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We present an analytical description of the class of unsteady vortex surface waves generated by non- 

uniformly distributed, time-harmonic pressure. The fluid motion is described by an exact solution of the 

equations of hydrodynamics generalizing the Gerstner solution. The trajectories of the fluid particles are 

circumferences. The particles on a free surface rotate around circumferences of the same radii, with the 

centers of the circumferences lying on different horizons. A family of waves has been found in which a 

variable pressure acts on a limited section of the free surface. The law of external pressure distribution 

includes an arbitrary function. An example of the evolution of a non-uniform wave packet is considered. 

The wave and pressure profiles, as well as vorticity distribution are studied. It is shown that, in the case 

of a uniform traveling wave of external pressure, the Gerstner solution is valid but with a different form 

of the dispersion relation. A possibility of observing the studied waves in laboratory and in the real ocean 

is discussed. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Gerstner waves are steady progressive waves on the surface of

a liquid of infinite depth. They are described by the exact solu-

tion of the equations of a perfect incompressible fluid [1,2] . The

Gerstner solution was rediscovered by Froude [3] , Rankine [4] and

Reech [5] . This solution is remarkable as it is the only exact solu-

tion for gravity waves on deep water. In this sense, for gravitational

waves on water studied in the framework of complete hydrody-

namic equations the Gerstner waves are analogous to solitons in

nonintegrable systems (Kivshar and Malomed [6] , Grimshaw et al.

[7] , Zahibo et al. [8] , Stepanyants [9] ). 

Key contributions to physical understanding and mathematical

justification of the Gerstner wave solution were made by Dubreil-

Jacotin [10] , Lamb [2] , Mollo-Christensen [11,12] , Constantin and

Strauss [13] , Constantin [14] and Henry [15] , among others. Hydro-

dynamic stability of the Gerstner wave was investigated by Leblanc

[16] . The Gerstner surface wave solution was extended to edge

waves in fluids with a free surface and a plane sloping rigid bound-

ary (Yih [17] ; Constantin [18] ). Gerstner surface and edge waves re-

main exact solutions in stratified incompressible fluids [10,17] (see

also Stuhlmeier [19,20] ), including fluids with density and flow ve-

locity discontinuities [12] . Mollo–Christensen developed an analyt-

ical model of gravitational and geostrophic billows in the atmo-

sphere by deriving an exact finite-amplitude solution for a wave

on an interface of two fluids, with one fluid moving as in the Ger-
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tner wave and the other fluid in a uniform motion at the speed

f the wave [11] . Johnson used the Gerstner edge wave solution to

onstruct asymptotic solutions valid for variable but small bottom

lopes [21] . Within the f - plane approximation, extensions of Ger-

tner surface and edge waves to rotating fluids have been proposed

y Pollard [22] , Matioc [23,24] and Weber [25] . Ionescu–Kruse ap-

lied the short-wavelength perturbation method to derive instabil-

ty criteria for the three-dimensional nonlinear Pollard geophysi-

al waves [26] . Mollo–Christensen obtained the exact solution de-

cribing nonlinear edge waves in a rotating fluid in the presence

f a mean flow [27] . Constantin and Monismith studied the prop-

gation of Gerstner waves in the presence of mean currents and

otation [28] . Gerstner-type solutions for equatorially trapped sur-

ace and internal waves in the ocean were obtained by Constantin

29–31] in the β-plane approximation. The exact solution for equa-

orially trapped surface waves was further extended by Henry by

llowing for a uniform current in the direction of wave propaga-

ion [32] . Godin presented the solutions providing an extension of

he Gerstner wave in an incompressible fluid with a free bound-

ry to waves in compressible three-dimensionally inhomogeneous

oving fluids [33] . 

At the same time, physical feasibility of Gerstner waves is still

isputable. These waves possess vorticity, hence they cannot be

enerated from rest by conservative forces in an ideal fluid. Lamb

ointed that such a wave motion may arise against the background

f a shear flow having the same vorticity [2] . This idea was im-

lemented in the laboratory experiments by Monismith et al. [34] .

iquid particles in a Gerstner wave travel around a circumference

ithout drift flow (average over the period). The wave motion

https://doi.org/10.1016/j.chaos.2018.11.007
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ossessing this property was generated in a flume by Monismith’s

eam. This means that Gerstner waves or their finite-depth rela-

ives must have been observed. 

Weber, in turn, hypothesized that a weakly nonlinear Gerstner

olution may be realized taking into account the effects of liquid

iscosity and surface films [35] . In a linear approximation with re-

pect to the small parameter of wave steepness, liquid particles

n a viscous fluid move around circumferences, the radii of which

ecrease exponentially with time. The wave vorticity is concen-

rated in a narrow near-surface boundary layer. In the quadratic

pproximation, the viscosity gives rise to mean drift, which We-

er compared with the available experimental data and did not

xclude that viscosity-modified Gerstner waves were observed in

ome wave tank experiments. 

The mentioned above studies were performed assuming con-

tant pressure on a free fluid surface. This approximation is justi-

ed in the absence of wind. The physical manifestations of wind

re variable pressure on the fluid surface and a vortex charac-

er of the wave motion. Waseda and Tulin showed experimentally

hat the wind does not suppress the Benjamin–Feir instability [36] .

he investigation of the self-consistent wind-wave interaction is

 rather complicated problem. A possible way to simplify it is to

hoose a definite law of pressure variation on the free surface. In

he works (Leblanc [37] , Kharif et al. [38] , Onorato and Proment

39] , Chabchoub et al. [40] , Brunetti et al. [41] , Eeltink et al. [42] )

here the dynamics of weakly nonlinear, narrow bandwidth trains

f surface waves was studied, a variable external pressure was

pecified according to the Miles linear theory of wind wave excita-

ion [43] . Yan and Ma explored the formation of strongly nonlinear

aves in the framework of a complete system of equations of hy-

rodynamics in the presence of a uniform air flow and proposed

 phenomenological model for air flow pressure distribution on a

ree surface [44] . 

In this paper we will investigate the dynamics of vortex surface

aves under the action of time-harmonic pressure non-uniformly

istributed on a free surface. The consideration is carried out in

agrangian variables. The fluid motion is described by a class of

xact solutions [45] , generalizing the Gerstner solution. Like in the

lassical Gerstner wave, the trajectories of the fluid particles are

ircumferences. The particles on a free surface have the same ra-

ius of rotation but the centers of the circumferences lie on differ-

nt horizons, thereby the wave has a variable profile. Such waves

re called unsteady Gerstner waves. We will analyze a family of

aves, in which variable pressure acts on a bounded section of the

ree surface. The law of external pressure distribution includes an

rbitrary function and corresponds to a wide variety of boundary

onditions. We will consider a solution describing the dynamics of

 non-uniform packet of unsteady Gerstner waves. Wave and pres-

ure profiles, as well as vorticity distribution will be addressed. A

ossibility of observing the studied waves in laboratory and in the

eal ocean will be discussed. 

The rest of this paper is organized as follows. In Section 2 we

ntroduce a class of Ptolemaic flows into consideration and show

hat Gerstner waves are their particular case. An exact solution for

erstner-type waves with variable pressure on a free surface was

btained in Section 3 . In the next section, the dynamics of the Ger-

tner wave packet is studied, when the variable pressure acts on a

ounded interval of the free surface. In Section 5 we show that,

n the case of a uniform traveling plane wave of external pressure,

he Gerstner solution is valid but with a different form of the dis-

ersion relation. Our findings are summarized in Section 6 . 

. Ptolemaic flows and Gerstner wave 

Consider gravity waves on the surface of a homogeneous liq-

id having density ρ . Neglecting viscosity, the equations of 2D
ydrodynamics in Lagrangian variables are written in the form

2,46] : 

D ( X, Y ) 

D ( a, b ) 
= 

D ( X 0 , Y 0 ) 

D ( a, b ) 
, (1) 

 tt X a + Y tt Y a = − 1 

ρ
p a − g Y a , (2) 

 tt X b + Y tt Y b = − 1 

ρ
p b − g Y b , (3) 

here X, Y are the Cartesian coordinates of the liquid particle tra-

ectory, a, b are its Lagrangian coordinates, p is pressure, g is ac-

eleration of gravity, t is time, the subscript “0” denotes the value

f the variable at the initial moment of time, and the subscripts

n Eqs. (2) , (3) stand for differentiation with respect to the corre-

ponding variable. It is assumed that the wave motion occurs in

he b ≤ 0 region. 

By cross-differentiating the equations of motion (2) , (3) we

liminate pressure and obtain the condition of vorticity conserva-

ion along the trajectory [2,46] : 

( X ta X b + Y ta Y b − X tb X a − Y tb Y a ) t = 0 . (4) 

By introducing complex coordinates of the particle trajectory

 = X + iY, W̄ = X − iY and complex Lagrangian coordinates χ =
 + ib, χ̄ = a − ib (the overline in χ̄ denotes the complex conjugate

f χ ) we can write Eqs. (1) , (4) in the form [45] : 

D ( W, ̄W ) 
D ( χ, ̄χ) 

= 

D ( W 0 , ̄W 0 ) 
D ( χ, ̄χ) 

= D 0 ( χ, χ̄ ) , 

D ( W t , ̄W ) 
D ( χ, ̄χ) 

= 

D ( W t 0 , ̄W 0 ) 
D ( χ, ̄χ) 

= 

i 
2 

D 0 �( χ, χ̄ ) . 
(5) 

Here, � is vorticity and the function D 0 determines the depen-

ence of the initial position of liquid particles, W 0 , on Lagrangian

oordinates. The sign of the function does not change in the flow

egion due to one-to-one mapping between particle coordinates

nd their Lagrangian labels. We assume for definiteness D 0 ≥ 0. 

Eq. (5) have an exact solution [45] : 

 = G ( χ) e iδ t + F ( ̄χ) e iμ t , (6)

here F, G are analytical functions and δ, μ are constant frequen-

ies. The particle trajectories for this solution are either epicycloids

 δμ> 0) or hypocycloids ( δμ< 0). In the Ptolemaic picture of the

orld the planets move along such trajectories; that is why the

ows (6) were named Ptolemaic. If one of the frequencies is equal

o zero, the liquid particles move along the circumference. 

The Gerstner wave is a particular case of Ptolemaic flows. The

xpression for this wave is written in complex variables 

 = χ + iA exp i ( k χ − ω t ) , Im χ = b ≤ 0 , (7)

here A is wave amplitude, k is wave number, and ω is frequency.

y writing (7) in real form, we obtain the solution proposed by

erstner [1] : 

 = a − A e kb sin ( ka − ω t ) ; Y = b + A e kb cos ( ka − ω t ) . (8)

The liquid particles in a wave rotate around circumferences hav-

ng radius A exp kb . The free surface corresponds to b = 0 . It is a

rochoid moving at the speed с = ω /k without changing its shape

n the positive direction of the X -axis. The pressure on the free sur-

ace of the Gerstner wave is constant. The dispersion equation for

he Gerstner wave ω 

2 = gk is identical to that for a linear potential

ave. 

The Jacobian D 0 for the Gerstner waves is equal to 1 −
 

2 A 

2 exp 2 kb. Since D 0 ≥ 0 inside the flow region, we have kA ≤ 1.

or kA = 1 , the Gerstner wave crests become cusped, which corre-

ponds to the limiting wave. For the values of steepness kA > 1, the

ave profile features loops (see also [14,15] ). 
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The Gerstner waves are vortex ones. Making use of Eq. (5) , one

can readily find an expression for vorticity 

� = 

2 c k 3 A 

2 exp 2 kb 

1 − k 2 A 

2 exp 2 kb 
. (9)

In the case kA < < 1, the vorticity is close to zero and expres-

sions (7) , (8) coincide with the solution for a linear potential wave.

The pressure in Gerstner waves depends on the vertical La-

grangian coordinate b only. The isolines b = const are the con-

stant pressure surfaces, and any of them can be chosen as a free

one. Obviously, this will change the equilibrium level of the liquid.

When the free surface corresponds to b = 0 , the equilibrium level

of the stationary Gerstner wave lies below the surface Y = 0 [47] . 

3. Variable external pressure 

Consider Ptolemaic flows of the form 

 = G ( χ) + iA exp i ( k χ − ω t ) , Im χ = b ≤ 0 . (10)

This expression is a particular case of the relation (6) . The func-

tion F in (6) is identical to that of the Gerstner wave, and the func-

tion G may vary. If G is a linear function, then the relation (10) co-

incides with Gerstner’s solution. 

The wave (10) has a number of common properties with the

Gerstner wave: 

- liquid particles move around circumferences with radius

A exp kb ; 

- liquid particles rotate around circumferences of the same radius

on each Lagrangian horizon Im χ = b = const ≤ 0 ; 

- there is no averaged drift of liquid particles; 

- the waves are vortex ones. 

At the same time, these waves have certain differences. For the

flow (10) , the vorticity is found from system (5) and is written as

� = 

2 ω (kA ) 
2 

exp ( 2 kb ) 

| G 

′ | 2 − (kA ) 
2 

exp ( 2 kb ) 
. (11)

For the Gerstner wave, the vorticity depends on b coordinate

only, whereas the vorticity (11) is the function of both Lagrangian

variables. The function G 

′ determines the vorticity distribution. 

The vertical coordinates of the centers of circumferences Y c =
Im G ( a + ib ) around which liquid particles in the wave (10) are ro-

tating depends on the form of the G function and is determined

by the values of both Lagrangian coordinates. For the particles of

the free surface, the vertical Lagrangian coordinate b is equal to

zero and the circumcenters are on the Y c = Im G (a ) line that is no

longer horizontal, unlike the case of Gerstner waves. Thus, the par-

ticles of the free surface in the wave (10) are rotating around cir-

cumferences of the same radii, the centers of which are located at

different levels. As a result, the wave has a variable profile. So it is

natural to call the wave (10) an unsteady Gerstner wave. 

The expression for pressure will be found by substituting for-

mula (10) into (2) , (3) : 

p − p 0 
ρ g 

= 

ω 

2 

2 g 
A 

2 e 2 kb 

+ Im 

[
A e iω t 

(
ω 

2 

g 

∫ 
G 

′ e −ikχ dχ − i e −ikχ

)
− G 

]
(12)

In the Gerstner wave G (χ ) = χ, ω 

2 = gk , hence, the expres-

sion in the parentheses is zeroed, the pressure depends only on

the vertical Lagrangian coordinate and is constant on the free sur-

face, where b = 0 . The situation is different for the unsteady Ger-

stner wave, where pressure on the free surface is variable; it in-

cludes both a steady component and an unsteady component vary-

ing with time following the harmonic law. We attribute this exter-

nal pressure to the impact of wind. 
The function G has no singularities in the flow region. Besides,

or the Jacobian D 0 to have a positive sign (see Section 2 ), the con-

ition 

G 

′ ∣∣ ≥ kA (13)

hould be met. The equality sign means that the vorticity goes to

nfinity at free surface (see (11) ). There is no derivative of velocity

t such points, and the wave profile will contain cusps. 

The constraint (13) provides a wide choice of the G function. To

onclude, expressions (10) , (12) give an exact solution for a large

amily of exact solutions for waves on water with variable external

ressure on a free surface. 

. An example of exact solution 

Let a variable external pressure act on a bounded section of a

ree surface. This requirement corresponds to the following asymp-

otic behavior of the function G : 

 ( χ) → χ i f Re χ → ±∞ . 

On both infinities, the wave tends asymptotically to the Ger-

tner wave, where the pressure is constant. This allows us to as-

ume that the dispersion relation ω 

2 = gk is valid for the waves

10) , (12) , similarly to the Gerstner wave. 

The function G is taken in the form 

 ( χ) = χ + 

β

χ − iα
; α, β = const > 0 , Im χ ≤ 0 . (14)

The parameters α, β have dimensions L and L 2 , respectively. The

unction G has a pole at the point χ = iα outside the flow region.

he derivative G 

′ vanishes to zero at the points χ± = ±
√ 

β + iα
hat are also outside the flow region. From this follows that G is a

ounded, single-valued function. 

Consider the condition under which the Jacobian D 0 has a con-

tant sign. The absolute value of the complex function G 

′ reaches

ts maximum on a free boundary, with the square being equal to 

G 

′ ( a, b = 0 ) 
∣∣2 = 1 − 2 β

a 2 + α2 
+ 

β2 + 4 βα2 (
a 2 + α2 

)2 
. 

The right-hand side of the above expression has extremum at

he points satisfying the condition a 2 ∗ = β + 3 α2 . It is less than

nity and can be written as 4 α2 / ( β + 4 α2 ) . As at the ends of the

nterval of variation of the a coordinate, the equalities 

G 

′ ( a = 0 , b = 0 ) 
∣∣2 = 

(
1 + 

β

α2 

)2 

> 1 ;
∣∣G 

′ ( a = ∞ , b = 0 ) 
∣∣2 = 1

old true, the points with coordinates ±a ∗, b = 0 are the minimum

oints of the function G 

′ and the condition (13) may be written in

he form 

≤ 4(1 − k 2 A 

2 ) α2 

k 2 A 

2 

The equality sign corresponds to the limiting wave steepness 

A = 

2 α√ 

β + 4 α2 
. (15)

Unlike a stationary Gerstner wave this variable is always less

han unity. From the relation (15) also follows that, on the intervals

here the wave train is uniform, the wave profile will not have

usps. 
The dynamics of a free surface over one period is shown in

ig. 1 . Its profile Y ( X ) is specified parametrically as 

 = a + 

βa 

a 2 + α2 
− A sin ( ka − ω t ) ; Y = 

βα

a 2 + α2 
+ A cos ( ka − ω t ) . 
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Fig. 1. Wave profile at different moments of time. The origin of the vertical coordinate Y is at the average level of a uniform wave (measured in meters). The X = 0 line 

corresponds to the symmetry axis of the wave at the initial moment of time. 
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We chose the following values of the parameters:

 = 0 . 5 m ; λ = 10 m ; α = 10 m ; β = 5 m 

2 . The curves in

ig. 1 correspond to the change of the phase oscillations ω t by

/4. The wave profile has a form of a non-uniform wave packet,

hich is symmetric at the initial moment of time, with the ver-

ical coordinate of the central maximum (at X = 0 ) being 1 m; it

s twice the height of a uniform wave packet A . The width of the

xcited section of the packet, where the amplitudes of the maxima

xceed this value, are of order 8 λ. The changes occurring within

he packet are well seen in the figure. The central maximum shifts

o the right and slightly decreases with time. The amplitude of

he maximum located behind the central one grows, and that in

ront decreases. In half a period the wave packet recovers its sym-

etric shape, but now there is a trough at X = 0 . The neighboring

axima have the same height of about 0.9 m. Further, the trough

tarts to shift to the right and the maximum lying behind it begins

o grow. At ω t = 2 π , the wave takes on its original shape. 

In the region of a non-uniform wave packet, where the height

f the maxima exceeds 0.5 m, the average fluid level lies above

he Y = 0 plane. This is explained by the choice of the function
 o  
 . The pressure here is different from the constant (atmospheric)

ressure. It is convenient to express its relative value through a

ondimensional value � p ∗ , defined by 

p ∗ = 

p − p 0 
ρ gA 

= 

1 

2 

kA − βα

A 

(
a 2 + α2 

)
+ kβ

a ∫ 
−∞ 

[(
a 2 − α2 

)
sin ( ka − ω t ) + 2 aα cos ( ka − ω t ) 

]
×

(
a 2 + α2 

)−2 
da , (16) 

here p 0 = p a − 1 
2 ρgk A 

2 , and p a is atmospheric pressure. The dy-

amics of surface pressure variation in the region of a non-uniform

ave packet is demonstrated in Fig. 2 . 

Its distribution has a form of a “pit” whose depth is varying

ith time. At the initial moment of time, � p ∗ = −1 (in our ex-

mple, ρgA = 0 . 05 p a ). In half a period the magnitude of the rela-

ive pressure grows up to −0 . 7 . The values of the maxima � p ∗ at

he ends of the non-uniform region increase simultaneously. The

verall may be fitted for winds of different intensity. On the plus
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Fig. 2. Relative pressure in the region of a non-uniform wave packet at different moments of time. 
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and minus infinity the function � p ∗ has a horizontal asymptote
1 
2 kA . 

The wave vorticity is written in the form 

� = 2 ω ( kA ) 
2 

×
[ 

1 − β
2 a 2 − 2 ( b − α) 

2 + β(
a 2 + b 2 + α2 

)2 
− ( kA ) 

2 
exp ( 2 kb ) 

] −1 

exp ( 2 kb )

Unlike a steady Gerstner wave, it depends on both Lagrangian

coordinates. The properties of the function | G 

′ | 2 (the first two

terms in brackets) have been studied above for b = 0 , which en-

ables us to conclude that the vorticity has a minimum at a = 0 ,

and a maximum at ± a ∗ . In the limiting case (15) , when the ex-

pression in the brackets vanishes to zero, there appear cusps on

the free surface at the points corresponding to the Lagrangian co-
rdinates ( ± a ∗ , 0). They are of no particular interest in terms of

hysics, as they exist at all times. 

. Steady Gerstner wave generated by the running harmonic 

ave pressure 

In the previous sections we assumed that the wind forces a

ounded area of the free surface. Consequently, outside this in-

erval the waves are regarded to be uniform and their frequency

nd wave number meet the dispersion relation for Gerstner waves.

owever, there may arise a situation when a variable external

ressure acts along all the free surface. In this case, the wave

acket parameters will be determined entirely by the form of pres-

ure distribution. 

We will restrict our consideration to the simplest case assuming

hat, under the action of wind, external pressure p e in the form of
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 harmonic traveling wave 

p e = p 1 + p 2 cos ( ka − ω t ) , (17) 

s maintained on the free surface ( p 1 , p 2 are constant). Such a

oundary condition is satisfied by the classical Gerstner solution.

ssuming G (χ ) = χ ; b = 0 in Eq. (12) we obtain 

p − p 0 
ρ

= 

ω 

2 

2 

A 

2 + 

(
ω 

2 k −1 − g 
)
A cos ( ka − ω t ) . (18) 

Constant pressure on a free surface is a traditional boundary

ondition for steady Gerstner waves (7) . From this follows that ze-

oing of the multiplier of the cosine in (18) yields a dispersion

quation 

2 . If, however, the pressure wave (17) is propagating along

he free surface, it should be assumed that 

p 1 = p 0 + 

1 

2 

ρω 

2 A 

2 , p 2 = ρ
(
ω 

2 k −1 − g 
)
A. (19)

If these conditions are met, we can say that the exact solution

7) corresponds to steady trochoidal waves on the liquid surface

aintained by the external pressure (17) . The wave amplitude A

s found by the known ω and k from the second relation of the

ystem, and p 0 is found from the first equality. The elevation of the

ree surface is defined by Y = A cos ( ka − μ t ) ; hence, for positive

alues of p 2 , the pressure changes in phase with the profile, and

or negative values of p 2 in antiphase. The case p 2 = 0 corresponds

o the Gerstner wave with constant pressure on the profile. 

Despite their random nature, the narrow-band wind waves cor-

espond relatively well to the most naive notion of waves as

onochromatic formations. In this sense, the excitation of Gerst-

er waves by a traveling pressure wave seems quite reasonable. As

istinct from the classical Gerstner solution, the dispersion equa-

ion is written as 

 

2 = 

(
g + 

p 2 
ρA 

)
k. (20) 

Consequently, the phase velocity of Gerstner wind waves

hanges too. It will be more than 

√ 

g/k for positive p 2 , and less

or negative p 2 . The additional term in the dispersion Eq. (20) is

nversely proportional to amplitude and for small A formula

20) will, evidently, be invalid. Therefore, the assumption that p 2 
oes not depend on wave amplitude in the boundary condition

17) is incorrect, generally speaking. However, analysis of the p 2 ( A )

ependence is beyond the scope of this study. 

Difficulties in interpreting solutions may be avoided by specify-

ng the function G rather than pressure on the profile. For example,

or periodic waves it may be represented in a general form as 

 ( χ) = χ + 

∑ 

n 

γn e 
−iknχ , n ≥ 1 , 

here γ n are constant values, the sign in the exponent is chosen

o that, for b → −∞ , all the terms of the exponent tend to zero.

he expression ω 

2 / g enters the pressure distribution (12) as a pa-

ameter having dimension of a half wave, and there is no need to

onsider it to be equal to the wave number k . 

. Conclusions 

The class of exact solutions of two-dimensional hydrodynam-

cs describing vortex gravity surface waves in the presence of an

xternal time-harmonic pressure varying along the coordinate has

een found and analyzed. The particles of the free surface in the

ave rotate around circumferences of the same radii, like in an or-

inary Gerstner wave. Therefore, it is suggested to call this class

f waves unsteady Gerstner waves. The pressure distribution on

he free surface includes a quite arbitrary analytical function of

he complex Lagrangian G ( χ ) free for choice. A specific example

f variable pressure acting on a limited section of the free surface
as been studied. The function G ( χ ) has been taken in the form of

 simple rational function allowing analytical investigation of the

ain properties of the flow. Pressure distribution on the free sur-

ace depends on the choice of the G ( χ ) function. In that way, the

btained solution may meet a wide class of boundary conditions

or pressure. This indicates a high probability of such waves in the

eal conditions. 

The easiest way to observe unsteady Gerstner waves is to pro-

uce in laboratory conditions a wind flow above traveling surface

aves. A direct proof of their existence is absence of a drift flow,

ike in the experiments by Monismith et al. [34] . It can be as-

umed that the wind will play the role of a wavemaker generating

 shear flow that locally cancels the mass transport associated with

he Stokes drift. Using a higher-order nonlinear Schrödinger equa-

ion, Curtis et al. [48] showed theoretically that background cur-

ents have a significant impact on the mean transport properties

f waves. In particular, certain combinations of background shear

nd carrier wave frequency lead to the disappearance of mean sur-

ace mass transport. In the defocusing case, these authors con-

rmed numerically the theoretical predictions made for the bal-

nce between vorticity and carrier wavenumber which is expected

o quench the mean-surface drift, thereby providing a possible ex-

lanatory mechanism for the results in Monismith et al. [34] . 

We have studied the dynamics of an unsteady wave packet

gainst the background of a uniform steady Gerstner wave with

teepness kA = 0 . 314 . These are rather steep waves. However, un-

teady Gerstner waves are expected to arise in the real ocean at a

mall steepness of a uniform background ( kA < < 1). In this case,

ackground Gerstner waves are identical to linear potential waves,

o there is no need to explain their excitation. Whereas in the non-

niform region, the wind generates unsteady Gerstner waves. Such

 scenario for the formation of unsteady Gerstner waves seems to

e the most probable in the ocean. 

In 2006 Smith reported striking field observations of mean cur-

ents under wave groups measured in the open ocean [49] : as

ave groups pass, Eulerian counterflows occur that cancel the

tokes drift variations at this surface. The mechanism by which

hese counterflows are generated is not well understood. But if

nly the wavetrains propagate in the presence of the wind, then

e can assume that Smith observed the unsteady Gerstner waves. 
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