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Abstract

J. Palis found necessary conditions for a Morse-Smale diffeomorphism on a closed n-
dimensional manifold M™ to embed into a topological flow and proved that these conditions
are also sufficient for n = 2. For the case n = 3 a possibility of wild embedding of closures
of separatrices of saddles is an additional obstacle for Morse-Smale cascades to embed into
topological flows. In this paper we show that there are no such obstructions for Morse-
Smale diffeomorphisms without heteroclinic intersection given on the sphere S™, n > 4,
and Palis’s conditions again are sufficient for such diffeomorphisms.

1 Introduction and statements of results

Let M™ be a smooth connected closed n-manifold. Recall that a C™-flow (m > 0)
on the manifold M™ is a continuously depending on ¢ € R family of C"-diffeomorphisms
Xt M™ — M™ that satisfies the following conditions:

1) X%x) = 2 for any point x € M™;
2) XY X*(x)) = X'T5(z) for any s,t € R, x € M™.

A C%-flow is also called a topological flow. One says that a homeomorphism (diffeomor-
phism) f : M™ — M"™ embeds into a C™-flow on M™ if f is the time one map of this
flow.

Obviously, if a homeomorphism embeds in a flow then it is isotopic to identity. For
a homeomorphism of the line and a connected subset of the line this condition also is
necessary (see [6],[8]). If an orientation preserving homeomorphism f of the circle satisfies
either one of the three conditions: 1) f has a fixed point, 2) f has a dense orbit, or
3) f is periodic then it embeds in a flow (see [7]). Sufficient conditions of embedding
in topological flow for a homeomorphisms of a compact two-dimensional disk and of the
plane one can find in review [35]. An analytical, e—closed to the identity diffeomorphism
f:M™— M™ can be approximated with accuracy e by a diffeomorphism which embeds
in an analytical flow, see [34].

Due to [27] the set of C"-diffeomorphisms (r > 1) which embed in C*-flows is a subset of
the first category in Dif f"(M™). As Morse-Smale diffeomorphisms are structurally stable
(see [26], [28]) then for any manifold M™ there exists an open set (in Dif f1(M™)) of Morse-
Smale diffeomorphisms embeddable in topological flows. This set contains neighborhoods
of time one maps of Morse-Smale flows without periodic trajectories (according to [30]
such flows exist on an arbitrary smooth manifold).



Figure 1: Phase portraits of Morse-Smale diffeomorphisms on S? which do not embed in topo-
logical flows

Recall that a diffeomorphism f : M™ — M™ is called a Morse-Smale diffeomorphism
if it satisfies the following conditions:

e the non-wandering set (2 is finite and consists of hyperbolic periodic points;

e for any two points p, g € {1y the intersection of the stable manifold W of the point
p and the unstable manifold W' of the point ¢ is transversall.

In [26] J. Palis established the following necessary conditions of the embedding of a
Morse-Smale diffeomorphism f : M™ — M™ into a topological flow (we call them Palis
conditions):

(1) the non-wandering set Q; coincides with the set of fixed points of f;

(2) the restriction of the diffeomorphism f to each invariant manifold of a fixed point
p € {1y preserves the orientation of the manifold;

(3) if for two distinct saddle points p,q € €2y the intersection W, N W' is not empty
then it contains no compact connected components.

According to [26] these conditions are not only necessary but also sufficient for the
case n = 2. For the case n = 3 a possibility of wild embedding of closures of separatrices
of saddles is another obstruction for Morse-Smale cascades to embed in topological flows
(phase portraits of such diffeomorphisms are shown on the Figure 1). In [12] examples of
such cascades are described and a criteria for embedding of Morse-Smale 3-diffeomorphisms
in topological flows is provided. In the present paper we establish that the Palis conditions
are sufficient for Morse-Smale diffeomorphisms on S™, n > 4, such that for any distinct
saddle points p, ¢ € Qy the intersection W, N W' is empty.

Theorem 1. Suppose that a Morse-Smale diffeomorphism f : S™ — S™, n > 4 satisfies
the following conditions:

i) the non-wandering set Q¢ of the diffeomorphism f coincides with the set of its fized
points;

Definitions of stable and unstable manifolds and of transversality are given in the section 4; see also the
book [15] for references.



ii) the restriction of f to each invariant manifold of a fized point p € Qf preserves the
ortentation of the manifold;

i11) the invariant manifolds of distinct saddle points of f do not intersect.

Then f embeds into a topological flow.

Acknowledgments. Research is done with financial support of Russian Science Foun-
dation (project 17-11-01041) apart the section 4.3, which is done in frame of the Basic
Research Program of HSE in 2018.

2 Comments to Theorem 1

Due to [26] the conditions i) and i) are necessary for embedding a Morse-Smale diffeo-
morphism into a flow. Our condition that the ambient manifold is the sphere S™ and
the absence of heteroclinic intersections (condition iii)) are not necessary but violation of
each of them allows to construct examples of Morse-Smale diffeomorphisms which do not
embed in topological flows. Below we describe such examples.

In [23] V. Medvedev and E. Zhuzhoma constructed a Morse-Smale diffeomorphism
fo : M* — M* satisfying conditions i) — ii4) on a projective-like manifold M* (different
from S%) whose non-wandering set consists of exactly three fixed points: a source, a sink
and a saddle. Invariant manifolds of the saddle are two-dimensional and the closure of
each of them is a wild sphere (see [23], Theorem 4, item 2). Assume that fj embeds in a
topological flow X§. Then X{ is a topological flow whose the non-wandering set consists
of three equilibrium points with locally hyperbolic behavior. According to [36, Theorem
3| the closures of the invariant manifolds of the saddles are locally flat spheres. That is a
contradiction because the closures of the invariant manifolds of the saddle singularities of
X! and fo coincide. Thus, fy does not embed into a flow.
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Figure 2: The disk D, C W)
In [24] T.Medvedev and O. Pochinka constructed an example of Morse-Smale diffeo-

morphism f; : S* — S* satisfying to the conditions 4) — i) of the Theorem 1. The non-
wandering set of the diffeomorphism f; consists of two sources, two sinks and two saddles
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P, q such that dim W7 = dim W' = 3. The intersection W, N W is not empty and its
closure in W is a wildly embedded open disk D), (see Fig. 2). If 5* C W} is a 2-sphere
which bounds an open ball containing the point p then the intersection S* N D,, contains
at least three connected components. Assume that f; embeds into a topological flow X?.
Then due to [12] the restriction Xlt) of X? to W, \ p is topologically conjugated by means of
a homeomorphism h : W5\ p — S? x R to a shift flow x'(s,r) = (s,r +1), (s,7) € S x R.
Let ¥ = h~1(S% x {0}). Then every trajectory of the flow X}, intersects the sphere ¥ at a
unique point. Since the disk D) is invariant with respect to the flow Xlt, the intersection
D, N consists of a unique connected component and that is a contradiction. Thus, fi
does not embed into a flow.

3 The scheme of the proof of Theorem 1

The proof of Theorem 1 is based on the technique developed for classification of Morse-
Smale diffeomorphisms on orientable manifolds in a series of papers [2], [3], [4], [9], [17],
[18], [11],[13]. The idea of the proof consists of the following.

In section 4 we introduce a notion of Morse-Smale homeomorphism on a topological n-
manifold and define the subclass G(S™) of such homeomorphisms satisfying to conditions
similar to i) — #ii) of Theorem 1.

Let f € G(S™). In [13, Theorem 1.3] it is shown that the dimension of the invariant
manifolds of the fixed points of f can be only one of 0, 1,7 — 1 or n. Denote by Q; the set
of all fixed points of f whose unstable manifolds have dimension i € {0,1,n — 1,n}, and
by my the number of all saddle points of f.

Represent the sphere S™ as the union of pairwise disjoint sets

=(J wyuah By =( |J wo)uQp, vy =5"\(A;URy).

UEQ} G’GQ?_l

Similar to [16] one can prove that the sets Af, Ry, V; are connected, the set Ay is an
attractor, Ry is a repeller? and Vr consists of wandering orbits of f moving from Ry to
Ayg.

Denote by ‘A/f = V¢/f the orbit space of the action of f on Vy and by p, : Vy — ‘A/f the
natural projection. Let

5= U p,W3\o), L= |J »,(Wi\0).

UEQ} UEQ?_l

Definition 3.1. The collection Sy = (‘A/f,ﬁj[,f/;) is called the scheme of the homeomor-
phism f € G(S™).

Definition 3.2. Schemes Sy and Sy of homeomorphzsms ffe G(S”) are called equwa—
lent if there exists a homeomorphism ¢ : Vf — Vf/ such that gp(LS) = L% and gp(L“) = Lsﬁ/

The next statement follows from paper [13, Theorem 1.2| (in fact, Theorem 1.2 was
proven for Morse-Smale diffeomorphisms but the smoothness plays no role in the proof).

2A set A is called an attractor of a homeomorphism f : M™ — M™ if there exists a closed neighborhood

U C M™ of the set A such that f(U) C int U and A= [ f(U). A set R is called a repeller of a homeomorphism
n>0

f if it is an attractor for the homeomorphism f~!.



Statement 3.1. Homeomorphisms f, f' € G(S™) are topologically equivalent if and only
if their schemes Sy, Sy are equivalent.

The possibility of embedding of f € G(S™) into a topological flow follows from triviality
of the scheme in the following sense.

Let a’ be the flow on the set S*~! x R defined by a’(x,s) = (x,5s+1), z € S" 1, s € R
and let a be the time-one map of af. Let Q® = S"~! x S!. Then the orbit space of the
action @ on S~ ! x R is Q™. Denote by Pon S~ x R — Q" the natural projection. Let
m € N and ¢y, ..., ¢, C S"71 be a collection of smooth pairwise disjoint (n — 2)-spheres.

m ~
Let Q?fl = U ad(e), Lin=U Q?il and L,, = Pgn (Lyn).
teR i=1
Definition 3.3. The scheme Sy = (‘7}, i;, fﬁ;) of a homeomorphism f € G(S™) is called
trivial if there exists a homeomorphism 1) : Vf — Q" such that 1[1@? U ﬁ?) = IEmf.

In the section 5 we prove the following key lemma.
Lemma 3.1. If f € G(S™) then its scheme Sy is trivial.

In the section 6 we construct a topological flow X]tc whose time one map belongs to
the class G(S™) and has the scheme equivalent to Sf. According to Statement 3.1 there
exists a homeomorphism h : S™ — S™ such that f = hX}hil. Then the homeomorphism
f embeds into the topological flow ij' = hX}h_l.

4 Morse-Smale homeomorphisms

This section contains some definitions and statements which was introduced and proved
in [14].

4.1 Basic definitions

Remind that a linear automorphism L : R® — R" is called hyperbolic if its matrix has
no eigenvalues with absolute value equal one. In this case a space R™ have a unique
decomposition into the direct sum of L-invariant subsets E*, E" such that ||L|gs|| < 1
and ||L7!gu|| < 1 in some norm || -|| (see, for example, Propositions 2.9, 2.10 of Chapter
2 in [25)).

According to Proposition 5.4 of the book [25] any hyperbolic automorphism L is topo-
logically conjugated with a linear map of the following form:

1 1 1
a)\,,u,,l/(xlu T2y ooy TXy TAF15 TAF25 -0y xn) - (2uz1, 2:627 ceey 23:)\) 51/93)\—{-1) 51")\-&-27 ceey an)a (]-)
where A = dim E* € {0,1,..,n}, p = —1 (u = 1) if the restriction L|g« reverses
(preserves) an orientation of E%, and v = —1 (v = 1) if the restriction L|gs reverses
(preserves) an orientation of E*.
Put B = {(z1,...,zn) € R?| 21 =20 =--- =25 =0}, EY = {(21, ..., zn) € R"| 21 =
Tatg = = p = 0} and denote by P;(P;') a hyperplane that parallel to the hyperplane

ES (E}) and contain a point z € EY (y € ES). Unions P} = {P;}uery, Py = { P} }yers
form the a) , ,-invariant foliation.



Suppose that M" is an n-dimensional topological manifold, f : M™ — M™ is a home-
omorphism and p is a fixed point of the homeomorphism f. We will call the point p
topologically hyperbolic point of index M,, if there exists its neighborhood U, C M"™, num-
bers A\, € {0,1,...,n}, up,vp € {+1,—1}, and a homeomorphism h, : U, — R™ such
that h,flu, = ax,u,.v,plu, Wwhen the left and right parts are defined. Call the sets

oloc = hy L (E*), oloc = hy L(E") the local invariant manifolds of the point p, and the

sets W, = ‘UZ 1 oloc)s Wy = ‘UZ I wloc) the stable and unstable invariant manifolds
1€ 1€

of the point p.

It follows form the definition that W, = {z € M" : Z_lg_rgloo fi@)=p}, Wi ={zeM":
lim f~(x) = p} and Wy nwy =0 (W;nW,; = 0) for any distinct hyperbolic points
1——+00
p,q. Moreover, there exists an injective continuous immersion J : R*» — M" such that
Wy =J (RA»)3,

A hyperbolic fixed point is called the source (the sinks) if its indice equals n (0), a
hyperbolic fixed point p of index 0 < A\, < n is called the saddle point.

A periodic point p of period m;, of a homeomorphism f is called a topologically hy-
perbolic sink ( source, saddle) periodic point if it is the topologically hyperbolic (source,
saddle) fixed point for the homeomorphism f™». The stable and unstable manifolds of
the periodic point p considered as the fixed point of the homeomorphism ™ are called
the stable and unstable manifolds of the point p. Every connected component of the set
Wi\ p (Wy\p) is called the stable ( the unstable) separatriz and is denoted by I ().

The linearizing homeomorphism h,, : U, — R" induces a pair of transversal foliations
Fy=h, 1(77§p) s Fp=hy, 1(77;‘1?) on the set Uy,. Every leaf of the foliation F; (F}) is an
open disk of dimension A, (n — Ap). For any point = € U, denote by F,; ., F}!, the leaf of
the foliation F,, 7, correspondingly, containing the point z.

The invariant manifolds W, and W' of saddle periodic points p, g of a homeomorphism
f intersect consistently transversally if one of the following conditions holds:

L Wynwg =10

2. Wynwg # () and Fj, Cc Wy Fy, C W' for any points x € WyN Uy, y € W' NU,.
Definition 4.1. A homeomorphism f : M™ — M™ is called the Morse-Smale homeomor-
phism if it satisfies the next conditions:

1. its non-wandering set {1y finite and any point p € Qy is topologically hyperbolic;

2. invariant manifolds of any two saddle points p, q € 1y intersect consistently transver-
sally.

4.2 Properties of Morse-Smale homeomorphisms
Statement 4.1. Let f: M™ — M"™ be a Morse-Smale homeomorphism. Then:
1. Wy N Wi =p for any saddle point p € 2¢;
2. for any saddle points p,q,r € Qy the conditions (Wy \ p) N (Wi \q) #0, (W7 \q)N
W\ r) # 0 imply (W, \ p) 0 (Wt \r) # 0;

3A map J : R™ — M™ is called immersion if for any point 2 € R™ there exists a neighborhood U, € R™
such that the restriction J|y, of the map J on the set U, is a homeomorphism.




3. there are no sequence of distinct saddle points p1,pa,...,pr € Qy, k > 1, such that
Wy, \pi) N (Wi, \piy1) # 0 forie{l,..k—=1} and (W; \ pr) N (W \p1) # 0.
Statement 4.2. Let f: M™ — M"™ be a Morse-Smale homeomorphism. Then:
) M*= U Wy
pEQf
2) for any point p € Qy the manifold W' is a topological submanifold of the manifold
MTL;
3) for any point p € Q¢ and any connected component Ly of the set W \ p the following
equality holds: clly \ (Iy Up) = U Wit
qEQpWENILAD
Corollary 4.1. If f : M™ — M" is a Morse-Smale homeomorphism and p € Qf is a
saddle point such that ly " W7 = (0 for any saddle point q # p, then there exists a unique

sink w € Qf such that clly =17 UpUw and clly is either a compact arc in case A\, =1 or
a sphere of dimension A, in case \p > 1.

For an arbitrary point ¢ € Qf and § € {u, s} put Vf = W(f\q and denote by 17(]5 =V;/f
the orbit space of the action of the homeomorphism f on the set Vq‘s. The following
statement is proved in the book [9] (Proposition 2.1.5).

Statement 4.3. The space \7:1“ is homeomorphic to S~ 1 x St and the space 17; s home-
omorphic to S* a1 x S,

Remark that S? x S' means a union of two disjoint closed curves.

Proposition 4.1. Suppose f: M™ — M™ is a Morse-Smale homeomorphism, n > 4, and
o € Qy is a saddle point of index (n—1) such that [¥ nwy = 0 for any saddle point q # p.
Then the sphere cll¥ is bicollared.

Proof: Let w € QS)C be a sink point such that [} C W3. Due to Corollary 4.1 and
the item 2 of Statement 4.2 the set ¢/} = [ Uw is an (n — 1)-sphere which is locally flat
embedded in M™ at all its points apart possibly one point w. According to [5], [20] an
(n — 1)-sphere in a manifold M™ of dimension n > 4 is either locally flat or have more
than countable set of points of wildness. Therefore the sphere cll? is locally flat at point
w. According to [1] a locally flat sphere is bicollared. ©

By G(S™) we denoted a class of Morse-Smale homeomorphism on the sphere S™ such
that any f € G(S™) satisfy the following conditions:

i) € consists of fixed points;
ii) W5 NW; =0 for any distinct saddle points p,q € Qy;

ii1) the restriction of a homeomorphism f on every invariant manifolds of an arbitrary
fixed point p € 2y preserves its orientation.

Proposition 4.2. If f € G(S™), then any saddle fized point has index 1 and (n — 1).

“Here ¢l l;j means the closure of the set l;f.



Proof:  Suppose that, on the contrary, there exists a point o € Qf of index j €
(1I,n—1). According to Corollary 4.1 the closures ¢l W, cl W of the stable and unstable
manifolds of the point ¢ are spheres of dimensions j and n — j correspondingly. Due to
item 1 of Statements 4.1, the spheres S7 = cl WY, S"~J = ¢l W} intersect at a single point
o. Therefore their intersection index equals either 1 or —1 (depending on the choice of
orientations of the spheres S7, $"77 and S™). Since homology groups H;(S™), H,—;(S™)
are trivial it follows that there is a sphere S7 homological to the sphere S7 and having
the empty intersection with the sphere S®~7. Then the intersection number of the spheres
S7,8™=J must be equal to zero as the intersection number is the homology invariant (see,
for example, [32], §69). This contradiction proves the statement. o

4.3 Canonical manifolds connected with saddle fixed points
of a homeomorphism f € G(S")

It follows from Statement 4.2 that for each saddle point of a homeomorphism f € G(S™)
there exists a neighborhood where f is topologically conjugated either with the map aq :
R™ — R"™ defined by a1 (z1,x2,...,z,) = (221, %xg, ce %xn) or with the map a;!. In this
section we describe canonical manifolds defined by the action of the map a; and prove
Proposition 4.3 allowing to define similar canonical manifolds for the homeomorphism
feGsm).

Put U, = {(z1,...,2,) € R 23 (z3 + ... +22) < 7%}, 7 € (0,1], U = Uy; Uy =
{(@1, .y zn) €R?| 21 =0}, N° = U\ Oz, N* = U\ Uy, Ns = N*/ay, N¢ = N“/a;. Denote
by ps : N® — N* p, : N* — N" the natural projections and put V* = pg(Up).

Uo

Figure 3: Fundamental domains N 5 N* of the action of the homeomorphism a; on the sets
NS, N

The following statement is proved in [11] (Propositions 2.2, 2.3).

Statement 4.4. The space N* is homeomorphic to the direct product S*~2 x St x [~1,1],
the space N* consists of two connected components each of which is homeomorphic to the
direct product B"~! x St.



Recall that an annulus of dimension n is a manifold homeomorphic to S*~1 x [0, 1].

_ On the Figure 3 we present the neighborhoods N*, N and the fundamental domains
No ={(z1,...,2) EN°|3 <2d 4+ - +22 <1}, N% = {(21,...,2,) € N¥|[z1] € [1,2]} of
the action of the diffeomorphism a1%. Put C = {{(z1,...,2,) € R?|3 <2+ -+ 22 <
1}. The set N® is the union of the hyperplanes £; = {(z1,...,7,) € N*[2?(23 + - +
22) = 2}, € [~1,1]. Then the fundamental domain N*® is the union of the pairs of
annuli ; = £, NC,t € [—1,1] and the space N* can be obtained from N°® by gluing the
connected components of the boundary of each annulus by means of the diffeomorphism
a1. The set N¥ consist of two connected components each of which is homeomorphic to
the direct product B"~! x [0,1]. The space N is obtained from N by gluing the disk
By = {(z1,...,2,) € N*|x1 = 1} to the disk By = {(z1,...,2,) € N*|z; = 2} and the
disk B_; = {(x1,...,z,) € N*|zy = —1} to the disk B_y = {(z1,...,2,) € N%|z; = =2}
by means of the diffeomorphism a;.

Proposition 4.3. Suppose f € G(S™); then there exists a set of pair-vise disjoint neighbor-
hoods {NU}UEQ}UQ}LA such that for any neighborhood N, there exists a homeomorphism

Xo @ No — U such that xof|y, = a1Xoly, whenever \s = 1 and xof|y, = af1XU|NU
whenever \p, = n — 1.

Proof: Put Vgi = U V;f, ‘A/gl = U ‘A/q‘s, i€40,1,n—1,n}, 0 € {s,u} and denote
T e I qeq
by pgif : Vgif — ‘A/f‘;} the natural projection such that pgif \an = pg|vqa for any point ¢ € €2y.
—-1 7

Put ¥, = Q}c UQ}‘ ) L%f :pa(}( g{} U ;2‘?_1).

The set Z%f consists of finite number of compact topological submanifolds. Then there
is a set of pair-vise disjoint compact neighborhoods {I? &0 € Xr} of these manifolds in

oo For every point o € ¥y put K} = (pfl(})*l(Kfj) and N, = K}y UW}.

Let U, C ]\Nfg be a neighborhood of the point ¢ such that a homeomorphism g, : U, —
R™ satistying the condition g, f|u, = ax,g-|v, is defined.

Put u, = {(z1,...,7,) € Uy | 23+ ... + 22 < 1,|21] < 27}, D¥ = {(21, .0, zn) €U, 7 <
’xl‘ < 27—}7 D7S' = {(1‘1, ,$n) S UT‘ % < x% + .. +x% < 1}, Ur = gz;l(uT)v ﬁg = ggl(D?')v
0 € {s,u}, and N, = U f*(u,).

Let us show that ltehzere is a number 71 > 0 such that for any ¢ € N the intersection
fl(ﬁ;‘l) N, is empty. Suppose o € Q’J}_l (the argument for the case o € Q} is similar).
By the Statement 4.2, the set |J f#(D¥) lies in the stable manifold of a unique sink point
w. Since the homeomorphismze}\] is locally conjugated with the linear compression ag in
a neighborhood of the point w, we have that there exists a ball B" C WS \ U, such
that w C B"™ and f(B") C int B". Since D¥ is compact, there is i* > 0 such that
Fi(D*) N U, C B™ for all i > i*. Hence the set of numbers i; such that f% (D) Ny # 0
is finite. Then one can choose 71 € (0,7) such that @, N f{(D*)) = 0 and therefore
Ur N f’(ﬁﬁl)) = () for any 7 € N. Similarly one can show that there exists a number

T2 € (0, 7] such that for any ¢ € N the intersection of f _i(f)f_Q) N U, is empty.

5A fundamental domain of the action of a group G on a set X is a closed set D, C X containing a subset

D, with the following properties: 1) ¢l D, = D,; 2) g(D.) N D, = for any g € G distinct from the neutral

G v
element; 3) U ¢(D,) = X.
geG



Suppose Ay = 1, put N, = |J f*(iir,), and define a homeomorphism x*, : N, — U., by
1€Z

the following: xk(x) = go(x) whenever = € u,,, and x}:(z) = a;\f(go(fk(:n))) whenever x €

Ny \ (iiry), where k € Z is such that f*(x) € @i,,. The homeomorphism x*, conjugates the

homeomorphism f|y, with the linear diffecomorphism a1|U72. Since the homeomorphism

ailu,, is topologically conjugated with a;|y by means of the diffeomorphism g(z1, ..., ;) =

(“’—;2, ey j—%) we see that the superposition x, = gx5 : Ny — U topologically conjugates
fln, with a1|y. A homeomorphism y, for the case A, =n — 1 can be constructed in the
same way.

<

Put N* = N, \ W§, Ny = x5 (U;), N = N, \ W%, NS = N5/f, N* = N/ f.

5 'Triviality of the scheme of the homeomorphism
feG(s)

This section is devoted to the proof of Lemma 3.1. In subsections 5.1-5.3 we establish
some axillary results.

5.1 Introduction results on the embedding of closed curves
and their tubular neighborhoods in a manifold M"

Further we denote by M™ a topological manifold possibly with non-empty boundary.

Recall that a manifold N¥ C M"™ of dimension k without boundary is locally flat
in a point x € NF if there exists a neighborhood U(x) C M™ of the point x and a
homeomorphism ¢ : U(z) — R™ such that o(N*NU(z)) = R*, where R¥ = {(z1, ..., z,,) €
Rn‘ Tht1l = Tk42 = oo = Ty = 0}.

A manifold N¥ is locally flat in M™ or the submanifold of the manifold M™ if it is
locally flat at each its point.

If the condition of local flatness fails in a point z € N* then the manifold N* is called
wild and the point x is called the point of wildness.

A topological space X is called m-connected (for m > 0) if it is non-empty, path-
connected and its first m homotopy groups m;(X), i € {1,...,m} are trivial. The require-
ments of being non-empty and path-connected can be interpreted as (-1)-connected and
0-connected correspondingly.

A topological space P generated by points of a simplicial complex K with the topology
induced from R" is called the polyhedron. The complex K is called the partition or the
triangulation of the polyhedron P.

A map h : P — @ of polyhedra is called piece-vise linear if there exists partitions K, L
of polyhedra P, Q correspondingly such that h move each simplex of the complex K into
a simplex of the complex L (see for example [29]).

A polyhedron P is called the piece-vise linear manifold of dimension n with boundary
if it is a topological manifold with boundary and for any point z € int P (y € OP)
there is a neighborhood U, (Uy) and a piece-vise linear homeomorphism h, : U, — R"
(hy : Uy = RY = {(x1,...,zn) CR"| 21 > 0}).

The following important statement follows from Theorem 4 of [19].

10



Statement 5.1. Suppose that N*¥, M™ are compact piece-vise linear manifolds of dimen-
sion k,n correspondingly, N* is the manifold without boundary, M™ possibly has a non-
empty boundary, €, e : N¥ — int M™ are homotopic piece-vise linear embeddings, and the
following conditions hold:

1. n—k>3;
2. N* is (2k — n + 1)-connected;
3. M"™ is (2k — n + 2)-connected.

Then there exists a family of piece-vise linear homeomorphisms hy : M™ — M™, t €
[0,1], such that hg = id, h1€ = e, hy =1d for any t € [0, 1].

|61\4”

We will say that a topological submanifold N¥ ¢ M™ of the manifold M™ is an essential
if a homomorphism e, : 71 (N*) — 71 (M™) induced by an embedding et NV ks M™is
the isomorphism. We will call an essential manifold 3 homeomorphic to the circle S the
essential knot.

Let 8 € M™ be an essential knot and h : B"! x St — M™ be a topological embedding
such that h({O} x S') = B. Call the image Nz = h(B"~! x S!) the tubular neighborhood
of the knot S.

Proposition 5.1. Suppose that P! is either S"~! or B" 1, By,...,8, C intP* 1 x

S! are essential knots and w1, ...,x; C int P"1 are arbitrary points. Then there is a
k k

homeomorphism h : P"1 x St — P71 x S' such that h(|J B;) = U {xi} x S' and
i=1 i=1

h| =id.

apn—1xsl

Proof: Put b; = {z;} xS!, i € {1,...,k}. Choose pair-vise disjoint neighborhoods
Ui, ..., Uy of knots B, ..., B in int P*~ 1 xS!. It follows from Theorem 1.1 of the paper [10]
that there exists a homeomorphism ¢ : P*~! x S! — P*~1 x S! that is identity outside the

k
set |J U; and such that for any ¢ € {1,..., k} the set g(8;) is a subpolyhedron.
i=1
By assumption, piece-vise linear embeddings é : S' x Z;, — P*~ 1 x S, e: S! x Z;, —
k k
P71 x S such that é(S* x Zi) = U 9(8), e(S' x Z) = | b; are homotopic. By
i=1 i=1
Statement 5.1, there exists a family of piece-vise linear homeomorphisms h; : P*~1 x St —
P! x St t € [0,1], such that hg = id, h1é = e, ht|, s o =id for any ¢ € [0,1]. Then
h is the desired homeomorphism. o

The following Statement 5.2 is proved in the paper [11] ( see Lemma 2.1).

Statement 5.2. Let h: B" ! x S — int B"~! x S! be a topological embedding such that
h({O} x S') = {0} x S'. Then a manifold B"~! x S'\ int h(B"~! x S') is homeomorphic
to the direct product S*~2 x St x [0, 1].

Proposition 5.2. Suppose that Y is a topological manifold with boundary, X is a closed
component of its boundary, Y1 is a manifold homeomorphic to X x [0,1], and Y NY; =
X. Then a manifold Y UY7 is homeomorphic to Y. Moreover, if the manifold Y is
homeomorphic to the direct product X x [0,1] then there exists a homeomorphism h :
X x[0,1] = YUY, such that h(X x {3}) = X.

11



Proof: By [1] (Theorem 2), there exists a topological embedding hy : X x [0,1] = Y
such that ho(X x {1}) = X. Put Yy = ho(X x [0,1]). Let h; : X x [0,1] — Y] be a
homeomorphism such that ki (X x {0}) = X = ho(X x {1}).

Define homeomorphisms g : X x [0, 1] — X x[0,1] hy: Xx[0,1] = Y1, h: X x[0,1] =
YouY; by g(:l),t) = (h;l(ho(l‘, 1))7t)> hy = hlga

’ hi(z,2t — 1), t € (4;1],

and define a homeomoprhism H : Y UY; — Y by

H(:L’) - ho(h_l(x)), T e }/0 UYl;
2, zeY\ Y.

To prove the second item of the statement it is enough to put ¥ = Yy. Then the
homeomorphism h : X x [0,1] — Y UY; defined above is the desired one. o

Proposition 5.3. Suppose that P"~! is either the ballB" ! or the sphere S*~1, B1, ..., B C
intP?1 x St are essential knots, Ng,,....,Ng, C P! x St are their pair-vise disjoint
neighborhoods, qufl, vy D,?*l C P! are pair-vise disjoint disks, and x4, ...,x) are inner
points of the disks D]l_l, ...,DZ_I correspondingly. Then there exist a homeomorphism
h:Pl xSt — PP xSt such that h(3;) = {zi} x SY,h(Ng,) = Dt xSti e {1,....k}
and h| =id.

apn—1xsl

Proof: By Proposition 5.1, there exists a homeomorphism hg : P?~! xS! — P~ 1 xS!
such that ho(3;) = {.CI}Z} X Sl, ho’anmflxsl = id. Put NZ = hO(Nﬁi)- By [1], there exist
topological embeddings e; : S"2xS!x [0, 1] — int P~ xS! such that e;(S* 2 xSt x{1}) =
ONg,, e(S"2 x S' x [0,1]) Ne;(S"2 x S' x [0,1]) = 0 for i # j,i,j € {1,....k}. Put
U, = €i(Sn72 x St x [0, 1]) U N;.

Suppose that Dg;l, . Dgy;l, Difl, - D’igl C P! are disks such that z; C int D;fi_l,
Dt cint DY, j €{0,1}, Dyt Cint DY, and DYt x St Cint ;.

By Proposition 5.2, every set N; \ (int D?;l x S, (D?;l \ int D(’ﬁl) x S! is homeo-
morphic to the direct product S*~2 x S' x [0, 1]. By Proposition 5.2, there exists a homeo-
morphism g; : S"72 xS x [0,1] — U; \ int Dg;l x S! such that g;(S" 2 xS! x {t;}) = N,
9i(S"2 x St x {ta}) = 9 D}; x St for some t1,t2 C (0,1). Let & : [0,1] — [0,1] be a
homeomorphism that is identity on the ends of the interval [0,1] and such that {(t1) = to.
Define a homeomorphism §; : S*=2 x S! x [0,1] — S*2 x S! x [0, 1] by gi(z,t) = (x,£&(2)).

Define a homeomorphism h; : P~ x St — P*~1 x S! by

ha(z) = 9i(Gi(g; ' (2))), & € U; \int D' x S
’ z, v € (P 1 xS\ ).

The superposition 7 = hy---hihg maps every knot 3; into the knot {z;} x S', the

neighborhood Npg, into the set D?;l x S!, and keeps the set OP"~! x S! fixed. Construct

a homeomorphism O : P*~1 x ST — P! x S! that be identity on the set 9P"~! x S' and
on the knots {1} xS, ..., {z}} x St and move the set Df;l x S! into the set D! x S for
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every i € {1,...,k}. Tt follows from the Annulus Theorem® that the set D" "* \ int D?’;l
is homeomorphic to the annulus S*~2 x [0,1]. Then apply the construction similar to
one described above to define a homeomorphism 6 : P"~1 — P"~! such that 6(x;) = x;,
(D) = Dﬁ;l, 0, pn =id. Put O(z,t) = (0~ (x),t), z € P* 1t €S'. Then h = O
is the desired homeomorphism. o

Corollary 5.1. If N C S* ! x S! is a tubular neighborhood of an essential knot than the
manifold (S"~1 x SY) \ int N is homeomorphic to the direct product B"~1 x S.

5.2 A surgery of the manifold S"! x S! along an essential
submanifold homeomorphic to S*2 x S!

Recall that we put Q" = S"~! x S'. Suppose that N C Q" is an essential submanifold
homeomorphic to B" ! x S!, T'= 0N, and ey : S*72 x S x [~1;1] — Q" is a topological
embedding such that ep(S"2 x S! x {0}) = T. Put K = ep(S* 2 x St x [~1;1]) and
denote by Ni, N_ connected components of the set Q" \ int K. It follows from Propo-
sitions 5.3, 5.2 that the manifolds N, N_ are homeomorphic to B"~! x S'. Let N., N
manifolds homeomorphic to B"~! x S!. Denote by 95 : 9 N5 — 0 Nj an arbitrary home-
omorphism reversing the natural orientation, by ()5 a manifold obtained by gluing the
manifolds N5 and N3 by means of homeomorphism 15, and by 75 : (N; U N§) — Qs the
natural projection, 6 € {+, —}.

We will say that the manifolds 4, Q— are obtained from Q" by the surgery along the
submanifold T.

Note that S*~2 x S! is the boundary of B"~! x S!. By [22] (Theorem 2), the following
statement holds.

Statement 5.3. Let ¢ : S"2 x St — S§"72 x S' be an arbitrary homeomorphism. Then

there exists a homeomorphism U : B"~1 x S — B! x S such that Ul o1 = Ylgn o1

Proposition 5.4. The manifolds Q, Q— are homeomorphic to Q™.
Proof: Let D"~! c S*~! be an arbitrary disk, N5 = D"~ ! xS and h; : m5(Ns) — N

be an arbitrary homeomorphism. Put 1;5 = h57r51/157r5_1h5_1|,9N6. Due to Proposition 5.3 a

homeomorphism 15 can extend up to a homeomorphism hs : m5(Ng) — Q™ \ int Ns. Then
amap Hs : Q5 — Q" defined by Hj(x) = hs(x) whenever x € m5(Ns) and Hjs(z) = hls(x)
whenever x € 75(Nj) is the desired homeomorphism. o

5.3 A surgery of manifolds homeomorphic to S" ! x S! along
essential knots

k+1
Let QF,...,Qp,, be manifolds homeomorphic to Q" . Denote by i, ..., foxr C |J QF es-
i=1

1=
sential knots such that for any j € {1, ..., k} knots fa;_1, B2; belongs to distinct manifolds

6The Annulus Theorem states that the closure of an open domain on the sphere S™t! bounded by two
disjoint locally flat spheres S7',.5% is homeomorphic to the annulus S x [0,1]. In dimension 2 it was proved by
Rado in 1924, in dimension 3 — by Moise in 1952, in dimension 4 — by Quinn in 1982, and in dimension 5 and
greater — by Kirby in 1969.
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k+1
from the union O Q7 and every manifold @} contains at least one knot from the set
By ..vy Bop. Let ]\;511, ..., Ng,, be tubular neighborhoods of the knots 31, ..., Ba; correspond-
ingly.

Let K1, ..., Kx be manifolds homeomorphic to the direct product S*~2 x S! x [-1;1].
For every j € {1,...,k} denote by Tj C K; a manifold homeomorphic to S"~2 x S* that
cuts K into two connected components whose closures are homeomorphic to S"2 x St x
[0;1], and by v; : ONgj_1 UINy; — OK; an arbitrary reversing the natural orientation

homeomorphism.
k41 2k k
Glue manifolds @ = |J Q7' \ U int N, and K = |J K; by means of the homeomor-
i=1 v=1 j=1
phisms 1, ..., ¥, denote by @Q the obtained manifold and by 7 : Q U K — @ the natural
projection. We will say that the manifold @ is obtained from QY, ..., Q},, by the surgery

along knots B1, ..., far, and call every pair Boj_1, B2 the binding pair, j € {1,2,...,k}.

Proposition 5.5. The manifold Q is homeomorphic to Q™ and every manifold w(1};) cuts
Q into two connected components whose closures are homeomorphic to B"~1 x St.

Proof:  Prove the proposition by induction on k. Consider the case k = 1. Due
to Propositions 5.3, 5.2 manifolds Ny = Q7 \ int Ny, Ny = Q% \ int N2, N; lebw K
1

are homeomorphic to the direct product B"~! x S'. By definition, the manifold T} cuts

the manifold K into two connected components whose closures are homeomorphic to

Q" 1x]0,1]. It follows from Proposition 5.2 that T} cuts Ny U%‘E)N K7 into two connected
1

components such that the closure of one of which, denote it by N, is homeomorphic to
B! x S! and the closure of another is homeomorphic to Q! x [0,1]. Suppose that
Dyt < S is an arbitrary disk, Ny = D3~' x S! and hy : (N1 K1) — Ny is an
arbitrary homeomorphism. Put ¢, = homypy lﬂ_lha 1|3 No- In virtue of Proposition 5.3 a
homeomorphism v can be extended up to a homeomorphism hy : F(ﬁg) — Q™ \ int Ny.
Then the map h : Q — Q" defined by h(z) = ho(z) for z € n(N1|JK;) and h(z) =
hi(z) for & € m(Ny) is the desired homeomorphism. The manifold 7(T}) cuts Q into two
connected components such that the closure of one of them is (V) which is homeomorphic
to B! x S'. By Corollary 5.1, the closure of another connected component is also
homeomorphic to B"~! x S'.

Suppose that the statement is true for all A\ = k and show that it is true also for
A =k + 1. Since 2k > k + 1 we have that there exists at least one manifold among the
manifolds QT, ..., QY. ;, say Q% ;, containing exactly one knot from the set S, ..., Box (if
every of that manifolds would contain no less than two knots, then the total number of
all knots be no less than 2k +2). Let By C Q%,, fax—1 C QF, 7 € {1,...,A}, be a
binding pair. By the induction hypothesis and Corollary 5.1, the manifold @, obtained
by the surgery of manifolds Q7, ..., Q% along knots (31, ..., B2xa—2 is homeomorphic to Q";
the projection of every manifold (7}) cuts @ into two connected components such that
the closure of each of which is homeomorphic to B"~! x S!; and the projection of the knot
Bax—1 is the essential knot. Now apply the surgery to manifolds @y, Q% along knots
7 (Bar—1), Pox and use the first step arguments to obtain the desired statement. o

5.4 Proof of Lemma 3.1
Step 1. Proof of the fact that the manifold 17f 1s homeomorphic to Q" and every connected
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component Q"1 of the set I:}‘ Uﬁ; cuts XA/f nto two connected components whose closures
are homeomorphic to B"~! x St

Put k; = |sz|, i€ {0,1,n —1,n}. Due to Statement 4.2 and the fact that the closure
of every separatrix of dimension (n — 1) cuts the ambient sphere S™ into two connected
components one gets kg = k1 + 1, k, = k1 + 1.

Denote by f1, ..., Bak, the essential knots in the set V= U 175 which are projections
weN’
f

(by means of pp) of all one-dimension unstable separatrices of the diffeomorphism f. With-
out loss of generality assume that knots 82;_1, B2 are the projection of the separatrices of
the same saddle point o; € Q}, jed{l, ...k}

It follows from Statement 4.2 that every manifold X/}j contains at least one knot from
the set (i, ..., Bar,. Since stable and unstable manifolds of different saddle points do not
intersect we have that for any j € {1, ..., k1} knots fB2;_1, f2; belong to distinct connected

components of V. Indeed, if one suppose that Bo;_1,82; C V5 for some j,w, then the
set ¢l W“ W“ U w is homeomorphic to the circle. Since cl Ws divides the sphere S™
into two parts and intersect the circle cl W“] at the point o; we have that there exists at
least one point in ¢l W3 Ncl W, different from 0. This fact contradicts to the item 1 of
Statement 4.1.

Let Ny, Xo, : No; — U be the neighborhood of the point o; and the homeomorphism
defined in Proposition 4.3. Further we use denotations of the sections 4.2, 4.3. Denote
by Ng;_1,N2; the connected components of the set ]V;‘j containing knots 32;_1, 32; cor-

respondingly. Let ¢ : ONv — ON® be a homeomorphism such that 1/1]1u’aru = ps|au. Put
K; = N;j, T, = V;j and define homeomorphisms ¢, ; : Noj_1UNg; — N ¢4 5+ Kj — N?,
¢j : 8N2j_1 U asz — BKj by

-1
SO’LLJ - puXij‘A/f |N2j,1UN2j7
- —1’
Ps,j = stcf]-p‘A/f Kj»

-1
¢j = Ps,j @/JSOu,j ‘8N2j—1U8N2j7

and denote by
k1 kl

v U(BNQj_l U 8N2j) — U Kj

J=1 J=1

the homeomorphism such that

|8N2j_1uaN2j = wj‘aNQj_luaNQj'

Since

v=l U | Ul ul Uw]=[wu~]|uluw

wGQO UEQl oEQl UEQ} UGQ},

it follows that
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2k

k1
Vi \ U N Uy U K;
= =1

Vi=|VeN | U N2 o | U Ne
er} aeQ}

So, the manifold XA/f is obtained from | J 175 by the surgery along knots (1, ..., Bag, -
wEQO
Due to Proposition 5.5, the manifold Vf is homeomorphic to Q™ and every connected
component of the set LS cuts the set Vf into two connected components such that the
closure of each of which is homeomorphic to B"~! x S'.
From the other hand

vi=|l Uvan) U v Ul U wi=lvw\| UNM[U[l U ™

cqQn n—1 n—1 n—1 n—1
aesiy oy oefly oy ol

Similar to previous arguments one can conclude that the set ‘/}f is obtained from |J 17;‘
agQ?
f

by the surgery along the projections of all one-dimensional stable separatrices of the saddle
points of the dlﬁeomorphlsm f. In virtue of Proposition 5.5 every connected component
of the set Ljﬁ cuts the set Vf into two connected components such that the closure of each
of which is homeomorphic to B! x S’

Step 2. Proof of the fact that there is a set me C Q™ and a homeomorphism ¢ :

Vf — Q" such that cp(LS U L“) = me

Denote by Q7™ 1 QZ +1k all elements of the set IAL‘}UIAL; and suppose that Q’f_l is an

element such that all elements of the set I:j} UIA/; \ Qrffl are contained exactly in one of the

connected component of the manifold ‘A/f\Q?_l. Denote by N; the closure of this connected
component. By Step 1, Ny is homeomorphic to B"~! x S'. By Proposition 5.3, there exists
a disk D?_l C S" ! and a homeomorphism ) : Vf — Q" such that 1(Ny) = D’f_l x St.
If k1 + kp—1 = 1 then the proof is complete and ¢ = 9y, Amf = 0D?71 x St

Let k1 +k,—1 > 1. Denote the images of Q?_l QZ +1k under the homeomorphism

1o by the same symbols as their originals. For ¢ € {2,.. k1 + kp—1} denote by N; the
connected component of the set Q" \ Q7! contained in the set D! x S'. Without loss

of generality suppose that the numeration of the sets Q’ll_1 QZ +1k is chosen in such

a way that there exist a number I; € [2,k; + ky—1] and pair-vise dlsJont sets No, ..., Ny,
ki+kn—1
such that UQN = 'U2 N;. Choose in the interior of the disk D7~ arbitrary pair-
1= 1=
vise disjoint disks Dg‘*l, e ,DZ72. Due to Proposition 5.3 there exists a homeomorphism

’l]Z)]_ : Qn — Qn such that ¢1’Q"\intD?_1XSl = Zd, Q;Z)I(Nz) = D;Lil X 817 1 € {2, Ce 711}. If

~ I
l1 = k1 + ky—1 then the proof is complete and ¢ = 10, Lin, = U OD?_l x St

Let I1 < k1 + kp—1. Denote the images of Q?‘l ., on L and Ni,..., Ngvk,

k1+kp,
ki+kn—1
under the homeomorphism 1 by the same symbols as their originals. Pt N' = |J N;.
i=l1+1
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If for fixed i € {2,...,11} the set IN; has non-empty intersection with the set N, then
denote by l;, ki, [; < k;, the positive numbers such that N;i,..., N, j, are all elements
from N; N N and Nji,...,N;;, are pair-vise disjoint elements from N; NN such that

J=1 Jj=
DZI_ L D;‘Zl. It follows from Proposition 5.3 that there exists a homeomorphism ; :
Qn — Qn such that ’lbz"@n\thi = id, wz(Nz,]) = DZJ_I X Sl, j S {1, . ,li}, 1€ {2, ...,ll}.
If Ny N =0, put ¢; = id. )

If [; = k; for any i € {2,...,11} such that the numbers [;, k; are defined, then the

l; ki
U Nij = U Nij. Choose in the interior of the every disk D?il pair-vise disjoint disks
2

~ L1
proof is complete and ¢ = ¢y, ¢y, 1+ P1, Lin, = U U aD?j_l x S!. Otherwise, continue
i=1j=1 ’
the process and after finite number of steps get the desired set Ly,, and the desired
homeomorphism ¢ as a superposition of all constructed homeomorphisms.

6 Embedding of diffeomorphisms from the class
G(M") into topological flows

6.1 Free and properly discontinuous action of a group of
maps

In this section we collect an axillary facts on properties of the transformation group
{g™,n € Z} which is an infinite cyclic group acting freely and properly discontinuously on
a topological (in general, non-compact) manifold X and generated by a homeomorphism
g: X = X7

Denote by X/g the orbit space of the action of the group {¢",n € Z} and by Py,
X — X/g the natural projection. In virtue of [33| (Theorem 3.5.7 and Proposition 3.6.7)
the natural projection p,, : X — X /g is a covering map and the space X /g is a manifold.

Denote by n,,, : m1(X/g) — Z a homeomorphism defined in the following way. Let
¢ C X/g be a loop non-homotopic to zero in X/g and [¢] € m1(X/g) be a homotopy class
of ¢. Choose an arbitrary point & € ¢, denote by p;}g () the complete inverse image of &,
and fix a point T € p;/lg (). As Py, is the covering map then there is a unique path é(t)
beginning at the point Z (¢(0) = #) and covering the loop ¢ (such that p, (&(t)) = ¢).
Then there exists the element n € Z such that ¢(1) = f*(2). Put n,, ([¢]) = n. It follows
from [21] (rv1. 18) that the homomorphism 7, is an epimorphism.

The next statement 6.1 can be found in [21] (Theorem 5.5) and [4] (Propositions 1.2.3
u 1.2.4).

Statement 6.1. Suppose that X, Y are connected topological manifolds and g : X — X,
h:Y —Y are homeomorphisms such that groups {g", n € Z}, {h"™, n € Z} acts freely

TA group G acts on the manifold X if there is a map ¢ : G x X — X with the following properties:

1) ¢(e,x) = z for all z € X, where e is the identity element of the group G;

2) ¢(g,¢(h,z)) = C¢(gh,z) for all z € X and g,h € G.

A group G acts freely on a manifold X if for any different g,h € X and for any point x € X an inequality
C(g,x) # ((h,x) holds.

A group G acts properly discontinuously on the manifold X if for every compact subset K C X the set of
elements g € G such that ((g, K) N K # () is finite.

17



and properly discontinuously on X, Y correspondingly. Then:

1) if o : X =Y is a homeomorphism such that h = ogo~' and p. : m1(X/g) — 71 (Y/h)
is the induced homomorphism, then a map ¢ : X/g — Y /h defined by ¢ = py/hgop;/lg
is a homeomorphism and Nxsg = My nPxs

2) if ¢+ X/g — Y/h is a homeomorphism such that n, = n,,¢« and & € X/g,
T € p;/lg (), y = p(x), g € p_ly/h(y), then there exists a unique homeomorphism
©: X =Y such that h = pgp~ ! and p(Z) = 7.

6.2 Proof of Theorem 1

Suppose that a Morse-Smale diffeomorphism f : S — 5™ has no heteroclinic intersection
and satisfy Palis conditions. To prove the theorem it is enough to construct a topological
flow X} such that its time one map X} belongs to the class G(S™) and the scheme SX} is

equivalent to the scheme Sy (see Section 3).

Step 1. It follows from Lemma 3.1 and Proposition 6.1 that there exists a homeomor-
phism ¢, : Vy — S"~1 x R such that:

D flv, = ¢f_1a1/)f, where a is the time one map of the flow a'(z,s) = (z,5 + t),
re Sl seR;

2) for (n—1)-dimensional separatrix I, of an arbitrary saddle point o € €y there exists

a sphere S7~2 C S"~! such that Y, ()= U at(Sn=2).
teR
Recall that we denote by L} and L} the union of all (n — 1)-dimensional stable and

unstable separatrices of the diffeomorphism f correspondingly. Put L° = wf(L‘}), LY =
wf(L;‘). Then L is the union of pair-vise disjoint cylinders Q‘ls U---u Qia, 0 € {s,u}.
Denote by N(L%) = N(Q{)U---UN (Qié) the set of their pair-vise disjoint closed tubular
neighborhoods such that N (Qf) = K? x R, where K¢ C S""! is an annulus of dimension
(n—1),i=1,...,k°

Define a flow a} on the set U = {(x1,...,z,) € R?| z3(2% + ... + 22) < 1} by
al(z1, 9, ..., y) = (2'21,27 29, ..., 27 2,,). It follows from Statements 4.4, 6.1 that there
exists a homeomorphism x? : N(Qf) — N° such that a}|ys = x3a'(x$)*|ns. Denote by
x°*: N(L*) — U x Zgs a homeomorphism such that XS|N(Q§) = x; for any ¢ € {1,...,k*}.
Put Q° = (S"! x R) Uys (U X Zgs). A topological space Q° is a connected oriented
n-manifold without boundary.

Denote by 7 : ("1 xR)U(U X Zgs) — Q° a natural projection. Put 7, = 7, [gn-1xp,
T, = T,|Uxz,s- Define a flow Y} on the manifold Q° by

Py - [Ta@ @), @ e, (7 xRy
’ g0 (aﬁ (71-5_721(56)))7 T e T2 ([U X {Z})v i@ € Lys

By construction the non-wandering set of the flow 37; consists of k£° equilibria such
that the flow ?St is locally topologically conjugated with the flow a} at the neighborhood
of each equilibrium.

Step 2. Denote the images of the sets L%, N(L*) by means of the projection 7 by the
same symbols as their originals. Due to Statements 4.4, 6.1 there exists a homeomorphism
x¢ @ N(QY) — N¥ such that ay'lye = X2V (x¥)™%, i = 1,...,k% Denote by x* :
N(L*) — U X Zgu the homeomorphism such that Xu’N(Qy) = XﬂN(Q;}) for any i =
L...,k* Put Q" = Q° Uyu (U x Zyu). A topological space Q" is a connected oriented
n-manifold without boundary.
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Denote by 7, : Q° U (U x Zgu) — Q" the natural projection. Put m, , = 7, |gs,
T,o = P, |Uxzu- Define a flow Y on the manifold Q% by

Fi(a) = {m,1<Yg<wu,}<x>>>, vem (@)
T, (0] t(ﬂ';;(l’))), rem,,(Ux {i}), i € Zju
The non-wandering set Qfﬂf of the flow Y, consists of k* equilibria such that the flow
ﬁf is locally topological conjugated with the flow af in each of their neighborhoods and
k" equilibria such that the flow fﬁf is locally topologically conjugated with the flow aft in
each of their neighborhoods.
Step 3. Put R® = Q" \ sz}_/&, denote by pi,...,p;s connected components of the

nS

set R® and put pj = p;/y1. A union of the orbit spaces |J pj is obtained from the
“ i=1

manifold V, by a sequence of the surgeries along essential submanifolds of codimension
1. In virtue of Proposition 5.4 for any ¢ € {1,...,n°} the manifold p; is homeomorphic to
S*~1 x S', the manifold p; is homeomorphic to S"~! xR and the flow )N/qf | p¢ 1s topologically
conjugated with the flow at|Rn\O by means of a homeomorphism v. Denote by v* : R®* —
(R™\ {0}) x Zys the homeomorphism consisting of the homeomorphisms vj,...,v3s. Put
M?® = Q"Uys (R"™ X Zys). Then M* is a connected oriented n-manifold without boundary.

Put M* = Q% U (R™ x Zys) and denote by ¢, : M® — M? the natural projection. Put
41 = 4.1Qu: 4.2 = 4,|R7x7,s- Define a flow X! on the manifold M* by
K1) = 4 (Yia (@), @ €0, (@)

q.,(a' (a7, (@))), @ € q,,(R" x {i}), i € Zns

By construction the non-wandering set of the time one map of the flow )N(g consists of k*

saddle topologically hyperbolic fixed points of index 1, k% saddle topologically hyperbolic

fixed points of index (n — 1) and n® sink topologically hyperbolic fixed points.
Step 4. Put R* = M*®\ W{_ and denote by p{,..., pp. connected components of
Xt

the set R*. Similar to Step 3 one can prove that every component p} is homeomorphic to
S"~! x R and the flow X};\ pv 1s conjugated with the flow a*t|Rn\{O} by a homeomorphism
pit. Denote by p* : R* — (R™\ {O}) x Zp« a homeomorphism consisting of the homeo-
morphisms gy, ..., ppre. Put M* = M*Uuu (R X Zpu). M*™ is a connected closed oriented
n-manifold.

Put M% = M*U(R" x Zyu), denote by q, : M* — M" the natural projection, and put
Qs = 4|55 Qyn = QIR <2, - Define a flow X! on the manifold M* by
K (a) = ¢,,(Xiq, (), = € q,,(M?);

b ¢,2(a0"(4;3(2))), = € q,,(R™ x {i}), 7 € Zyu

By construction the non-wandering set of the time one map of the flow X/, consists of k*
saddle topologically hyperbolic fixed points of index 1, k% saddle topologically hyperbolic
fixed points of index (n — 1), n® sink and n* source topologically hyperbolic fixed points.

Step 5. Put f = X& By construction f is a Morse-Smale homeomorphism on the
manifold M* and its restriction f |Vf is topologically conjugated with the diffeomorphism
flv; by a homeomorphism mapping the (n — 1)-dimensional separatrices of the diffeomor-
phism f to the (n — 1)-dimensional separatrices of the diffeomorphism f and preserving
their stability. Due to Statement 3.1 homeomorphisms f and f are topologically conju-
gated. Hence M* = S" and X* = X! is the desired flow.
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