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1 Introduction

From the second half of the XX century the general trend afrae development is the penetration of the ideas
and methods of physics in natural and traditional humanitisciplines. Methods of physical modeling are
often used in sciences such as demography, sociology anddtics.

In the middle 1990s there was an interdisciplinary resefetth, known as Econophysics, applying theories
and methods originally developed by physicists in ordepteesproblems in economics, usually those including
uncertainty or stochastic processes and nonlinear dysamie term “econophysics” was coined by H. Eugene
Stanley, to describe the large number of papers written ggipists in the problems of (stock and other) markets
(for econophysics reviews see refs. [1-3]).

Physicists’ interest in the social sciences is not new; Bladernoulli, as an example, was the originator of
utility-based preferences. Sociophysics is the study cisphenomena from a physics perspective, often using
the human atom, social atom, or human particle perspedbvadgciophysics reviews see refs. [3,4]). The main
objective of this new field of natural science consists inrgmearch of objectively measured and formalized
laws that define various social processes.

The present paper is devoted to the investigation into tidimear dynamics of Twitter as a thermodynamic
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non-equilibrium system. Our interest in this problem maistlems from the hypothesis that the Twitter time
series results from an inherently low-dimensional chaotoress.

The main objective of the present paper is an investigatitmthe regular and chaotic states of Twitter.

To achieve this goal the following research tasks were define

1. Building of the non-equilibrium macroscopic Twitter nebdh the form of the system of ordinary differ-
ential equations of the first order.

2. Investigation into the forming of the regular and chaotiders of Twitter system operation depending on
its control parameters values; definition of essential dmrts for the change from one order to another.

3. Determination of the correlation dimension for a supposeaotic process directly from experimental
Twitter time series.

There are a number of works in the field of physical modelingaafial networks. The main physical models
of the social networks are as follows.

1. Ising model [5-7].

2. Bose-Einstein Condensate model [8, 9].

3. Quantum walk model [10].

4. Ground state and community detection [11].

Other relevant work in this area is that of refs. [12—15].

This paper is organized as follows. In section 2 we presentléfinition of Twitter as a complex dynamic
system of the thermodynamic type and relevant backgroundsettion 3 we present the nonlinear dynamic
model of Twitter, including the definition of regular and olia state of the social network. In section 4 we give
the numerical results of correlation dimension and embggddimension from Twitter time series. In section 5
we conclude this paper.

2 Twitter asathermodynamic system

In brief, Twitter is an online social networking service thenables users to send and read short messages
called “tweets”. Tweets are publicly visible by defaulttlsenders can restrict message delivery to just their
followers. Users may subscribe to other users’ tweets 4shigown as “following” and subscribers are known
as “followers” or “tweeps”, a portmanteau of Twitter and pge Individual tweets can be forwarded by other
users to their own feed, a process known as a “retweet”.

We suppose that the social network can be considered as goamit system of a thermodynamic type [16]
that can produce aggregated factors (flows) out of jointvigtof individual interests. These flows start to
appear on a macro-scale and work according to laws of detedrties and relations. It can be assumed that
such network is homeomorphic to the dynamic systems of adalyaiamic type (from the viewpoint of the
generalized macroscopic flows). Therefore, if there areadled interacting colliding flows in such systems,
then as a rule there can appear the phenomenon of generalibedence that generates the crisis mode in
development of such dynamic systems.

At present time some attempts to include the social dynawiitsn the scope of theoretic approaches which
work well enough within the natural sciences are being imgleted. Such attempts were multiple. However,
owing to specifics of the research subject, different sienhave different understanding of the question on how
to implement the applied mathematics to model the socickbgeality. It turned out that the direct application
of existing mathematical constructs to the social dynamias ineffective. Moreover, there is no definition of
social dynamics, such as one of, for example, electrodycami

The practice of building of mathematical constructions ahihtould efficiently model the dynamics in var-
ious physical systems and processes shows that the agieoprathematical model becomes adequate (to one
extent or another) to an original. This happens when allh&racteristic properties are being derived out of
the features and structure of that kind of movement, whicm#othe system dynamics. Correctness of such
methodological principle when building new theories waflibntly shown by J. Maxwell by way of creating
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the classic thermodynamics.

Large and effective experience of the preceding physidswenaatical modeling makes the following method-
ological specification: there are no ready formalisms inhmatatics, which could be immediately applied to
description of a new “dynamics”. In fact, it turns out that &very new type or class of dynamical structures
it Is necessary to make a new construction of mathematicaldlisms, which could be relevant its matter and
peculiarities of its “dynamics”.

Further we will concentrate on a special class of complexadyin systems, which is called thermodynamic
systems (TS) [16].

Complex thermodynamic systems are the systems made ofrtfeedamber of approximately single-type
elements (“atoms” or “users” for Twitter). Interaction een such elements occurs under the definite ontoge-
netic law. Kinematics and dynamics of such systems deperd'idie story” (or individual “life lines”) of every
element within such system.

There are 3 structural levels of functioning for this systeqme. The first one is a level of micro-local
dynamicsSy, where the local interaction of every element (“usex’)e /A with any other system element is
being under consideration. This level is an ontogenetiellef a system, which generates all other dynamic
effects there.

In second, aggregative (“reductive”) information struet§,; follows the -level. It is reasonable to call it
the system mesodynamics [17]. It is shown by the averagezhiatics and dynamics of any its element. An
intermediate dynamics of such system type is as a rule remied by the kinetic equations of the Boltzmann
type in the molecular-kinetic theory.

Finally, if there are the functions of the system state thatdefined in a phase space of a complex dynamic
system, then it is possible to get the macroscopically ekseexpressions of explored systems by means of
averaging them over the individual and meso-stories. Soutireally defined artifacts are usually marked by
the term “observed”.

Let the macroscopic observable that is numerated by imdex\ and related to the time pointe T, be
Xq (t). Let’s unite the set of all simultaneously observed dynavartables{x, (t)} into a single complex:

X(t) = (X (t) X2 (t), ... Xa (1)) @

And let’s consider it as a factor characterizing the globatroscopic state of a system under consideration.

In particular, dynamic variables of Twitter are represdripy the variations of tweet/retweet number and
instantaneous diversity between the densities of populath different levels around the equilibrium values.

Let's assume that every individual elemept A, belonging to the base set of system eleménthas its
own space of “internal state#t;. Let the eigenstate @& —element related to the time poitpt be marked amk.
When alloqk are gathered in a single complex

wk = <a)]if7 a%(? b (L#\(l>7 (2)

we shall get the phase microscopic states of the whole sysétated to the time momety

In particular, Twitter includes users, which can have jugt states: a ground state and an excited state.
Those users, who didn’t get sufficient amount of informafimm the mass media and other sources to be able
to send tweets, stay in the ground state. Those users, whauffimient amount of external information to be
able to send tweets, are in the excited state.

Then, let's unite all the possible observable macroscostes stateX into the single aggregate

®={Xg},BeB 3)

and call it a macroscopic phase space of a system. By and@adjypossible micro-local system states” are
united into
Q={w},acA 4)
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then we’ll get a micro-local reference space of a system.

It should be taken into account that the spfrespresents an abstract hypothetical mathematical canstru
t. Its statesw™ are not observable. However there are some reasonable @igmsrthat can be brought into
the mathematical structure of the spd2eand factors of interaction between the system elementsseTas-
sumptions allow the abstract theoretical defining of thelsistic dynamics on the micro-level of the selected
system.

If such the hypothetical micro-local system dynamics iscessfully assumed, than applying some folding
techniques to the micro-local dynamic information it is ibke to theoretically reconstruct the macroscopic
global system dynamics in the language of phase sfpeas well as of related dynamic operator generating the
macroscopic system dynamics. Match making process bettliediypothetical micro-local dynamics of tke
-space and the observable macro-global dynamics unfolditige ®-space is the main task of the stochastic
dynamics of TS.

It is determined that any TS being left on her own always tefodgh in micro-local and macro-global
representations) to its equilibrium state. If a deviatiby 6bserved parameters) from the equilibrium state
doesn't equal 0, than the system will definitely tend to tharest local equilibrium. Such a transition period is
called relaxation [18].

There has been discovered a peculiar phenomenon of selfi@egion and spontaneous appearance of or-
dered structures of one or another type in large physicomamsS during the investigation into the transition
processes. There are necessary conditions of appearatheenaiw valuable dynamic information in a complex
dynamic TS. They are the strong non-equilibrium of the ezladystem states and the non-linear character of
interaction between the system elements.

Discovery of this phenomenon that works universally witthia large amount of complex dynamic TS has
become a cause of appearance of the interdisciplinary ,tiehith is called “synergetics”. Thus synergism
proves itself in sociology because of the fact that the $ayistems (like, for example, microblogging social
networks) are complex dynamic TS. And the following contefithe present paper is aimed to show, how the
thermodynamic conceptualism works in the dynamics of thegtex social systems.

Let's mark out the essential terms and propositions thatha# gse later on.

Let's consider that any system is organized by eleméats that are parts of a reference underlying set
A = {a}. We shall examine large, but finite systems. These are thersgswvhere the power of sat(or the
value |A| = N) goes to infinity, but never equals it. This proposition isdamental. Within the TS theory
the N — oo abstraction is called thermodynamic limit. Ni-factor is not large enough, then some of stochastic
dynamics effects have a risk not to appear in the system. éAsdme time, the limit dividing large and small
systems is very relative, but we shall not consider this lgrakat the present paper.

When considering any complex dynamic system, the systetorfaare being in the foreground. Among
them are: ontological nature of the system elements (“Uiseature and type of interaction (on the “user” level)
between the system elements; nature of “movements” arisititge system (user interaction).

Let’'s consider as uniting symbd@ the totality of algebra-geometric structural propertiésneeractionV
in the system and “internal” state spadgs If the basic defining factoré/\s,Ss,Vs) are specified for some
particular complex dynamic systely then from the abstract-theoretical point of view such eystan be
considered as a definite complex

=N, S, Vs5). (5)

The modern theory of complex systems has allowed to discitvetype of “movement” appearing in a
system dynamics. Dynamic system class related to the sticliynamics paradigm is huge. Leaving out of
consideration such universalism, it is possible to notie it is important to understand the structural pos-
sibilities of applying the methods of stochastic dynamims dolving the definite range of problems in social
dynamics.

One of the essential peculiarities of stochastic dynamacssists in the fact that it is able to represent a
dynamic mode of operation with the definite degree of untggta The quantitative measure of different un-
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certainty types is a “physical” value of entropy. From thhesthand, there is also a measure of certainty, or
order, in the system. That is information. Thus, the staahagynamics can be considered as the informational
dynamics. Synergetic conjugacy of these two poles of bingposition lies as a basis of another binary oppo-
sition — atomism and holism. There is a fully developed thedrstochastic dynamics nowadays, and we shall
not go deep into its details.

3 Nonlinear dynamic model of Twitter

Twitter includes users, which can have just two states: argtetate and an excited state. Those users, who
didn’t get sufficient amount of information from the mass maeghd other sources to be able to send tweets, stay
in the ground state. Those users, who got sufficient amouextefnal information to be able to send tweets,
are in the excited state. By sending tweets the network wisarsfer from the excited state to the ground state.
Let's consider the amount of users being in the ground stdteedime point aswy (t) and the amount of users
in the excited state as (t).

Let’s also introduce a parameter characterizing an insteraus diversity between the densities of population
on different levels (i.e. inversion):

X3 (t) = o (t) —an(t). (6)

This variable will be further considered as one of the dymavariables of the system.

As the second dynamic variable we shall consider the vanaif the tweet amount around the equilibrium
positionxy (t) = T (t) — To, whereTy is @ number of tweets in the network that stays in a state obthiele
equilibrium.

Let's represent the variation speed of the tweet numberlmsviag:

X1 (t) = —axg (t)+ Bxa(t). (7)

Equation (7) has the following terms: the first term of théatigide corresponds to the decrease in the number
of tweets in the system due to the system relaxation; thensemym correlates to the increase in the number
of tweets in the network due to the increase in variation efriamber of retweets, (t) = R(t) — Ry, where
Ry is the number of tweets in a network being in the state of thblstequilibrium;a = 1/T1 is a relaxation
parametery; is a relaxation time.

According to the Le Chatelier-Braun principle [19], if a tt® deviates from the state of the stable equilib-
rium, then the forces arise and try to return the system bathetequilibrium state. IfT (t) — To| < To, then as
a first approximation it can be considered that these fonmepraportionate to deviation.

As the third dynamic variable we shall consider the varratad the number of retweets, which can be
represented as follows:

Let's represent the variation speed of the tweet numberlmsviag:

Xo (t) = =YX (t) -+ CXg (t) X3 (t) . (8)

The first term of the right side (8) corresponds to the deeréashe number of tweets due to the system
relaxation with the relaxation parametee 1/12. The nature of the second term in the right side (8) can be
explained in the following way. The number of retweets (daby the network users in the presence of the
tweet flow) is proportionate to the number of tweets and dépen the level at which the user is (i.e. ground or
excited level). An average contribution to the speed of gt@eet change is proportionate to the product of the
number of tweets in a network and the difference (6).

The third equation describes the change of difference imaityeof population on different layers (9) and
looks like the following:

X3(t) :E(|0—N(t))—kX1(t)X2(t), (9)
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wheree is a population relaxation parametég;characterizes the intensity of the external flow of inforiorat
incoming to the system. The terra () xz (t) corresponds to the power that is spent by the tweet flow for the
retweet creation.

Let's introduce some new variables and parameters:

x=vkex /v,y = Bvker/(ay),z=Bexs/(ay),b=¢/y,0=a/y,p = Bclo/(ay). (10)

Equation (7)-(8) can be reduced to:
X=0(y—X),y=-y+xzz=b(p—2) —xy. (11)

The system (11) describes a dynamics of a Twitter as a p@sipative system. When it is considered that
by the way of changing the variable= p — zthe system (11) can be reduced to the well-known Lorenz syste
[20], one can assume that the parametés a control parameter of the system (11).

Let's examine the system behavior depending on the conairalnpetep or on the intensity of the external
information flowlg (p ~ lp).

The Lorenz system is a well examined dynamic system. The prajperties of such system are presented
in works [21, 22]. Let's consider only those properties thikbe required to analyze the change of the Twitter
state due to the external informational influetge

Let’s use the dynamic system to discuss a question of existehthe asymptotically stable Twitter state.

In the context of the earlier derived model, there is a camdiof existence of the equilibrium (which is not
obligatory stable) Twitter state. It is the equality of tlwgett amount to its equilibrium value. For the tweet
amount variation, this condition is equivalent to the fallog equality: T (t) = To.

System (11) has 3 stationary points:

0(0,0,0),E(£+/b(p —1),4+/b(p — 1),0). (12)

If p <1 (i.e. low external intensity of informatioly), then the null poin© is asymptotically stable. At the
same time anothdf-points do not exist. The value of paramepet 1 is a bifurcation value of the supercritical
forked bifurcation of a system. [p > 1, then the stationary poil@ is unstable. Therefore, at a small quantity
of external information the number of tweets asymptotjcgles to its stable equilibrium valdg. It's one of
the regular state of Twitter.

If p = pc, wherep. = o (0+b+3)/(0—b—1) is a critical value of external information, there arose the
limit cycles around the non-zero equilibrium points. Thase the fluctuations of the number of tweets; their
characteristics do not depend on initial values of a system.

Whenp > pc, the limit cycle fails turning into the chaotic deviations.chaotic attractor appears.

For example, Fig. 1 shows the observed dynamics of tweetisedewith the help of the Twitter analysis
service TWITONOMY (https://www.twitonomy.com/).

It is obvious, that the dynamics of @realmadrid and @fchanseare chaotic. Existence of the chaotic
dynamics is connected with the huge amount of external imé¢ion entering the microblogging network. In
fact, the presented time intervals correspond to the iseténterest of football fans to the football events -
Spanish La Liga and UEFA Champions League.

Lorenz attractor, defined by the system (11), has also anattahematically equivalent representation. By
changing of variablesx, z) — (x,u), where

u(x,2) = 20z—x%,z(x,u) = (u+x?) /20 (13)
and considering that=X/0 +x,y = X/ 0 + X, the Lorenz equation set (11) can be reduced to the follawing

X=—(0+1)x—x/2+ (0 (p—1)—u/2)x, (14)
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(a) (b)
Fig. 1 Dynamics of tweets: (a) @realmadrid and (b) @fcbarcelona.

U= —bu+ (20 —h)*2. (15)

Stationary states of the system (14-15) in coordindtes) can be represented by the three points in the
coordinate spaceOu

Equations set (9-10) allows to notice in this dynamics a eavfgvell-known standard factors discovered in
a theory of nonlinear non-harmonic oscillations.
Let’s introduce the following symbols:

y=0+1lk=0(p—-1),w=k—u/2 (17)
and characteristic potential function of the dynamic sys(&4-15)
V (u,x) =x*/8— wx?/2. (18)
Let’s define the generalized “forcé” (u,x), acting in direction of the coordinat@x according to the rule
F (u,X) = —x*/2+ wx. (19)
Considering (14), the equation (9) can be represented ifotlosving form:
x=f(y,w,xX), (20)

where
f=—yx+F(uXx). (21)

Considering (21), (14) turns into the Duffing equation [28, ZT'his equation is well-known and used in the
theory of non-linear oscillations.
Duffing equation
%= —yx—x2/2+ ((k—u(x))/2)x (22)
represents the dynamics (damped by the teryr) along the coordinat®xin a double-humped potential well,
that is described by the function (18). This function has sseatial non-standard featum:= (k—u(x))/2 is

not constant. Because of the dependance of this functiomxrothe complex astable ties are generated between
u(x) andx(u). These ties are defined by the equation:

U= —bu+ (20 —b)*?. (23)

The system (11) that is equivalent to the equation set ()43&Berates in théu,x)-plane some complex
irregular movements, which cause the dynamic chaos at firétdecorrelation of parameteiw, b, p).
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Table 1 Calculated correlation dimension and embedding dimerfsiofinancial time series.

Twitter users Correlation dimension Embedding dimension
@katyperry 3.80 4
@justionbieber 4.17 5
@taylorswift13 3.49 4
@BarackObama 4.46 5
@rihanna 3.99 6
@YouTube 3.74 4
@ladygaga 3.58 4
@TheEllenShow 3.53 5
@picazomario 3.95 4
@jtimberlake 4.44 5

4 Correation dimension of Twitter time series

The determination of the correlation dimension [25] for pmased chaotic process directly from experimental
time series is an often used means of gaining informatiomtatbe nature of the underlying dynamics (see, for
example, contributions in ref. [26]; for reviews on dimewsimeasurements see ref. [27]). In particular, such
analyses have been used to support the hypothesis thatthsdries results from an inherently low-dimensional
chaotic process [26].

The geometry of chaotic attractors can be complex and diffioudescribe. It is therefore useful to have
gquantitative characterizations of such geometrical dbje®©ne of these characterizations is the correlation
dimensionD,. The correlation dimension have several advantages camgp@r other dimensional measures:
D, is easy to compute from Twitter experimental data (from fevianalysis service TWITONOMY); usirg,
one can distinguish chaotic dynamical systdda is finite) from stochastic systenDf — «); D> is the lower
bound estimate of attractor’s dimensidrid > D>).

The correlation dimension of the attractor of dynamicaltesyscan be estimated using the Grassberger-
Procaccia algorithm (GP algorithm) [25]. The implememtatdbf GP Algorithm in this work is written in Math-
ematica Language for Wolfram Mathemafica0.2.

Table 1 provides summary of calculated correlation dinmand embedding dimensiok) for Twitter time
series. We have made the calculations of the correlatioemiion and embedding dimension for the dynamics
of the 10 most popular @ (TOP 100 by data of Twitter Countey:Httvittercounter.com/pages/100).

The results show, that all observed time series have clemfiped chaotic dynamical nature. It is also
noticeable, that Twitter time series have correlation disien close to each other and equal to 4.

Itis not strictly proven, that any Twitter time series hafaatic dynamical nature. However, we can consid-
er the dynamic system (11) as an approximate model of theéfwBo, we also suggest, that the estimation of
correlation dimension shall be a preliminary step of Twitime series analysis. Moreover, the implementation
of GP algorithm, including all optimizations, is computatally effective.

5 Conclusions

The main contributions of this paper are as follows.

1. We present the nonlinear dynamic model of Twitter as artbdlynamic non-equilibrium system, includ-
ing the definition of regular and chaotic state of the soc&timork. It is pointed out, that the system is in a
condition of an asymptotically stable equilibrium when ihiensity values of an external information are small
(the number of tweets eventually tends to its equilibriutuen
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2. We report new numerical results of the correlation dinenand embedding dimension from Twitter
time series. The results show, that all observed time shaes clearly defined chaotic dynamical nature. It is
also noticeable, that Twitter time series have correladiomension close to each other and equal to 4.

References

[1] Chakraborti, A., Toke, I., Patriarca, V. and Abergel(F011), Econophysics review: Il. Agent-based mod@lsanti-
tative Finance11, 1013-1041.
[2] Richmond, P., Mimkes, J. and Hutzler, S. (2018gonophysics and Physical Economi@xford University Press:
United Kingdom.
[3] Savoiu, G. (2013)Econophysics. Background and Applications in Economitcgriee, and SociophysicElsevier:
Amsterdam.
[4] Slovokhotov, Y. (2012), Physics vs. sociophysics. Rafhysical grounds of social phenomena. Processes inyocie
and solar forcing. Mechanical movement in a system of lipagicles,Probl. Upr., 1, 2-20.
[5] Grabowski, A. and Kosinski, R.A. (2006), Ising-baseddabof opinion formation in a complex network of interper-
sonal interaction®2hysica A 361, 651-664.
[6] Dasgupta, S., Pan R.K. and Sinha, S. (2009), Phase gfspims on modular networks analogous to social polarizatio
Physical Review 80, 025101-1.
[7] Bianconi, G. (2002), Mean field solution of the Ising mbde a Barabasi-Albert networkhys. Lett. A303, 166.
[8] Bianconi, G. ans Barabasi, A.L. (2001), Bose-Einsteandensation in Complex Network2hys. Rev. Lett86, 5632-
5635.
[9] Albert, R. and Barabasi, A.-L. (2002), Statistical menfts of complex network&ev. Mod. Phys74, 47-97.
[10] Faccin, M., Johnson, T., Biamonte, J. and Kais, S. (20D8gree Distribution in Quantum Walks on Complex Net-
works,Phys. Rev. X3, p. 041007.
[11] Reichardt, J. and Bornholdt, S. (2006), Statisticathamnics of community detectioRhys. Rev. E74, p. 016110.
[12] Mendes, V. (2005), Tools for network dynamidsBifurcation Chaosl5, p. 1185.
[13] Ebel, H., Davidsen, J. and Bornholdt, S. (2003), Dyranuif Social NetworksComplexity 8, 24-27.
[14] Toivonen, R., Onnela, J.P., Saramaki, J., Hyvonennd.Kkaski, K. (2006), A model for social networkBhysica A
371, 851-860.
[15] Toivonen, R., Onnela, J.P., Saramaki, J., Hyvonennd.kaski, K. (2009), A comparative study of social network
models: Network evolution models and nodal attribute med@dcial Networks31, 240-254.
[16] Mimkes, J. (2006)A Thermodynamic Formulation of Social Sciendéley: Germany.
[17] Robert, V. and Youguel, G. (2015)he economics of knowledge, innovation and systemic témynpolicy, Routledge
Tailor & Francis Group: USA.
[18] Kizel, J. (1987) Statistical Thermodynamics of Nonequilibrium ProcesSgsinger-Verlag: New York.
[19] Atkins, P.W. (1993)The Elements of Physical Chemist@xford University Press: United Kingdom.
[20] Lorenz, E.N. (1963), Deterministic nonperiodic flalaurnal of the Atmospheric Scien¢@6, 130-141.
[21] Sparrow, C. (1982)The Lorenz equations: bifurcations, chaos and strangeaetitirs Springer: Germany.
[22] Hilborn, R.C. (2000)Chaos and nonlinear dynamics: an introduction for scigstend engineersOxford University
Press: United Kingdom.
[23] Kovacic, I. and Brennan, M.J. (201The Duffing equation: nonlinear oscillators and their beioayJohn Wiley &
Sons: USA.
[24] Lakshmanan, M. and Murali, K. (1996), Chaos in nonlinescillators: controlling and synchronizatidprld Scien-
tific, 13, 35-90.
[25] Grassberger, P. and Procaccia, I. (1983), Measuriadgringeness of strange attractd?ysica D: Nonlinear Phe-
nomengd, 189-208.
[26] Ding, M., Grebogi, C., Ott, E., Sauer, T. and Yorke, P43), Estimating correlation dimension from a chaotic time
series: when does plateau onset oc@ingsica D) 69, 404-424.
[27] Grassberger, P., Schriber, T. and Schaffrath, C. (L9@dnlinear time sequence analydi#t. J. Bifurcation Chaog01,
521-547.



