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Abstract. One of the most important aspects of data analysis at the LHC experiments is the
particle identification (PID). In LHCb, several different sub-detectors provide PID information:
two Ring Imaging Cherenkov (RICH) detectors, the hadronic and electromagnetic calorimeters,
and the muon chambers. To improve charged particle identification, we have developed models
based on deep learning and gradient boosting. The new approaches, tested on simulated samples,
provide higher identification performances than the current solution for all charged particle
types. It is also desirable to achieve a flat dependency of efficiencies from spectator variables
such as particle momentum, in order to reduce systematic uncertainties in the physics results.
For this purpose, models that improve the flatness property for efficiencies have also been
developed. This paper presents this new approach and its performance.

1. Introduction
Particle identification (PID) algorithms play a crucial part in any high-energy physics analysis.
A higher performance algorithm leads to a better background rejection and thus more precise
results. In addition, an algorithm is required to work with approximately the same efficiency in
the full available phase space to provide good discrimination for various analyses.

PID at the LHCb experiment relies on several subsystems [1]. Two Ring Imaging Cherenkov
(RICHs) sub-detectors provide charged hadron identification over a wide momentum range, from
2 to 100 GeV/c. Muons are identified mainly thanks to the muon chambers, while electron and
photon identification is assured by the calorimeters. The information can be combined by simply
computing Log Likelihoods (LL) separately for each sub-detector and combining them according
to the mathematical definition [2], or by using a more elaborated method like an artificial neural
network (see details in Section 3). The latter outperforms the LL approach and is used as a
baseline in our studies. The above particle identification approaches are used by most of the
analyses completed by LHCb collaboration.

In this paper, new models for particle identification that efficiently combine the diverse
information available from all sub-detectors using advanced machine learning approaches
are presented. The proposed models are based on Deep artificial Neural Network (DNN)
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Figure 1. Background misidentification rates versus muon (left) and proton (right)
identification efficiency, as measured in the Σ+ → pμ+μ− decay study. The variables ΔL(X−π)
(black) and ProbNN (red), are compared for 5 − 10 GeV/c muons and 5 − 50 GeV/c protons,
using data sidebands for backgrounds and simulated samples for the signal. The data sample
used corresponds to 2012 sample collected at center-of-mass energy 8 GeV.

and gradient boosting over (ordinary and oblivious) decision trees. An additional class of
algorithms providing flat efficiencies along several spectator observables (momentum, transverse
momentum, pseudorapidity, number of particles in the event) is explored.

2. Problem Statement
The problem consists in identifying the charged particle type associated with a given track. There
are five relevant particle species, namely, electron, muon, pion, kaon, proton, and ghost track
(charged tracks that do not correspond to a real particle which passed through the detector)
making a total of six hypotheses. Therefore, this is a multiclass classification problem. The
information from RICHs, the electromagnetic and hadronic calorimeters and muon chambers
are combined together with information provided by the tracking system. Apart from pre-
aggregated into likelihood like observables subdetector responses [3], we also use track geometry
variables and different detector flags. In addition to this, we used the muon identification [4] and
calorimeter information about neutral clusters [5], which proved to be very useful to suppress
fake tracks. In this paper, for the new methods we present only the result obtained with fully
simulated events [6] used both for training and testing.

3. The current solution
The first machine learning algorithm used for the PID in LHCb is a fully-connected
neural network (multilayer perceptron) with one hidden-layer implemented using the TMVA
package [7]. The model, called ProbNN, was trained separately for each particle in the binary
one-vs-rest classification mode, thus creating several separate models. The misidentification
rates versus efficiency curves for the Log Likelihood, ΔL(X − π), and ProbNN are shown in
Figure 1. The improvement due to machine learning is clearly visible for both muons and
protons.

4. New models
Two classes of algorithms are considered: first, ’non-uniform’ algorithms, which have similar
training target compared to the existing ProbNN; second, ’uniform’ algorithms, which in addition
is trained to have flat efficiencies along chosen kinematic variables.



3

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 042038  doi :10.1088/1742-6596/1085/4/042038

Table 1. Relative increase of the 1-AUC scores for different particles species and ghosts (lower
is better). The statistical uncertainty is lower than 1%.

Model ghost electron muon pion kaon proton

DNN −29% −41% −52% −37% −20% −17%
XGboost −24% −37% −50% −34% −18% −15%
CatBoost −30% −43% −54% −37% −20% −18%
flat 4d −21% −4% −13% −20% +10% +25%

We developed new PID models based on deep neural networks, from the keras library [8], and
boosted decision trees, from the CatBoost [9] and XGBoost [10] libraries. Along with a general
increase of information provided to the classifier, we used XGBoost library in the multiclass
mode, which brought some additional improvement. To compare the algorithms’ performances,
we used the Area Under Receiver Operating Characteristic Curve (ROC AUC) for one-vs-rest
classification (6 numbers in total). As can be seen from Table 1, the new models give encouraging
results in comparison to the baseline. All numbers in Table 1 were found statistically siginficant
using several methods proposed in [11, 12], paired t-test on cross-validation sample (see, for
example [13]).

An important improvement that may lead to reduction of systematic uncertainties of physics
annalyses is the construction of the PID model that does not depend on kinematic observables
of the track. In order to flatten the efficiency dependence, we used special training procedure.
This procedure effectively takes into account non-flatness of the output distribution by using the
modified loss function as described in [14]. The corresponding loss function in this case looks
like:

L = LExpLoss + αLFL, (1)

where LExpLoss corresponds to the classification loss function, the LFL corresponds to the
uniformity loss, and α is a parameter to control the trade-off between classification quality
and uniformity. The LFL is taken to be similar to the Cramer-von Mises measure:

LFL =<

∫
(Fglobal(s)− Flocal(s))

2 ds >, (2)

where Fglobal(s) and Flocal(s) is a classifier predictions cumulative distribution function for the
full sample or in a given interval, respectively. In order to reduce the efficiency dependency
on the kinematic properties of the track we use the linear combination of flatness losses for
momentum, transverse momentum, number of tracks in event and pseudorapidity:

LFL4d
= LFLp + LFLpT

+ LFLnTracks
+ Lη. (3)

This loss function is implemented using the Decision Train package [15], which uses fast
oblivious decision trees for model construction. The results of flatness boosting approach
are shown in Table 1 and in Fig. 2 with the label ”flat 4d”. The comparison of efficiency
dependence on 1/pT shows a significant improvement in flatness for each particle type. The
lower performance of this model is the result of the trade-off between quality and flatness
controlled by parameter α in Eq. 2. In these proceedings, we choose values of α to be 10
for track momentum, track transverse momentum components of the loss function and 6 for
pseudorapidity and number of tracks components. The choice of α is motivated by the optimal
trade-off between flatness and performance and is optimised using cross-validation sample. The
final choice of the model depends on the particular physics analysis and should be made after
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Figure 2. Efficiency of the ”Flat 4d” model as a function of the inverse of the transverse
momentum for each particle type, for different global efficiency cuts.

evaluation of the main sources of systematic uncertainties. Other approaches to flatten the
efficiencies are also available for neural networks [16, 17].

5. Conclusions
Several new models based on state-of-the-art machine learning methods are developed and shown
encouraging results in comparison to the baseline. Models drastically improving the flatness of
the output with the respect to the spectator variables are built. The corresponding loss of overall
efficiency is show to be small.
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