Heuristic for Site-Dependent Truck and Trailer
Routing Problem with Soft and Hard Time
Windows and Split Deliveries

Mikhail Batsyn®? and Alexander Ponomarenko

Laboratory of Algorithms and Technologies for Network Analysis,
National Research University Higher School of Economics, 136 Rodionova street,
Niznhy Novgorod, Russia
{mbatsyn,aponomarenko}@hse.ru

Abstract. In this paper we develop an iterative insertion heuristic for
a site-dependent truck and trailer routing problem with soft and hard
time windows and split deliveries. In the considered problem a truck
can leave its trailer for unloading or parking, make a truck-subtour to
serve truck-customers, and return back to take the trailer. This can be
done several times in one route. In our heuristic every route is con-
structed by sequentially inserting customers to it in the way similar to
Solomon’s (1987) approach developed for simple vehicle routes. Our con-
tributions include: heuristic insertion procedure for complex truck and
trailer routes with transshipment locations; efficient randomized mech-
anisms for choosing the first customer for insertion, for making time
window violations, and for making split-deliveries; an improvement pro-
cedure shifting deliveries in a route to earlier time; an efficient approach
dealing with site-dependency feature based on the transportation prob-
lem in case of arbitrary intersecting vehicle sets and a fast vehicle assign-
ment procedure in case of nested vehicle sets.

Keywords: Truck and trailer - Site-dependent - Soft time windows -
Split-deliveries - Insertion heuristic

1 Introduction

In truck and trailer routing problems there are two types of customers: trailer-
customers and truck-customers. Trailer-customers can be served both from a
truck and a trailer, while truck-customers can be served only from a truck.
This can be, for example, small stores in a big city to which it is impossible to
drive up by a road train because of narrows streets, small parking place, and
other limitations. There are two possibilities to leave a trailer. It can be left
at a trailer-customer for unloading and while it is unloaded a truck can serve
several truck-customers making a so-called truck-subtour and then return to
take the trailer. This is efficient in terms of time because truck and trailer serve
customers in parallel in this case. Another possibility is to park a trailer at a

© Springer International Publishing Switzerland 2015
P. Pardalos et al. (Eds.): MOD 2015, LNCS 9432, pp. 65-79, 2015.
DOI: 10.1007/978-3-319-27926-8 7

66 M. Batsyn and A. Ponomarenko

special transshipment location close to some truck-customer. If there are not
enough goods in a truck, before it leaves for a truck-subtour, a load transfer
from the trailer to the truck can be performed. If there are not enough goods in
the trailer, when it is left for unloading at a trailer-customer, then the remaining
goods are unloaded from the truck before it leaves.

The most simple truck and trailer routing problem is the homogeneous fleet
truck and trailer routing problem which is usually referenced in literature as
TTRP (Chao, 2002). In this problem all trucks and trailers are the same, have the
same capacity, same travel and fixed costs and can visit every customer without
any limitations except the truck-customers limitation. A number of heuristics
have been suggested for this problem: Chao (2002), Scheuerer (2006), Lin et al.
(2009; 2010), Villegas et al. (2011a; 2011b). Lin et al. (2011) considered the
TTRP problem with hard Time Windows (TTRPTW).

Much more difficult problems are Heterogeneous Fleet TTRP problems (HFT-
TRP). Different heuristics for the HFTTRP problem have been suggested by Hoff
(2006), Hoff & Lokketangen (2007), Caramia & Guerriero (2010a; 2010b). Except
different vehicle capacities, travel and fixed costs, for every customer there can be
defined a set of vehicles which can serve it. In this case the problem is called the
Site Dependent TTRP (SDTTRP). Semet (1995) developed a cluster-first route-
second heuristic for the SDTTRP problem. Semet & Taillard (1993) suggested a
tabu-search algorithm for the SDTTRP problem with hard time windows (SDT-
TRPTW). In their formulations of these problems there are no transshipment
locations and a trailer can be left only for unloading at a trailer-customer. A
more general formulation with transshipment locations is presented by Drexl
(2011). Along with road trains there are also single-truck vehicles. The author
provides a mathematical programming model for this SDTTRPTW problem and
a branch-and-price algorithm to solve it.

In this paper we consider even more general TTRP problem. We add soft
time windows and split-deliveries to the SDTTRPTW problem considered by
Drexl (2011). An integer linear programming model for this problem is provided
in Batsyn & Ponomarenko (2014). In the current paper we further develop our
heuristic suggested in Batsyn & Ponomarenko (2014). The main improvements
include: new approach dealing with site-dependency feature based on the trans-
portation problem in case of arbitrary intersecting vehicle sets; new fast vehicle
assignment procedure in case of nested vehicle sets; new randomized mechanism
for making soft time window violations; new insertion cases for the greedy inser-
tion procedure. We describe our iterative insertion heuristic for the considered
problem, present all possible insertion cases, and provide the pseudo-code of our
algorithm. There are many cases of inserting a customer to a complex truck and
trailer route because such a route can have different nodes such as: depot, trailer-
customers visited by a road train, truck-customers visited by a truck without a
trailer, trailer-customers at which a trailer is left for unloading, transshipment
locations at which a trailer is left for parking.

In our approach many different solutions are iteratively constructed with the
following randomizations. We choose the first customer in every route randomly

Heuristic for Site-Dependent Truck and Trailer Routing Problem 67

from the most expensive (farthest) customers. Split-deliveries and soft time win-
dow violations are also made in a random way. In order to avoid making a big
detour when inserting a customer, we do not insert customers for which the cost
of serving it with another vehicle directly from the depot is smaller than the
insertion cost. We insert customers taking into account soft time windows. If a
delivery of inserted customer is started after the soft time window we apply an
improvement procedure which moves all deliveries earlier in time so that instead
of a late (after the soft time window) delivery at this customer we have an early
(before the soft time window) delivery at some of the previous customers. This
helps to compress a route and insert more customers to it.

For each customer there is a set of different vehicles which can serve it. To
deal with this site-dependency feature we suggest solving a special transportation
problem in which we give preference to bigger vehicles. In case where these sets
for all customers are nested, instead of solving the transportation problem we
propose an efficient algorithm to assign a vehicle to serve a customer.

In our formulation of the problem it is permitted to violate a given number of
soft time windows and to make split-deliveries to a given number of customers. To
address the soft time windows feature we suggest that during building a solution
it is allowed to violate a soft time window in a random way with the probability
equal to the remaining number of permitted violations divided by the expected
number of possible remaining violations. We allow a split-delivery only when we
insert the last customer in the current route when the remaining capacity of the
vehicle is not enough to serve the total demand of this customer. This is done
to load vehicles as much as possible. A split-delivery is allowed in a random way
with the probability equal to the remaining number of permitted split-deliveries
divided by the expected number of possible remaining split-deliveries.

2 Insertion Heuristic

The following parameters are used is the pseudo-code of the algorithm.

n - the number of customers

V' - the set of all customers

K - the set of all vehicles

K; - the set of vehicles which can serve customer

fr - the fixed cost of using vehicle k for delivery

Q. - the current remaining capacity of vehicle k

¢; - the current remaining demand of customer 4

sf - the service time spent by vehicle £ when serving customer 4

opi, cl; - the open and close time of customer 7 (hard time window)

eri, lt; - the earliest and latest time of serving customer 4 (soft time window)
bf - the begin time of serving customer j in route R

vR - the number of soft time window violations in route R

cff - the travel cost of arc (i, j) for vehicle k with/without trailer (I = 1/l = 2)
v - the number of permitted soft time window violations

w - the current remaining number of permitted soft time window violations

68 M. Batsyn and A. Ponomarenko

o - the number of permitted split deliveries

s - the current remaining number of permitted split deliveries

R - the current route

S - the current solution

S* - the best solution

f(S) - the total cost of the current solution

f* - the total cost of the best solution

U - the set of all customers sorted the most expensive (farthest) customer first
[Cjk] - the cost matrix of the transportation problem used to assign vehicles

1 - the number of the most expensive customers from which we choose randomly
A - the preference weight of customer direct travel cost ch!

Algorithm 1. Iterative insertion heuristic
function ITERATIVEINSERTIONHEURISTIC(NNV)
> Builds N solutions running INSERTIONHEURISTIC()
S*—g, ff—o0

U~V > the set of all customers sorted so that U; has maximal &}
Q — > Qr/|K] > average vehicle capacity
7e—Q/(>q/n) > average route size
m «— 0 > the total number of built routes
M 0 > the total number of customers in these routes
T 20 > the probability of time window violation
v — v > backup the number of allowed time window violations
VN > temporarily allow unlimited time window violations
INSERTIONHEURISTIC(U, [g4], [Qk]) > get a solution with unlimited tw-violations
m— (v—w)/n > 7 is estimated as the ratio of time window violations to n
v > restore the number of allowed time window violations

for i — 1, N do
S « INSERTIONHEURISTIC(U, [g;], [@QK])
if S # @ then
mem+|S|, MM+ s|Rl, T« M/m
if f(S) < f* then
S—S* <719
end if
end if
end for
return S*
end function

The main function in our algorithm is ITERATIVEINSERTIONHEURISTIC()
(Algorithm 1). It makes the specified number of iterations N calling INSERTION-
HEURISTIC() function and stores the best found solution in S*. First, all cus-
tomers in set V are sorted by the direct travel cost ¢k} from the depot so that the
first customer has maximal direct cost (is the most expensive). The sorted list of
customers is stored in variable U. Note that we copy parameters U, [g;], [Q&] each
time we call INSERTIONHEURISTIC() function so that it can change them without

Heuristic for Site-Dependent Truck and Trailer Routing Problem 69

Algorithm 2. Insertion heuristic
function INSERTIONHEURISTIC(U, [g;], [Qk])
> Builds a solution for customers U, demands [g;], vehicle capacities [Qy]
> Parameters U, [g;], [Qx] are copied and not changed in the calling function

S—o > current solution
w— v > remaining number of soft time window violations
S—0o > remaining number of split-deliveries

while U # @ do
i < RaNDOM(Un, ...,U,) > choose random from the first ;1 most expensive
k «— CHOOSEVEHICLE(Z, [g;], [Qk])

if £ =0 then

return @ > not enough vehicles
end if
INSERTCUSTOMER(U, %, 1, R, q;, Q) > insert ¢ to an empty route R

success < true
while success do
success < INSERTBESTCUSTOMER(U, [g;], [Qk], R, k)
end while
S — SU{R}
Qr—0 > remove vehicle k£ from further consideration
end while
return S
end function

affecting their values in the main function. We also calculate here an estimation
for the average route size 7 equal to the average vehicle capacity @ divided by
the average demand. This estimation is used only for the first iteration and for
next iterations we divide the total number of customers in all constructed routes
by the total number of these routes. To estimate the probability 7 of soft time
window violation we run the insertion heuristic once with an unlimited number
of permitted violations v. Then we measure this probability as the fraction of
soft time window violations made in the obtained solution to the total number
of customers n.

We fill in the cost matrix C};, for the transportation problem using the fol-

lowing formula:
- 0, ke Kj
Cik = {oo, otherwise

We set Cj = oo for each vehicle k& which cannot serve customer j. The
transportation problem is solved to check that the currently available vehicles
with remaining capacities [Q] are able to serve the remaining demands [g;] of the
customers with site-dependency constraints given by vehicle sets K; containing
for each customer j the vehicles which can serve it.

If these vehicle sets are nested it is possible to check it without solving the
transportation problem. It is usual that for many different customers their vehicle
sets are the same: K;, = ... = K;,. We denote these vehicle sets as K=K, =
.= K;,. Let K ¢ K? C ... C K™ be all different nested vehicle sets. When we

70 M. Batsyn and A. Ponomarenko

Algorithm 3. Choose the best vehicle

function CHOOSEVEHICLE(¢, [g;], [Qk])
> Returns the best vehicle k* for customer i, demands [g;], vehicle capacities [Qx]
> Parameters [g;], [Qx] are changed in the calling function also
Qmaz +— max(Qr)
(Cla] — [Can]
for k € K; do
Cly — Qmaz/Qk > set smaller costs for bigger vehicles
end for
repeat
[#;x] < TRANSPORTATIONPROBLEM([C}], [g;], [Q&])
if [z;1] = @ then
return 0 > not enough vehicles
end if
k*—0
for k € K; do
if z;, > 0 and Qr > Qi+ then
k' —k
end if
end for
if zipx < q; and T+ < Q- then
Clpr — 0 > cannot serve total demand g;, let’s try another vehicle
end if
until Cj,. = oo
return k*
end function

assign for customer i vehicle k from its vehicle set K; = K7, and this vehicle
does not belong to smaller (nested to K7) vehicle sets: k ¢ K71, then there is
nothing to check. Otherwise, we need to check that this assignment is feasible
and the remaining vehicles capacity is enough to serve the remaining demand.

Let us denote as Qs = Y g (Qk) the current total capacity of vehicles in
set K7 and as qxi = Zz K,—Kci (@) - the current total demand of customers for
which the vehicle set is K7. We consider that vehicles in K serve all customers
for which K; = K' and then they have the remaining capacity equal to Qx: —
qx1- Then vehicles in K2\ K! together with the remaining vehicles from K serve
all customers for which the vehicle set is K2, and we have the remaining capacity
of vehicles equal to (Qg2\x1 — qx2) + (Qx1 — gx1). And so on up to the largest
vehicle set K. We precalculate all these remaining capacities for all vehicle sets
from K' to K™ only once, and then we only update it quickly each time we add
a customer to a route. If adding a customer results in a negative value for some of
the remaining capacities this means that this adding is infeasible and we cannot
do it. If we assign vehicle k to serve customer i, and the smallest vehicle set K7J°
which contains k is smaller than K; = K7, then for each set K7, ..., Ki7! we
check that after delivering goods to customer ¢ the remaining vehicle capacities
will be enough to serve the demands qyio, ..., ¢xi—1-

Heuristic for Site-Dependent Truck and Trailer Routing Problem 71

Function INSERTIONHEURISTIC() (Algorithm 2) sequentially constructs all
routes in a solution by inserting customers one by one to the constructed route.
The first customer in each route is chosen randomly from the first o customers
(1 most expensive) in the set of unserved customers U. In our experiments
we take p = 5 because it provides a good balance between diversification and
intensification of the search. A vehicle for each constructed route is assigned in
CHOOSEVEHICLE() function. Each next customer to be inserted to the current
route is chosen and inserted in INSERTBESTCUSTOMER() function.

Algorithm 4. Insert the customer to the route
function INSERTCUSTOMER(U, %, p, R, qi, Q)
> Inserts customer 4 to position p in route R
> Parameters U, R, q;, Qr are changed in the calling function also

r— |R| > the size of route R = (Ru, ..., R;)
R« (Ri,...;,Rp_1,%,Rp, ..., Ry) > insert customer ¢ to position p in route R
q <— min(g;, Qx) > the delivered demand
Qr — Qr—q > update the remaining vehicle capacity
qi ~— qi —q > update the remaining customer demand
if ¢; = 0 then

U—U\({i} > update the unserved customers list
end if

end function

Function CHOOSEVEHICLE() (Algorithm 3) chooses the biggest vehicle feasi-
ble for customer ¢. It is done by setting transportation costs Cjx such that the
bigger vehicles feasible for ¢ have smaller costs and thus the optimal solution
of the transportation problem will assign as much demand as possible to the
biggest vehicle. If the biggest vehicle cannot serve the total demand ¢; due to
the site-dependency constraints though its capacity is enough, we forbid assign-
ment of this vehicle by setting C, = co and solve the transportation problem
again.

Function INSERTCUSTOMER() (Algorithm4) inserts customer ¢ to the speci-
fied position p in route R served by vehicle k. The remaining capacity Q) of this
vehicle and the remaining demand ¢; of this customer are decreased by the value
of the delivered demand ¢. If this customer has no remaining demand after this
operation it is removed from the set of unserved customers U.

Function INSERTBESTCUSTOMER() (Algorithm5) finds the unserved cus-
tomer which has the lowest insertion cost and inserts it to the best position in
the current route. Precisely we take into account the insertion cost ¢ decreased
by the direct customer cost cfl multiplied by weight A. This is done to give
preference to the most expensive (farthest) customers because it is usually more
optimal to insert such customers to the solution earlier. In our experiments we
take A = 1 since it gives the best results in average.

Before choosing the best customer we decide in a random way if we allow
soft time window violation and split-delivery for this customer. In average every

72 M. Batsyn and A. Ponomarenko

Algorithm 5. Insert the customer with the lowest insertion cost

function INSERTBESTCUSTOMER(U, [g;], Qk, R, k)

> Inserts the best customer from U to route R served by vehicle k
> Parameters [g;] store demands, Qy - the remaining free capacity of vehicle k
> Parameters U, [¢;], Qk, R are changed in the calling function also

s=U|/F > the expected number of remaining splits (1 split per route)
w=|U|-7 > the expected number of remaining time window violations
split — (RanpoMm([0,1]) < s/3) > allow split-delivery with probability s/5
violate « (RANDOM([0, 1]) < w/@w) b allow tw-violation with probability w/@o
" —0 > best customer to insert to route R
p* 0 > best position in route R to insert this customer
¢ — o0 > insertion cost for this customer
for i € U do

if k ¢ K; then > skip customers which cannot be served by this vehicle &

continue
end if

> If split-deliveries are not allowed skip all them except inevitable ones
if (! split) & (¢; > Qk) & (¢i < maxpek, (Qr)) then
continue
end if
> Check that after serving customer ¢ by vehicle k the remaining
> vehicles are able to serve the remaining customers

q < min(g:, Qr) > the delivered demand
Qr—Qr—q > try decreasing the remaining vehicle capacity
qi < qi — ¢q > try decreasing the remaining customer demand
[jx] < TRANSPORTATIONPROBLEM([C}], [g5], [Q«])

Qr — Qr +gq > restore the remaining vehicle capacity
qi < qi t+q > restore the remaining customer demand

> If the remaining vehicles are not able to serve the remaining customers
if [z;1] = @ then

continue > skip such a customer
end if
p*+—0 > the best position in route R to insert customer ¢

¢ < GETINSERTIONCOST(R, i, k, p, violate) > find the best place for i in R
co — ckt + fi./|R| > estimation for the cost of serving i directly from depot
if cp < ¢ then
continue > it is cheaper to serve this customer directly from the depot
end if
c—c—\-ck} > give preference (\ - cﬁ}) to farthest customers
if ¢ < ¢* then
cf—c F—i, pte—p
end if
end for
if ¢* = oo then
return false
end if
INSERTCUSTOMER(U, 3", p*, R, qi*, Qi)
if Qr =0 then
return false > return false to stop building this route
end if
return true

end function

Heuristic for Site-Dependent Truck and Trailer Routing Problem 73

Algorithm 6. Calculate the best cost of inserting the customer to the route

function GETINSERTIONCOST(R, 1, k, p*, violate)
> Inserts customer i to route R served by vehicle k, returns position p* and cost
> Parameter p* (best insertion position) is changed in the calling function also
¢ — 0
r — |R)| > the size of route R = (Ru, ..., R»)
vR < VIOLATIONS(R)
for p—1,r+1do

R «— (Ri,...,Rp_1,i,Rp, ..., R;) > insert customer ¢ to position p
AT —0
for j € {i, Rp,..., R} do

1 > the latest possible begin time is the time window end It;

> For the second and next split-deliveries violations are not counted
if NEXTSPLITDELIVERY (j, R') then
l—cly — sf > the latest possible is close time minus service time
end if
A — b‘?/ — 1 > how greater the begin time than the latest possible time
if A > A* then
A" — A, 5
end if
end for
> Try to shift all deliveries earlier by A*
if (! SHIFTEARLIER(j*, R', A*)) then > if cannot satisfy hard time windows
continue
end if
Vg + VIOLATIONS(R')
if vgr > vr and violate = false then > skip if R’ has more tw-violations
continue
end if
¢ < COSTDELTA(%, p, R)
if ¢ < ¢* then
c"—c, pe0p
end if
end for
return c*
end function

route should have one split-delivery to fully use the capacity of the vehicle. So we
take the expected number of possible future split-deliveries s equal to the average
number of the remaining routes in this solution. And this value is estimated as
the number of unserved customers |U| divided by the average route size 7. The
expected number of possible future violations of soft time windows w is equal
to the number of unserved customers |U| multiplied by the probability « of soft
time window violation. To provide uniform occurrence of split-deliveries and soft
time window violations during construction of a solution we allow a split-delivery
and a violation with probabilities s/§ and w/w correspondingly.

74 M. Batsyn and A. Ponomarenko

Algorithm 7. Count the number of time window violations in the route

function VIOLATIONS(R)
> Returns the number of time window violations in route R
vr «— 0
r — |R| > the size of route R = (Ru, ..., R;)
for p — 1,r do
J— Ry
> For the second and next split-deliveries violations are not counted
if NEXTSPLITDELIVERY (j, R) then
continue
end if
if bF < er; or bF > It; then > begin time bf violates time window [er;, It;]
vr — vr +1
end if
end for

return vgr
end function

For every customer we check that after serving it by the current vehicle the
remaining vehicle capacities will be enough to serve the remaining demands. This
is done by solving the transportation problem with the cost matrix [Cjz]. The
best position p* to insert a customer is determined by function GETINSERTION-
Cost(). If the insertion cost of a customer is greater than the cost of serving this
customer directly from the depot with another vehicle, then such customer is not
inserted to the current route. This is done to avoid big detours when inserting
customers.

Function GETINSERTIONCOST() (Algorithm6) finds the best position to
insert the given customer to the current route which provides the lowest inser-
tion cost. It tries to insert the customer to every position in the route. If after
insertion this or next customers in the route have late deliveries (deliveries after
the soft time window), then function SHIFTEARLIER() is called to shift all the
deliveries earlier so that some of the previous deliveries become early deliveries
(deliveries before the soft time window). This procedure reduces the total time
of the route and thus allows inserting more customers to it.

Function SHIFTEARLIER() moves the delivery for the specified customer j*
earlier by the specified time A*. This requires moving earlier deliveries for some
of the previous customers in the route and for some of the next customers. It
moves the deliveries taking into account waiting time and split deliveries, because
two vehicles cannot serve one customer at the same time. If it is not possible
to move the deliveries earlier so that all hard time windows are satisfied, then
SHIFTEARLIER() function returns false. If for example waiting time at some
previous customer is greater than A*, then this time is simply decreased by A*
and any other previous customers do not need to be moved.

Function NEXTSPLITDELIVERY() checks if the delivery to the specified cus-
tomer j in route R is the second or next split delivery to this customer. This is
needed because it is allowed to violate the soft time window for all split deliveries

Heuristic for Site-Dependent Truck and Trailer Routing Problem 75

H

Insert trailer-customer to Insert truck-customer to Insert trailer-customer to

trailer-route truck-route truck-route

_ kL kL Kl _ k2 k2 k2 _ k2 k2 k2
A = ciy + cij — cij A = ciy + ¢y — cij A =cii + ey — cij

Insert truck-customer to Insert truck-customer to

trailer-route trailer-route with trailer
A=cF? 4 cﬁ? parking A =

k1l k2 k2 k1 k2
Cyir + Cira + Coi? + Ci/j — Cij

Fig. 1. Simple insertion cases

except one. So we do not count soft time window violations for the second and
next split deliveries.

Function COSTDELTA() returns the insertion cost for all possible cases. These
cases together with the corresponding cost deltas are shown in Figs. 1, 2, 3. The
following icons are used in these figures: [, a node visited by a road train;), a
node visited by a truck without the trailer; /A, a node at which a trailer is left
for parking; A, a node at which a trailer is left for unloading; </, a node at which
a trailer is connected back to a truck. In each of these figures a new customer
u is inserted to a route. The original route is shown above and the route after
inserting this customer is shown below in each figure. An expression to calculate
the cost delta is also provided.

Function VIOLATIONS() (Algorithm 7) counts the number of soft time window
violations made in the given route. Note that in case of split deliveries the soft
time window should not be violated only for the first split delivery to a customer.
All the next split deliveries to this customer can be outside the soft time window.

76 M. Batsyn and A. Ponomarenko

Leave trailer at new customer Leave trailer at new customer
A = ci‘i + cﬁf, + cfi + cﬁ./ — and remove Earkin%
_ k1l k2 k2 k1l
k2 cf? — kL A=cp Fept+ Cju T+ Couj?
v : vJ Rl k2 k2 k1
i/ Coul il Ciu! Coul !

Leave trailer at parking place Leave trailer at parking place Leave trailer at new parking

after new trailer-customer before new truck-customer place before new
A= cl;i Rl k2 ek A=k k2 k2 L B2 fruck-customer
wu u'd ju iu w/u wi ju A= okl K2 k2 L k2
Ck} ;) — ckQ, — k2 c’.c.l, ck} = ck% —ck2 cl.“vl, = Ciur T ey, ey Ciu!
w!j ii Ji ij u'j K Jr 2 k1 k1 k2 k2 k1
Cutjr 7 Civ T Cyir T Chu T Gyt

Fig. 2. Insertion cases with leaving trailer at another node

3 Computational Experiments

For computational experiments we used several real-life instances with the num-
ber of customers from 55 to 300 (input data for all instances can be provided by
request). All the experiments for real-life instances have been performed on Intel
Core i7 machine with 2.2 GHz CPU and 8 Gb of memory. A comparison with an
exact solution is possible only for very small instances of about 10 customers.
Such a comparison for the first version of our heuristic can be found in Batsyn
& Ponomarenko (2014).

The objective function values obtained by different algorithms are presented
in Table 1. When an algorithm is not able to obtain a feasible solution it is shown
as “~” in the table. We compare the suggested heuristic with an iterative greedy
insertion heuristic which iteratively applies Solomon (1987) insertion procedure

Heuristic for Site-Dependent Truck and Trailer Routing Problem 7

Join new truck-route
with an old one
_ k2 k2 k2 k1
A= Ciu T Cuj + Cirg +eiy —
k1 k2 k1
Cij T 5 T v

Join new truck-route with an old
one and remove parking
_ k2 k2 k2 k1
A=y + ey ey e, —
k1l _ k2 k2 k1

ij i’ T Cvlj Jjv

Join two truck-routes

k2 k2, k2 k1
A =iy, Fens T e e, —

Join two truck-routes and
remove parking

Break a truck-route into two
A=clP el +ck2+ P+

i’i wj

_ k2 k2 k1 . g .)

k2 _ okl _ k2 okl A=cp, togy Teg tegr = okl k2 k2 okl

il (¥ 3’3 Jjv K2 k1 k2 K1 uv i’j g’ iv
Cifi T Gy T G50 T Ci T Gt

Fig. 3. Insertion cases with joined and broken truck-routes

using our insertion cases. To provide different solutions on all iterations the
first customer in every route is chosen randomly from the remaining unserved
customers. The solutions obtained by this approach for 100 and 100k iterations
are shown in columns 2 and 3 of Table 1. The solutions of Batsyn & Ponomarenko
(2014) algorithm for 100 and 100k iterations are presented in columns 4 and 5.
Finally, the solutions found by the suggested new heuristic for 100 and 100k
iterations are reported in columns 6 and 7.

78 M. Batsyn and A. Ponomarenko

Table 1. Computational experiments

Instance Simple | Simple | Batsyn & Batsyn & New New
greedy, | greedy, | Ponomarenko |Ponomarenko | heuristic, |heuristic,
100 100k (2014), 100 (2014), 100k 100 100k
Novosibirsk 104026 | 103660 | 104148 103660 103757 103660
Udmurtia - - 1312720 1277967 1222630 1218939
Bashkortostan01 | — - 960130 941629 916792 902353
Bashkortostan07 | — - 1074651 1060665 1036272 1028024
Bashkortostan08 | — - 1027655 1021944 995317 984917
Bashkortostan09 | — - 1012611 1002596 974641 965984
Bashkortostan10 | — - 957746 945515 939019 929642
Novgorod03 - - - - 1190419 1185121
Novgorod04 - - - - 1082395 1073438
Novgorod05 - - - - 1138652 1128973
Novgorod06 - - - - 1184675 1171648
Novgorod07 - - - - 1243691 1229926
Kropotkin - - - - 717075 708625

The simple greedy heuristic is able to find a feasible solution only for the first
small instance of 55 customers. This is due to random assignment of vehicles and
treating soft time windows as hard ones. The heuristic of Batsyn & Ponomarenko
(2014) is not able to find a feasible solution for 7 instances because it always
chooses the biggest available vehicle which can serve the first customer in the
route and does not analyze that later a vehicle of this type will be needed for
other customers which could not be served by other vehicles. The suggested
heuristic obtains feasible solutions for all instances and provides the lowest costs.

4 Conclusions

In this paper we have suggested an iterative greedy randomized heuristic which
efficiently addresses such features of real-life vehicle routing problems as het-
erogeneous fleet of vehicles, site-dependency feature, complex truck-and-trailer
routes with transshipment locations, soft time windows along with hard time
windows, split deliveries. To the best of our knowledge this is one of the most
general formulations considered in literature for truck and trailer routing prob-
lems. We have implemented our algorithm and integrated it to the software
system of a big retail company. And it shows better results on real-life instances
than their experienced staff could get using their old software which partly auto-
mates construction of routes.

Currently we are working on further improvements of the suggested app-
roach. We consider different neighbourhood structures for local search. The idea
is to allow infeasible solutions during local search by penalizing them in the

Heuristic for Site-Dependent Truck and Trailer Routing Problem 79

objective function. This makes it possible to use many different simple and effi-
cient neighbourhoods. However due to the penalties local search will often get
stuck in bad, but feasible solutions. To overcome this problem we are going to
apply the tabu search approach.

Acknowledgments. The authors are supported by LATNA Laboratory, NRU HSE,
RF government grant, ag. 11.G34.31.0057.

References

Batsyn, M., Ponomarenko, A.: Heuristic for a real-life truck and trailer routing problem.
Procedia Comput. Sci. 31, 778-792 (2014). The 2nd International Conference on
Information Technology and Quantitative Management, ITQM 2014

Caramia, M., Guerriero, F.: A heuristic approach for the truck and trailer routing
problem. J. Oper. Res. Soc. 61, 1168-1180 (2010a)

Caramia, M., Guerriero, F.: A milk collection problem with incompatibility constraints.
Interfaces 40(2), 130-143 (2010b)

Chao, I.M.: A tabu search method for the truck and trailer routing problem. Comput.
Oper. Res. 29(1), 33-51 (2002)

Drexl, M.: Branch-and-price and heuristic column generation for the generalized truck-
and-trailer routing problem. J. Quant. Methods Econ. Bus. Adm. 12(1), 5-38 (2011)

Hoff, A.: Heuristics for rich vehicle routing problems. Ph.D. Thesis. Molde University
College (2006)

Hoff, A., Lokketangen, A.: A tabu search approach for milk collection in western
Norway using trucks and trailers. In: The Sixth Triennial Symposium on Trans-
portation Analysis TRISTAN VI, Phuket, Tailand (2007)

Lin, S.-W., Yu, V.F., Chou, S.-Y.: Solving the truck and trailer routing problem based
on a simulated annealing heuristic. Comput. Oper. Res. 36(5), 1683-1692 (2009)
Lin, S--W., Yu, V.F., Chou, S.-Y.: A note on the truck and trailer routing problem.

Expert Syst. Appl. 37(1), 899-903 (2010)

Lin, S.-W., Yu, V.F., Lu, C.-C.: A simulated annealing heuristic for the truck and
trailer routing problem with time windows. Expert Syst. Appl. 38, 15244-15252
(2011)

Scheuerer, S.: A tabu search heuristic for the truck and trailer routing problem. Com-
put. Oper. Res. 33, 894-909 (2006)

Semet, F., Taillard, E.: Solving real-life vehicle routing problems efficiently using tabu
search. Ann. Oper. Res. 41, 469-488 (1993)

Semet, F.: A two-phase algorithm for the partial accessibility constrained vehicle rout-
ing problem. Ann. Oper. Res. 61, 45-65 (1995)

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problem with time
window constraints. Oper. Res. 35, 254-265 (1987)

Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: A GRASP with
evolutionary path relinking for the truck and trailer routing problem. Comput. Oper.
Res. 38(9), 1319-1334 (2011a)

Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: Heuristic column
generation for the truck and trailer routing problem. In: International Conference on
Industrial Engineering and Systems Management IESM2011, Metz, France (2011b)

	Heuristic for Site-Dependent Truck and Trailer Routing Problem with Soft and Hard Time Windows and Split Deliveries
	1 Introduction
	2 Insertion Heuristic
	3 Computational Experiments
	4 Conclusions
	References

