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Abstract

The present paper is devoted to the investigation into the nonlinear dynam-
ics of Twitter. A new model of Twitter as a thermodynamic non-equilibrium
system is suggested. Dynamic variables of such system are represented by
the variations of tweet/retweet number and instantaneous diversity between
the densities of population on different levels around the equilibrium val-
ues. Regular and chaotic states of networks are described. It is pointed out,
that the system is in a condition of an asymptotically stableequilibrium
when the intensity values of an external information are small (the number
of tweets eventually tends to its equilibrium value). If theintensity values
of external information exceed the critical value, then thechaotic oscilla-
tions of tweets are to be observed. We have made the calculations of the
correlation dimension and embedding dimension for the dynamics of the 10
most popular @ (TOP 100 by data of Twitter Counter). The results show,
that all observed time series have clearly defined chaotic dynamical nature.

©2018 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

From the second half of the XX century the general trend of science development is the penetration of the ideas
and methods of physics in natural and traditional humanities disciplines. Methods of physical modeling are
often used in sciences such as demography, sociology and linguistics.

In the middle 1990s there was an interdisciplinary researchfield, known as Econophysics, applying theories
and methods originally developed by physicists in order to solve problems in economics, usually those including
uncertainty or stochastic processes and nonlinear dynamics. The term “econophysics” was coined by H. Eugene
Stanley, to describe the large number of papers written by physicists in the problems of (stock and other) markets
(for econophysics reviews see refs. [1–3]).

Physicists’ interest in the social sciences is not new; Daniel Bernoulli, as an example, was the originator of
utility-based preferences. Sociophysics is the study of social phenomena from a physics perspective, often using
the human atom, social atom, or human particle perspective (for sociophysics reviews see refs. [3,4]). The main
objective of this new field of natural science consists in theresearch of objectively measured and formalized
laws that define various social processes.

The present paper is devoted to the investigation into the nonlinear dynamics of Twitter as a thermodynamic
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non-equilibrium system. Our interest in this problem mainly stems from the hypothesis that the Twitter time
series results from an inherently low-dimensional chaoticprocess.

The main objective of the present paper is an investigation into the regular and chaotic states of Twitter.
To achieve this goal the following research tasks were defined:
1. Building of the non-equilibrium macroscopic Twitter model in the form of the system of ordinary differ-

ential equations of the first order.
2. Investigation into the forming of the regular and chaoticorders of Twitter system operation depending on

its control parameters values; definition of essential conditions for the change from one order to another.
3. Determination of the correlation dimension for a supposed chaotic process directly from experimental

Twitter time series.
There are a number of works in the field of physical modeling ofsocial networks. The main physical models

of the social networks are as follows.
1. Ising model [5–7].
2. Bose-Einstein Condensate model [8,9].
3. Quantum walk model [10].
4. Ground state and community detection [11].
Other relevant work in this area is that of refs. [12–15].
This paper is organized as follows. In section 2 we present the definition of Twitter as a complex dynamic

system of the thermodynamic type and relevant background. In section 3 we present the nonlinear dynamic
model of Twitter, including the definition of regular and chaotic state of the social network. In section 4 we give
the numerical results of correlation dimension and embedding dimension from Twitter time series. In section 5
we conclude this paper.

2 Twitter as a thermodynamic system

In brief, Twitter is an online social networking service that enables users to send and read short messages
called “tweets”. Tweets are publicly visible by default, but senders can restrict message delivery to just their
followers. Users may subscribe to other users’ tweets - thisis known as “following” and subscribers are known
as “followers” or “tweeps”, a portmanteau of Twitter and peeps. Individual tweets can be forwarded by other
users to their own feed, a process known as a “retweet”.

We suppose that the social network can be considered as such dynamic system of a thermodynamic type [16]
that can produce aggregated factors (flows) out of joint activity of individual interests. These flows start to
appear on a macro-scale and work according to laws of determined ties and relations. It can be assumed that
such network is homeomorphic to the dynamic systems of a hydrodynamic type (from the viewpoint of the
generalized macroscopic flows). Therefore, if there are so-called interacting colliding flows in such systems,
then as a rule there can appear the phenomenon of generalizedturbulence that generates the crisis mode in
development of such dynamic systems.

At present time some attempts to include the social dynamicswithin the scope of theoretic approaches which
work well enough within the natural sciences are being implemented. Such attempts were multiple. However,
owing to specifics of the research subject, different scientists have different understanding of the question on how
to implement the applied mathematics to model the sociological reality. It turned out that the direct application
of existing mathematical constructs to the social dynamicswas ineffective. Moreover, there is no definition of
social dynamics, such as one of, for example, electrodynamics.

The practice of building of mathematical constructions which could efficiently model the dynamics in var-
ious physical systems and processes shows that the appropriate mathematical model becomes adequate (to one
extent or another) to an original. This happens when all its characteristic properties are being derived out of
the features and structure of that kind of movement, which forms the system dynamics. Correctness of such
methodological principle when building new theories was brilliantly shown by J. Maxwell by way of creating
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the classic thermodynamics.
Large and effective experience of the preceding physics-mathematical modeling makes the following method-

ological specification: there are no ready formalisms in mathematics, which could be immediately applied to
description of a new “dynamics”. In fact, it turns out that for every new type or class of dynamical structures
it is necessary to make a new construction of mathematical formalisms, which could be relevant its matter and
peculiarities of its “dynamics”.

Further we will concentrate on a special class of complex dynamic systems, which is called thermodynamic
systems (TS) [16].

Complex thermodynamic systems are the systems made of the large number of approximately single-type
elements (“atoms” or “users” for Twitter). Interaction between such elements occurs under the definite ontoge-
netic law. Kinematics and dynamics of such systems depend ona “life story” (or individual “life lines”) of every
element within such system.

There are 3 structural levels of functioning for this systemtype. The first one is a level of micro-local
dynamicsS0, where the local interaction of every element (“user”)ai ∈ Λ with any other system element is
being under consideration. This level is an ontogenetic level of a system, which generates all other dynamic
effects there.

In second, aggregative (“reductive”) information structure S1 follows theS0-level. It is reasonable to call it
the system mesodynamics [17]. It is shown by the averaged kinematics and dynamics of any its element. An
intermediate dynamics of such system type is as a rule represented by the kinetic equations of the Boltzmann
type in the molecular-kinetic theory.

Finally, if there are the functions of the system state that are defined in a phase space of a complex dynamic
system, then it is possible to get the macroscopically observed expressions of explored systems by means of
averaging them over the individual and meso-stories. Such empirically defined artifacts are usually marked by
the term “observed”.

Let the macroscopic observable that is numerated by indexα ∈ Λ and related to the time pointt ∈ T, be
xα (t). Let’s unite the set of all simultaneously observed dynamicvariables{xα (t)} into a single complex:

x(t) = 〈x1 (t) ,x2 (t) , ..., xα (t)〉 . (1)

And let’s consider it as a factor characterizing the global macroscopic state of a system under consideration.
In particular, dynamic variables of Twitter are represented by the variations of tweet/retweet number and

instantaneous diversity between the densities of population on different levels around the equilibrium values.
Let’s assume that every individual elementai ∈ Λ, belonging to the base set of system elementsΛ, has its

own space of “internal states”Ai. Let the eigenstate ofai−element related to the time pointtk, be marked asωk
i .

When allωk
i are gathered in a single complex

ωωωk = 〈ωk
1,ωk

2, ..., ωk
N〉, (2)

we shall get the phase microscopic states of the whole system, related to the time momenttk.
In particular, Twitter includes users, which can have just two states: a ground state and an excited state.

Those users, who didn’t get sufficient amount of informationfrom the mass media and other sources to be able
to send tweets, stay in the ground state. Those users, who gotsufficient amount of external information to be
able to send tweets, are in the excited state.

Then, let’s unite all the possible observable macroscopic system statesXβ into the single aggregate

ΦΦΦ =
{

Xβ
}

, β ∈ B (3)

and call it a macroscopic phase space of a system. By analogy,if all possible micro-local system statesωωωα are
united into

ΩΩΩ = {ωωωα} , α ∈ A, (4)
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then we’ll get a micro-local reference space of a system.
It should be taken into account that the spaceΩΩΩ represents an abstract hypothetical mathematical construc-

t. Its statesωα are not observable. However there are some reasonable assumptions that can be brought into
the mathematical structure of the spaceΩΩΩ and factors of interaction between the system elements. These as-
sumptions allow the abstract theoretical defining of the stochastic dynamics on the micro-level of the selected
system.

If such the hypothetical micro-local system dynamics is successfully assumed, than applying some folding
techniques to the micro-local dynamic information it is possible to theoretically reconstruct the macroscopic
global system dynamics in the language of phase spaceΦΦΦ as well as of related dynamic operator generating the
macroscopic system dynamics. Match making process betweenthe hypothetical micro-local dynamics of theΩΩΩ
-space and the observable macro-global dynamics unfoldingin the ΦΦΦ-space is the main task of the stochastic
dynamics of TS.

It is determined that any TS being left on her own always tends(both in micro-local and macro-global
representations) to its equilibrium state. If a deviation (by observed parameters) from the equilibrium state
doesn’t equal 0, than the system will definitely tend to the nearest local equilibrium. Such a transition period is
called relaxation [18].

There has been discovered a peculiar phenomenon of self-organization and spontaneous appearance of or-
dered structures of one or another type in large physicochemical TS during the investigation into the transition
processes. There are necessary conditions of appearance ofthe new valuable dynamic information in a complex
dynamic TS. They are the strong non-equilibrium of the related system states and the non-linear character of
interaction between the system elements.

Discovery of this phenomenon that works universally withinthe large amount of complex dynamic TS has
become a cause of appearance of the interdisciplinary trend, which is called “synergetics”. Thus synergism
proves itself in sociology because of the fact that the social systems (like, for example, microblogging social
networks) are complex dynamic TS. And the following contentof the present paper is aimed to show, how the
thermodynamic conceptualism works in the dynamics of the complex social systems.

Let’s mark out the essential terms and propositions that we shall use later on.
Let’s consider that any system is organized by elements{ai} that are parts of a reference underlying set

Λ ≡ {ai}. We shall examine large, but finite systems. These are the systems where the power of setΛ (or the
value |Λ| = N) goes to infinity, but never equals it. This proposition is fundamental. Within the TS theory
theN → ∞ abstraction is called thermodynamic limit. IfN-factor is not large enough, then some of stochastic
dynamics effects have a risk not to appear in the system. At the same time, the limit dividing large and small
systems is very relative, but we shall not consider this problem at the present paper.

When considering any complex dynamic system, the system factors are being in the foreground. Among
them are: ontological nature of the system elements (“users”); nature and type of interaction (on the “user” level)
between the system elements; nature of “movements” arisingin the system (user interaction).

Let’s consider as uniting symbolS the totality of algebra-geometric structural properties of interactionV
in the system and “internal” state spacesAi . If the basic defining factors〈ΛΣ,SΣ,VΣ〉 are specified for some
particular complex dynamic systemΣ, then from the abstract-theoretical point of view such system can be
considered as a definite complex

Σ ≡ 〈ΛΣ,SΣ,VΣ〉 . (5)

The modern theory of complex systems has allowed to discoverthe type of “movement” appearing in a
system dynamics. Dynamic system class related to the stochastic dynamics paradigm is huge. Leaving out of
consideration such universalism, it is possible to notice that it is important to understand the structural pos-
sibilities of applying the methods of stochastic dynamics for solving the definite range of problems in social
dynamics.

One of the essential peculiarities of stochastic dynamics consists in the fact that it is able to represent a
dynamic mode of operation with the definite degree of uncertainty. The quantitative measure of different un-
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certainty types is a “physical” value of entropy. From the other hand, there is also a measure of certainty, or
order, in the system. That is information. Thus, the stochastic dynamics can be considered as the informational
dynamics. Synergetic conjugacy of these two poles of binaryopposition lies as a basis of another binary oppo-
sition – atomism and holism. There is a fully developed theory of stochastic dynamics nowadays, and we shall
not go deep into its details.

3 Nonlinear dynamic model of Twitter

Twitter includes users, which can have just two states: a ground state and an excited state. Those users, who
didn’t get sufficient amount of information from the mass media and other sources to be able to send tweets, stay
in the ground state. Those users, who got sufficient amount ofexternal information to be able to send tweets,
are in the excited state. By sending tweets the network userstransfer from the excited state to the ground state.
Let’s consider the amount of users being in the ground state at the time pointt asω0 (t) and the amount of users
in the excited state asω1 (t).

Let’s also introduce a parameter characterizing an instantaneous diversity between the densities of population
on different levels (i.e. inversion):

x3 (t) = ω1 (t)−ω0(t) . (6)

This variable will be further considered as one of the dynamic variables of the system.
As the second dynamic variable we shall consider the variation of the tweet amount around the equilibrium

position x1 (t) = T (t)−T0, whereT0 is a number of tweets in the network that stays in a state of thestable
equilibrium.

Let’s represent the variation speed of the tweet number as following:

ẋ1(t) =−αx1(t)+βx2(t) . (7)

Equation (7) has the following terms: the first term of the right side corresponds to the decrease in the number
of tweets in the system due to the system relaxation; the second term correlates to the increase in the number
of tweets in the network due to the increase in variation of the number of retweetsx2 (t) = R(t)−R0, where
R0 is the number of tweets in a network being in the state of the stable equilibrium;α = 1

/

τ1 is a relaxation
parameter;τ1 is a relaxation time.

According to the Le Chatelier-Braun principle [19], if a system deviates from the state of the stable equilib-
rium, then the forces arise and try to return the system back to the equilibrium state. If|T (t)−T0| ≪ T0, then as
a first approximation it can be considered that these forces are proportionate to deviation.

As the third dynamic variable we shall consider the variation of the number of retweets, which can be
represented as follows:

Let’s represent the variation speed of the tweet number as following:

ẋ2 (t) =−γx2(t)+cx1 (t)x3(t) . (8)

The first term of the right side (8) corresponds to the decrease in the number of tweets due to the system
relaxation with the relaxation parameterγ = 1

/

τ2. The nature of the second term in the right side (8) can be
explained in the following way. The number of retweets (created by the network users in the presence of the
tweet flow) is proportionate to the number of tweets and depends on the level at which the user is (i.e. ground or
excited level). An average contribution to the speed of the retweet change is proportionate to the product of the
number of tweets in a network and the difference (6).

The third equation describes the change of difference in a density of population on different layers (9) and
looks like the following:

ẋ3 (t) = ε (I0−N(t))−kx1(t)x2 (t) , (9)
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whereε is a population relaxation parameter;I0 characterizes the intensity of the external flow of information
incoming to the system. The termx1 (t)x2 (t) corresponds to the power that is spent by the tweet flow for the
retweet creation.

Let’s introduce some new variables and parameters:

x=
√

kcx1/γ ,y= β
√

kcx2/(αγ),z= βcx3
/

(αγ) ,b= ε
/

γ ,σ = α
/

γ ,ρ = βcI0
/

(αγ). (10)

Equation (7)-(8) can be reduced to:

ẋ= σ (y−x) , ẏ=−y+xz, ż= b(ρ −z)−xy. (11)

The system (11) describes a dynamics of a Twitter as a point-dissipative system. When it is considered that
by the way of changing the variablew= ρ −z the system (11) can be reduced to the well-known Lorenz system
[20], one can assume that the parameterρ is a control parameter of the system (11).

Let’s examine the system behavior depending on the control parameterρ or on the intensity of the external
information flowI0 (ρ ∼ I0).

The Lorenz system is a well examined dynamic system. The mainproperties of such system are presented
in works [21,22]. Let’s consider only those properties thatwill be required to analyze the change of the Twitter
state due to the external informational influenceI0.

Let’s use the dynamic system to discuss a question of existence of the asymptotically stable Twitter state.
In the context of the earlier derived model, there is a condition of existence of the equilibrium (which is not

obligatory stable) Twitter state. It is the equality of the tweet amount to its equilibrium value. For the tweet
amount variation, this condition is equivalent to the following equality:T (t) = T0.

System (11) has 3 stationary points:

O(0,0,0),E(±
√

b(ρ −1),±
√

b(ρ −1),0). (12)

If ρ < 1 (i.e. low external intensity of informationI0), then the null pointO is asymptotically stable. At the
same time anotherE-points do not exist. The value of parameterρ = 1 is a bifurcation value of the supercritical
forked bifurcation of a system. Ifρ > 1, then the stationary pointO is unstable. Therefore, at a small quantity
of external information the number of tweets asymptotically goes to its stable equilibrium valueT0. It’s one of
the regular state of Twitter.

If ρ = ρc, whereρc = σ (σ +b+3)
/

(σ −b−1) is a critical value of external information, there arose the
limit cycles around the non-zero equilibrium points. Theseare the fluctuations of the number of tweets; their
characteristics do not depend on initial values of a system.

Whenρ > ρc, the limit cycle fails turning into the chaotic deviations. Achaotic attractor appears.
For example, Fig. 1 shows the observed dynamics of tweets, derived with the help of the Twitter analysis

service TWITONOMY (https://www.twitonomy.com/).
It is obvious, that the dynamics of @realmadrid and @fcbarcelona are chaotic. Existence of the chaotic

dynamics is connected with the huge amount of external information entering the microblogging network. In
fact, the presented time intervals correspond to the increased interest of football fans to the football events -
Spanish La Liga and UEFA Champions League.

Lorenz attractor, defined by the system (11), has also another, mathematically equivalent representation. By
changing of variables〈x,z〉 → 〈x,u〉, where

u(x,z) = 2σz−x2,z(x,u) =
(

u+x2)/2σ (13)

and considering thaty= ẋ
/

σ +x, ẏ= ẍ
/

σ + ẋ, the Lorenz equation set (11) can be reduced to the following:

ẍ=−(σ +1) ẋ−x3/2+
(

σ (ρ −1)−u
/

2
)

x, (14)
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(a)
 

(b)

Fig. 1 Dynamics of tweets: (a) @realmadrid and (b) @fcbarcelona.

u̇=−bu+(2σ −b)x2. (15)

Stationary states of the system (14-15) in coordinates〈x,u〉 can be represented by the three points in the
coordinate spacexOu:

O(0,0) ,E(±
√

b(ρ −1),(2σ −b)(ρ −1)) (16)

Equations set (9-10) allows to notice in this dynamics a range of well-known standard factors discovered in
a theory of nonlinear non-harmonic oscillations.

Let’s introduce the following symbols:

γ = σ +1,k= σ (ρ −1) ,ω = k−u
/

2 (17)

and characteristic potential function of the dynamic system (14-15)

V (u,x) = x4/8−ωx2/2. (18)

Let’s define the generalized “force”F (u,x), acting in direction of the coordinateOxaccording to the rule

F (u,x) =−x3/2+ωx. (19)

Considering (14), the equation (9) can be represented in thefollowing form:

x= f (γ ,ω , ẋ,x) , (20)

where
f =−γx+F (u,x) . (21)

Considering (21), (14) turns into the Duffing equation [23,24]. This equation is well-known and used in the
theory of non-linear oscillations.

Duffing equation
ẍ=−γ ẋ−x3/2+

(

(k−u(x))
/

2
)

x (22)

represents the dynamics (damped by the term−γ ẋ) along the coordinateOx in a double-humped potential well,
that is described by the function (18). This function has an essential non-standard feature:ω = (k−u(x))

/

2 is
not constant. Because of the dependance of this function from x, the complex astable ties are generated between
u(x) andx(u). These ties are defined by the equation:

u̇=−bu+(2σ −b)x2. (23)

The system (11) that is equivalent to the equation set (14-15) generates in the〈u,x〉-plane some complex
irregular movements, which cause the dynamic chaos at the definite correlation of parameters〈σ ,b,ρ〉.
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Table 1 Calculated correlation dimension and embedding dimensionfor financial time series.

Twitter users Correlation dimension Embedding dimension

@katyperry 3.80 4

@justionbieber 4.17 5

@taylorswift13 3.49 4

@BarackObama 4.46 5

@rihanna 3.99 6

@YouTube 3.74 4

@ladygaga 3.58 4

@TheEllenShow 3.53 5

@picazomario 3.95 4

@jtimberlake 4.44 5

4 Correlation dimension of Twitter time series

The determination of the correlation dimension [25] for a supposed chaotic process directly from experimental
time series is an often used means of gaining information about the nature of the underlying dynamics (see, for
example, contributions in ref. [26]; for reviews on dimension measurements see ref. [27]). In particular, such
analyses have been used to support the hypothesis that the time series results from an inherently low-dimensional
chaotic process [26].

The geometry of chaotic attractors can be complex and difficult to describe. It is therefore useful to have
quantitative characterizations of such geometrical objects. One of these characterizations is the correlation
dimensionD2. The correlation dimension have several advantages comparing to other dimensional measures:
D2 is easy to compute from Twitter experimental data (from Twitter analysis service TWITONOMY); usingD2

one can distinguish chaotic dynamical system (D2 is finite) from stochastic system (D2 → ∞); D2 is the lower
bound estimate of attractor’s dimensiond (d ≥ D2).

The correlation dimension of the attractor of dynamical system can be estimated using the Grassberger-
Procaccia algorithm (GP algorithm) [25]. The implementation of GP Algorithm in this work is written in Math-
ematica Language for Wolfram Mathematica® 10.2.

Table 1 provides summary of calculated correlation dimension and embedding dimension (k) for Twitter time
series. We have made the calculations of the correlation dimension and embedding dimension for the dynamics
of the 10 most popular @ (TOP 100 by data of Twitter Counter http://twittercounter.com/pages/100).

The results show, that all observed time series have clearlydefined chaotic dynamical nature. It is also
noticeable, that Twitter time series have correlation dimension close to each other and equal to 4.

It is not strictly proven, that any Twitter time series has a chaotic dynamical nature. However, we can consid-
er the dynamic system (11) as an approximate model of the Twitter. So, we also suggest, that the estimation of
correlation dimension shall be a preliminary step of Twitter time series analysis. Moreover, the implementation
of GP algorithm, including all optimizations, is computationally effective.

5 Conclusions

The main contributions of this paper are as follows.
1. We present the nonlinear dynamic model of Twitter as a thermodynamic non-equilibrium system, includ-

ing the definition of regular and chaotic state of the social network. It is pointed out, that the system is in a
condition of an asymptotically stable equilibrium when theintensity values of an external information are small
(the number of tweets eventually tends to its equilibrium value).
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2. We report new numerical results of the correlation dimension and embedding dimension from Twitter
time series. The results show, that all observed time serieshave clearly defined chaotic dynamical nature. It is
also noticeable, that Twitter time series have correlationdimension close to each other and equal to 4.
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