the form

E℘
(
W (µ)(s), 0 ≤ s ≤ t

)
= e−µx−µ

2t/2E
{
eµW (t)℘(W (s), 0 ≤ s ≤ t)

}
. (10.15)
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Exercises.

10.1. Let X(t) be a solution of the stochastic differential equation

dX(t) = a(X(t)) dt+ dW (t), X(0) = x0.

Use the Girsanov theorem to prove that for all K, x0 ∈ R and t > 0

P(X(t) ≥ K) > 0.

10.2. Let Y (t) = W (t) + µt + ηt2 be the Brownian motion with the quadratic
drift, W (0) = x. Check that

dPY

dPW

∣∣∣
Gt

0

= exp
(
− µx− �2t

2
− µηt2 − 2�2t3

3
+ (µ+ 2ηt)W (t)− 2η

t∫
0

W (s) ds
)
.

10.3. Let Y (t) be a solution of the stochastic differential equation

dY (t) = −θY (t) dt+ dW (t), Y (0) = x, θ ∈ R.

Compute dPY

dPW

∣∣∣
Gt

0

.

§ 11. Probabilistic solution of the Cauchy problem

Let X(t), t ≥ 0, be a solution of the stochastic differential equation

dX(t) = σ(X(t)) dW (t) + µ(X(t)) dt, X(0) = x. (11.1)

Suppose that for every N > 0 there exists a constant KN such that

|σ(x)− σ(y)|+ |µ(x)− µ(y)| ≤ KN |x− y| (11.2)

for all x, y ∈ [−N,N ]. Introduce, in addition, the following restriction on the
growth of the coefficients σ and µ: there exists a constant K such that

|σ(x)|+ |µ(x)| ≤ K(1 + |x|) (11.3)

for all x ∈ R. Then, by Theorem 7.3, equation (11.1) has a unique continuous
solution defined for all t ≥ 0.

Denote by Px and Ex the probability and the expectation with respect to the
process X with the starting point X(0) = x.

Let Ha,b := min{s : X(s) 6∈ (a, b)} be the first exit time of the process X from
the interval (a, b).
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Theorem 11.1. Let Φ(x), f(x), x ∈ [a, b], be continuous functions, and let
f be nonnegative. Suppose that the coefficients σ, µ satisfy condition (11.2) for
N = max{|a|, |b|}, and σ(x) > 0 for x ∈ [a, b].

Let u(t, x), (t, x) ∈ [0,∞)× [a, b], be a solution of the Cauchy problem

@

@t
u(t, x) = 1

2
σ2(x) @

2

@x2
u(t, x) + µ(x) @

@x
u(t, x)− f(x)u(t, x), (11.4)

u(0, x) = Φ(x), (11.5)

u(t, a) = Φ(a), u(t, b) = Φ(b). (11.6)

Then

u(t, x) = Ex

{
Φ(X(t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(X(s)) ds
)}

. (11.7)

Proof. We extend the functions σ and µ outside the interval [a, b] such that
they satisfy (11.2), (11.3), and the condition σ(x) > 0 for x ∈ R. In this case,
by Theorem 7.2, the process X is not changed in the interval [0,Ha,b]. We also
extend f to be a nonnegative continuous function outside [a, b]. One can extend the
solution u of the problem (11.4)–(11.6) outside [a, b] such that it will be continuously
differentiable in (t, x) ∈ (0,∞) × R. Moreover, there exist the continuous second
derivative in x except in the points a− k(b− a) and b+ k(b− a), k ∈ N, and this
derivative has the left and right limits at its points of discontinuity. It is not stated
that u(t, x) satisfies the equation (11.4) for x 6∈ [a, b]. For example, we can set
u(t, x) := −u(t, 2a−x) for x ∈ [2a− b, a], u(t, x) := −u(t, 2b−x) for x ∈ [b, 2b−a],
u(t, x) := u(t, x+ 2b− 2a) for x ∈ [3a− 2b, 2a− b] and so on.

For a fixed t set

η(s) := u(t− s,X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
, s ∈ [0, t].

Applying Itô’s formula (4.22) for d = 1 in the integral form together with the
Remark 4.2, we have for every 0 ≤ q ≤ t that

η(q)− η(0) =

q∫
0

exp
(
−

s∫
0

f(X(v)) dv
)[(

@

@s
u(t− s,X(s))

+ 1

2
σ2(X(s)) @

2

@x2
u(t− s,X(s)) + µ(X(s)) @

@x
u(t− s,X(s))

− f(X(s))u(t− s,X(s))
)
ds+ σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

]
.

Replacing q by the stopping time t ∧Ha,b, we get

η(t∧Ha,b)−η(0) =

t∧Ha,b∫
0

exp
(
−

s∫
0

f(X(v)) dv
)[(

− @

@t
u(t−s,X(s))
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+ 1

2
σ2(X(s)) @

2

@x2
u(t− s,X(s)) + µ(X(s)) @

@x
u(t− s,X(s))

− f(X(s))u(t− s,X(s))
)
ds+ σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

]
.

Using the fact that u(t, x) satisfies equation (11.4) for x ∈ [a, b], we have

η(t ∧Ha,b)− η(0) =

t∧Ha,b∫
0

exp
(
−

s∫
0

f(X(v)) dv
)
σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

=

t∫
0

1I[0,Ha,b)(s) exp
(
−

s∫
0

f(X(v)) dv
)
σ(X(s)) @

@x
u(t− s,X(s)) dW (s). (11.8)

It is important that Ha,b is a stopping time with respect to the filtration Gt0 =
σ(W (s), 0 ≤ s ≤ t). This ensures that the stochastic integral is well defined (see
(3.8)). Note also that all integrands are bounded, because the process X does not
leave the interval (a, b) up to the time Ha,b.

The expectation of the stochastic integral equals zero, and therefore

Exη(t ∧Ha,b) = Exη(0).

It is clear that
Exη(0) = E{u(t,X(0))|X(0) = x} = u(t, x).

By the boundary conditions (11.5) and (11.6), we have

u(t− (t ∧Ha,b), X(t ∧Ha,b)) = Φ(X(t ∧Ha,b)),

and so

Exη(t ∧Ha,b) = Ex

{
Φ(X(t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(X(v)) dv
)}

.

Thus (7.11) holds. �

Remark 11.1. It is very important that in Theorem 11.1 and in the following
results of this section we assume that the solution of the corresponding differential
problem exists.

The following generalization of Theorem 11.1 gives the probabilistic solution for
the nonhomogeneous Cauchy problem.

Theorem 11.2. Let Φ(x), f(x) and g(x), x ∈ [a, b], be continuous functions,
and f be nonnegative. Suppose that the coefficients σ, µ satisfy condition (11.2)
with N = max{|a|, |b|}, and σ(x) > 0 for x ∈ [a, b].
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Let u(t, x), (t, x) ∈ [0,∞)× [a, b], be a solution of the nonhomogeneous Cauchy
problem

@

@t
u(t, x) = 1

2
σ2(x) @

2

@x2
u(t, x) + µ(x) @

@x
u(t, x)− f(x)u(t, x) + g(x), (11.9)

u(0, x) = Φ(x), (11.10)

u(t, a) = Φ(a), u(t, b) = Φ(b). (11.11)

Then

u(t, x) = Ex

{
Φ(X(t ∧Ha,b)) exp

(
−

t∧Ha,b∫
0

f(X(s)) ds
)

+

t∧Ha,b∫
0

g(X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
. (11.12)

Proof. As in the proof of Theorem 11.1, we consider the extension of the solution
of the problem (11.9)–(11.11) outside the interval [a, b], assuming that the functions
f and g are continuously extended outside [a, b] so that g is bounded and f is
nonnegative. For a fixed t, set

η(s) := u(t−s,X(s)) exp
(
−

s∫
0

f(X(v)) dv
)

+

s∫
0

g(X(v)) exp
(
−

v∫
0

f(X(q)) dq
)
dv.

Applying Itô’s formula and then substituting in it the stopping time t ∧Ha,b,
we get

η(t∧Ha,b)−η(0) =

t∧Ha,b∫
0

exp
(
−

s∫
0

f(X(v)) dv
)[(

− @

@t
u(t−s,X(s))

+ 1

2
σ2(X(s)) @

2

@x2
u(t− s,X(s)) + µ(X(s)) @

@x
u(t− s,X(s))− f(X(s))u(t− s,X(s))

+ g(X(s))
)
ds+ σ(X(s)) @

@x
u(t− s,X(s)) dW (s)

]
.

We use the fact that for x ∈ [a, b] the function u(t, x) satisfies equation (11.9). As
a result, we have (11.8). Now the proof is completed analogous to the proof of
Theorem 11.1. �

Taking the Laplace transform with respect to t, we can reduce the problem
(11.9)–(11.11) to a problem for an ordinary differential equation.

For any λ > 0, set

U(x) := λ

∞∫
0

e−λtu(t, x) dt. (11.13)
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Then for every x the function u(t, x), t ≥ 0, is uniquely determined by the function
U , λ > 0, as the inverse Laplace transform.

Applying the integration by parts formula, taking into account the boundary
condition (11.10) and the fact that the function u(t, x), by virtue of the represen-
tation (11.12), obeys for some K the estimate |u(t, x)| ≤ K(1 + t), we get

λ

∞∫
0

e−λt
@

@t
u(t, x) dt = −λΦ(x) + λ2

∞∫
0

e−λtu(t, x) dt = −λΦ(x) + λU(x).

In addition, we have

U ′(x) = λ

∞∫
0

e−λt
@

@x
u(t, x) dt, U ′′(x) = λ

∞∫
0

e−λt
@2

@x2
u(t, x) dt.

Now integrating both sides of (11.9) with the weight function λ e−λt, we get

1

2
σ2(x)U ′′(x)+µ(x)U ′(x)−(λ+f(x))U(x) = −λΦ(x)−g(x), x ∈ (a, b). (11.14)

The boundary conditions (11.11) are transformed to the conditions

U(a) = Φ(a), U(b) = Φ(b). (11.15)

One can give a natural probabilistic interpretation to the Laplace transform
(formula (11.13)). Namely, let τ be an exponentially distributed random time
independent of the Brownian motion W and, consequently, of the process X. Let
the density of τ have the form λe−λt1I[0,∞)(t), t ∈ R, λ > 0. Then applying Fubini’s
theorem, we get

U(x) = Eu(τ, x) = Ex

{
Φ(X(τ ∧Ha,b)) exp

(
−

τ∧Ha,b∫
0

f(X(s)) ds
)

+

τ∧Ha,b∫
0

g(X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
. (11.16)

Therefore the function U is equal to the expectation of the same random process
as in formula (11.12), with the random time τ instead of a fixed time t.

As a result, we can formulate the following analog of Theorem 11.2.

Theorem 11.3. Let Φ(x), f(x) and g(x), x ∈ [a, b], be continuous functions
and let f be nonnegative. Suppose that the coefficients σ and µ satisfy condition
(11.2) with N = max{|a|, |b|} and σ(x) > 0 for x ∈ [a, b].

Then the function U(x), x ∈ [a, b], defined by (11.16) is the unique continuous
solution of the problem (11.14), (11.15).
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§ 12. Ordinary differential equations, probabilistic approach

The proof of Theorem 11.2 is based on the result that the nonhomogeneous
Cauchy problem (11.9)–(11.11) has a solution. The proof of this result is very
complicated and requires additional conditions on the functions σ, µ, f and g.
As it was proved, by the Laplace transform with respect to t the problem (11.9)–
(11.11) is reduced to the ordinary differential equation (11.14) with the boundary
conditions (11.15). The ordinary differential problem has a unique solution, which
is not difficult to prove. The solution of (11.14), (11.15) has the probabilistic
expression (11.16). Our aim, in particular, is to give a direct probabilistic proof
for this expression, which is not based on the solution of the Cauchy problem.

We consider first the preliminary results concerning the solutions of ordinary
second-order differential equations.

Proposition 12.1. Let g(x), x ∈ (l, r), be a nonnegative continuous function
that does not vanish identically, l ≥ −∞, r ≤ ∞. Then the homogeneous equation

φ′′(x)− g(x)φ(x) = 0, x ∈ (l, r), (12.1)

has two nonnegative convex linearly independent solutions ψ and ϕ such that ψ(x),
x ∈ (l, r), is increasing, and ϕ(x), x ∈ (l, r), is decreasing.

Proof. Without loss of generality, we assume that 0 ∈ (l, r) and g(0) > 0.
Consider for x ∈ [0, r) the solution ψ+ of equation (12.1) with the initial values
ψ+(0) = 1, ψ′+(0) = 1. This solution is a convex function, therefore ψ+(x) ≥ 1+x.
Another linearly independent solution, as is easily seen, has the form

ϕ(x) = ψ+(x)

r∫
x

dv

 2+(v)
≤ ψ+(x)

r∫
x

dv

(1 + v)2
, x ∈ [0, r).

Since ψ′+(x) is nondecreasing, the following estimates hold for x ∈ [0, r):

ϕ′(x) = ψ′+(x)

r∫
x

dv

 2+(v)
− 1

 +(x)
<

r∫
x

 ′+(v)

 2+(v)
dv − 1

 +(x)
= − 1

 +(r)
≤ 0.

It follows that ϕ(x), x ∈ [0, r), is a nonnegative, convex, nonincreasing function,
and ϕ′(0) < 0. We continue the solution ϕ to the interval (l, 0] so that it satisfies
(12.1). Since the solution is convex, ϕ(x) ≥ ϕ(0) + ϕ′(0)x for x ∈ (l, 0]. Another
linearly independent solution in this interval is given by

ψ(x) = ϕ(x)

x∫
l

dv

'2(v)
≤ ϕ(x)

x∫
l

dv

('(0) + '′(0)v)2
.

Arguing similarly, we find that this solution obeys the estimates

ψ′(x) = 1

'(x)
+ ϕ′(x)

x∫
l

dv

'2(v)
>

1

'(x)
+

x∫
l

'′(v)

'2(v)
dv = 1

'(l)
≥ 0
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and ψ′(0) > 0. We continue the solution ψ to the interval [0, r) so that it satisfies
equation (12.1). Since the solution is convex, it is strictly increasing on the interval.
Proposition 12.1 is proved. �

Consider the homogeneous equation

φ′′(x) + q(x)φ′(x)− h(x)φ(x) = 0, x ∈ R. (12.2)

We set

p(x) := exp
( x∫

0

q(v) dv
)
, y(x) :=

x∫
0

dv

p(v)
, x ∈ R.

The function y(x), x ∈ R, is strictly increasing and y(0) = 0; hence, it has the
strictly increasing inverse function y(−1)(y), y ∈ (l, r), where

l := −
0∫

−∞

dv

p(v)
≥ −∞, r :=

∞∫
0

dv

p(v)
≤ ∞.

By a change of variables, equation (12.2) can be reduced to the form (12.1) with

g(y) = p2(y(−1)(y))h(y(−1)(y)), y ∈ (l, r). (12.3)

Indeed, we change x to y(x). For this choice φ(y) := φ(y(−1)(y)), y ∈ (l, r), i.e.,
we consider the function φ such that φ(x) = φ(y(x)), x ∈ R. Since (12.2) can be
written as

(p(x)φ′(x))′ − p(x)h(x)φ(x) = 0, x ∈ R,

and p(x)φ′(x) = φ
′
(y(x)), equation (12.2) is transformed to the following one

�
′′
(y(x))

p(x)
− p(x)h(x)φ(x) = 0, x ∈ R,

or, equivalently, to the equation

φ
′′
(y(x))− p2(y(−1)(y(x)))h(y(−1)(y(x)))φ(y(x)) = 0, x ∈ R.

This equation for the new variable y is in the form (12.1).

An important question is when does equation (12.2) have nonzero bounded so-
lutions on the whole real line? Since equation (12.1) considered on the whole real
line does not have nonzero bounded solutions, the same is true for (12.2) if l = −∞
and r = ∞.

Thus, we have proved the following statement.



178 II STOCHASTIC CALCULUS

Proposition 12.2. Let q(x) and h(x), x ∈ R, be continuous functions, and let
h be a nonnegative function that does not vanish identically. Then equation (12.2)
has two nonnegative linearly independent solutions ψ and ϕ such that ψ(x), x ∈ R,
is an increasing and ϕ(x), x ∈ R, is a decreasing solution.

If l = −∞ and r = ∞, then equation (12.2) does not have nonzero bounded
solutions.

The functions ψ(x) and ϕ(x), x ∈ R, are called fundamental solutions of (12.2).
Their Wronskian w(x) := ψ′(x)ϕ(x)− ψ(x)ϕ′(x) has the form

w(x) = w(0) exp
(
−

x∫
0

q(y) dy
)

and it is a positive function.
Indeed, from (12.2) it follows that the Wronskian satisfies the equation

w′(x) = −q(x)w(x), w(0) > 0, x ∈ R,

which yields the desired formula.
If either l > −∞ or r < ∞, then the answer to our question depends on the

functions q(x) and h(x), x ∈ R. Thus, if l = −∞, r < ∞ and lim
y↑r

g(y) < ∞,

where g is defined by (12.3), equation (12.2) has a bounded solution on the whole
real line, because in this case g can be continued beyond the boundary r. Then
the solution ψ(x) of equation (12.1) is bounded for x ∈ (l, r) and ψ(x) = ψ(y(x)),
x ∈ R, is a bounded solution of (12.2). If in this case lim

y↑r
g(y) = ∞, the equation

may or may not have a nonzero bounded solution. The left boundary l is treated
analogously.

Let us give some examples. Consider for α ∈ R the equation

φ′′(x)− φ′(x)− eαxφ(x) = 0, x ∈ R.

By the change of variable x = ln(y+ 1), y ∈ (−1,∞), this equation is transformed
to

φ
′′
(y)− (y + 1)α−2φ(y) = 0, y ∈ (−1,∞).

If α = 2, there exists the limit lim
y↓−1

g(y) = 1. The fundamental solutions of the

transformed equation have the form ϕ(y) = e−y and ψ(y) = ey. The solutions of
the original equation then are ϕ(x) = exp

(
1−ex

)
and ψ(x) = exp

(
ex−1

)
, x ∈ R.

The solution ϕ is bounded.
If α = 0, the fundamental solutions are ϕ(y) = (y+1)

√
5/4+1/2 and ψ(y) = (y+

1)−
√

5/4+1/2, and the solutions of the original equation are ϕ(x) = ex(
√

5/4+1/2) and
ψ(x) = e−x(

√
5/4−1/2), x ∈ R. Hence, there are no nontrivial bounded solutions.

If α = 1, the fundamental solutions of the transformed equation have the
form ϕ(y) =

√
y + 1K1(2

√
y + 1) and ψ(y) =

√
y + 1 I1(2

√
y + 1) (see Appen-

dix 4, equation 6a for p = 1/2). The solutions of the original equation are
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ϕ(x) = ex/2K1(2ex/2) and ψ(x) = ex/2I1(2ex/2), x ∈ R. The solution ϕ is
bounded, according to the asymptotic behavior of the modified Bessel function
K1 (see Appendix 2).

The conditions l = −∞ and r = ∞, which guarantee unboundedness of nonzero
solutions, are not always easy to check. In addition, they do not cover all cases.
We prove the following useful result.

Proposition 12.3. Let q(x) and h(x), x ∈ R, be continuous functions and let
the function h be nonnegative. Suppose that for some C > 0

|q(x)| ≤ C(1 + |x|) for all x ∈ R, (12.4)

lim inf
y→∞

1

y

y∫
0

h(x) dx > 0, lim inf
y→∞

1

y

0∫
−y

h(x) dx > 0. (12.5)

Then the homogeneous equation (12.2) has no nonzero bounded solutions.

Proof. By Proposition 12.2, the homogeneous equation (12.2) has two linearly
independent nonnegative solutions ψ and ϕ such that ψ(x), x ∈ R, is increasing
and ϕ(x), x ∈ R, is decreasing. Assume that ψ+ := lim

x→∞
ψ(x) < ∞. The left

condition in (12.5) implies the existence of y0 > 1 and h0 > 0 such that

1

y

y∫
0

h(x) dx ≥ h0

for all y > y0. Set ε := h0 +

2h0 + 4C
, where the constant C is taken from condition

(12.4). Let y0 be so large that

ψ(x) ∈ (ψ+ − ε, ψ+)

for x ≥ y0. Set y1 := h0 + 4C

h0(h0 + 2C)

y0∫
0

h(x) dx. If y > max{y0, y1}, then

y∫
y0

ψ′′(x) dx =

y∫
y0

(h(x)ψ(x)− q(x)ψ′(x)) dx ≥
y∫

y0

(h(x)ψ(x)− 2Cxψ′(x)) dx

≥
y∫

y0

h(x)ψ(x) dx− 2Cy(ψ(y)− ψ(y0)) ≥ (ψ+ − ε)
(
yh0 −

y0∫
0

h(x) dx
)
− 2Cyε

= yψ+
h0

2
− ψ+

(
h0 + 4C

2h0 + 4C

) y0∫
0

h(x) dx = ψ+
h0

2
(y − y1) > 0.
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Consequently,

ψ′(y)− ψ′(y0) =

y∫
y0

ψ′′(x) dx ≥ ψ+
h0

2
(y − y1)

for y > max{y0, y1}, which contradicts the relation

∞∫
y0

ψ′(y) dy = ψ+ − ψ(y0) <∞.

Therefore, the limit of the function ψ+ cannot be finite and the solution ψ cannot
be bounded. A similar reasoning shows that the solution ϕ cannot be bounded if
the right condition in (12.5) holds. Hence, only the trivial solution can be bounded.

�

We return to the problem (11.14), (11.15). Let X be the solution of the sto-
chastic differential equation (11.1) with coefficients satisfying (11.2) and (11.3).
Suppose that σ2(x) > 0 for all x ∈ R. Let Ha,b := min{s : X(s) 6∈ (a, b)} be the
first exit time of the process X from the interval (a, b).

We start with a simpler problem than (11.14), (11.15).

Theorem 12.1. Let Φ(x) and f(x), x ∈ R, be continuous functions. Suppose
that Φ is bounded and f is nonnegative. Let U(x) be a bounded solution of the
equation

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (12.6)

Then

U(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)}

. (12.7)

Remark 12.1. Under the conditions of Theorem 12.1 equation (12.6) has a
unique bounded solution in R, because it must have the probabilistic expression of
the form (12.7). Consequently, the corresponding homogeneous equation has only
the trivial bounded solution.

Proof of Theorem 12.1. Set

η(t) := U(X(t)) exp
(
− λt−

t∫
0

f(X(v)) dv
)
.

Applying Itô’s formula, we see that

η(r)− η(0) =

r∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)[
U ′(X(t))σ(X(t)) dW (t)
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+
(
U ′(X(t))µ(X(t) + 1

2
U ′′(X(t))σ2(X(t))− (λ+ f(X(t)))U(X(t))

)
dt
]

for any 0 < r. Taking into account (12.6), we can write

η(r ∧Ha,b)− U(x) =

r∫
0

1I[0,Ha,b)(t)e
−λt exp

(
−

t∫
0

f(X(v)) dv
)

×
[
U ′(X(t))σ(X(t)) dW (t)− λΦ(X(t)) dt

]
. (12.8)

By reasons similar to those given for equation (11.8), one can take the expectation
to the stochastic integral. Now, computing the expectation of both sides of (12.8)
and taking into account that the expectation of the stochastic integral is equal to
zero, we obtain

U(x) = Exη(r∧Ha,b)+Ex

r∧Ha,b∫
0

λe−λtΦ(X(t)) exp
(
−

t∫
0

f(X(v)) dv
)
dt. (12.9)

Since the diffusion process X is continuous and defined for all time moments,
Ha,b → ∞ as a → −∞ and b → ∞. By the Lebesgue dominated convergence
theorem, one can pass to the limit in (12.9) as a→ −∞ and b→ ∞. Next, we let
r → ∞. By the definition of the process η, the term Exη(r) tends to zero. Hence,
it follows from (12.9) that

U(x) = Ex

∞∫
0

λe−λtΦ(X(t)) exp
(
−

t∫
0

f(X(v)) dv
)
dt.

Then, using the assumption that τ does not depend on the diffusion X and has the
density λe−λt1I[0,∞)(t), we conclude by Fubini’s theorem that the above equality is
identical to (12.7). �

We have the following version of Theorem 12.1.

Theorem 12.2. Let Φ(x), f(x) and F (x), x ∈ R, be continuous functions.
Suppose that Φ, F are bounded and f is nonnegative. Let U(x), x ∈ R, be a
bounded solution of the equation

1

2
σ2(x)U ′′(x)+µ(x)U ′(x)−(λ+f(x))U(x) = −λΦ(x)−F (x), x ∈ R. (12.10)

Then

U(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)

+

τ∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
.

Proof. This result is a corollary of Theorem 12.1. Indeed, since τ is independent
of X, Fubini’s theorem shows that

Ex

{ τ∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
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= λ

∞∫
0

e−λt
t∫

0

Ex

{
F (X(s)) exp

(
−

s∫
0

f(X(v)) dv
)}

ds dt

=

∞∫
0

e−λsEx

{
F (X(s)) exp

(
−

s∫
0

f(X(v)) dv
)}

ds

= 1

�
Ex

{
F (X(τ)) exp

(
−

τ∫
0

f(X(v)) dv
)}

.

Now we can apply Theorem 12.1 with the function Φ(x) + 1

�
F (x) instead of Φ(x).

�

In the following result we can assume initially that the functions µ and σ satisfy
condition (11.2) only on the interval (a, b), because one can continue µ and σ
outside (a, b) in such a way that conditions (11.2) and (11.3) hold. In this case, by
Theorem 7.2, the process X(t) is not changed for t ∈ [0,Ha,b].

Theorem 12.3. Let Φ(x), f(x) and F (x), x ∈ [a, b], be continuous functions,
and let f be nonnegative. Let U(x), x ∈ [a, b], be a solution of the problem

1

2
σ2(x)U ′′(x)+µ(x)U ′(x)−(λ+f(x))U(x) = −λΦ(x)−F (x), x ∈ (a, b), (12.11)

U(a) = Φ(a), U(b) = Φ(b). (12.12)

Then

U(x) = Ex

{
Φ(X(τ ∧Ha,b)) exp

(
−
τ∧Ha,b∫

0

f(X(s)) ds
)

+

τ∧Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
. (12.13)

Proof. We continue the solution of the problem (12.11), (12.12) to the whole
real line. One can extend the functions Φ, f and F to the real line so that the
extensions are bounded and f is nonnegative.

Let ψ(x), x ∈ R, and ϕ(x), x ∈ R, be linearly independent solutions of the
homogeneous equation corresponding to (12.11), with ψ increasing and ϕ decreasing
and nonnegative. Then ψ(b)ϕ(a)− ψ(a)ϕ(b) > 0.

The extension of the solution of (12.11), (12.12) to the real line can be written
as

U(x) = Up(x) +Aa,bψ(x) +Ba,bϕ(x), (12.14)

where Up is a particular solution of equation (12.11) for x ∈ R, and the constants
Aa,b, Ba,b satisfy the system of algebraic equations

Φ(a) = Up(a) +Aa,bψ(a) +Ba,bϕ(a),

Φ(b) = Up(b) +Aa,bψ(b) +Ba,bϕ(b).
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This system has the following unique solution:

Aa,b = (�(b)− Up(b))'(a)− (�(a)− Up(a))'(b)

 (b)'(a)−  (a)'(b)
, (12.15)

Ba,b =  (b)(�(a)− Up(a))−  (a)(�(b)− Up(b))

 (b)'(a)−  (a)'(b)
. (12.16)

We set

η(t) := U(X(t)) exp
(
− λt−

t∫
0

f(X(v)) dv
)

+ e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds.

Applying Itô’s formula, we see that

η(r)−η(0) =

r∫
0

exp
(
−λt−

t∫
0

f(X(v)) dv
)[
U ′(X(t))σ(X(t)) dW (t)

+
(
U ′(X(t))µ(X(t))+ 1

2
U ′′(X(t))σ2(X(t))− (λ+ f(X(t)))U(X(t))+F (X(t))

)
dt
]

−λ
r∫

0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt

for every r > 0. Taking into account (12.11), we get the equality

η(Ha,b)− U(x) =

Ha,b∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)[
U ′(X(t))σ(X(t)) dW (t)

−λΦ(X(t))
)
dt
]
− λ

Ha,b∫
0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt.

It is important that the process 1I[0,Ha,b](t), t ≥ 0, is adapted to the filtration
Gt0 = σ(W (s), 0 ≤ s ≤ t) and for t ≤ Ha,b the functions U ′(X(t)) and σ(X(t)) are
bounded by a constant depending on a, b. Therefore, we can take the expectation
of the stochastic integral and this expectation is equal to zero.

Since sup
x∈[a,b]

|Φ(x)| < ∞ and sup
x∈[a,b]

|F (x)| < ∞, the expectations of the other

terms of the difference η(Ha,b) − U(x) are finite. Applying the expectation, we
derive the equality

U(x) = Exη(Ha,b) + λEx

Ha,b∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)
Φ(X(t)) dt
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+λEx

Ha,b∫
0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt.

Let us consider each of the terms on the right-hand side of this equality. We use the
equality U(X(Ha,b)) = Φ(X(Ha,b)), and the fact that τ is independent of X and
has exponential distribution. By Fubini’s theorem, these terms can be represented
as follows:

Exη(Ha,b) = Ex

{
Φ(X(Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)

1I{τ>Ha,b}

}

+Ex

{ Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds 1I{τ>Ha,b}

}
,

λEx

Ha,b∫
0

exp
(
− λt−

t∫
0

f(X(v)) dv
)
Φ(X(t)) dt

= Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)

1I{τ≤Ha,b}

}
,

and

λEx

Ha,b∫
0

e−λt
t∫

0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds dt

= Ex

{ τ∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds 1I{τ≤Ha,b}

}
.

Summing these equalities, we see that U takes the form (12.13). �

The analogs of Theorem 12.3 are of special interest in the cases when either
τ → ∞, or Ha,b → ∞, and when both limits take place. We begin with the
analysis of the results for the second case.

Theorem 12.4. Let Φ(x) and f(x), x ∈ R, be continuous functions, with Φ
bounded and f nonnegative.

Suppose that there exists the bounded on any finite interval derivative
(
�(x)

�2(x)

)′
,

x ∈ R. Then

U(x) = Ex

{
Φ(X(τ)) exp

(
−

τ∫
0

f(X(s)) ds
)}

, x ∈ R, (12.17)
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is the unique bounded solution of the equation

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− (λ+ f(x))U(x) = −λΦ(x), x ∈ R. (12.18)

Remark 12.2. In contrast to Theorem 12.1, in this result it is not assumed
that equation (12.18) has a bounded solution; instead, we state that the function
(12.17) is such a solution.

Proof of Theorem 12.4. We set

Ua,b(x) := Ex

{
Φ(X(τ ∧Ha,b)) exp

(
−

τ∧Ha,b∫
0

f(X(s)) ds
)}

(12.19)

for a < x < b. By Theorem 12.3, the function Ua,b(x), x ∈ (a, b), is the solution of
(12.11), (12.12) with F ≡ 0. We extend Ua,b(x) to the whole real line by formula
(12.14).

As it was mentioned above, Ha,b →∞ as a→ −∞ and b→∞.
By the Lebesgue dominated convergence theorem,

lim
a→−∞,b→∞

Ua,b(x) = U(x), x ∈ R. (12.20)

We can assume that a < 0 < b. Integrating (12.11), we get the equation

1

2
(U ′

a,b(x)− U ′
a,b(0)) + �(x)

�2(x)
Ua,b(x)−

�(0)

�2(0)
Ua,b(0)−

x∫
0

(
�(y)

�2(y)

)′
Ua,b(y) dy

−
x∫

0

(
�+ f(y)

�2(y)

)
Ua,b(y) dy = −λ

x∫
0

�(y)

�2(y)
dy. (12.21)

Integrating this equation, we find that for x ∈ R

1

2
(Ua,b(x)−Ua,b(0))− 1

2
U ′
a,b(0)x+

x∫
0

�(z)

�2(z)
Ua,b(z) dz−

�(0)

�2(0)
Ua,b(0)x

−
x∫

0

z∫
0

((
�(y)

�2(y)

)′
+ �+ f(y)

�2(y)

)
Ua,b(y) dy dz = −λ

x∫
0

z∫
0

�(y)

�2(y)
dy dz. (12.22)

From (12.19) it follows that the functions Ua,b(x), x ∈ (a, b), are bounded by
the same constant as the function Φ. Using (12.20) and applying the Lebesgue
dominated convergence theorem, we deduce from (12.22) that there exists the limit
Ũ0 := lim

a→−∞,b→∞
U ′
a,b(0), and

1

2
(U(x)− U(0))− 1

2
Ũ0 x+

x∫
0

�(z)

�2(z)
U(z) dz − �(0)

�2(0)
U(0)x
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−
x∫

0

z∫
0

((
�(y)

�2(y)

)′
+ �+ f(y)

�2(y)

)
U(y) dy dz = −λ

x∫
0

z∫
0

�(y)

�2(y)
dy dz. (12.23)

From this equality it follows that U(x), x ∈ R, is a continuous function. In addition,
U is differentiable for all x including zero, and Ũ0 = U ′(0). Differentiating (12.23)
with respect to x and applying the integration by parts formula, we see that U
satisfies the equation

1

2
(U ′(x)− U ′(0)) +

x∫
0

�(y)

�2(y)
U ′(y) dy −

x∫
0

�+ f(y)

�2(y)
U(y) dy = −λ

x∫
0

�(y)

�2(y)
dy.

Differentiating this equation with respect to x, we get that U is the solution of
(12.18).

Now the fact that such bounded solution is unique follows from Remark 12.1.
�

Consider the transformation of Theorem 12.3 as τ → ∞ and Ha,b → ∞ simul-
taneously.

Theorem 12.5. Let f(x), x ∈ R, be a nonnegative continuous function. Sup-

pose that there exists the bounded on any finite interval derivative
(
�(x)

�2(x)

)′
, x ∈ R.

Then the function

L(x) := Ex exp
(
−

∞∫
0

f(X(s)) ds
)
, x ∈ R, (12.24)

is the solution of the homogeneous equation

1

2
σ2(x)φ′′(x) + µ(x)φ′(x)− f(x)φ(x) = 0, x ∈ R. (12.25)

To prove this result one can repeat the proof of Theorem 12.4 for Φ ≡ 1, adding
to it the passage to the limit as λ → 0. In this case, lim

λ→0
τ = ∞ in probability,

since P(τ > t) = e−λt for t ≥ 0.

This result has an important consequence.

Corollary 12.1. Let f(x), x ∈ R, be a nonnegative continuous function. Sup-

pose that there exists the bounded derivative
(
�(x)

�2(x)

)′
, x∈R, and

lim inf
y→∞

1

y

y∫
0

f(x)

�2(x)
dx > 0, lim inf

y→∞

1

y

0∫
−y

f(x)

�2(x)
dx > 0. (12.26)

Then
∞∫
0

f(X(s)) ds = ∞ a.s. (12.27)

Indeed, according to Proposition 12.3, under these assumptions equation (12.25)
has no nonzero bounded solutions. Therefore, L ≡ 0 and we have (12.27).

Propositions 12.2 and 12.3 imply the following result.
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Corollary 12.2. Let f(x), x ∈ R, be a nonnegative continuous function. Sup-
pose that conditions (12.26) hold and∣∣∣ �(x)

�2(x)

∣∣∣ ≤ C(1 + |x|) for all x ∈ R (12.28)

for some C > 0.
Then the homogeneous equation (12.25) has two nonnegative linearly indepen-

dent solutions ψ(x) and ϕ(x) such that ψ(x) is increasing and lim
x→∞

ψ(x) = ∞,

while ϕ(x) is decreasing and lim
x→−∞

ϕ(x) = ∞.

Another extreme version of Theorem 12.3 is the case when only τ →∞. As we
have seen, this happens if λ→ 0. We precede the consideration of this case by the
following important result.

Lemma 12.1. For every x ∈ [a, b],

ExHa,b <∞. (12.29)

Remark 12.3. From (12.29) it follows that Px(Ha,b <∞) = 1 for x ∈ [a, b].

Proof of Lemma 12.1. We consider the family {Uλ(x), x ∈ [a, b]}λ≥0 of solutions
of the problem

1

2
σ2(x)U ′′(x) + µ(x)U ′(x)− λU(x) = −1, x ∈ (a, b), (12.30)

U(a) = 0, U(b) = 0. (12.31)

From Theorem 12.3 with f ≡ 0, Φ ≡ 0 and F ≡ 1 it follows that Uλ(x) =
Ex{τ ∧Ha,b} for λ > 0.

We will prove that for all x ∈ [a, b]

sup
λ>0

Uλ(x) ≤ U0(x), (12.32)

where U0(x) is the solution of (12.30), (12.31) for λ = 0. This estimate is useful for
us due to the following reason. Since lim

λ→0
τ = ∞ in probability, lim

λ→0
{τ ∧Ha,b} =

Ha,b. Now from (12.32), by Fatou’s lemma, it follows that

ExHa,b ≤ sup
λ>0

Ex{τ ∧Ha,b} ≤ U0(x),

and this is what we want to prove.
To prove (12.32), we use the following result.

Proposition 12.4. The solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x) = −F (x), x ∈ (a, b), (12.33)

Q(a) = Φ(a), Q(b) = Φ(b), (12.34)
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has the form

Q(x) = S(b)− S(x)

S(b)− S(a)

(
Φ(a) +

x∫
a

(S(y)− S(a))F (y) dM(y)
)

+S(x)− S(a)

S(b)− S(a)

(
Φ(b) +

b∫
x

(S(b)− S(y))F (y) dM(y)
)
, (12.35)

where

S(x) :=

x∫
exp

(
−

y∫
2�(z)

�2(z)
dz
)
dy, dM(x) = 2

�2(x)
exp

( x∫
2�(z)

�2(z)
dz
)
dx.

In the definition of the functions S(x) and M(x), the lower limit of integration
can be arbitrary, but the same.

Formula (12.35) can be verified by direct differentiation since the function S
satisfies the equation

1

2
σ2(x)S′′(x) + µ(x)S′(x) = 0.

For the derivation of (12.35) see also the proof of formula (15.13) of Ch. IV.
The difference U0(x) − Uλ(x) is the solution of (12.33), (12.34) with F (x) =

λUλ(x), Φ(a) = 0 and Φ(b) = 0. Therefore, this difference is nonnegative. This
proves (12.32) and thus completes the proof of Lemma 12.1. �

It is possible to pass to the limit as λ→ 0 in the problem (12.11), (12.12) and
in (12.13) and get the following result.

Theorem 12.6. Let f(x) and F (x), x ∈ [a, b], be continuous functions and let
f be nonnegative. Let the function Φ be defined only at two points a and b.

Then the function

Q(x) := Ex

{
Φ(X(Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)

+

Ha,b∫
0

F (X(s)) exp
(
−

s∫
0

f(X(v)) dv
)
ds

}
is the solution of the problem

1

2
σ2(x)Q′′(x) + µ(x)Q′(x)− f(x)Q(x) = −F (x), x ∈ (a, b), (12.36)

Q(a) = Φ(a), Q(b) = Φ(b), x ∈ [a, b]. (12.37)

The proof of this theorem repeats the proof of Theorem 12.3 for λ = 0 (τ = ∞)
with the function U(x) replaced by Q(x). Here an important point is the finiteness

of the integral
∞∫
0

Ex1I[0,Ha,b](t) dt = ExHa,b. This enables us to take the expectation

of the difference η(Ha,b) −Q(x), which is expressed as a stochastic integral. As a
result, this expectation is equal to zero, and we get the required equality Q(x) =
Exη(Ha,b).

Theorem 12.6 and Proposition 12.4 imply the following assertions.
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Proposition 12.5. The probabilities of the first exit from the interval [a, b]
have the form

Px(X(Ha,b) = a) = S(b)− S(x)

S(b)− S(a)
, Px(X(Ha,b) = b) = S(x)− S(a)

S(b)− S(a)
. (12.38)

This corollary is obtained from Theorem 12.6 with F ≡ 0, f ≡ 0. For Φ(a) = 1
and Φ(b) = 0 we have the left equality in (12.38), while for Φ(a) = 0 and Φ(b) = 1
we have the right one.

Proposition 12.6. The expectation ExHa,b is expressed by the formula

ExHa,b = S(b)− S(x)

S(b)− S(a)

x∫
a

(S(y)− S(a)) dM(y) + S(x)− S(a)

S(b)− S(a)

b∫
x

(S(b)− S(y)) dM(y).

(12.39)

To derive this result, we should use Theorem 12.6 with F ≡ 1, f ≡ 0, Φ(a) = 0
and Φ(b) = 0. Then Q(x) = ExHa,b is the solution of the problem (12.33), (12.34).

Now we consider another stopping time: the first hitting time of a level z by the
process X, i.e., Hz = min{s : X(s) = z}. This stopping time can be either finite
or infinite.

Theorem 12.7. Let f(x), x ∈ R, be a nonnegative continuous function. Then

Lz(x) := Ex

{
exp

(
−

Hz∫
0

f(X(s)) ds
)

1I{Hz<∞}

}
=
{
ψ(x), for x ≤ z,

ϕ(x), for z ≤ x,
(12.40)

where ϕ is a positive decreasing solution and ψ is a positive increasing solution of
the homogeneous equation (12.25) that satisfy the equalities ϕ(z) = ψ(z) = 1.

Proof. It is clear that a.s.

Hz =

{ lim
a→−∞

Ha,z, for x ≤ z,

lim
b→∞

Hz,b, for z ≤ x.
(12.41)

Denote

Q
(y)
a,b(x) := Ex

{
1Iy(W (Ha,b)) exp

(
−

Ha,b∫
0

f(X(s)) ds
)}

.

Here the presence of the indicator function of a one-point set reduces the expec-
tation to the set of sample paths leaving the interval through the upper boundary
(y = b) or the lower boundary (y = a).

Since a.s.

1I{Hz<∞} =

 lim
a→−∞

1I{z}(W (Ha,z)), for x ≤ z,

lim
b→∞

1I{z}(W (Hz,b)), for z ≤ x,
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the Lebesgue dominated convergence theorem shows that

Lz(x) =


lim

a→−∞
Q

(z)
a,z(x), for x ≤ z,

lim
b→∞

Q
(z)
z,b(x), for z ≤ x.

(12.42)

We apply Theorem 12.6 with F ≡ 0. The solution of the problem (12.36), (12.37)
has the form

Q
(a)
a,b(x) =  0(b)'0(x)−  (x)'0(b)

 0(b)'0(a)−  0(a)'0(b)
(12.43)

for Φ(a) = 1 and Φ(b) = 0, and

Q
(b)
a,b(x) =  0(x)'0(a)−  0(a)'0(x)

 0(b)'0(a)−  0(a)'0(b)
(12.44)

for Φ(a) = 0 and Φ(b) = 1, where ϕ0(x) and ψ0(x), x ∈ R, are fundamental
solutions of the homogeneous equation (12.25) such that ϕ0(z) = ψ0(z) = 1.

From (12.44) for b = z it follows that lim
a→−∞

Q
(z)
a,z(x) =  0(x)− �−'0(x)

1− �−
, where

ρ− = lim
a→−∞

 0(a)

'0(a)
. This limit exists and it is less than 1, because the ratio  0(a)

'0(a)

is an increasing function. We set ψ(x) :=  0(x)− �−'0(x)

1− �−
, x ∈ R. It is clear that

ψ(x) is an increasing function. By (12.42) for x ≤ z, we have that Lz(x) = ψ(x)
and this function is positive.

We use similar arguments for the domain x ≥ z. In this case from (12.43) for

a = z it follows that lim
b→∞

Q
(z)
z,b(x) = '0(x)− �+ 0(x)

1− �+
, where ρ+ = lim

b→∞

'0(b)

 0(b)
. This

limit exists and it is less than 1. We set ϕ(x) := '0(x)− �+ 0(x)

1− �+
, x ∈ R. Then

Lz(x) = ϕ(x) for x ≥ z and the function ϕ(x), x ∈ R is decreasing and positive.�

Corollary 12.3. The following equality

Px(Hz <∞) =


S(x)− S(−∞)

S(z)− S(−∞)
, for x ≤ z,

S(∞)− S(x)

S(∞)− S(z)
, for z ≤ x,

holds, where for S(−∞) = −∞ or S(∞) = ∞ the corresponding ratio equals to 1.

This follows from (12.40), (12.42) with f ≡ 0, and (12.35) with F ≡ 0.

§ 13. The Cauchy problem, existence of a solution

As mentioned above, the proof of existence of a solution of the Cauchy problem
is very complicated. In this section we give a probabilistic proof of this existence.

Let the process Xx(t), t ∈ [0, T ], be the solution of the homogeneous stochastic
differential equation

Xx(t) = x+

t∫
0

a(Xx(s)) ds+

t∫
0

b(Xx(s)) dW (s). (13.1)

We assume that the coefficients a(x) and b(x), x ∈ R, are continuous, bounded,
and have continuous bounded derivatives a′(x), b′(x), a′′(x), b′′(x).
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Theorem 13.1. Let Φ(x), x ∈ R, be a continuous bounded function with
continuous bounded derivatives Φ′(x), Φ′′(x). Then the function

u(t, x) := EΦ(Xx(t)) (13.2)

is differentiable with respect to t, twice continuously differentiable with respect to
x, and it is the solution of the problem

@

@t
u(t, x) = 1

2
b2(x) @

2

@x2
u(t, x) + a(x) @

@x
u(t, x), (13.3)

u(0, x) = Φ(x), (13.4)

(t, x) ∈ (0, T )×R.

Remark 1.13. Equation (13.3) is called the backward Kolmogorov equation.
For nonhomogeneous stochastic differential equations the analogue of Theorem 13.1
will be considered in § 2 Ch. IV. We also refer to Gihman and Skorohod (1969).

Proof of Theorem 13.1. Clearly, the function u is bounded by the same constant
as the function Φ.

The initial condition (13.4) is easily verified by passage to the limit under the
expectation sign in (13.2) as t ↓ 0.

Let us verify that for every fixed t the function u(t, x) is twice continuously
differentiable with respect to x. By Theorems 9.2 and 9.3, the process Xx(t),
t ∈ [0, T ], has stochastically continuous mean square derivatives of the first and
the second order with respect to x, which we denote by X(1)

x (t) and X(2)
x (t).

Denote u(1)
x (t, x) := E

{
Φ′(Xx(t))X(1)

x (t)
}

and prove that @

@x
u(t, x) = u(1)

x (t, x).

Set Y∆(t) := Xx+�(t)−Xx(t)

�
. We have∣∣∣u(t; x+�)− u(t; x)

�
− u(1)

x (t, x)
∣∣∣ ≤ E

∣∣∣�(Xx+�(t))− �(Xx(t))

�
− Φ′(Xx(t))X(1)

x (t)
∣∣∣

≤ E
∣∣∣�(Xx+�(t))− �(Xx(t))

Xx+�(t)−Xx(t)

(
Y∆(t)−X(1)

x (t)
)∣∣∣

+E
{∣∣∣�(Xx+�(t))− �(Xx(t))

Xx+�(t)−Xx(t)
− Φ′(Xx(t))

∣∣∣ ∣∣∣X(1)
x (t)

∣∣}→ 0 as ∆ → 0.

This relation is due to the fact that the ratio �(y)− �(x)

y − x
is bounded and converges

to Φ′(x) as y → x, while the function Xx(t) is continuous in x (Theorem 9.1), and
the fact that E

(
Y∆(t)−X(1)

x (t)
)2 → 0 (Theorem 9.3).

Thus we proved that the function u(t, x) has a derivative

@

@x
u(t, x) = E

{
Φ′(Xx(t))X(1)

x (t)
}
. (13.5)

This derivative is continuous in (t, x) thanks to the continuity ofXx(t) and the mean
square continuity of X(1)

x (t). Furthermore, according to Remark 9.4, EX(1)
x (t) ≤

eK(K+1)t, therefore the derivative @

@x
u(t, x), (t, x) ∈ (0, T ) × R, is a bounded

function.
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Similarly, we can prove that

@2

@x2
u(t, x) = E

{
Φ′′(Xx(t))

(
X(1)
x (t)

)2}+ E
{
Φ′(Xx(t)X(2)

x (t)
}
, (13.6)

(t, x) ∈ (0, T )×R. This derivative is a bounded continuous function.
For any 0 ≤ v ≤ t, the solution Xx(t) of equation (13.1) can be written in the

form

Xx(t) = Xx(v) +

t−v∫
0

a(Xx(v + s)) ds+

t−v∫
0

b(Xx(v + s)) dW̃v(s), (13.7)

where for a fixed v the process W̃v(s) = W (s + v) −W (v), s ≥ 0, is a Brownian
motion. Note that the process W̃v does not depend on the σ-algebra Gv0 of events
generated by the Brownian motion W (s) for 0 ≤ s ≤ v.

Consider the stochastic differential equation

X̃v,x(h) = x+

h∫
0

a(X̃v,x(s)) ds+

h∫
0

b(X̃v,x(s)) dW̃v(s), (13.8)

which is similar to equation (13.1). It is clear that the process X̃v,x is independent
of the σ-algebra Gv0 and has the same finite-dimensional distributions as the process
Xx(h).

In (13.7) we set t − v = h. Then by the uniqueness of the solution of the
stochastic differential equation, we have (see (9.4)) the equality

Xx(h+ v) = X̃v,Xx(v)(h). (13.9)

Let 0 < p < t < q and δ := q − p. Further for a fixed t we let δ → 0. Using
the fourth property of the conditional expectations and Lemma 2.1 of Ch. I, we
represent u(q, x) as

u(q, x) = E
{
E
{
Φ(Xx(q))

∣∣Gδ0}}
= E

{
E
{
Φ(X̃δ,Xx(δ)(p))

∣∣Gδ0}} = Eu(p,Xx(δ)). (13.10)

To obtain the last equality we used the fact that the random variable Xx(δ) is
measurable with respect to the σ-algebra Gδ0 and X̃δ,z(h), as a random function of
the argument z, is independent of Gδ0 . Therefore, we can use Lemma 2.1 of Ch. I
to compute the conditional expectation and to prove the last equality.

Since Xx(0) = x, Itô’s formula yields

u(p,Xx(δ))− u(p, x) =

δ∫
0

b(Xx(s))
@

@x
u(p,Xx(s)) dW (s)
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+

δ∫
0

(
a(Xx(s))

@

@x
u(p,Xx(s)) + 1

2
b2(Xx(s))

@2

@x2
u(p,Xx(s))

)
ds.

Taking the expectation of both sides of this equality, we get

Eu(p,Xx(δ))−u(p, x) = E

δ∫
0

(
a(Xx(s))

@

@x
u(p,Xx(s))+

b2(Xx(s))

2

@2

@x2
u(p,Xx(s))

)
ds.

(13.11)
By the mean value theorem for integrals, we have

Eu(p,Xx(δ))−u(p, x) = E
(
a(Xx(s̃))

@

@x
u(p,Xx(s̃))+

1

2
b2(Xx(s̃))

@2

@x2
u(p,Xx(s̃))

)
δ,

where s̃ is some, possibly random, point of the interval (0, δ).

Since the derivatives @

@x
u(t, x), @2

@x2
u(t, x), (t, x) ∈ [0, T ] × R, are continuous

and bounded, Xx(s̃) → x as p → t, q → t, applying the Lebesgue dominated
convergence theorem we obtain

Eu(p;Xx(�))− u(p; x)

q − p
→ 1

2
b2(x) @

2

@x2
u(t, x) + a(x) @

@x
u(t, x). (13.12)

Now, by (13.10),
u(q; x)− u(p; x)

q − p
= Eu(p;Xx(�))− u(p; x)

q − p
,

and, thus it is proved that the function u(t, x), (t, x) ∈ (0, t)×R, is the solution of
(13.3). �

Theorem 13.2. Let Φ(x), f(x), x ∈ R, be continuous bounded functions with
continuous bounded derivatives Φ′(x), Φ′′(x), f ′(x), and f ′′(x). Assume, in addi-
tion, that the function f is nonnegative.

Then the function

u(t, x) := E
{
Φ(Xx(t)) exp

(
−

t∫
0

f(Xx(s)) ds
)}

(13.13)

is differentiable with respect to t, twice continuously differentiable with respect to
x, and it is the solution of the problem

@

@t
u(t, x) = 1

2
b2(x) @

2

@x2
u(t, x) + a(x) @

@x
u(t, x)− f(x)u(t, x), (13.14)

u(0, x) = Φ(x), (13.15)

(t, x) ∈ (0, T )×R.

Proof. Obviously, the function u is bounded by the same constant as the function
Φ.
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The initial condition (13.15) is easily verified by passing to the limit under the
expectation sign in (13.13) as t ↓ 0.

The existence of continuous bounded derivatives is proved similarly to (13.5).
In particular, the function u(t, x) has the continuous bounded first-order partial
derivative

@

@x
u(t, x) = E

{
Φ′(Xx(t))X(1)

x (t) exp
(
−

t∫
0

f(Xx(s)) ds
)}

−E
{
Φ(Xx(t)) exp

(
−

t∫
0

f(Xx(s)) ds
) t∫

0

f ′(Xx(s))X(1)
x (s) ds

}
. (13.16)

In addition, the function u(t, x) has a continuous bounded second-order partial
derivative. We use for 0 < p < t < q, δ := q − p the relation

exp
(
−

q∫
δ

f(Xx(s)) ds
)
− exp

(
−

q∫
0

f(Xx(s)) ds
)

=

δ∫
0

f(Xx(v)) exp
(
−

q∫
v

f(Xx(s)) ds
)
dv. (13.17)

Multiplying this equality by Φ(Xx(q)) and taking into account (13.9), we have

Φ
(
X̃δ,Xx(δ)(p)

)
exp

(
−

p∫
0

f
(
X̃δ,Xx(δ)(s)

)
ds

)
− Φ(Xx(q)) exp

(
−

q∫
0

f(Xx(s)) ds
)

=

δ∫
0

f(Xx(v))Φ
(
X̃v,Xx(v)(q − v)

)
exp

(
−

q−v∫
0

f
(
X̃v,Xx(v)(s)

)
ds

)
dv.

We take the expectation of both sides of this equality and use the fourth property
of conditional expectations. Then we get

E
{
E
{
Φ
(
X̃δ,Xx(δ)(p)

)
exp

(
−

p∫
0

f
(
X̃δ,Xx(δ)(s)

)
ds

)∣∣∣∣Gδ0}}

−E
{
Φ(Xx(q)) exp

(
−

q∫
0

f(Xx(s)) ds
)}

=

δ∫
0

E
{
f(Xx(v))E

{
Φ
(
X̃v,Xx(v)(q − v)

)
exp

(
−

q−v∫
0

f
(
X̃v,Xx(v)(s)

)
ds

)∣∣∣∣Gv0}}dv.
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Using for the computation of these conditional expectations Lemma 2.1 Ch. I and
the notation (13.13), the above equality can be written in the form

Eu(p,Xx(δ))− u(q, x) =

δ∫
0

E
{
f(Xx(v))u(q − v,Xx(v))

}
dv. (13.18)

Since f(x) and u(v, x), (v, x) ∈ [0, T ] × R, are continuous bounded functions and
the process Xx(v) is continuous with respect to v, we have

lim
p↑t,q↓t

1

q − p

δ∫
0

E
{
f(Xx(v))u(q − v,Xx(v))

}
dv = f(x)u(t, x).

Therefore,
lim

p↑t,q↓t

Eu(p;Xx(�))− u(q; x)

q − p
= f(x)u(t, x). (13.19)

We now use the equality

u(q; x)− u(p; x)

q − p
= Eu(p;Xx(�))− u(p; x)

q − p
− Eu(p;Xx(�))− u(q; x)

q − p
. (13.20)

We can apply relation (13.12) to the first term in (13.20). Then from (13.20) and
(13.19) we derive that u(t, x), (t, x) ∈ (0, T )×R, is the solution of (13.14). �

Exercises.

In the following exercises all functions u(t, x), (t, x) ∈ [0,∞) × R, have the
corresponding probabilistic representation (13.13).

13.1. Verify that

u(t, x) = exp
(
−γxt+ 
2t3

6

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ 0, f(x) = γx, and Φ(x) ≡ 1.

13.2. Verify that

u(t, x) = 1√
ch(t
)

exp
(
−x2
 sh(t
)

2 ch(t
)

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ 0, f(x) = 
2

2
x2, and

Φ(x) ≡ 1.
13.3. Verify that

u(t, x) = 1√
ch(t
) + 2�
−1 sh(t
)

exp
(
− x2(
 sh(t
) + 2� ch(t
))

2(ch(t
) + 2�
−1 sh(t
))

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ 0, f(x) = 
2

2
x2, and

Φ(x) = e−βx
2
.
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13.4. Verify that

u(t, x) = exp
(
−γxt− γµ

t2

2
+ 
2t3

6

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ µ, f(x) = γx, and Φ(x) ≡ 1.

13.5. Verify that

u(t, x) = 1√
ch(t
)

exp
(
−µx− �2t

2
− (x2
2 − �2) sh(t
)− 2�x


2
 ch(t
)

)
is the solution of (13.14), (13.15) with b(x) ≡ 1, a(x) ≡ µ, f(x) = 
2

2
x2, and

Φ(x) ≡ 1.
13.6. Verify that

u(t, x) = exp
(
−
x

�

(
1− e−θt

)
+ 
2�2

2�2

(
2θt+ 1−

(
2− e−θt

)2))
is the solution of (13.14), (13.15) with b(x) ≡ σ2θ, a(x) = −θx, θ > 0, f(x) = γx,
and Φ(x) ≡ 1.

13.7. Verify that

u(t, x) =
√

e�t=2√

sh(t
�) + 
 ch(t
�)
exp
(
− x2(
2 − 1) sh(t
�)

4�2(sh(t
�) + 
 ch(t
�))

)
is the solution of (13.14), (13.15) with b(x) ≡ σ2θ, a(x) = −θx, θ > 0, f(x) =
(
2 − 1)�

4�2
x2 , γ ≥ 1, and Φ(x) ≡ 1.
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