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Polynomial curves on trinomial hypersurfaces

by

Ivan Arzhantsev (Moscow)

1. Introduction. It is well known that the Fermat equation zp0 + zp1 +
zp2 = 0, p ≥ 3, has no non-trivial solution over the polynomial ring C[x].
The reason is that the projective curve defined by the Fermat equation in
P2 is not rational.

It is natural to consider more general equations

(1) zp0 + zq1 + zr2 = 0, p, q, r ∈ Z≥2,
and to look for polynomial solutions. Geometrically such a solution corre-
sponds to a polynomial curve τ : C→ Vp,q,r, where Vp,q,r := V (zp0 + zq1 + zr2)
is called the Pham–Brieskorn surface in C3. Here we have trivial solutions,
namely,

z0(x) = αφ(x)m/p, z1(x) = βφ(x)m/q, z2(x) = γφ(x)m/r,

where m = lcm(p, q, r), φ(x) ∈ C[x], and α, β, γ ∈ C with αp + βq + γr = 0.
The following result is stated in [8, Theorem 0.1(a)] with references to

[6], [7] and [15, Corollary of Lemma 8].

Theorem 1. The Pham–Brieskorn surface Vp,q,r admits a non-trivial
polynomial curve if and only if one of the following conditions hold.

(i) At least one of the numbers p, q, r is coprime to the others.
(ii) gcd(p, q) = gcd(p, r) = gcd(q, r) = 2.

Moreover, the conditions of Theorem 1 characterize rational Pham–
Brieskorn surfaces (see [6, p. 117]).

Now we come to a special class of non-trivial polynomial curves on Vp,q,r.
Let us recall that a triple (p, q, r) of positive integers is called platonic if we

2010 Mathematics Subject Classification: Primary 14M20, 14R20; Secondary 11D41,
14J50.
Key words and phrases: diophantine equation, polynomial curve, torus action, Schwarz–
Halphen curve, platonic triple, the abc-Theorem.
Received 13 August 2017; revised 21 January 2018.
Published online *.

DOI: 10.4064/aa170813-18-2 [1] c© Instytut Matematyczny PAN, 2018



2 I. Arzhantsev

have 1/p + 1/q + 1/r > 1. It is well known that up to renumbering the
platonic triples are

(5, 3, 2), (4, 3, 2), (3, 3, 2), (p, 2, 2), (p, q, 1), p, q ∈ Z>0.

In 1873, Schwarz [20] found polynomial solutions of equation (1) in co-
prime polynomials z0(x), z1(x), z2(x) for every platonic triple (p, q, r) with
p, q, r ≥ 2; see also [22] and [8] for explicit formulas.

In 1883, Halphen [9] proved that equation (1) has no solution in non-
constant coprime polynomials when 1/p + 1/q + 1/r ≤ 1. We refer to [16]
for a historical account of the subject.

Following [8, Theorem 0.1(b)], we reformulate these results in terms of
polynomial curves.

Theorem 2. The Pham–Brieskorn surface Vp,q,r admits a polynomial
curve not passing through the origin if and only if (p, q, r) is a platonic
triple.

There are several ways to generalize the theory of Pham–Brieskorn sur-
faces to higher dimensions. One way is to consider Pham–Brieskorn hyper-
surfaces

V (zp00 + zp11 + · · ·+ zpmm ) ⊆ Cm+1;

see [8, Example 2.21] and references therein for related results.
In this paper we investigate the case of trinomial hypersurfaces of ar-

bitrary dimension. Trinomial relations in many variables arise naturally in
connection with torus actions of complexity 1, multigraded algebras and
Cox rings of algebraic varieties [3, 10–14].

Following [13], in Section 2 we consider two types of trinomial affine
hypersurfaces, discuss their geometric properties and define a torus action
of complexity one for hypersurfaces of each type. Theorems 3 and 4 are
generalizations of Theorem 1 to the case of trinomial hypersurfaces. It turns
out that for hypersurfaces of Type 2 rationality is equivalent to existence of
a non-trivial polynomial curve, while for Type 1 this is not the case.

In Section 5 we define Schwarz–Halphen curves on trinomial hypersur-
faces and study their basic properties. An extension of Theorem 2 to the
hypersurface case is given in Theorem 5. As one may expect, a significant
role in our arguments is played by the Mason–Stothers abc-Theorem.

2. Preliminaries. In this section we consider two types of trinomials
over the field C of complex numbers [13], [14].

Type 1. We fix positive integers n1, n2 and let n = n1 + n2. For each
i = 1, 2, we take a tuple li ∈ Zni

>0 and define a monomial

T li
i := T li1

i1 . . . T
lini
ini
∈ C[Tij ; i = 1, 2, j = 1, . . . , ni].
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By a trinomial of Type 1 we mean a polynomial of the form T l1
1 + T l2

2 + 1.
A trinomial hypersurface of Type 1 is the zero set

X = V (T l1
1 + T l2

2 + 1) ⊆ Cn.

It is easy to check that X is an irreducible smooth affine variety of dimension
n− 1.

Type 2. Fix positive integers n0, n1, n2 and let n = n0 + n1 + n2. For
each i = 0, 1, 2, fix a tuple li ∈ Zni

>0 and define a monomial

T li
i := T li1

i1 . . . T
lini
ini
∈ C[Tij ; i = 0, 1, 2, j = 1, . . . , ni].

By a trinomial of Type 2 we mean a polynomial of the form T l0
0 +T l1

1 +T l2
2 .

A trinomial hypersurface of Type 2 is

X = V (T l0
0 + T l1

1 + T l2
2 ) ⊆ Cn.

One can check that X is an irreducible normal affine variety of dimension
n−1. Clearly, every trinomial surface of Type 2 is either the Pham–Brieskorn
surface Vp,q,r or is isomorphic to the affine plane C2.

The following simple lemma describes the singular locus of X.

Lemma 1. A point (t01, . . . , t2n2) on a trinomial hypersurface X of Type 2
is singular if and only if for every i = 0, 1, 2 either there exist 1 ≤ j < k ≤ ni
with tij = tik = 0, or we have tij = 0 for some 1 ≤ j ≤ ni with lij ≥ 2.

Proof. A point x ∈ X is singular if and only if

∂(T l0
0 + T l1

1 + T l2
2 )

∂Tij
(x) = 0 for all i = 0, 1, 2 and all 1 ≤ j ≤ ni.

This implies the assertion.

Recall that the complexity of an effective action T × X → X of an al-
gebraic torus T on an irreducible algebraic variety X is defined as dimX −
dimT . Trinomial hypersurfaces of both types are equipped with a torus ac-
tion of complexity 1. Namely, assume that every variable Tij is an eigenvector
of a weight wij with respect to a T -action. Then we have relations

n1∑
j=1

l1jw1j =

n2∑
j=1

l2jw2j = 0

for Type 1 and relations
n0∑
j=1

l0jw0j =

n1∑
j=1

l1jw1j =

n2∑
j=1

l2jw2j

for Type 2. These relations define a subgroup in the torus of all invertible
diagonal matrices on Cn whose connected component is a subtorus T of
codimension 2, and the restricted action T ×X → X is effective.
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For Type 1, the monomials T l1
1 and T l2

2 are non-constant regular invari-
ants of the T -action. On the other hand, for a trinomial hypersurface X of
Type 2, every T -orbit on X contains the origin in its closure, and thus every
regular T -invariant is a constant.

Example 1. On the hypersurface

X = V (T 2
01T

4
02 + T 6

11 + T 8
21) ⊆ C4

we have the (C×)2-action given by

(t1, t2) · (T01, T02, T11, T21) = (t121 t
−2
2 T01, t2T02, t

4
1T11, t

3
1T21).

3. Horizontal curves on trinomial hypersurfaces of Type 2

Definition 1. A polynomial curve on an algebraic variety X is a regular
non-constant morphism τ : C→ X.

Assume that a variety X is affine and carries an action T ×X → X of
an algebraic torus T . Every one-parameter subgroup γ : C× → T and every
point x1 ∈ X with a non-closed orbit γ(C×) · x1 define a polynomial curve

τ : C→ X, τ(t) = γ(t) · x1 for all t 6= 0 and τ(0) = x0,

where x0 is the unique point in the boundary of the closure of the non-closed
orbit γ(C×) · x1. Our aim now is to define and study a class of polyno-
mial curves which is in a sense complementary to this class of curves. The
following definition is a special case of the standard notion of a quasisec-
tion [18, Section 2.5].

Definition 2. A polynomial curve τ : C → X on an irreducible T -
variety X of complexity one is called horizontal if there exists a T -invariant
open subset W in X such that τ(C) intersects all T -orbits on W .

In the case of the Pham–Brieskorn surface X = Vp,q,r, every polynomial
curve on X is either horizontal or the closure of a T -orbit on X. Curves of
the latter type correspond to trivial polynomial solutions mentioned in the
introduction.

Lemma 2. A polynomial curve τ : C → X on a trinomial hypersurface
of Type 2 is horizontal if and only if the rational function T l0

0 /T
l1
1 is non-

constant along the image τ(C).

Proof. If λ0T
l0
0 = λ1T

l1
1 on τ(C) for some (λ0, λ1) ∈ C\ (0, 0), then τ(C)

is contained in a proper closed T -invariant subset V (λ0T
l0
0 −λ1T

l1
1 ), and the

curve cannot be horizontal.
Conversely, assume that the function T l0

0 /T
l1
1 is non-constant along τ(C).

Let us consider the open subset W0 in X consisting of all points where each
coordinate Tij is non-zero. Since the stabilizer in T of a point on W0 is trivial,
all T -orbits in W0 form a one-parameter family of orbits of codimension 1



Polynomial curves on trinomial hypersurfaces 5

in X. The intersection of the curve τ(C) with W0 is not contained in a
T -orbit and thus it intersects generic T -orbits in W0. This implies that the
curve is horizontal.

Remark 1. One may obtain examples of horizontal polynomial curves on
a trinomial hypersurface X as generic orbits of a regular action Ga×X → X,
where Ga is the additive group of the ground field C and the action comes
from a homogeneous locally nilpotent derivation of the algebra C[X] (see
[1, Lemma 2]).

For a trinomial T l0
0 + T l1

1 + T l2
2 of Type 2, we let di = gcd(li1, . . . , lini).

Theorem 3. Let X be a trinomial hypersurface of Type 2. The following
conditions are equivalent:

(i) The hypersurface X is rational.
(ii) The hypersurface X admits a horizontal polynomial curve.
(iii) Either at least one of the numbers d0, d1, d2 is coprime to the others,

or gcd(d0, d1) = gcd(d0, d2) = gcd(d1, d2) = 2.

Proof. Conditions (i) and (iii) are equivalent by [2, Proposition 5.5].
Let us prove implication (ii)⇒(i). Assume that the hypersurfaceX admits

a horizontal polynomial curve τ . Consider the rational quotient π : X → Y ,
i.e. a rational morphism to an algebraic variety Y with C(Y ) = C(X)T

defined by the inclusion C(X)T ⊆ C(X) (see [18, Section 2.4] for more
details). Then Y is a curve and π restricted to τ(C) gives rise to a dominant
rational morphism from C to Y . This shows that the curve Y is rational. On
the other hand, the variety X contains an open subset isomorphic to T ×Y ′,
where Y ′ is a curve birational to Y . This proves that the varietyX is rational.

We now turn to (iii)⇒(ii). Let us prove first that a rational Pham–
Brieskorn surface Vp,q,r = V (zp0 + zq1 + zr2) admits a horizontal polynomial
curve. In this part we use a method proposed in [7] and fill a gap in the
arguments given there.

Take ε ∈ C with εq = −1. We have

(xr + 1)p + (ε(2xr + 1))q + xrl(x) = 0

for some polynomial l(x). Assume first that gcd(p, r) = gcd(q, r) = 1. Then
there exist u, v ∈ Z>0 such that vr − upq = 1. Let us take

z0 = l(x)uq(xr + 1), z1 = εl(x)up(2xr + 1), z2 = l(x)vx.

This curve is horizontal because the polynomials xr + 1 and x are coprime.
Now assume that gcd(p, q) = gcd(p, r) = gcd(q, r) = 2 and p ≥ q ≥ r.

Then p = 2p1, q = 2q1, r = 2r1 with pairwise coprime p1, q1, r1.
Consider an equation

(2) l0(x)2w0(x)2p1 + l1(x)2w1(x)2q1 + l2(x)2w2(x)2r1 = 0.
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Take positive integers ui, vi such that

u1p1 − v1q1r1 = 1, u2q1 − v2p1r1 = 1, u3r1 − v3p1q1 = 1.

The polynomials

z0 = l0(x)u1 l1(x)v2r1 l2(x)v3q1w0(x),

z1 = l0(x)v1r1 l1(x)u2 l2(x)v3p1w1(x),

z2 = l0(x)v1q1 l1(x)v2p1 l2(x)u3w2(x)

(3)

satisfy the equation zp0 + zq1 + zr2 = 0. Moreover, if w0(x) has a prime factor
that does not appear in w1(x) and does not divide l0(x)l1(x)l2(x), then we
obtain a horizontal curve. Hence it suffices to find a solution of equation (2)
that meets the latter condition.

We define s(x) = α(x2r1 + 1)p1 with some α ∈ C and m(x) = s(x) −
(x2r1 + 2)q1 . Then

(x2r1 + 2)2q1 + 4α2m(x)2(x2r1 + 1)2p1 = (s(x)−m(x))2 + (2s(x)m(x))2

= (s(x) +m(x))2.

Note that m(0) = α− 2q1 . So the left hand side with x = 0 equals

22q1 + 4α2(α− 2q1)2.

Let α0 be a root of this polynomial. Then we have

(4) (2α0m(x))2(x2r1 + 1)2p1 + (x2r1 + 2)2q1 + l2(x)2x2r1 = 0

with some polynomial l2(x). Since m(x) is coprime to both x2r1 + 1 and
x2r1 + 2, the polynomial curve coming from (4) via (3) is horizontal. This
completes the proof in the surface case.

Now we turn to the case of a trinomial hypersurface of arbitrary dimen-
sion. It is well known that for all sufficiently large positive integers ci there
exist positive integers bi1, . . . , bini such that

bi1li1 + · · ·+ bini lini = cidi.

We take sufficiently large pairwise coprime c0, c1, c2 that are coprime to

d0, d1, d2, find the corresponding bij , substitute Tij = z
bij
i , and obtain

(5) zc0d00 + zc1d11 + zc2d22 = 0.

If the hypersurface X is rational, surface (5) is rational as well. We take a
horizontal polynomial curve on this surface:

z0 = φ0(x), z1 = φ1(x), z2 = φ2(x).

With Tij = φi(x)bij we obtain a polynomial curve on X. Let us check that

this curve is horizontal. The rational invariants T li
i /T

lj
j on this curve are
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equal to

φi(x)cidi

φj(x)cjdj
.

This fraction is non-constant for some i, j just because the curve on sur-
face (5) is horizontal. This completes the proof of Theorem 3.

Remark 2. By [10, Theorem 1.1(ii)], a trinomial hypersurface of Type 2
is a factorial affine variety if and only if the numbers d0, d1, d2 are pairwise
coprime. In particular, every factorial trinomial hypersurface of Type 2 sat-
isfies the conditions of Theorem 3.

Remark 3. In [4] we show that every irreducible simply connected curve
on a toric affine surface X is an orbit closure of an action Gm ×X → X of
the multiplication group Gm of the ground field. The results of this paper
characterize existence of certain polynomial curves on affine hypersurfaces
with a torus action of complexity one

Problem 1. Let X be a normal rational affine variety without non-
constant invertible functions equipped with a torus action T × X → X of
complexity one such that C[X]T = C. Does X admit a horizontal polynomial
curve?

One possible approach to this problem is to use Cox rings and total
coordinate spaces (see [3, Section 1.6] for details). Namely, under our as-
sumptions the variety X has a finitely generated divisor class group Cl(X)
and a finitely generated Cox ring R(X). Moreover, the ring R(X) is the
quotient of a polynomial ring by an ideal generated by trinomials [13, The-
orem 1.8], and the total coordinate space X = Spec(R(X)) carries a torus
action of complexity 1. So one may try to construct a horizontal polynomial
curve on X and then to project it to a horizontal polynomial curve on X via
the quotient morphism X → X. The difficulty with this approach is that
the total coordinate space need not be rational: see [2, Example 5.12] and
the following example.

Example 2. Consider the surface V3,3,3 = V (z30 + z31 + z32) in C3. This
surface is not rational and does not admit a horizontal polynomial curve.
On the other hand, the quotient X of V3,3,3 by the group H = Z/3Z×Z/3Z
acting as

(z0, z1, z2) 7→ (ε0z0, ε1z1, ε0ε1z2), ε30 = ε31 = 1,

is a rational Gm-surface [13, Theorem 1.7]. One can check that the algebra
C[X] is generated by the functions

a = z30 , b = z31 , c = z32 , d = z0z1z
2
2 , e = z20z

2
1z2,
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and the formulas

a = −(x+ 1)x2, b = −(x+ 1)x3, c = (x+ 1)2x2,

d = (x+ 1)2x3, e = (x+ 1)2x4

define a horizontal polynomial curve on X.

4. Horizontal curves on trinomial hypersurfaces of Type 1. In
this section we study existence of horizontal polynomial curves on trinomial
hypersurfaces of Type 1. For this we need the following important result
[21], [17], [19, Theorem 1.8]. Given a polynomial p(x) ∈ C[x], denote by
ω(p(x)) the number of its distinct roots (without counting multiplicities).

The Mason–Stothers abc-Theorem. Let a(x), b(x), c(x) be three
coprime polynomials, not all three constant. Assume that a(x) + b(x) + c(x)
= 0. Then

max{deg a(x),deg b(x),deg c(x)} ≤ ω(a(x)b(x)c(x))− 1.

Let us turn to a characterization of existence of horizontal polynomial
curves.

Theorem 4. Let X be a trinomial hypersurface of Type 1. The following
conditions are equivalent:

(i) The hypersurface X admits a horizontal polynomial curve.
(ii) lij = 1 for some i = 1, 2 and some j = 1, . . . , ni.

Proof. (ii)⇒(i). Renumbering, we may assume that l11 = 1. Then we
let

T11 = −xl21 − 1, T12 = · · · = T1n1 = 1, T21 = x, T22 = · · · = T2n2 = 1.

This gives a horizontal polynomial curve on X.
(i)⇒(ii). Let Tij(x) be a horizontal polynomial curve on X. We let

a(x) = T l11
11 (x) . . . T

l1n1
1n1

(x), b(x) = T l21
21 (x) . . . T

l2n2
2n2

(x), c(x) = 1.

Denote by mij the number of distinct roots of the polynomial Tij(x). By the
Mason–Stothers abc-Theorem, we have

m11l11 + · · ·+m1n1 l1n1 ≤ deg a(x) ≤ ω(a(x)b(x))− 1

≤ m11 + · · ·+m1n1 +m21 + · · ·+m2n2 − 1,

and similarly

m21l21 + · · ·+m2n2 l2n2 ≤ m11 + · · ·+m1n1 +m21 + · · ·+m2n2 − 1.

Summing up these two inequalities, we obtain

m11(l11−2)+ · · ·+m1n1(l1n1−2)+m21(l21−2)+ · · ·+m2n2(l2n2−2) ≤ −2.

If all lij are ≥ 2, this is a contradiction.
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Remark 4. Consider a trinomial hypersurface X of Type 1 and let
again di = gcd(li1, . . . , lini). By [14, Corollary 3.5], the hypersurface X is
rational if and only if either at least one of d1, d2 equals 1, or d1 = d2 = 2.
Theorem 4 shows that not every rational trinomial hypersurface of Type 1
admits a horizontal polynomial curve. Moreover, by [13, Proposition 2.8],
a trinomial hypersurface of Type 1 is factorial if and only if either nili1 = 1
for some i = 1, 2, or d1 = d2 = 1. This shows that not every factorial
trinomial hypersurface of Type 1 admits a horizontal polynomial curve.

5. Schwarz–Halphen curves and platonic triples. We keep the
notation of the previous sections. For a polynomial curve

τ : C→ X, τ(x) = (Tij(x)),

we let
T li
i (x) := Ti1(x)li1 . . . Tini(x)lini .

Definition 3. A polynomial curve τ : C→ X on a trinomial hypersur-
face of Type 2 is called a Schwarz–Halphen curve (an SH-curve for short) if
the polynomials T l0

0 (x), T l1
1 (x), T l2

2 (x) are coprime.

In the case of a polynomial curve on the Pham–Brieskorn surface Vp,q,r,
this condition means that the curve does not pass through the origin.

Lemma 3. Any SH-curve on a trinomial hypersurface X of Type 2 is
horizontal.

Proof. By Lemma 2, it suffices to show that the rational function T l0
0 /T

l1
1

is non-constant along any SH-curve. If this is not the case, the polynomials
T l0
0 (x) and T l1

1 (x) are proportional. Being coprime, they are constant. Then

T l2
2 (x) is constant as well, so the curve is constant, a contradiction.

Lemma 1 shows that the image τ(C) of an SH-curve τ : C → X is con-
tained in the smooth locus Xreg. The following example shows that the
converse statement does not hold.

Example 3. Consider the hypersurface X given by

T 3
01T02 + T 3

11T12 + T 2
21T22 = 0

and the curve τ : C→ X defined by

T01 = x+1, T02 = x, T11 = x−1, T12 = x, T21 = x, T22 = −2(x2+3).

This curve is not an SH-curve, but all of its points are smooth on X.

The following result generalizes Theorem 2 to higher dimensions. In the
proof we use the idea of the proof of [19, Theorem 18.4].

Theorem 5. Let X be a trinomial hypersurface of Type 2. Assume that
li1 ≤ · · · ≤ lini for i = 0, 1, 2. Then the following conditions are equivalent:
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(i) The hypersurface X admits an SH-curve.
(ii) The hypersurface X admits a polynomial curve τ : C→ Xreg.
(iii) The triple (l01, l11, l21) is platonic.

Proof. The implication (i)⇒(ii) has been observed above. For (iii)⇒(i),
assume that (l01, l11, l21) is a platonic triple and let Tij(x) = 1 for all i =

0, 1, 2 and all 1 < j ≤ ni. By Theorem 2, the surface V (T l01
01 + T l11

11 + T l21
21 )

admits an SH-curve.

We turn to (i)⇒(iii). Let τ : C → X be an SH-curve. Without loss of
generality we assume that l01 ≥ l11 ≥ l21 ≥ 2. Let

a(x) = T l0
0 (x), b(x) = T l1

1 (x), c(x) = T l2
2 (x).

Denote by mij the number of pairwise distinct roots of the polynomial
Tij(x). Then the Mason–Stothers abc-Theorem implies∑

j

l0jm0j ≤
∑
j

m0j +
∑
j

m1j +
∑
j

m2j − 1,(6)

∑
j

l1jm1j ≤
∑
j

m0j +
∑
j

m1j +
∑
j

m2j − 1,(7)

∑
j

l2jm2j ≤
∑
j

m0j +
∑
j

m1j +
∑
j

m2j − 1.(8)

Summing (6)–(8), we obtain

(9)
∑
j

l0jm0j +
∑
j

l1jm1j +
∑
j

l2jm2j

≤ 3
(∑

j

m0j +
∑
j

m1j +
∑
j

m2j

)
− 3.

Thus we have l21 = 2. If l11 = 2 then the triple (l01, l11, l21) is platonic.

Assume that l11 ≥ 3. Let l21 = · · · = l2s2 = 2 and l2j ≥ 3 with j > s2. We
denote l2j andm2j with j > s2 by l′′2j andm′′2j respectively, andm21, . . . ,m2s2

by m′2j .

One obtains from (8) the inequality

(10)
∑
j

m′2j +
∑
j

(l′′2j − 1)m′′2j ≤
∑
j

m0j +
∑
j

m1j − 1.

Hence

(11)
∑
j

m′2j ≤
∑
j

m0j +
∑
j

m1j − 1.
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It follows from (9) and (11) that∑
j

l0jm0j+
∑
j

l1jm1j+
∑
j

l′′2jm
′′
2j ≤ 3

(∑
j

m0j +
∑
j

m1j +
∑
j

m′′2j

)
+
∑
j

m′2j − 3

≤ 4
(∑

j

m0j +
∑
j

m1j

)
+ 3

∑
j

m′′2j−4.

Thus

(12)
∑
j

l0jm0j +
∑
j

l1jm1j ≤ 4
(∑

j

m0j +
∑
j

m1j

)
− 4.

This proves that l11 = 3. Let l11 = · · · = l1s1 = 3 and l1j ≥ 4 with j > s1. We
denote l1j andm1j with j > s1 by l′′1j andm′′1j respectively, andm11, . . . ,m1s1

by m′1j .

Then (7) can be rewritten as

(13) 2
∑
j

m′1j +
∑
j

(l′′1j − 1)m′′1j ≤
∑
j

m0j +
∑
j

m2j − 1.

Summing (10) and (13), we obtain

(14)
∑
j

m′1j ≤ 2
∑
j

m0j − 2 +
∑
j

(2− l′′1j)m′′1j +
∑
j

(2− l′′2j)m′′2j .

From (8) and (14) we get

(15)
∑
j

m′2j ≤ 3
∑
j

m0j − 3 +
∑
j

(3− l′′1j)m′′1j +
∑
j

(3− 2l′′2j)m
′′
2j .

Using (6), (14), (15), we obtain∑
j

l0jm0j ≤
∑
j

m0j +
∑
j

m′1j +
∑
j

m′′1j +
∑
j

m′2j +
∑
j

m′′2j − 1

≤
∑
j

m0j + 2
∑
j

m0j − 2 +
∑
j

(6− 2l′′1j)m
′′
1j

+ 3
∑
j

m0j − 3 +
∑
j

(6− 3l′′2j)m
′′
2j − 1

≤ 6
∑
j

m0j − 6.

This proves that l01 ≤ 5 and thus the triple (l01, l11, l21) is platonic.

Finally, let us prove (ii)⇒(i). Consider a curve τ : C→ Xreg and assume
that the polynomials T l0

0 (x), T l1
1 (x), T l2

2 (x) are not coprime. Let L(x) be
a linear form that divides all these three polynomials. There exist indices
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1 ≤ js ≤ ns, s = 0, 1, 2, such that L(x) divides the polynomials Tsjs(x),
s = 0, 1, 2.

If at least one of the exponents lsjs equals 1, then the triple (l01, l11, l21)
is platonic and we use the implication (iii)⇒(i).

If all the exponents lsis are greater than 1, we consider the root x = α of
the linear form L(x). By Lemma 1, the point τ(α) is a singular point on X,
a contradiction.

This completes the proof of Theorem 5.

Remark 5. By [15, Section 2], an algebraic variety X is said to be
A1-poor if there exists a subvariety Y of X of codimension at least 2 such
that every polynomial curve on X meets Y . Theorem 5 implies that every
trinomial hypersurface X of Type 2 such that the triple (l01, l11, l21) is not
platonic is A1-poor. Indeed, any polynomial curve on X meets the singular
locus Y of X. In particular, such hypersurfaces are rigid in the sense that
X admits no non-trivial Ga-action, or equivalently the algebra C[X] admits
no non-zero locally nilpotent derivation. Rigid factorial trinomial hypersur-
faces of Type 2 are characterized in [1, Theorem 1]. Moreover, an explicit
description of the automorphism group of a rigid trinomial hypersurface can
be found in [5, Theorem 5.5].

Remark 6. If τ : C → X is a polynomial curve on a trinomial hyper-
surface X of Type 1, then the polynomials T l1

1 (x) and T l2
2 (x) are coprime

automatically. Thus every polynomial curve on X is an SH-curve.

Acknowledgments. This research was supported by the grant RSF-
DFG 16-41-01013.

The author is grateful to Jürgen Hausen, Milena Wrobel, and Mikhail
Zaidenberg for useful comments and discussions, and to the referee for valu-
able suggestions.

References

[1] I. Arzhantsev, On rigidity of factorial trinomial hypersurfaces, Int. J. Algebra Com-
put. 26 (2016), 1061–1070.

[2] I. Arzhantsev, L. Braun, J. Hausen and M. Wrobel, Log terminal singularities, pla-
tonic tuples and iteration of Cox rings, Eur. J. Math. 4 (2018), 242–312.

[3] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface, Cox Rings, Cambridge Stud.
Adv. Math. 144, Cambridge Univ. Press, New York, 2015.

[4] I. Arzhantsev and S. Gaifullin, The automorphism group of a rigid affine variety,
Math. Nachr. 290 (2017), 662–671.

[5] I. Arzhantsev and M. Zaidenberg, Acyclic curves and group actions on affine toric
surfaces, in: Affine Algebraic Geometry (Osaka, 2011), K. Masuda, et al. (eds.), World
Sci., 2013, 1–41.

http://dx.doi.org/10.1142/S0218196716500442
http://dx.doi.org/10.1007/s40879-017-0179-8
http://dx.doi.org/10.1002/mana.201600295


Polynomial curves on trinomial hypersurfaces 13

[6] G. Barthel et L. Kaup, Topologie des surfaces complexes compactes singulières, in:
Sur la topologie des surfaces complexes compactes, in: Sém. Math. Sup. 80, Presses
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Abstract (will appear on the journal’s web site only)

We prove that every rational trinomial affine hypersurface admits a hori-
zontal polynomial curve. This result provides an explicit non-trivial polyno-
mial solution to a trinomial equation. Also we show that a trinomial affine
hypersurface admits a Schwarz–Halphen curve if and only if the trinomial
comes from a platonic triple. It is a generalization of Schwarz–Halphen’s
Theorem for Pham–Brieskorn surfaces.
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