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We consider regimes of spontaneous parametric down-conversion, both noncollinear and nondegenerate in
frequencies. Parameters characterizing degrees of noncollinearity and of nondegeneracy are defined, and they are
shown to be not independent of each other. At a given degree of nondegeneracy the emitted photons are shown to
propagate along two different cones, the opening angles of which are determined by the degree of nondegeneracy.
Based on this, the degree of nondegeneracy can be controlled by means of the angular selection of photons, e.g.,
with the help of appropriately installed slits. For such selected photons their wave functions are found depending
on two frequencies or on two temporal variables. Interference effects arising in such states are tested by analysis of
the Hong-Ou-Mandel-type scheme with a varying delay time in one of two channels and with photons from two
channels sent to the beamsplitter. The temporal pictures arising after the beamsplitter are found to demonstrate
extremely strong interference, exhibiting itself in formation of finite-size temporal combs filled with quantum
beats. Parameters of combs depend on the degree of nondegeneracy, and the physical reasons for this dependence

are clarified.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is an
effect which is well known (since 1967 [1-5]) and widely
studied. Nowadays, SPDC sources are widely used throughout
the world, and they can be considered as the main tool of
numerous experiments in the fields of quantum optics and
quantum information. Regimes of SPDC are rather well known
also. They can be differentiated by the type of phase matching
(I or 1), by collinear or noncollinear propagation of emitted
photons, by observation of emitted photons with coinciding or
different frequencies (frequency-degenerate or nondegenerate
processes), etc. In this work we consider a general case when
the type-1 SPDC process is both noncollinear and frequency
nondegenerate. In this formulation the degrees of noncollinear-
ity and frequency-nondegeneracy are not independent of each
other. Rather simple formulas are obtained describing explic-
itly the connection between the parameters of nondegeneracy
and of noncollinearity defined below. The existence of this
connection can be used for controlling the degree of frequency-
nondegeneracy by means of angular selection of photons to
be registered. Such a procedure can be realized with the help
of appropriately installed two or four slits. In these schemes
we find a two-frequency biphoton wave function, parameters
of which are functions of the degree of nondegeneracy. The
double Fourier transformation is used to get the wave function,
depending on two temporal variables which are interpreted as
the arrival times of photons to a detector or to a beamsplitter.
A scheme with the beamsplitter is used for analyzing coherent
features and interference phenomena of the arising states in
the framework of the Hong-Ou-Mandel (HOM) effect. For a
four-slit scheme this effect is found to have a rather peculiar
form, with many oscillations of the coincidence probability
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in dependence on the delay time in one of two channels
and with formation of finite-size temporal-comb structures.
Various aspects of similar analyzes were considered in a series
of works [6—16]. Whenever it is reasonable, the results of the
present work will be compared with those obtained earlier by
us or other authors.

Note that in addition to the fundamental interest to physics
of phenomena arising in frequency-nondegenerate regimes of
SPDC, they can be important also for applications such as,
e.g., IR spectroscopy, because in the extreme cases of very
high degree of nondegeneracy the longer-wavelength emitted
photons can reach the IR diapason [17,18]. This new direction
of investigations is an additional motivation for performing the
general analysis of the frequency-nondegenerate noncollinear
regimes of SPDC presented below.

II. NONDEGENERACY OF CENTRAL FREQUENCIES

In this work we consider only the type-1 phase matching,
which means that the pump propagates in a crystal as an
extraordinary wave and some of its photons decay for two
ordinary-wave SPDC photons, e — o0 + 0. The wave function
characterizing angular and frequency distributions of emitted
photons is well known to have the form

¥ o E,sinc(LA/2), 2.1

where E, and A are the pump field-strength amplitude and the
phase mismatch, sinc(x) = sinx/x, and L is the length of a
crystal along the pump propagation axis 0z. In a general case
both £, and A depend on the angular and frequency variables
of two emitted photons. Let us assume that the spectra of the
pump and of emitted photons are relatively narrow and concen-
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trated around the corresponding central frequencies, wgﬁ = wy

and wic) = wy, (high), and wgc) = w; (low). In a general case

the central frequencies of emitted photons w;, and w; can be
different from each other, though their sum is assumed to be
equal to the pump central frequency, wy, + @w; = wy, which
corresponds to the energy conservation rule. The case o, #
corresponds to the SPDC process nondegenerate with respect
to the central frequencies of emitted photons. The degree
of nondegeneracy can be characterized by a dimensionless
parameter £ (0 < & < 1),

Wy —

§=——,

wp

2.2)

in terms of which
+£ 2me 2%

and 2O = = ,
wp ] 1+ g

wh,l = W (23)

where k:f) and 2 are the central wavelengths of higher-
and lower-frequency emitted photons in dependence of their
spectra on wavelengths rather than frequencies.

III. PHASE MATCHING

Let us consider first the collinear frequency-nondegenerate
case with frequencies of emitted photons equal exactly to wy,
and ;. Then the phase mismatch is given by

No=ky—k —ky = i—”(npwo) —ng@), 3D

p

where k,, ki, and k, are absolute values of the pump- and
emitted-photon wave vectors in a crystal; n,(¢o) is the re-
fractive index of the pump for its propagation strictly along
the z axis; and ¢ is the angle between the crystal optical
axis and the axis 0z. The effective ordinary-wave refractive
index n(e‘;g(g ) is introduced in Eq. (3.1) to reduce it to the
form similar to that occurring in the frequency-degenerate
case, Ageg = 2 /A,)(n, —n,), with n, =n,(2x,) being
the ordinary-wave refractive index. In the nondegenerate case
the effective ordinary-wave refractive index is given by

@y _ LTE (22, 1—& (22,
ng (§) = 5 n0<1+§>+ 5 n0<1_§>. (3.2)
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FIG. 1. The effective ordinary-wave refractive index n( as a

function of the nondegeneracy parameter &.
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FIG. 2. The angle (p(()cc’u)(é) between the crystal optical axis and
the pump propagation direction Oz at which the SPDC process is
collinear but frequency nondegenerate.

Here and below we make all estimates for a BBO crystal of
length L = 0.5cm and pump wavelength A, = 0.4047 um.
For these parameters the dependence n;‘;f) (&§)isshowninFig. 1.

Already from this picture we find that the maximal value of
the nondegeneracy parameter £ leaving emitted photons in the
transparency window of the crystal BBO equals &,,,x =0.9391,
and this value corresponds to the maximal achievable wave-
length of the lower-frequency photon A_ ,x = 13.29 um. A
collinear frequency-nondegenerate regime occurs when the

phase mismatch Ag (3.1) turns zero, or whenn , (¢g) = ngif) (&).

The solution of this equation, <p(()C°“)(?§ ), is shown in Fig. 2.

The curve in Fig. 2 reflects all features of the effective
refractive index shown in Fig. 1. In particular, this curve
confirms once again that the maximal achievable values of the
degree of nondegeneracy &n,,x and of the wavelength A_ .«
of the emitted higher-frequency photon are equal to 0.9391
and 13.29 um, respectively. Also it is worth noting that the
curves neg(£) and 9§ (&) have coinciding positions of their
maximum and minimum, respectively, at £ = 0.8142. In fact,
as we’ll see below, this is a very special point, important
not only for these curves but also for spectral features of
noncollinear nondegenerate biphoton states.

All points at the curve in Fig. 2 correspond to pairs of
parameters (¢, &) at which SPDC is collinear. Thus, compared
to the case of frequency-degenerate SPDC, transition to the
frequency-nondegenerate regimes extends significantly the ex-
istence conditions of the collinear SPDC: the collinear regime
can be realized at any orientations of the crystal optical axis
in the whole interval between (p(()clzﬂ) =0.37734 to gaéclggz =
0.678 486, if only the degree of nondegeneracy is appropriately
chosen. All points above the curve in Fig. 2 correspond to
n,(@o) — né‘;f) (¢) < 0, and this is the region of noncollinear
SPDC. And all points below the curve in Fig. 2 correspond to

1, (90) —n (&) > 0 when SPDC does not exist.

IV. NONCOLLINEAR FREQUENCY-
NONDEGENERATE REGIMES

If Ay = %[n »(90) — n(e‘f'f) (&)] < 0, this negative term can
be compensated by a positive term determined by the first-
order expansion of the phase mismatch in squared transverse
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components of wave vectors of emitted photons,

ki —ko) (11
At == =22 — 4 — ). 4.1
1 m o + o 4.1
In any given plane (x, z),
b4 T~
kipy = =0 %£8)0120 = —bi2x, (4.2)
Ap Ap

where 6, ,, are photon propagation angles with respect to
the Oz axis in a free space after the crystal, and the notation
012 = (1 £&)60, 5, is used instead of ) ,, for shortening
intermediate formulas. In contrast to k; » ., the terms 1/k; and
1/k; in Eq. (4.1) are absolute values of photon wave vectors
in the crystal, with appropriate refractive indices taken into
account, which gives

ki ky  mNe(§)

where the function Neg (&),

(1= 2o (75 )mo (%)
nesr(§) )

Note that at & £ 0 Neg(§) # neg(§),
Rt (0) = no(z)"p)-
The term Ag (3.1) in the phase mismatch can be redenoted

T (gx _gx)z
A= T2 43
4)\11 Neff(%')

Negr(§) = 4.4)

though, Ng(0) =

as

2

Ao = T[np(fﬂo) nE)] =
p

T 63 (&, <Po)
)» Negr(§)

Equation (4.5) is a definition of the function 93 (&, @o) explicitly
given by

(4.5)

05 (&, 90) = 2Neww (§) (n (€) — np(0)). (4.6)

This expression is analogous to that occurring in the case of
frequency-degenerate SPDC [19], 6y = 2n,(ng — n,). Gener-
alization for the nondegenerate case consists in the replacement
of the factor ng in front of the difference (no — n,,) by Netr(§)
and the term n, in this difference by neg(€).

In addition to shortening formulas, reduction of the ex-
pressions for the phase mismatch (4.6) to the form similar
to that occurring in the nondegenerate regime is the main
reason and justification for using the introduced definitions
of the functions Nk () (4.4) and 93(&, @) (4.6). If in the
degenerate case (§ = 0) the quantity 6, has a simple sense of
the cone-opening angle, in the nondegenerate case (§ # 0) the
function 6y (&, @) does not have such a simple interpretation.
But nevertheless, this function is shown below to be related
directly with the cone-opening angles and for this reason it
can be interpreted as the parameter characterizing the degree
of noncollinearity. As for Neg (&) (4.4), it is a monotonously
falling function of £ (from 1.66 at £ =0 to 0.25 at £ = 0.9
for a BBO crystal and A, = 0.4047 um). This dependence of
Negr (&) indicates a general tendency of the below described
decreasing degree of achievable noncollinearity in the region
of sufficiently high degree of nondegeneracy, at§ ~ 0.7 — 0.8
(see Fig. 4).

Differences in interpretation of the function 6y(£) in the
cases of £ =0 and & # 0 will be discussed in more detail
below.

Combined together, Egs. (4.3) and (4.5) give the following
expression for the sinc-function part of the angular biphoton
wave function (2.1):

(@1 — 62> — 463
860(86),

. 51);—52):—290 . glx_§2x+290
~smc|f —— [+ simm¢c| ———— |,
2(80); 2(86);

Weine X sinc[

4.7
where
Ap New — 2p 6o
7L 6, 27L nlo —

80), = (4.8)

p

In the second line of Eq. (4.7) the single sinc function with
the argument quadratic in (6; , — 6,,) is replaced by the sum
of two sinc functions with arguments linear in the sum and
difference of angles «91 y = sz =+ 26,. This is a rather usual
approximation [20], valid under the condition of sufficiently
high degree of noncollinearity, 6y > (50), or

0 Ap 4
néﬁ)—np > —— ~10

L (4.9)

which is easily satisfied.
The sinc parts of the wave function (4.7) have to be
multiplied by the angular part of the pump field strength E,,

2

e (4.10)

E¢ o exp [ LA ]

where w is the pump waist. Both factors together determine
central values of the angles 91 + and Ozx 9“ = 46, and
921 = F6y.But 91 2 are not yet the true propagation directions
of emitted photons. In accordance with Eq. (4.2) the true
propagation directions of emitted photons are given by 6, , =
6o/(1+ &) and 6>, = 6p/(1 —§), or 61 =6p/(1 —§) and
Orx = 0p/(1 +§).

In fact, as the plane (x, z) is arbitrary, these equations de-
termine two propagation cones of photons, the outer and inner
ones, with the cone axes coinciding with pump propagation
direction Oz and with the cone-opening angles equal to

and 6 =0, = ——
; — X
1 , nner + 1 f

In all cases the lower-frequency photons propagate along the
outer cone and the higher-frequency photons along the inner
cone, and in each pair of photons their propagation directions
belong to opposite ends of diameters of the cone section by a
plane perpendicular to the z axis (Fig. 3).

Though the function 8y = 6y (&, @) itself is not an opening
angle of cones for photon propagation, it can be considered
as the parameter characterizing the degree of noncollinearity.
Both cone-opening angles 6, and 6_ (4.11) are proportional to
Oo(&, @o). If 6y(&, ¢o) = 0O, the cone-opening angles are equal
zero too, 8y = 6_ = 0, and photon propagation is collinear.
Oppositely, the larger the value of 6y(&, ¢p), the higher is the
degree of noncollinearity for the outer-cone lower-frequency
photons. As the function 6y(&, @) depends on the degree of
nondegeneracy &, Eq. (4.6) [together with Egs. (3.2) and (4.4)]

Oouter = 0 =

4.11)
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gouter

ginner

FIG. 3. Inner and outer cones and their opening angles (4.11).
Arrows indicate location of photons in a given pair. The azimuthal
angle o can take any values from 0 to 2.

can be considered as the equation establishing connection
between the degrees of noncollinearity and nondegeneracy.

In Fig. 4 the angles 6y, 6., and 6_ are shown as functions of
the nondegeneracy parameter & at a series of values of the angle
¢p between the crystal optical axis and the pump propagation
direction Oz.

The curves of this figure demonstrate two general tenden-
cies. First, with diminishing angle ¢, between the crystal op-
tical axis and the pump propagation direction SPDC emission
exists only in regimes of higher and higher frequency nonde-
generacy, and second, the achievable degree of noncollinearity
in these cases becomes smaller and smaller. This last effect is
related strongly to the behavior of the function Nk (§) (4.4),
which falls significantly and monotonously with growing &. As
Qg(cpg, &) (4.6) is proportional to N (£), diminishing of this
factor makes smaller also both the noncollinearity parameter
63 (@0, €) and the cone-opening angles 6.4, which clarifies the
importance and physical meaning of the function Neg (§).

Thus, for any given £ and ¢, the central frequencies and
cone-opening angles of photons arise in pairs, (@, Ginner) and
(wy, Bouter )- At values of the crystal-orientation angle ¢, not too
close to @ min = 0.377 34 (see Fig. 2), both the cone-opening
angles 6, (&) and central frequencies of emitted photons wy, ; (§)

0_, by, 04 (rad)

0.6 |

FIG. 4. The functions 0_(£), 0, (£), and 0y(£) (dashed lines) at
oo = 0.7(1), 0.5007589(2), 0.46 (3), and 0.39 (4).

0. (a) 0
0.1F /
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A ———— Slits
0.1F \
0_

FIG. 5. (a) Cone-opening angles at ¢y = 0.5007589 and posi-
tions of slits photons providing a given value of the nondegeneracy
parameter & = 0.2. Dashed lines with arrows indicate pairs of slits
through which photons of all given SPDC pairs propagate. (b) The
same in terms of real cones; adjoint slits for photons of given pairs
are indicated by brackets with arrows.

vary continuously with the varying nondegeneracy parameter
&, if its value is not controlled at all. This means that a
general picture of emission from a crystal is multicolored
and multidirectional, like in a rainbow. In principle, as central
frequencies of emitted photons depend on &, one can select
photons with a given value of the nondegeneracy parameter
by installing at the exit from the crystal a spectral filter
with two transparency windows, around w, = a)o% and
W =wy — wp = wo%. This will automatically provide the
angular selection of photons propagating only along two cones
with the opening angles Giner (§) and Oyyer (§) (4.11) and with
£ = 1(wn— ).

Another way of getting the same result is related to angular
selection of photons. As both the cone-opening angles 6_
and 6, and the difference between them depend on the
nondegeneracy parameter &, angular selection can be realized
with the help of slits. An example of a possible slit-installation
scheme is shown in the diagram of Fig. 5. In Fig. 5(a) the
angle between the crystal optical axis and the z axis is taken
equal to ¢y = 0.500 758 9. In this example the SPDC process
is collinear at & = 0 and noncollinear at £ > 0. The slits
are shown installed in positions appropriate for selection of
photons with the nondegeneracy parameter &y = 0.2. The pic-
ture 5(b) represents the same four-slit scheme of measurements
in terms of real cones.
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Spectral features of biphoton states formed by means
angular selection will be discussed in Secs. V and VI. As a
concluding remark for this section, note that in fact, the slit
selection mentioned here and below can mean also selection
by means of other devices, e.g., by appropriately installed fibers
to be used for controlled transportation of photons to detectors,
or beamsplitters, etc.

V. ANGULAR-FREQUENCY AND TEMPORAL
BIPHOTON WAVE FUNCTIONS

Until now it was assumed that photon frequencies coincide
exactly either with wy, or w;. Let us find now corrections to this
approximation, i.e., let us find corrections linear in deviations
from central frequencies,

A(lfreq) — (kp _ kl _ kz)(l)

_ Ap(or+ w2 — ) — Ap(or — o) — Ao — o)

’

c
5.1
where
dk; c dk, c
Ah=C7 :7, A1=C7 == —7
dwl w]=wy V‘(glz) da)z wy=wy Vz(glr)
dk c
A, =c—L =—. (5.2)
P da)P wp=w“ Vélr}')

In these equations, vfg’r'), vg;), and vg) are group velocities of

the pump and of the higher-frequency and lower-frequency
emitted photons.

The frequency contributions to the phase mismatch (5.1) can
be present in a slightly different and somewhat more convenient
form:

AT = AL (01 + w0y — w0) — A_(@1 — w2 —Ewp)  (53)
with

Ap + A

Ay — A
Ap=A,———— and g

2

Note that this expansion becomes insufficient in the limit
& — 0, i.e., in the frequency-degenerate case. In this limit
two emitted photons become identical, their group velocities
coincide, and A_ of Eq. (5.3) turns zero. This means that
in the frequency-degenerate case the dependence of A(ltreq)
on the difference of frequency variables w; — w, disappears,
and to find this dependence one has to take into account
dispersion, i.e., much smaller second-order corrections to the
frequency-dependent mismatch. Such a procedure was used
in the works [21,22]. But in the frequency-nondegenerate
regimes considered in this work, central frequencies and group
velocities of two emitted photons are different from each
other, owing to which the dependence of the mismatch on the
difference of frequencies is present already in the first-order
expansion, and any small second-order corrections are not
needed.

The functions A (&;¢) and A_(&) are shown in Fig. 6.
This picture shows in particular that the function A_ (&) turns
to zero not only at £ = 0 but also at the point £ = 0.8142. As
mentioned above, this point is very special because this is a

A= (5.4)

0.04

0.8142

—0.04 F

FIG. 6. The functions A_(£) and A (o, &), the latter at ¢y =
0.37734(1),0.500578 (2), and 0.7 (3).

point where the curve nqg(&) has its maximum (Fig. 1) and
the curve gag"" (&) (Fig. 2) has its minimum. The significance
of the vicinity of the point & = 0.814 2 for spectral features of
emitted photons will be discussed below in Sec. VI.

Now, with all derivations done, we can write down explicitly
the total angular-frequency biphoton wave function:

[ (o1 +w2—w0)zfz:|
W ocexp|—
2
X ex (gla +§2x)2w27[2 . §1X_§2X_290
P 22 ‘ 2(50),

L
+ %[A-k(wl +wy —wy) — A_(w1 — wp — Swo)]}

X (01 —01) fu(O2x +0-) + (1 = 2),

where 7 is the pump-pulse duration, f; functions are form fac-
tors of slits, and the expression in the last line means repeating
the same that is written in four first lines but with transposed
numbers of angular and frequency variables, 6; , — 6> 1, and
w12 — 1. Note also that the wave function of Eq. (5.5)
corresponds to measurements in a single given plane (x, z)
and, for simplicity, for the case of opening only two slits of
four shown in the scheme of Fig. 5. The two-slit scheme of
measurement is shown schematically in Fig. 7. Generalizations

(5.5)

Slit

FIG. 7. A two-slit scheme of measurements in a given plane (x, z).
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for the case a four-slit scheme of Fig. 5 will be discussed later
after a series of simplifications.

Let us assume now that slits have a width (§0),; smaller than
(660)r. Under this condition the terms with angular variables
in the argument of the sinc function are on the order of
(80)1/(88) < 1, owing to which these terms can be dropped.
Moreover, if we are not interested in detailed analysis of narrow
angular distributions of photons after slits, we can roughen our
description by indicating only directions of photon propagation
at positive or negative angles 6,. Mathematically, this means
that the product of slit form factors f; (6, — 64) fs (62 +6-)
can be replaced by the product of two columns, 81) . (122, with
the upper and lower lines corresponding to 6, > 0 and 6, < O.

At last, let us use also the approximation of long pump
pulses, T > t,,, where 7,, = L|A|/2c is the characteristic
time related to the difference of group velocities of the pump
and of the emitted photons. An estimate at A, ~ 0.3 [see the
curves for A, (§) inFig. 6] gives 7, ~ 0.1 ps. Hence the pump
pulses can be considered as long in the picosecond or longer
ranges and the pulses are short in the cases of femtosecond
durations. The case of long pump pulses corresponds to small
values (~7, /T < 1) of the terms o< A, v, in the arguments
of sinc functions in the expression of Eq. (5.5).

A simplified in this way, two-frequency wave function takes

the form
1 0
LIl(('l)lv wz) = q)(wla 0)2)<0) (1)
1 2

0 1
T D, >()()
wzwllloz

(w1 + wr — wo)zfz]
2

(5.6)

where

O (wr, w3 §) o exp [—

LA .
e (W) —wy — Swo)] e (5.7)

X sinc[

with Ar being the delay time of photons moving in the region
of positive 6. This delay time is introduced here for analyzing
in the following section the HOM effect and its peculiarities
arising owing to nondegeneracy of the SPDC process.

The two-frequency wave function of Egs. (5.6) and (5.7)
can be used for finding the temporal wave function W(zy, t,),
defined as the Fourier transform of W(wq, w;):

@Uhh)=w/dwuwnw&m,wﬁéwm+w”% (5.8)
where the temporal variables #; and #, can be interpreted
as the arrival times of emitted photons to the detector or a
beamsplitter. To make integrals in (5.8) calculable analytically,
we model the function sinc(x) by the Gaussian function
e~ with the fitting parameter o = 0.192 92 found from the

condition of equal FWHMs. The result of integration can be
presented in the form

Ef(rl,rz)=N{F(r1,rz)((l)) <(1)) +F<rz,r1><(1’> (é) }
1 2 1 2

(5.9)

where N is the normalizing factor and the function F(t;, 1) is
given by
F(t, 1)

= exp |:i€;0(t1 —h+ At)]

[(n+m+AN (ty — ta + At)?
X exp | — —

812 daL2A% /c? i| ©-10)

Normalization of the wave function \T/(tl, 1) is determined
by the condition f dtdt, W (1, )W (1), 1,) = 1, which gives

—172
N = <2/dlldt2|F(t1,l2)|2> .

VI. HONG-OU-MANDEL EFFECT IN THE CASE OF
FREQUENCY-NONDEGENERATE NONCOLLINEAR
BIPHOTON STATES

(5.11)

As in the usual HOM effect [23], let us assume that photons
from the slit with 6, > 0 and 6, < O are sent to the 50%—-50%
beamsplitter (BS) under the angles 45° from opposite sides.
Then the beamsplitter makes the following transformation of
two-column parts of the wave function of Eq. (5.9):

(,0).316),6).- ).
[0).0,-().6),]

(1),6),216),6),- (),0)
~3[00),0).-0) o) )

The first terms after the symbol “=" in Egs. (6.1) and (6.2)
correspond to unsplit SPDC pairs in which both photons of
biphoton pairs propagate together in one of two directions
after BS, whereas the terms in the second lines of these
equations correspond to split pairs in which one photon of
a pair propagates after BS in one direction and the second
one in other direction, orthogonal to the first one (see Fig. 8).
Probabilities of getting unsplit or split pairs after BS are
measurable experimentally by counting numbers of photons
either in each of two channels separately or in the coincidence
scheme in both channels simultaneously. In the ideal HOM
effect the coincidence signal and the probability of splitting
turn zero owing to interference, and such cancellation occurs

S/
NN

Split

=

Unsplit

FIG. 8. General possibilities of splitting or propagating unsplit
for biphoton pairs after BS.
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if the incidence photons have identical features (polarization
and frequencies) and arrive to BS simultaneously [23]. Any
deviations from these conditions diminish the efficiency of
interference and make the coincidence signal different from
zero. In the case of noncollinear and nondegenerate SPDC,
which we consider here, both frequencies of photons and their
arrival times are not strictly given but rather are somewhat
uncertain. This is the reason why the analysis of modifications
of the HOM effect for such cases is interesting and can give
nontrivial results.

In accordance with the form of the temporal biphoton
wave function before the beamsplitter (5.9), the probability
amplitudes of these processes are given by

Aunsplit, split (1, 12) = %[F(ll, 1) £ F(tz, 11)]. (6.3)
The squared absolute values of these amplitudes determine the
differential probability densities of the process

d Waynsplit, split
dtidt

and the total probabilities are given by integrals over arrival
times of both photons,

= | Aunsplic, split (11, 22)1%, (6.4)

d Wunsplit, split
dtdt,

Calculation of integrals is straightforward and the final result
for the two-slit scheme of Fig. 7 is given by

1 E20ial?A2
(At) = 5 1 :I:exp —T

Ar?
o exp C2aL2A? /e ||

Arising in this scheme are dependencies of the probabilities of
splitting photon pairs after BS, w (A1), shown in Fig. 9, at
a series of values of the nondegeneracy parameter &.

The curve (1) in Fig. 9 corresponds to a very small degree
of nondegeneracy, £ = 0.01, and it describes the normal HOM
effect: owing to interference, the probability of getting split

pairs almost vanishes at zero delay time At = 0, but at longer

Wunsplit,split = /dtldt2 (6.5

2 slits
unsplit, split

(6.6)

0.1F

—150 — 100 —50 0 50 100 150

FIG. 9. Probability of splitting photon pairs at the beamsplitter
(BS) vs the delay time At in the channel 6, > 0 at £ = 0.01 (1),
0.025(2),0.03 (4), 0.035 (4), and 0.04 (5).

|At] it rises up to the level of 0.5. This last case corresponds
to accidental reflection from or propagation through the beam-
splitter for each photon independently of another one and with
no interference. As clearly seen from other curves of Fig. 9, the
increasing degree of nondegeneracy & destroys very quickly
the HOM effect in the two-slit scheme of measurements by
diminishing the dip of the curves wgii*(Ar). Already at
£ = 0.04 the curve wg i (At) becomes almost flat, practically
without any dip at At = 0, which indicates that in this case
interference is almost completely missing.

The picture is absolutely different in a scheme of mea-
surements with four slits presented at Fig. 5. Mathematically,
addition of the second pair of slits corresponding to the
same value of the nondegeneracy parameter £ means the
following: if for one pair of slits the wave function is W(§),
for two pairs of slits it will be equal to W(§) + W(-£&).
By applying this rule to the wave function of Egs. (5.9)
and (5.10), we find that in the case of four slits Eq. (5.9)
does not change, but in Eq. (5.10) for the function F(ty, 2)
the exponential factor exp [’5%01 — t, + At)] is replaced by

cos [s%(tl — b + At)],

F*S(1 1) = cos [&2"001 — b+ At)]

 exp | — (t1+1r+At)? _ (ty — ta + At)?
P 812 daL2A% /c?
6.7)
This “small” change significantly changes final formulas and
following from them results. But the general procedure of
calculations remains the same as described above in the

beginning of this section. So, again, with details of integrations
dropped, we find the final result to be given by

(A1)

4slits
unsplit,split

1{1 Lo |: At? :|
= — xp| ———
2 P 20L2A% /c?

cos(Ewy A1) + exp (—&*wia L* A% [2¢?) ©6.8)
X , .
1+ exp (—&2wiaL2A% [2c?)

w

1 : T P 4 slits 4slits _
with the correct normalization condition Wynsplie T Waplie. = 1.

In experiment, for finding these probabilities one has to
measure the numbers of both split and unsplit pairs, Ny and
Nunsplic- Then the probabilities w wic are defined as

unsplit
N split

unsplit

— =
N, split + N, unsplit

and this procedure is valid for both two-slit and four-slit
experiments. The most interesting and typical curves of the
dependence w;‘pslliitts( At) (6.8) are shown in a series of pictures
in Figs. 10 and 12. The curve (a) in Fig. 10 is plotted at the
same value of the nondegeneracy parameter & = 0.04 at which
in the two-slit scheme the HOM effect disappears [Fig. 9, curve
(5)]. The difference between these two curves shows clearly
that the addition of photons from the second pair of slits returns
interference to the biphoton state under consideration. A deep

interference dip at At = 0 is present both at £ = 0.04 and at

(6.9)

W split =

unsplit
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0.1F wislits (A

split

()

0.5+

WUAt

—-300 0 300

U W()AT,

—600 0 600

0.5

L«)()Al,
1

3000 0 3000

FIG. 10. The probability for biphoton pairs to be split after
beamsplitter for a four-slit scheme of measurements in dependence
on the delay time Ar (in units of 1/wy) for five values of the
nondegeneracy parameter £:0.04 (a), 0.1 (b), 0.6 (c).

higher degrees of nondegeneracy. At all values of the parameter
£ and in all curves of Fig. 10 wl§i®(Ar = 0) = 0.

Note that there is an evident similarity between the effect of
returning interference (at Atz = 0) in the four-slit scheme while
it’s missing in the scheme with two slits and an analogous effect
occurring in a much simpler case of purely polarization states
[24]. If photons coming to the BS simultaneously from top
(r) and from bottom () have identical given frequencies wg/2

but different orthogonal polarizations, H (horizontal) and V

(vertical), and if the incoming state vector is aL,aI, » |0), then
interference is missing, and the probabilities of getting split and
unsplit pairs after BS are equal, wgplit = Wungplic = % If, how-
ever, the incoming state vectoris %(a}ﬂa{,b + ai,la}{b) |0}, in-
terference returns and this results in wgp = 0 and wypspiic = 1.
Addition of the second term to the state vector in this example
is analogous to opening the second pair of slits in the scheme
of Fig. 5 compared to the two-slit scheme of Fig. 7.

A new effect differing the four-slit scheme from the two-slit
one is the appearance of oscillations in the dependencies
Wi (Ar) at & >0.04 and formation of the comb-type
structures. If curve (a) of Fig. 10 (at & = 0.04) can be
considered only as a hint for possible existence of the
oscillation regime, the curve (b) shows that already at £ = 0.1
oscillations are pretty well pronounced. With further growth
of the nondegeneracy parameter £ the number of oscillations
increases as well as the region occupied by them. The curve (c)
illustrates the regime of extremely high number of oscillations
occurring at £ = 0.6.

Note that the curves (b) and (c) of Fig. 10 are similar, to some
extent, to the curves of Fig. 4 of the work [10], though there
are big differences both in the problem formulation and in the
meaning of curves. In our formulation the pictures of Fig. 10
characterize the probability of observing split biphoton pairs
after BS summed over both photon arrival times #; and #,. This
picture is valid only for the four-slit scheme of measurements
and we consider here only the traditional HOM scheme with
a single BS and a single varying temporal delay in one of
two channels before BS. In our description parameters of the
temporal wave function and of the probabilities wjsis
are related to the degree of noncollinearity of SPDC and
expressed in terms of the function A, (&) determined by the
difference of the photon group velocities in a crystal. In the
work [10] the authors consider a model two-frequency wave
function in the frame of the dual-delay scheme with more than
one beamsplitter and more than two propagation channels.
Besides, the curves in Fig. 4 of [10] characterize the expected
coincidence signal between photons coming from two different
beamsplitters. Resemblance of our results with those of [10]
occurring in spite of these differences is rather interesting
and it emphasizes universality of the underlying interference
phenomenon which shows up itself in similar ways at rather
pronouncedly different conditions. Moreover, probably it can
be said that to some extent the dual-delay scheme with two slits
imitates the situation occurring in the scheme with four slits.

In fact, the number of periods of well-pronounced oscilla-
tions in the curves of Fig. 10 is controlled by relation between
their period

2w _271

_— = (6.10)
wp—w;  Ewy

Tose =

and the time T}, it takes for the probability wiji*(Ar) to reach
the regions where wiii® ~ 1/2. The time T}, is determined

by the first exponent on the right-hand side of Eq. (6.8),

LA_(§) faa [ L L
Tl/2 = Tgecoh = V20— = [ — OO A (6.11)
¢ 2\vg? vy
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wolose

0.1 0.3 1 0.5

80 | (b)

wol12

20
woTose

1 1
0.8142 ¢

0.812 0.816

FIG. 11. Oscillation period of the curves in Fig. 10 (6.10) and
the time it takes for wfljlii‘“(At) to reach the level 1/2 (6.11), both
in units of w; ': (a) in the region of small and medium values of
the nondegeneracy parameter & and (b) in a small region close to

£ =0.8142.

The time T}/ = Tyecon is on the order of the difference between
times required for the higher- and lower-frequency photons
to propagate from the beginning to the end of the crystal
in which they are produced. This time can be referred to as
the decoherence time, because at At > T, both probabilities
wisi® (Ar) and wiis (Ar) become equal, and equal to 1/2.
This is the case when both photons of all biphoton pairs
behave as independent particles showing no coherence or
interference.

Returning to the oscillation regimes of the HOM effect,
it is evident that the number of observable oscillations is
determined by the ratio of the duration of the oscillation regime
to the period of oscillations, 712/ Tosc. Both T1 and Toe
are shown in Fig. 11(a) (in units of wy 1 as functions of the
nondegeneracy parameter &.

It is clear that there are no oscillations in the region of very
small values of £ because in this case Tosc > T2, i.e., the
period of hypothetically possible oscillations is much longer
than the region where they can exist. It is clear also that
oscillations start appearing at Tosc ~ T1/2, which corresponds
to & ~ 0.05, in agreement with curve (a) of Fig. 10. At last, in
the region of a higher degree of nondegeneracy (§ > 0.1) the
ratio T2/ Tosc and the number of observable oscillations are
high and are growing with growing &.

However, an interesting effect occurs when the nondegen-
eracy parameter £ is even higher and approaches the point

L “";lpslliitts
(a)
0.5F
] ]
—40 0 40 woAt
0.7t Wi
(b)
0.5
UJUAL
— 10 -5 0 5 10

FIG. 12. The function wiji®(Ar) (6.8) at & =0.813 (a) and
0.814 (b).

&) = 0.8142 where the function A, (£) turns zero (see Fig. 6)
(precisely, for a BBO crystal and at the chosen wavelength,
& = 0.814 165). Close to this point the decoherence time 77>
becomes very small and can become comparable again with
the oscillation period T,s, Which can be seen in Fig. 11(b)
where the times 7, and T are plotted as functions of £ in a
small vicinity of the point &y. The behavior of the probability
w;‘pﬁliit‘S(At) in this region of the nondegeneracy parameter & is
illustrated by two pictures of Fig. 12, which look very similar
to the first two curves of Fig. 10.

However, in spite of similarity, there is a rather well-
pronounced difference in scaling of curves in Figs. 10 and 12.
For example, if the distance between two peaks in Fig. 11(a)
equals §(wgAt) = 140, in the similar curve in Fig. 12(b)
8(woAt) = 6.7, i.e., in fact the curve of Fig. 12(b) is 20 times
narrower than the curve of Fig. 10(a).

At a little bit higher values of the nondegeneracy parameter
&, e.g., at £ =0.841, any oscillations disappear and the
curve wgi®(Ar) describes the conventional HOM effect: a
narrow dip followed by a smooth monotonous transition to the
level 0.5 at growing |At|. Of course, exactly at the point &
both functions A_(&) and 7),,(£) turn to zero and the used
derivation becomes invalid. In this case, like in Ref. [21],
one has to take into account in the frequency phase mismatch
(5.3) the dispersion term, quadratic in the difference of photon
frequencies (w; — wy — Ewy). But this region is expected to be
very narrow and not changing the main tendency of decreasing
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the number of oscillations, their disappearance and return to
the conventional HOM effect in the vicinity of points where the
decoherence time T/, becomes small. On the right-hand side
of point &, the described evolution of the HOM-effect curves
repeats that discussed above and shown in Fig. 12, though in
the inverse order: at values of & only slightly exceeding &,
the curve has the form of the conventional HOM structure
with no oscillations; then, at somewhat larger values of &,
oscillations appear and their number grows quickly with a
growing parameter &.

For completing the discussion of features of the decoher-
ence time, or time 77,2, note that in the region between those
corresponding to the pictures (a) and (b) in Fig. 11 the curve
woT1/2(§) achieves a local maximum wo71/210c max ~ 1250 at
& = 0.62. Maybe more interesting, in the region & > &; the
function w71/, (&) grows very quickly up the enormous level
of ~ 10° achieved at the border of the transparency window
for a BBO crystal occurring at &m,x = 0.9391 and A_ p, =
205 /(1 = &max) = 13.29 um (see Fig. 1 and the discussion
around it).

Note that oscillations in the dependencies on the delay time
At of the coincidence signals after BS have been observed
experimentally [6], mostly for the type-II phase-matching
regimes. However, as we know, formation of the finite-size
temporal combs of Figs. 10 and 12 has never been seen in
experiments. In this context, the main qualitative difference be-
tween the type-I and type-II phase-matching regimes concerns
the group velocities of the emitted photons. In the type-II case
the difference between the ordinary-wave and extraordinary-
wave emitted photons is intrinsically present, even in the
frequency-degenerate regime, owing to which v # v{) even
at £ = 0, whereas in the type-I case the difference between
the group velocities arises only in the nondegenerate regimes
with & # 0. As the difference of group velocities is essentially
important for formation of the comblike structures in the type-I
regimes, existence of such or similar results in the type-1I
regimes requires a special analysis to be done and reported
elsewhere.

Also, multiple oscillations in the HOM-type distribu-
tions were found to occur in the theoretical description of
a scheme with a series of additional intermediate devices
for transformation of the noncollinear frequency-degenerate
biphoton states produced in SPDC with the type-II phase
matching

Note also that, in principle, the general expressions (6.6)
and (6.8) for the probabilities of getting split and unsplit pairs
in both two- and four-slit schemes of measurements could be
obtained directly from the two-frequency wave function of
Egs. (5.6) and (5.7) and from their extension for the four-slit
scheme. The temporal wave functions used above provide
additional information about the dynamics of evolution of
biphoton states. In particular, the temporal wave function of
Egs. (5.8)—(5.10) can be used to describe the coincidence dif-
ferential probability density dw'®) /d(t; — t,) inits dependence
on the difference of the two photon’s arrival times 7} — 1,.
For the four-slit scheme of measurements the probability
density dwfs)lits/d(tl — 1) is given by the integrated over
t) + t, squared difference of the functions F**(¢;, t,) and

(e)
dwy 546

m (arb.um'ts)

Ay oltmh)

—400 400

il

—UJOAt 0

woAt wo(ty — t2)

FIG. 13. Foursslit coincidence differential probability dg;i®
d(t;—1,) (6.8) as a function of wy(t; — t,) at& = 0.1: (a) wy At = 100

and (b) woAt = 300.

F4S(5y 11) (6.7):

t—t + At)2:|
- _imh Al

daL2A? /c?

cos [5(200(11 -+ At)j| exp |:

(- At)2:| 2

daL2A% /c?

— cos [g;uo(tl —th — At)] exp |:
(6.12)
The dependence of d wffs)ms /d(t; — 1) on t; — 1, is pre-
sented in two pictures in Fig. 13 for two different values of the
delay time Ar # 0. These pictures indicate a well-pronounced
oscillatory structure of the coincidence probability density.
Durations of individual narrow peaks in these curves w5t
are on the order of Ty (6.10), determining the period of oscil-
lations in the dependence of the total coincidence probability
on the delay time At [Eq. (6.8) and Fig. 10]. The widths of
combs in Fig. 13 are on the order of the decoherence time
of Eq. (6.11). Positions of central peaks of the well-separated
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combs in Fig. 13 correspond to #; — #, = £At. The two combs
are well separated if At > Tyeon, and they merge into a single
comb at At < Tyecon- At At = 0 Eq. (6.12) gives immediately
d w‘{t(:lils — O
dti—n) —

In the case of a two-slit scheme, the coincidence probability
density d wgcs)ﬁts /d(t; — 1) 1is determined by the integrated over
t) + t, squared absolute value of the difference F>*i(¢,, t,) —
F?8 (2, 1) with F251(¢, | 1,) given by Eq. (5.10). The result
can be reduced to the form

(c) 2 2
. t —t At
2slits 2exp |:_(122)2+2i|
d(t, — 1) 2aL A_/(,
(Hy — b)At
x {cosh I:aLZAz_/cz] —cos [Ewy(t) — fz)]}-

(6.13)

The dependence of d wgfjms /d(ti — 1) on t; — t, determined

by Eq. (6.13) is shown in Fig. 14 for three different groups of
parameters & and wyAt.

(e)
dw,
% (arb.units)
1.5
1.0 (@)
0.5 |
L L W()(tl — tz)
—600 —300 0 300 600
0.6 |
(b)
031
. 1 w()(tl _ tz)
—500 0 500
(c)
1.0
0.5
‘ : wo(ty — t2)
0 400 00

FIG. 14. Two-slit coincidence differential probability dgji*

d(t;—1) (6.8) as a function of wy(f; — 1) at (a)§ = 0.1, woAt =
100, (b)é = 0.1, wpAt = 200, and (c) & = 0.2, wyAt = 200.

The curves indicate the appearance of many oscillations
and, generally, their structures are determined by interplay
of three characteristic time parameters, the decoherence time
Tyecon (6.11), period of oscillations Tys. (6.10), and the de-
lay time Atr. The regime with many oscillations forming
a single temporal comb in picture (a) of Fig. 14 keeps
almost the same form even at Ar = 0, which differs from
the case of a two-slit scheme from the four-slit one where
dass/d(n — tz)‘ _, =0, as clearly seen from Eg. (6.12).
Note that the curves of Fig. 14 strongly resemble those of
Ref. [25], which were found, however, for absolutely different
variables and distributions: for coincidence distributions of
photons in transverse coordinates at the crystal exit, i.e., in our
notations, for the function dw'© /d (x; — x,) versus x; — x,.In
principle, such distribution could have nothing in common with
the above-described coincidence temporal distribution after
transformation at the beamsplitter. But the results look very
similar! We believe that this similarity shows that our results
summarized in Fig. 14 and the results of Ref. [25] have the same
origin related to coherence intrinsically present in biphoton
states and showing up itself in different possible schemes of
measurements in the predicted coincidence interference plots
with many oscillations.

Note also that seeing experimentally oscillations in de-
pendencies on f; —f, may be a problem for present-day
technologies because this would require photon counters with
femtosecond temporal resolution that do not exist now. If,
however, temporal resolution of counters is longer than the
period of oscillations T but shorter than the delay time Af
and the decoherence time Tyecon (6.11), one will be able to
see in experiments smooth envelopes of the curves in Fig. 13,
described theoretically in our previous work [24].

VII. CONCLUSION

As a resume, the following main results were obtained in
the framework of the carried out systematic general analysis of
the noncollinear nondegenerate SPDC process. The degrees of
nondegeneracy and noncollinearity of SPDC processes were
characterized, correspondingly, by the parameters & = “"‘—‘0“”
(2.2) and 6 (4.6). These parameters were found to be related
to each other just by Eq. (4.6) combined with the definitions of
the effective refractive indices ng (3.2) and Neg (4.4). At given
values of & and of the angle ¢y between the crystal optical axis
and the pump propagation direction 0z, SPDC emission has a
two-cone form, with the higher-frequency photons propagating
along the inner cone and the lower-frequency ones along the
outer cone, as shown in Fig. 3. The opening angles of cones are
given by Ginner, outer = 60(§, ¢0)/(1 £ &). If the nondegeneracy
parameter & is not controlled at all, all different emission cones
exist together and the SPDC emission has a complex multicolor
and multidirectional form. As shown, a much simpler double-
cone structure corresponding to some chosen value of the
nondegeneracy parameter £ can be obtained by means of the
angular selection. In the simplest case of measurements in
any given plane (x, z) containing the pump propagation axis
Oz, the angular selection can be realized by installation of
slits as shown in Figs. 5 and 7 (four- and two-slit schemes,
correspondingly). For these schemes we found the biphoton
wave function depending on two frequencies of photons w; and
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s, localized in small vicinities around the central frequencies
wy, and w;. Parameters of this wave function depend on the
degree of nondegeneracy £ or, in other words, on the location
of slits.

Fourier transformation in both frequencies w; and w, gives
the temporal biphoton wave function, arguments of which are
two arrival times of photons #; and #, to detectors or to a
beamsplitter. In schemes of measurements in a given plane
(x, z) the delay time At is assumed to be introduced in one
of two (or two of four) channels for photons coming to the
beamsplitter from one of two sides, and in this way the HOM
effect is analyzed in detail for nondegenerate noncollinear
regimes of SPDC. In the two-slit scheme the nondegeneracy
is shown to be destroying the HOM effect: the HOM dip at
At = 0 is shown to disappear rather quickly with a growing
degree degree of nondegeneracy £ (Fig. 9). In contrast, in
the case of the four-slit scheme the HOM dip at Ar =0 is
found to be present at any degrees of nondegeneracy. This
means that the transition from the two-slit to four-slit schemes
returns coherence of biphoton states lost in the two-slit scheme
at £ > 0.04. Coherence of biphoton states in the four-slit
scheme shows itself also in multiple oscillations of the integral
probabilities of getting divided photon pairs after BS (Figs. 10

and 12). The period of oscillations (6.10) is related to the
inverse difference of the central frequencies w;, and w;, and
the amount of observable oscillations is controlled by the
decoherence time (6.11) determined by the difference of the
group velocities of the higher- and lower-frequency photons
and, consequently, by the difference of propagation times of
these photons in the crystal.

Oscillations of the same type occur not only in the integral
probabilities (integrated over the arrival times #; and ;) but
also in the probability densities of dw/d(f; —t,) in their
dependence on the difference of the arrival times ¢, — t;
(Figs. 13 and 14). The most interesting result of this part is the
formation of finite-size temporal combs filled with multiple
oscillations inside.

We believe that the described results reveal rather interesting
and important fundamental features of biphoton states related
to their coherence and showing up themselves in the temporal
interference structures described above.

ACKNOWLEDGMENT

The work was supported by the Russian Science Founda-
tion, Grant No. 14-02-01338.

[1] D. N. Klyshko, JETP Lett. 6, 23 (1967).
[2] S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev. Lett. 18,
732 (1967).
[3] D. Magde and H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
[4] D. A. Kleinman, Phys. Rev. 174, 1027 (1968).
[5] D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84
(1070).
[6] Y. H. Shih and A. V. Sergienko, Phys. Rev. A 50, 2564 (1994).
[7] M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko,
Phys. Rev. A 50, 5122 (1994).
[8] H. G. de Chatellus, A. V. Sergienko, B. E. F. Saleh, and M. C.
Teich, Opt. Express 14, 10060 (2006).
[9] P. A. Volkov, Yu. M. Mikhailova, and M. V. Fedorov, Adv. Sci.
Lett. 2, 511 (2009).
[10] A.F. Abouraddy, T. M. Yarnall, and G. Di Giuseppe, Phys. Rev.
A 87, 062106 (2013).
[11] F. A. Beduini, J. A. Zieliiska, V. G. Lucivero, Y. A. de Icaza
Astiz, and M. W. Mitchell, Phys. Rev. Lett. 113, 183602 (2014).
[12] P. S. Kuo, Th. Gerrits, V. B. Verma, and S. W. Nam, Opt. Lett.
41, 5074 (2016).
[13] A. E. Ulanov, I. A. Fedorov, D. Sychev, Ph. Grangier, and A. 1.
Lvovsky, Nat. Commun. 7, 11925 (2016).

[14] X. Guo, Ch. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang,
Light: Sci. Appl. 6, 16249 (2017).

[15] A. M. Brariczyk, arXiv:1711.00080.

[16] P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, C.
Silberhorn, and T. Meier, Phys. Rev. A 96, 043857 (2017).

[17] D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A.
Krivitsky, Nat. Photon. 10, 98 (2016)

[18] G. Kh. Kitaeva and V. V. Kornienko, Int. J. Quantum Inf. 15,
1740024 (2017).

[19] M. V. Fedorov, Phys. Rev. A 97, 012319 (2018).

[20] M. V. Fedorov, Phys. Scr. 90, 074048 (2015).

[21] Yu. M. Mikhailova, P. A. Volkov, and M. V. Fedorov, Phys. Rev.
A 78, 062327 (2008).

[22] G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M.
Gramegna, and S. P. Kulik, Europhys. Lett. 87, 64003
(2009).

[23] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044
(1987).

[24] M. V. Fedorov, A. A. Sysoeva, S. V. Vintskevich, and D. A.
Grigoriev, Laser Phys. Lett. 15, 035206 (2018).

[25] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C.
Teich, J. Opt. B 3, S50 (2001).

013850-12



