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VARIATIONS ON THE THEME OF

ZARISKI’S CANCELLATION PROBLEM

VLADIMIR L. POPOV1

Abstract. This is an expanded version of the talk by the author at the
conference Polynomial Rings and Affine Algebraic Geometry, February
12–16, 2018, Tokyo Metropolitan University, Tokyo, Japan. Consider-
ing a local version of the Zariski Cancellation Problem naturally leads
to exploration of some classes of varieties of special kind and their equi-
variant versions. We discuss several topics inspired by this exploration,
including the problem of classifying a class of affine algebraic groups
that are naturally singled out in studying the conjugacy problem for
algebraic subgroups of the Cremona groups.

1. Introduction. This is an expanded version of the talk by the author at
the conference Polynomial Rings and Affine Algebraic Geometry, February
12–16, 2018, Tokyo Metropolitan University, Tokyo, Japan.

Our starting point is a local version of the Zariski Cancellation Problem
(LZCP). Its consideration naturally leads to distinguishing a class of vari-
eties of a special kind, called here flattenable, and a more general class of
locally flattenable varieties. We discuss the relevant examples, including flat-
tenability of affine algebraic groups and the related varieties, in particular,
we prove that all smooth spherical varieties are locally flattenable. This is
completed by answering (LZCP). We then consider the equivariant versions
of flattenability and obtain a series of results on equivariant flattenability of
affine algebraic groups. In particular, we prove that a reductive algebraic
group is equivariantly flattenable if and only if it is linearly equivariantly
flattenable, and we prove that equivariant flattenability of a Levi subgroup
of a connected affine algebraic group G implies that of G. The latter yields
that every connected solvable affine algebraic group is equivariantly flaten-
able. As an application, we briefly survey a special role of equivariantly flat-
tenable subgroups in the rational linearization problem. Then we dwell on
the classification problem of equivariantly flattenable affine algebraic groups
G. We prove that every such G is special in the sense of Serre, which im-
plies that if G is reductive equivariantly flattenable, then its derived group
if a product of the groups of types SL and Sp. We complete this discussion
with the unexpected recent examples of reductive equivariantly flattenable
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2 VLADIMIR L. POPOV

groups, whose derived groups do contain factors of type Sp. In the last sec-
tion, the local version of equivariantly flattenable varieties and the relevant
version of the Gromov problem are briefly considered.

Notation and conventions. We fix an algebraically closed field k of characte-
ristic zero. In what follows, as in [Bo 1991], [PV 1994], variety means algebra-
ic variety over k in the sense of Serre (so algebraic group means algebraic
group over k). Unless otherwise specified, all topological terms refer to the
Zariski topology. We use freely the standard notation and conventions of
loc. cit., where the proofs of the unreferenced claims and/or the relevant
references can be found. Action of an algebraic group on an algebraic variety
means algebraic (morphic) action; homomorphism of an algebraic group
means algebraic homomorphism.

We also use the following notation:

· A∗ is the group of units of an associative k-algebra A with identity.
· Matn×m is the k-vector space of all n ×m-matrices with entries in k,;
for n = m, it is naturally endowed with the k-algebra structure.

2. The Zariski Cancellation Problem. So is called the following ques-
tion:

Are there affine varieties X and Y such that Y and

X × Y are isomorphic respectively to As and As+d,

but X is not isomorphic to Ad?

(ZCP)

At this writing (January 2019), for d > 2, it is still open. A historical survey
about the Zariski Cancellation Problem is given in [Gu 2015].

Our starting point is a local version of this problem. Making precise
its formulation (see (LZCP) in Subsection 5) leads to distinguishing the
following class of varieties:

Definition 1. An irreducible variety X is called

(a) flattenable if X isomorphic to an open subset of an affine space;
(b) locally flattenable if for every point x ∈ X there is a flattenable open

subset of X containing x.

3. Terminology. Under other names, locally flattenable varieties appeared
in the literature long ago. The earliest reference known to the author is
[Ch 1958, p. 2-09] where Chevalley calls them special varieties. In [Ma 1974]
Chevalley terminology is used for the definition ofR-equivalence. In [Ak 1993]
these varieties appear as algebraic spaces, in [BHSV2008] as plain varieties,
and in [BB 2014] and [Pe 2017] as uniformly rational varieties. The term
flattenable variety is coined in [Po 20131], where special properties of lin-
early equivariantly flattenable algebraic subgroups (see below Definition 18)
of the Cremona groups have been revealed (this topic is briefly surveyed in
Subsection 9 below).
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By Definition 1, every locally flattenable variety is rational. Whether the
converse is true is open at this writing (January 2019):

Is every irreducible smooth rational variety locally flattenable? (Gr)

This problem was raised by M.Gromov in [Gr 1989, 3.5.E′′′] (for projective
varieties).

4. Examples of locally flattenable varieties.

1. Homogeneous spaces.

Theorem 2. Let X be an irreducible variety. If the natural action of Aut(X)
on X is transitive, then the following properties are equivalent:

(a) X is a rational variety;

(b) X is a locally flattenable variety.

Proof. If (a) holds, then X contains an open flattenable subset U . Since U
and gU for any g ∈ Aut(X) are isomorphic, (b) follows from the equality
X =

⋃
g∈G gU (the latter holds because of the transitivity condition). Defi-

nition 1 implies (b)⇒(a). �

Corollary 3. Let G be a connected affine algebraic group and let H be a

closed subgroup of G. Then the following properties are equivalent:

(a) G/H is a rational variety;

(b) G/H is a locally flattenable variety.

Remark 4. Maintain the notation of Corollary 3. There are nonrational
(and even not stably rational) varieties G/H, where G is

SLn1
× · · · × SLnr

× Sp2m1
× · · · × Sp2ms

(1)

and H is finite; see [Po 20132, Thm. 2]. It is an old problem, still open at this
writing (January 2019), whether there are nonrational homogeneous spaces
G/H with connectedH. For connectedH of various special types, rationality
of G/H is known; see [CZ 2017] and Remark 34 below. In particular, G is
rational as a variety [Ch 1954] (cf. [Po 20132, Lem. 2]).

2. Vector bundles and homogeneous fiber spaces.

The claim of Theorem 5 below is mentioned in [BB 2014, Ex. 2.1]:

Theorem 5. Let X → Z be an (algebraic) vector bundle over an irreducible

variety Z. If Z is locally flattenable, then X is locally flattenable as well.

Proof. Since the fibers of X → Z are isomorphic to an affine space, and, by
[Se 1958, Thm. 2], algebraic vector bundles are locally trivial in the Zariski
topology, the claim follows from Definition 1. �

Let G be a connected algebraic group, H its closed subgroup, and F a
quasiprojective variety endowed with a regular action of H. Then we have
(see [PV1994, 4.8]) the algebraic homogeneous fiber space G ×H F over
G/H with fiber F ; the natural projection πG,H,F : G×H F → G/H is locally
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trivial in the étale topology. If F is a vector space V over k and the action
of H on V is linear, then πG,H,V is an algebraic vector bundle over G/H
with fiber V . Combining Corollary 3 and Theorem 5 yields

Corollary 6. Maintain the above notation. If G/H is rational, then G×HV
is locally flattenable.

Theorem 7. Let G be a connected reductive algebraic group and let X be a

smooth affine variety endowed with an action of G. Assume that

(a) k[X]G = k;
(b) the (unique, see, e.g., [PV 1994, Cor. of Thm. 4.7]) closed G-orbit O

in X is rational.

Then X is locally flattenable.

Proof. By [Lu 1973, p. 98, Cor. 2] (see also [PV1994, Thm. 6.7]), (a) and
smoothness of X imply that X is G-equivariantly isomorphic to G ×H V ,
where H is the G-stabilizer of a point of O, and V is a finite-dimensional
H-module. The claim then follows from Corollary 6. �

3. Spherical varieties.
Let G be a connected reductive algebraic group and let B be a Borel

subgroup of G. Recall that a variety X endowed with an action of G is
called spherical variety of G if there is a dense open B-orbit in X.

Theorem 8. Every smooth spherical variety is locally flattebable.

Proof. LetX be a smooth spherical variety of a connected reductive group G.
First, X is rational because every B-orbit is rational (the latter is iso-

morphic to the complement of a union of several coordinate hyperplanes in
some affine space [Gr 1958, Cop. p.5-02]).

Secondly, every G-orbit inX is spherical (see, e.g., [Ti 2011, Prop. 15.14]),
hence rational. Therefore, by Theorem 7, if X is affine, then X is locally
flattenable.

Thirdly, arbitrary X is covered by open subsets, each of which is isomor-
phic to a variety of the form P ×L Z, where P and L are respectively a
parabolic subgroups of G and a Levi subgroup of P , and Z is an affine
spherical variety of L; see, e.g., [Ti 2011, Thm. 15.17]. Since X is smooth, Z
is smooth as well. Therefore, as explained above, Z is locally flattenable. The
variety P ×LZ is isomorphic to the product of Z and the underlying variety
of the unipotent radical of P . Since this underlying variety is isomorphic
to an affine space [Gr 1958, Cor. p. 5-02], we infer that P ×L Z is locally
flattenable. Therefore, X is locally flattenable, too. �

Since every toric variety is spherical, Theorem 8 implies

Corollary 9 ([BB 2014, Expl. 2.2]). Every smooth toric variety is locally

flattenable.
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4. Blow-ups with nonsingular centers.

Theorem 10 ([Gr1989,p.885,Prop.], [BHSV2008,Thm.4.4], [BB2014,
Prop. 2.6]). The blow-up of a locally flattenable variety along a smooth sub-

variety is locally flattenable.

5. Curves and surfaces.

For varieties of dimension 6 2, the answer to (Gr) is affirmative:

Theorem 11 ([BHSV2008, Prop. 3.2], [BB 2014, Prop. 2.6]). Every irredu-

cible rational smooth algebraic curve or surface X is locally flattenable.

Proof. If X is a curve, it admits an open embedding in P1. If X is a surface,
it admits an open embedding in a projective smooth surface, which, being
rational, is obtained by repeated point blow-ups of a minimal model, i.e.,
either P2 or a Hirzebruch surface Fn, n 6= 1. Since P1, P2, and Fn are toric
varieties, the claim follows from Corollary 9 and Theorem 10. �

5. Local version of (ZCP). Given Definition 1, the local version of the
Zariski Cancellation Problem mentioned in Subsection 2 is formulated as
follows:

Are there affine varieties X and Y such that Y and
X × Y are flattenable, but X is not flattenable? (LZCP)

In Subsection 7 we show that the answer to (LZCP) is affirmative.

6. Flattenable varieties vs. locally flattenable varieties. Flattenable
varieties have special properties:

Lemma 12. Let X be an affine flattenable variety and let ϕ : X →֒ An be

an open embedding. If k[X]∗ = k∗, then ϕ(X) = An.

Proof. Assume that the closed set An \ ϕ(X) is nonempty. Then, since X
is affine, the dimension of every irreducible component of this set is n −
1. Therefore, Pic(An) = 0 implies that An \ ϕ(X) is the set of zeros of a
certain function f ∈ k[An]. Then f ◦ϕ is a nonconstant element of k[X]∗,—
a contradiction. Hence ϕ(X) = An. �

Lemma 13. For a connected affine algebraic group G, the following proper-

ties are equivalent:

(a) as a variety, G is isomorphic to an affine space;

(b) as a group, G is unipotent.

Proof. Assume that (a) holds. If G is not unipotent, there exists a nontrivial
torus T among the closed subgroups of G. The action of T on G by left
multiplication then gives a fixed point free action of T on an affine space,
which is impossible by [Bi 1966, Thm. 1]. This contradiction proves (a)⇒(b).

Conversely, (a) follows from (b) by [Gr 1958, Cor. p. 5-02]. �

Theorem 14. Let G be a connected affine algebraic group, and let RG be

its radical.
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(a) If G is solvable, then G is flattenable.

(b) If G is flattenable and nonsolvable, then RG is not unipotent.

Proof. Let G be solvable. Then G, as a variety, is isomorphic to the comple-
ment of a union of several coordinate hyperplanes in some affine space
[Gr 1958, Cor. p. 5-02]; whence (a).

Assume that G is flattenable and nonsolvable. The latter implies that G is
not unipotent, hence, by Lemma 13, as a variety, G is not isomorphic to an
affine space. Lemma 12 then implies that there is a nonconstant invertible
function f ∈ k[G]. By [Ro 1961, Thm. 3], the map G → GL1, g 7→ f(g)/f(e),
is then a nontrivial character. According to [Po 2011, Lem. 1.1], the existence
of such a character is equivalent to the property that RG is not unipotent;
whence (b). �

Corollary 15. Let G be a nontrivial connected reductive algebraic group. If

G is flattenable, then the dimension of its center is positive. In particular,

every semisimple G is not flattenable.

7. Answering (LZCP).

Theorem 16. There are affine varieties X and Y such that

(a) X is not flattenable;

(b) Y and X × Y are flattenable.

Proof. As a variety, any SLn for n > 1 is not flattenable by Corollary 15.
On the other hand, being open in the affine space Matm×m, any GLm is
flatteneble. The morphism

SLn ×GL1 → GLn, (s, a) 7→ s diag(a, 1, . . . , 1), (2)

is an isomorphism of varieties: its inverse is

GLn → SLn ×GL1, g 7→
(
g diag(1/det(g), 1, . . . , 1),det(g)).

Hence we can take X = SLn for n > 1, and Y = GL1. �

In Remark 38 below one can find other examples.

8. Equivariantly flattenable varieties.

Definition 17. A variety X endowed with an action of an algebraic group
G is called equivariantly (respectively, linearly equivariantly) flattenable if
there are

· an action (respectively, a linear action) of G on some An;
· a G-equivariant open embedding X →֒ An.

Definition 18. An algebraic group G is called equivariantly (respectively,
linearly equivariantly) flattenable if G, as a variety endowed with the G-
action by left multiplication, is equivariantly (respectively, linearly equivari-

antly) flattenable.
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Examples 19.
1. Every GLn is linearly equivariantly flattenable since GLn is an invariant
open set of Matn×n endowed with the GLn-action by left multiplication.

2. Every (connected) unipotent affine algebraic group G is, as a variety,
isomorphic to an affine space; hence G is equivariantly flattenable. In fact,
a more general statement,Theorem 22 below, holds. It is easily seen that G
is linearly equivariantly flattenable only if it is trivial. On the other hand,
the example of a Borel subgroup of SL2 naturally acting on k2 shows that
there are nontrivial solvable linearly equivariantly flattenable groups.

3. If the G1, . . . , Gm are equivariantly (respectively, linearly equivariantly)
flattenable groups, then, clearly, G1×· · ·×Gm is equivariantly (respectively,
linearly equivariantly) flattenable as well. In particular, the group

GLn1
× · · · ×GLns

(3)

is linearly equivariantly flattenable for any n1, . . . , ns. Taking n1 = . . . =
ns = 1 yields that every affine algebraic torus is linearly equivariantly flat-
tenable.

4. Generalizing Example 19.1, let A be a finite-dimensional associative k-
algebra with identity. The group A∗ is a connected affine algebraic group. It
is open in A and invariant with respect to the action of A∗ on A by left
multiplication, cf. [Bo 1991, I,1.6(9)]. Hence A∗ is a linearly equivariantly
flattenable group. For A = Matn×n, we obtain A∗ = GLn. More generally, if
A is semisimple, then A∗ is a group of type (3), and all groups of type (3)
are obtained in this way.

5. Every G = SLn × GL1 is equivariantly flattenable. Indeed, consider the
G-module structure on V = Matn×n defined by the formula

G× V → V, ((s, a), x) 7→ s xdiag(a, 1, . . . , 1).

For x = diag(1, . . . , 1), the orbit map G → V , g 7→ g · x is then the G-
equivariant open embedding (2).

Theorem 20. The following properties of a connected reductive algebraic

group G are equivalent:

(a) G is equivariantly flattenable;

(b) G is linearly equivariantly flattenable.

Proof. Let G be equivariantly flattenable. By Definitions 17, 18, we may
(and shall) identify G with an open orbit in some An endowed with a regular
action of G. Openness of this orbit implies k[An]G = k. Hence, by [Lu 1973,
p. 98, Cor. 2] (see also [PV1994, Thm. 6.7]), there are a closed reductive
subgroup L of G and a finite-dimensional algebraic L-module V such that
An and G×L V are G-equivariantly isomorphic. We claim that this implies

L = G. (4)
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If (4) is proved, thenAn and V are G-equivariantly isomorphic, which proves
(a)⇒(b).

So it remains to prove (4). In view of connectedness of G, to this end it
suffices to prove dim(L) = dim(G).

Since char(k) = 0, by the Lefschetz principle we may (and shall) assume
that k = C; in the remainder of the proof topological terms are related
to the Hausdorff C-topology. Since An is simply connected, G/L is simply
connected as well, hence L is connected.

We now note that the dimension any connected complex reductive algeb-
raic group R is equal to the maximum mR of i such that Hi(R) 6= 0 (singular
homology with complex coefficients). Indeed, if K is a maximal compact
subgroup of R, then the Iwasawa decomposition of R shows that R, as a
manifold, is a product of K and a Euclidean space. Hence R and K have the
same homology. SinceK is a compact oriented manifold, this shows thatmR

is equal to the dimension of the Lie group K. As R is the complexification
of K, the statement follows.

So to prove (4) is the same as to prove mG = mL. In fact, since L is a
subgroup of G, the above equality mR = dim(R) yields mG > mL, so to
prove mG = mL we only need to prove the inequality

mG 6 mL. (5)

As is known (see, e.g., [Hu 1959, Chap. IX, Thm. 11.1]), the spectral se-
quence of the natural fiber bundle G → G/L yields the following inequality
for the Betti numbers

dimC(Hm
G
(G)) 6

∑

i+j=m
G

dimC(Hi(G/L)) dimC(Hj(L)). (6)

On the other hand, since G×L V is a vector bundle over G/L and G×L V
is isomorphic to An, we have

dimC(Hi(G/L)) = dimC(Hi(A
n)) =

{
1 for i = 0,

0 for i > 0.
(7)

From (6), (7) we infer that

0 < dimC(Hm
G
(G)) 6 dimC(Hm

G
(L)). (8)

The definition of mL and (8) then yield (5). This completes the proof. �

Remark 21. Using the same argument, but (in the spirit of [Bo 1985])
étale cohomology in place of singular homology, one can avoid applying the
Lefschetz principle and adapt the above proof to the case of base field of
arbitrary characteristic.

Recall that a Levi subgroup of a connected affine algebraic group G is its
(necessarily reductive) subgroup L such that G is the semi-direct product
of L and the unipotent radical RuG of G; since char(k) = 0, such L exist
and are conjugate in G; see, e.g., [Bo 1991, 11.22].
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Theorem 22. Let G be a connected affine algebraic group and let L be a

Levi subgroup of G. If L is equivariantly flattenable, then so is G.

Proof. Let L be equivariantly flattenable. Then by Theorem 20, we may (and
shall) assume that L, as a variety with the L-action by left multiplication,
is an open orbit O of an algebraic L-module V . This implies that dim(L) =
dim(V ), and therefore,

dim(G×L V ) = dim(G) − dim(L) + dim(V ) = dim(G). (9)

We identify V with the fiber of G ×L V → G/L over the point of G/L
corresponding to L. Since the L-stabilizer of any point v ∈ O is trivial, theG-
stabilizer of v is trivial as well. From this and (9) we infer that G → G×LV ,
g 7→ g · v, is a G-equivariant (with respect to the action of G on itself by left
multiplication) open embedding. Now we note that G/L is isomorphic to the
underlying variety ofRuG, therefore, by Lemma 13, to an affine space. Since,
by Quillen–Suslin [Qu 1976], [Su 1976], algebraic vector bundles over affine
spaces are trivial, we conclude that the variety G×L V is isomorphic to an
affine space. This completes the proof. �

Corollary 23. Every connected solvable affine algebraic group is equivari-

antly flattenable.

Proof. Levi subgroups of connected solvable affine algebraic groups are tori.
As the latter are equivariantly flattenable, the claim follows from Theo-
rem 22. �

9. Flattenable vs. equivariantly flattenable varieties. The following
shows that there are affine flattenable varieties endowed with actions of
reductive algebraic groups, which are not linearly equivariantly flattenable.

Example 24. As is known (see, e.g., references in survey [Kr 1996]), there
are affine spaces endowed with nonlinearizable actions of reductive algebraic
groups. By Lemma 12, they are not linearly equivariantly flattenable.

Example 25. Let S be a connected semisimple algebraic group, whose
center CS is nontrivial, and let G be a finite subgroup of S, whose centralizer
in S is CS. Note that such pairs S,G do exist. For instance, let F be a
nontrivial finite group, satisfying the following conditions:

(a) there are no nontrivial characters F → GL1;
(b) there is a faithful irreducible representation ϕ : F → GLn.

Say, (a) and (b) hold for any nontrivial simple F . By (a), we have ϕ(F ) ⊂
SLn; therefore, we may (and shall) identify F with ϕ(F ) and consider F as
a subgroup of SLn. By (b) and Schur’s lemma, the centralizer of F in SLn

is the cyclic group {εIn | ε ∈ k∗, εn = 1} of order n, which is the center of
SLn. We have n > 2 because of (a), so this center is nontrivial. Hence, SLn,
F is an example of the pair of interest.
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Returning back to S and G, let B, B− be a pair of opposite Borel sub-
groups of S. Then the “big cell” Θ := B−B is an open subset of S iso-
morphic to the complement of a union of several coordinate hyperplanes in
L := Adim(S); in particular, C is an affine flattenable variety. We have

CS ⊂ Θ (10)

because CS ⊂ B (see, e.g., [Bo 1985, 13.17, Cor. 2(d)]).
Now we consider the conjugating action of G on S. Its fixed point set SG

is CS. The set X :=
⋂

g∈G gΘg−1 is a G-stable open subset of S. In view of

(10), it contains CS, therefore,

XG = CS. (11)

Since Θ is an affine flattenable variety, X is such a variety, too.
We claim that X is not linearly equivariantly flattenable. Assume the

contrary. Then there is a linear action of G on L such that there is a G-
equivariant open embedding X →֒ L; we identify X with the image of this
embedding. Hence XG = X ∩ LG. Since LG is a linear subspace of L, and
X is open in L, this implies that XG is irreducible. The latter contradicts
(11), because S is semisimple, and hence CS is finite (and nontrivial).

Remark 26. For X in Example 25, as a G-variety, the following alterna-
tive holds. Either X is not equivariantly flatenable. Or X is equivariantly
flattenable, but the action of G on an affine space, extending that on X, is
nonlinearizable.

Question 27. Are there flattenable reductive algebraic groups, which are
not equivariantly flattenable?

10. Equivariantly flattenable subgroups of the Cremona groups.
As an application, below is briefly surveyed a special role of equivariantly
flattenable subgroups in the conjugacy problem for algebraic subgroups of
the Cremona groups Crn (i.e., in the rational linearization problem). We
refer to [Po 20131], [PV1994] and references therein regarding the basic def-
initions and properties of rational algebraic group actions, in particular, the
definition of embeddings

Cr1 ⊂ Cr2 ⊂ · · · ⊂ Crn ⊂ Crn+1 ⊂ · · · . (12)

Theorem 28 ([Po 20131, Thm. 2.1]). Let G be a connected algebraic sub-

group of the Cremona group Crn. Assume that

(i) G is linearly equivariantly flattenable;

(ii) the natural rational action of G on An is locally free.

If the field extension k(An)G/k is purely transcendental, then G is conjugate

in Crn to a subgroup of GLn (i.e., the natural rational action of G on An is

rationally linearizable).

For tori, the sufficient condition of Theorem 28 for rational linearization
is also necessary:
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Theorem 29 ([Po 20131, Thm. 2.4]). Let T be an affine algebraic torus in

the Cremona group Crn. The following properties are equivalent:

(a) T is conjugate in V to a subgroup of GLn;

(b) the field extension k(An)T /k is purely transcendental.

The sufficient condition of Theorem 28 for rational linearization always
holds true in the stable range:

Theorem 30 ([Po 20131, Lem. 2.2&Thm. 2.2]). Let G be a connected algeb-

raic subgroup of the Cremona group Crn such that assumptions (i), (ii) of

Theorem 28 hold. Then there is an integer s > 0 such that, for the rational

action of the group G on An+s determined by embedding (12), the field

extension k(An+s)G/k is purely transcendental.

Remarks 31. 1. By [Po 20131, Thm. 2.6], if G in Theorem 30 is a torus,
then one can take s = dim(G).

2. In general, the integer s in Theorem 30 is strictly positive. For example,
by [Po 20131, Cor. 2.5], the Cremona group Crn for n > 5 contains an (n −
3)-dimensional affine algebraic torus, which is not conjugate in Crn to a
subgroup of GLn.

11. Equivariantly flattenable groups and special groups in the sen-
se of Serre. Recall from [Se 1958, 4.1] that an algebraic group G is called
special if every principal G-bundle (which, by definition [Se 1958, 2.2], is
locally trivial in étale topology) is locally trivial in the Zariski topology. By
[Se 1958, Sect. 4.1, Thm. 1] special group is automatically connected and
affine. Special groups are classified:

Theorem 32. The following properties of a connected affine algebraic group

G are equivalent:

(a) G is special;

(b) maximal connected semisimple subgroups of G are isomorphic to a

group of type (1).

Proof. The implications (a)⇒(b) and (b)⇒(a) are proved respectively in
[Gr 1958] and [Se 1958]. �

In [Po 20131, Lem. 2.2] is sketched a reduction of the following claim to
[Po 1994, Thm. 1.4.3]. Below is given the complete self-contained argument.

Theorem 33. Every linearly equivariantly flattenable affine algebraic group

G is special.

Proof. By Definitions 17, 18, there is a finite-dimensional algebraic G-mo-
dule V with a G-orbit O such that

(i) O is open in V ;
(ii) the points of O have trivial G-stabilizers.

By (ii), V is faithful; hence we may (and shall) identify G with a closed
subgroup of GL(V ).
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Next, consider the ith direct summand of

L := V ⊕ · · · ⊕ V (n := dim(V ) copies),

as a linear subspace Vi of L, denote by πi the natural projection L → Vi,

and identify V with V1. The GL(V )-module L contains a GL(V )-orbit Õ
such that

(iii) Õ is open in L;

(iv) the points of Õ have trivial GL(V )-stabilizers.

From (i), (iii) we infer that O∩π1(Õ) 6= ∅ and π−1
1 (O)∩Õ is an nonempty

open subset of Õ. Take a point

a ∈ O ∩ π(Õ) (13)

and consider in L the affine subspace

A := {a+ v2 + · · ·+ vn ∈ L | vi ∈ Vi for all i}. (14)

From (iii), (13), (14) we deduce that A ∩ Õ is a nonempty open subset

of A, and from (ii) that the G-orbit of every point of π−1
1 (O) ∩ Õ intersects

A∩Õ at a single point. This means that the natural action of G on Õ admits
a rational section. In view of (iv), this, in turn, means that the natural map
GL(V ) → GL(V )/G admits a rational section. Since the group GL(V ) is
special, this implies, according to [Se 1958, Sect. 4.3, Thm. 2], that the group
G is special as well. �

Remark 34. Since A is rational and A ∩ Õ is open in A, the above proof
of Theorem 33 shows that GL(V )/G is a rational variety.

12. Classifying equivariantly flattenable groups. Theorem 22 natu-
rally leads to the following

Problem 35. Obtain a classification of equivariantly flattenable reductive
algebraic groups.

Theorem 36. For every nontrivial equivariantly flattenable reductive al-

gebraic group G, the following properties hold:

(a) the derived group L of G is a semisimple group of type (1);
(b) the radical of G is a central torus C of positive dimension;

(c) G = L · C and C ∩ L is finite.

Proof. Since L is a maximal connected semisimple subgroup of G, combin-
ing Theorems 33 and 32 yields (a). Combining Corollary 15 and [Bo 1991,
14.2, Prop.] implies (b) and (c). �

Problem 35 looks manageable. Initially, being influenced by Example 19.4,
the author was even overoptimistic and put forward the conjecture that all
equivariantly flattenable reductive algebraic groups are that of type (3) (see
[Po 20131, p. 221]); this overoptimism was shared by some of the participants
of the 2013 Oberwolfach meeting on algebraic groups who even sketched a
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plan of possible proof. So it came as a surprise, when in [BGM2017] the
examples of equivariantly flattened reductive groups of a type distinct from
(3) have been revealed, making Problem 35 even more intriguing. Below we
describe them.

Theorem 37 ([BGM2017, 2.1]). For every positive integer n, the group

G := Sp2n ×GL2n−1 ×GL2n−2 × · · · ×GL1 (15)

is equivariantly flattenable.

Sketch of proof. Consider the vector space

V := Mat2n×1 ⊕Mat2n×(2n−1) ⊕Mat(2n−1)×(2n−2) ⊕ · · · ⊕Mat2×1 (16)

and the linear action of G on V defined for the elements

g := (A, B2n−1, B2n−2, . . . , B2, B1) ∈ G, A ∈ Spn, Bd ∈ GLd,

v := (X, Y2n−1, Y2n−2, . . . , Y1) ∈ V, X ∈ Mat2n×1, Yd ∈ Mat(d+1)×d

by the formula

g · v := (AX, AY2n−1B
⊤
2n−1, B2n−1Y2n−2B

⊤
2n−2, . . . , B2Y1B

⊤
1 ).

From (15) and (16) we deduce

dim(G)
(15)
== 2n2 + n+

2n−1∑

i=1

i2 = 2n+

2n−1∑

i=1

i(i+ 1)
(16)
== dim(V ). (17)

Next, one shows the existence of a point v0 ∈ V whose G-stabilizer is tri-
vial. In view of (17), the orbit map G → V , g 7→ g ·v0 is then a G-equivariant
open embedding. �

Remark 38. Since the group Sp2n is not flattenable by Corollary 15, but
GL2n−1 × GL2n−2 × · · · × GL1 is flattenable, Theorem 37 provides other
(than that in the proof of Theorem 16) examples, which yield the affirmative
answer to (LZCP).

13. Locally equivariantly flattenable varieties. Similarly to flattenabi-
lity, equivariant flattenability admits an evident local version:

Definition 39 ([Pe 2017, Def. 4(iii)], up to change of terminology). A variety
X endowed with an action of an algebraic group G is called equivariantly

(respectively, linearly equivariantly) locally flattenable if for every point x ∈
X there is an equivariantly (respectively, linearly equivariantly) flattenable
G-stable open subset of X containing x.

Definition 39 leads to the following equivariant version of Gromov’s ques-
tion (Gr):

Is every irreducible smooth rational G-variety

equivariantly locally flattenable?
(EqGr)

The examples in [Pe 2017, Sect. 4] show that the answer to (EqGr) is nega-
tive.
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