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Abstract

J. Palis found necessary conditions for a Morse-Smale diffeomorphism on a closed n-
dimensional manifoldMn to embed into a topological flow and proved that these conditions
are also sufficient for n = 2. For the case n = 3 a possibility of wild embedding of closures
of separatrices of saddles is an additional obstacle for Morse-Smale cascades to embed into
topological flows. In this paper we show that there are no such obstructions for Morse-
Smale diffeomorphisms without heteroclinic intersection given on the sphere Sn, n ≥ 4,
and Palis’s conditions again are sufficient for such diffeomorphisms.

1 Introduction and statements of results

Let Mn be a smooth connected closed n-manifold. Recall that a Cm-flow (m ≥ 0)
on the manifold Mn is a continuously depending on t ∈ R family of Cm-diffeomorphisms
Xt : Mn →Mn that satisfies the following conditions:

1) X0(x) = x for any point x ∈Mn;

2) Xt(Xs(x)) = Xt+s(x) for any s, t ∈ R, x ∈Mn.

A C0-flow is also called a topological flow. One says that a homeomorphism (diffeomor-
phism) f : Mn → Mn embeds into a Cm-flow on Mn if f is the time one map of this
flow.

Obviously, if a homeomorphism embeds in a flow then it is isotopic to identity. For
a homeomorphism of the line and a connected subset of the line this condition also is
necessary (see [6],[8]). If an orientation preserving homeomorphism f of the circle satisfies
either one of the three conditions: 1) f has a fixed point, 2) f has a dense orbit, or
3) f is periodic then it embeds in a flow (see [7]). Sufficient conditions of embedding
in topological flow for a homeomorphisms of a compact two-dimensional disk and of the
plane one can find in review [35]. An analytical, ε−closed to the identity diffeomorphism
f : Mn →Mn can be approximated with accuracy e−

c
ε by a diffeomorphism which embeds

in an analytical flow, see [34].
Due to [27] the set of Cr-diffeomorphisms (r ≥ 1) which embed in C1-flows is a subset of

the first category in Diff r(Mn). As Morse-Smale diffeomorphisms are structurally stable
(see [26], [28]) then for any manifoldMn there exists an open set (inDiff1(Mn)) of Morse-
Smale diffeomorphisms embeddable in topological flows. This set contains neighborhoods
of time one maps of Morse-Smale flows without periodic trajectories (according to [30]
such flows exist on an arbitrary smooth manifold).
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Figure 1: Phase portraits of Morse-Smale diffeomorphisms on S3 which do not embed in topo-
logical flows

Recall that a diffeomorphism f : Mn → Mn is called a Morse-Smale diffeomorphism
if it satisfies the following conditions:

• the non-wandering set Ωf is finite and consists of hyperbolic periodic points;

• for any two points p, q ∈ Ωf the intersection of the stable manifold W s
p of the point

p and the unstable manifold W u
q of the point q is transversal1.

In [26] J. Palis established the following necessary conditions of the embedding of a
Morse-Smale diffeomorphism f : Mn → Mn into a topological flow (we call them Palis
conditions):

(1) the non-wandering set Ωf coincides with the set of fixed points of f ;

(2) the restriction of the diffeomorphism f to each invariant manifold of a fixed point
p ∈ Ωf preserves the orientation of the manifold;

(3) if for two distinct saddle points p, q ∈ Ωf the intersection W s
p ∩W u

q is not empty
then it contains no compact connected components.

According to [26] these conditions are not only necessary but also sufficient for the
case n = 2. For the case n = 3 a possibility of wild embedding of closures of separatrices
of saddles is another obstruction for Morse-Smale cascades to embed in topological flows
(phase portraits of such diffeomorphisms are shown on the Figure 1). In [12] examples of
such cascades are described and a criteria for embedding of Morse-Smale 3-diffeomorphisms
in topological flows is provided. In the present paper we establish that the Palis conditions
are sufficient for Morse-Smale diffeomorphisms on Sn, n ≥ 4, such that for any distinct
saddle points p, q ∈ Ωf the intersection W s

p ∩W u
q is empty.

Theorem 1. Suppose that a Morse-Smale diffeomorphism f : Sn → Sn, n ≥ 4 satisfies
the following conditions:

i) the non-wandering set Ωf of the diffeomorphism f coincides with the set of its fixed
points;

1Definitions of stable and unstable manifolds and of transversality are given in the section 4; see also the
book [15] for references.
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ii) the restriction of f to each invariant manifold of a fixed point p ∈ Ωf preserves the
orientation of the manifold;

iii) the invariant manifolds of distinct saddle points of f do not intersect.
Then f embeds into a topological flow.

Acknowledgments. Research is done with financial support of Russian Science Foun-
dation (project 17-11-01041) apart the section 4.3, which is done in frame of the Basic
Research Program of HSE in 2018.

2 Comments to Theorem 1
Due to [26] the conditions i) and ii) are necessary for embedding a Morse-Smale diffeo-
morphism into a flow. Our condition that the ambient manifold is the sphere Sn and
the absence of heteroclinic intersections (condition iii)) are not necessary but violation of
each of them allows to construct examples of Morse-Smale diffeomorphisms which do not
embed in topological flows. Below we describe such examples.

In [23] V. Medvedev and E. Zhuzhoma constructed a Morse-Smale diffeomorphism
f0 : M4 → M4 satisfying conditions i) − iii) on a projective-like manifold M4 (different
from S4) whose non-wandering set consists of exactly three fixed points: a source, a sink
and a saddle. Invariant manifolds of the saddle are two-dimensional and the closure of
each of them is a wild sphere (see [23], Theorem 4, item 2). Assume that f0 embeds in a
topological flow Xt

0. Then Xt
0 is a topological flow whose the non-wandering set consists

of three equilibrium points with locally hyperbolic behavior. According to [36, Theorem
3] the closures of the invariant manifolds of the saddles are locally flat spheres. That is a
contradiction because the closures of the invariant manifolds of the saddle singularities of
Xt

0 and f0 coincide. Thus, f0 does not embed into a flow.

Figure 2: The disk Dp ⊂ W s
p

In [24] T.Medvedev and O. Pochinka constructed an example of Morse-Smale diffeo-
morphism f1 : S4 → S4 satisfying to the conditions i) − ii) of the Theorem 1. The non-
wandering set of the diffeomorphism f1 consists of two sources, two sinks and two saddles

3



p, q such that dim W s
p = dim W u

q = 3. The intersection W s
p ∩W u

q is not empty and its
closure in W s

p is a wildly embedded open disk Dp (see Fig. 2). If S2 ⊂ W s
p is a 2-sphere

which bounds an open ball containing the point p then the intersection S2 ∩Dp contains
at least three connected components. Assume that f1 embeds into a topological flow Xt

1.
Then due to [12] the restriction Xt

p of Xt
1 toW s

p \p is topologically conjugated by means of
a homeomorphism h : W s

p \ p→ S2×R to a shift flow χt(s, r) = (s, r+ t), (s, r) ∈ S2×R.
Let Σ = h−1(S2 × {0}). Then every trajectory of the flow Xt

p intersects the sphere Σ at a
unique point. Since the disk Dp is invariant with respect to the flow Xt

p the intersection
Dp ∩ Σ consists of a unique connected component and that is a contradiction. Thus, f1

does not embed into a flow.

3 The scheme of the proof of Theorem 1
The proof of Theorem 1 is based on the technique developed for classification of Morse-
Smale diffeomorphisms on orientable manifolds in a series of papers [2], [3], [4], [9], [17],
[18], [11],[13]. The idea of the proof consists of the following.

In section 4 we introduce a notion of Morse-Smale homeomorphism on a topological n-
manifold and define the subclass G(Sn) of such homeomorphisms satisfying to conditions
similar to i)− iii) of Theorem 1.

Let f ∈ G(Sn). In [13, Theorem 1.3] it is shown that the dimension of the invariant
manifolds of the fixed points of f can be only one of 0, 1, n− 1 or n. Denote by Ωi

f the set
of all fixed points of f whose unstable manifolds have dimension i ∈ {0, 1, n − 1, n}, and
by mf the number of all saddle points of f .

Represent the sphere Sn as the union of pairwise disjoint sets

Af = (
⋃
σ∈Ω1

f

W u
σ ) ∪ Ω0

f , Rf = (
⋃

σ∈Ωn−1
f

W s
σ) ∪ Ωn

f , Vf = Sn \ (Af ∪Rf ).

Similar to [16] one can prove that the sets Af , Rf , Vf are connected, the set Af is an
attractor, Rf is a repeller2 and Vf consists of wandering orbits of f moving from Rf to
Af .

Denote by V̂f = Vf/f the orbit space of the action of f on Vf and by p
f

: Vf → V̂f the
natural projection. Let

L̂sf =
⋃
σ∈Ω1

f

p
f
(W s

σ \ σ), L̂uf =
⋃

σ∈Ωn−1
f

p
f
(W u

σ \ σ).

Definition 3.1. The collection Sf = (V̂f , L̂
s
f , L̂

u
f ) is called the scheme of the homeomor-

phism f ∈ G(Sn).

Definition 3.2. Schemes Sf and Sf ′ of homeomorphisms f, f ′ ∈ G(Sn) are called equiva-
lent if there exists a homeomorphism ϕ̂ : V̂f → V̂f ′ such that ϕ̂(L̂sf ) = L̂sf ′ and ϕ̂(L̂uf ) = L̂uf ′ .

The next statement follows from paper [13, Theorem 1.2] (in fact, Theorem 1.2 was
proven for Morse-Smale diffeomorphisms but the smoothness plays no role in the proof).

2A set A is called an attractor of a homeomorphism f : Mn → Mn if there exists a closed neighborhood
U ⊂Mn of the set A such that f(U) ⊂ int U and A =

⋂
n≥0

f(U). A set R is called a repeller of a homeomorphism

f if it is an attractor for the homeomorphism f−1.
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Statement 3.1. Homeomorphisms f, f ′ ∈ G(Sn) are topologically equivalent if and only
if their schemes Sf , Sf ′ are equivalent.

The possibility of embedding of f ∈ G(Sn) into a topological flow follows from triviality
of the scheme in the following sense.

Let at be the flow on the set Sn−1 ×R defined by at(x, s) = (x, s+ t), x ∈ Sn−1, s ∈ R
and let a be the time-one map of at. Let Qn = Sn−1 × S1. Then the orbit space of the
action a on Sn−1 × R is Qn. Denote by pQn : Sn−1 × R→ Qn the natural projection. Let
m ∈ N and c1, ..., cm ⊂ Sn−1 be a collection of smooth pairwise disjoint (n − 2)-spheres.

Let Qn−1
i =

⋃
t∈R

at(ci), Lm =
m⋃
i=1

Qn−1
i and L̂m = pQn (Lm).

Definition 3.3. The scheme Sf = (V̂f , L̂
s
f , L̂

u
f ) of a homeomorphism f ∈ G(Sn) is called

trivial if there exists a homeomorphism ψ̂ : V̂f → Qn such that ψ̂(L̂sf ∪ L̂uf ) = L̂mf .

In the section 5 we prove the following key lemma.

Lemma 3.1. If f ∈ G(Sn) then its scheme Sf is trivial.

In the section 6 we construct a topological flow Xt
f whose time one map belongs to

the class G(Sn) and has the scheme equivalent to Sf . According to Statement 3.1 there
exists a homeomorphism h : Sn → Sn such that f = hX1

fh
−1. Then the homeomorphism

f embeds into the topological flow Y t
f = hXt

fh
−1.

4 Morse-Smale homeomorphisms
This section contains some definitions and statements which was introduced and proved
in [14].

4.1 Basic definitions
Remind that a linear automorphism L : Rn → Rn is called hyperbolic if its matrix has
no eigenvalues with absolute value equal one. In this case a space Rn have a unique
decomposition into the direct sum of L-invariant subsets Es, Eu such that ||L|Es || < 1
and ||L−1|Eu || < 1 in some norm || · || (see, for example, Propositions 2.9, 2.10 of Chapter
2 in [25]).

According to Proposition 5.4 of the book [25] any hyperbolic automorphism L is topo-
logically conjugated with a linear map of the following form:

aλ,µ,ν(x1, x2, ..., xλ, xλ+1, xλ+2, ..., xn) = (2µx1, 2x2, ..., 2xλ,
1

2
νxλ+1,

1

2
xλ+2, ...,

1

2
xn), (1)

where λ = dimEu ∈ {0, 1, ..., n}, µ = −1 (µ = 1) if the restriction L|Eu reverses
(preserves) an orientation of Eu, and ν = −1 (ν = 1) if the restriction L|Es reverses
(preserves) an orientation of Es.

Put Esλ = {(x1, ..., xn) ∈ Rn| x1 = x2 = · · · = xλ = 0}, Euλ = {(x1, ..., xn) ∈ Rn| xλ+1 =
xλ+2 = · · · = xn = 0} and denote by P sx(P uy ) a hyperplane that parallel to the hyperplane
Esλ (Euλ) and contain a point x ∈ Euλ (y ∈ Esλ). Unions Psλ = {P sx}x∈Euλ ,P

u
λ = {P uy }y∈Esλ

form the aλ,µ,ν-invariant foliation.
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Suppose that Mn is an n-dimensional topological manifold, f : Mn →Mn is a home-
omorphism and p is a fixed point of the homeomorphism f . We will call the point p
topologically hyperbolic point of index λp, if there exists its neighborhood Up ⊂Mn, num-
bers λp ∈ {0, 1, ..., n}, µp, νp ∈ {+1,−1}, and a homeomorphism hp : Up → Rn such
that hpf |Up = aλp,µp,νphp|Up when the left and right parts are defined. Call the sets
W s
p,loc = h−1

p (Es),W u
p,loc = h−1

p (Eu) the local invariant manifolds of the point p, and the
sets W s

p =
⋃
i∈Z

f i(W s
p,loc), W

u
p =

⋃
i∈Z

f i(W u
p,loc) the stable and unstable invariant manifolds

of the point p.
It follows form the definition that W s

p = {x ∈Mn : lim
i→+∞

f i(x) = p},W u
p = {x ∈Mn :

lim
i→+∞

f−i(x) = p} and W u
p ∩W u

q = ∅ (W s
p ∩W s

q = ∅) for any distinct hyperbolic points

p, q. Moreover, there exists an injective continuous immersion J : Rλp → Mn such that
W u
p = J(Rλp)3.
A hyperbolic fixed point is called the source (the sinks) if its indice equals n (0), a

hyperbolic fixed point p of index 0 < λp < n is called the saddle point.
A periodic point p of period mp of a homeomorphism f is called a topologically hy-

perbolic sink ( source, saddle) periodic point if it is the topologically hyperbolic (source,
saddle) fixed point for the homeomorphism fmp . The stable and unstable manifolds of
the periodic point p considered as the fixed point of the homeomorphism fmp are called
the stable and unstable manifolds of the point p. Every connected component of the set
W s
p \ p (W u

p \ p) is called the stable ( the unstable) separatrix and is denoted by lsp (lup ).
The linearizing homeomorphism hp : Up → Rn induces a pair of transversal foliations

Fsp = h−1
p (Psλp) , Fup = h−1

p (Puλp) on the set Up. Every leaf of the foliation Fsp (Fup ) is an
open disk of dimension λp (n− λp). For any point x ∈ Up denote by F sp,x, F up,x the leaf of
the foliation Fsp ,Fup , correspondingly, containing the point x.

The invariant manifoldsW s
p andW u

q of saddle periodic points p, q of a homeomorphism
f intersect consistently transversally if one of the following conditions holds:

1. W s
p ∩W u

q = ∅;
2. W s

p ∩W u
q 6= ∅ and F sq,x ⊂W s

p ; F up,y ⊂W u
q for any points x ∈W s

p ∩Uq, y ∈W u
q ∩Up.

Definition 4.1. A homeomorphism f : Mn →Mn is called the Morse-Smale homeomor-
phism if it satisfies the next conditions:

1. its non-wandering set Ωf finite and any point p ∈ Ωf is topologically hyperbolic;

2. invariant manifolds of any two saddle points p, q ∈ Ωf intersect consistently transver-
sally.

4.2 Properties of Morse-Smale homeomorphisms
Statement 4.1. Let f : Mn →Mn be a Morse-Smale homeomorphism. Then:

1. W u
p ∩W s

p = p for any saddle point p ∈ Ωf ;

2. for any saddle points p, q, r ∈ Ωf the conditions (W s
p \ p) ∩ (W u

q \ q) 6= ∅, (W s
q \ q) ∩

(W u
r \ r) 6= ∅ imply (W s

p \ p) ∩ (W u
r \ r) 6= ∅;

3A map J : Rm → Mn is called immersion if for any point x ∈ Rm there exists a neighborhood Ux ∈ Rm

such that the restriction J |Ux of the map J on the set Ux is a homeomorphism.
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3. there are no sequence of distinct saddle points p1, p2, ..., pk ∈ Ωf , k > 1, such that
(W s

pi \ pi) ∩ (W u
pi+1
\ pi+1) 6= ∅ for i ∈ {1, ..., k − 1} and (W s

pk
\ pk) ∩ (W u

p1
\ p1) 6= ∅.

Statement 4.2. Let f : Mn →Mn be a Morse-Smale homeomorphism. Then:

1) Mn =
⋃

p∈Ωf

W u
p ;

2) for any point p ∈ Ωf the manifold W u
p is a topological submanifold of the manifold

Mn;

3) for any point p ∈ Ωf and any connected component lup of the set W u
p \ p the following

equality holds: cl lup \ (lup ∪ p) =
⋃

q∈Ωf :W s
q ∩lup 6=∅

W u
q

4.

Corollary 4.1. If f : Mn → Mn is a Morse-Smale homeomorphism and p ∈ Ωf is a
saddle point such that lup ∩W s

q = ∅ for any saddle point q 6= p, then there exists a unique
sink ω ∈ Ωf such that cl lup = lup ∪ p∪ω and cl lup is either a compact arc in case λp = 1 or
a sphere of dimension λp in case λp > 1.

For an arbitrary point q ∈ Ωf and δ ∈ {u, s} put V δ
q = W δ

q \q and denote by V̂ δ
q = V s

q /f

the orbit space of the action of the homeomorphism f on the set V δ
q . The following

statement is proved in the book [9] (Proposition 2.1.5).

Statement 4.3. The space V̂ u
q is homeomorphic to Sλq−1×S1 and the space V̂ s

q is home-
omorphic to Sn−λq−1 × S1.

Remark that S0 × S1 means a union of two disjoint closed curves.

Proposition 4.1. Suppose f : Mn →Mn is a Morse-Smale homeomorphism, n ≥ 4, and
σ ∈ Ωf is a saddle point of index (n−1) such that luσ ∩W s

q = ∅ for any saddle point q 6= p.
Then the sphere cl luσ is bicollared.

Proof: Let ω ∈ Ω0
f be a sink point such that luσ ⊂ W s

ω. Due to Corollary 4.1 and
the item 2 of Statement 4.2 the set cl luσ = luσ ∪ ω is an (n− 1)-sphere which is locally flat
embedded in Mn at all its points apart possibly one point ω. According to [5], [20] an
(n − 1)-sphere in a manifold Mn of dimension n ≥ 4 is either locally flat or have more
than countable set of points of wildness. Therefore the sphere cl luσ is locally flat at point
ω. According to [1] a locally flat sphere is bicollared. �

By G(Sn) we denoted a class of Morse-Smale homeomorphism on the sphere Sn such
that any f ∈ G(Sn) satisfy the following conditions:

i) Ωf consists of fixed points;

ii) W s
p ∩W u

q = ∅ for any distinct saddle points p, q ∈ Ωf ;

iii) the restriction of a homeomorphism f on every invariant manifolds of an arbitrary
fixed point p ∈ Ωf preserves its orientation.

Proposition 4.2. If f ∈ G(Sn), then any saddle fixed point has index 1 and (n− 1).

4Here cl lup means the closure of the set lup .
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Proof: Suppose that, on the contrary, there exists a point σ ∈ Ωf of index j ∈
(1, n− 1). According to Corollary 4.1 the closures clW u

σ , clW
s
σ of the stable and unstable

manifolds of the point σ are spheres of dimensions j and n − j correspondingly. Due to
item 1 of Statements 4.1, the spheres Sj = clW u

σ , S
n−j = clW s

σ intersect at a single point
σ. Therefore their intersection index equals either 1 or −1 (depending on the choice of
orientations of the spheres Sj , Sn−j and Sn). Since homology groups Hj(S

n), Hn−j(S
n)

are trivial it follows that there is a sphere S̃j homological to the sphere Sj and having
the empty intersection with the sphere Sn−j . Then the intersection number of the spheres
Sj , Sn−j must be equal to zero as the intersection number is the homology invariant (see,
for example, [32], § 69). This contradiction proves the statement. �

4.3 Canonical manifolds connected with saddle fixed points
of a homeomorphism f ∈ G(Sn)

It follows from Statement 4.2 that for each saddle point of a homeomorphism f ∈ G(Sn)
there exists a neighborhood where f is topologically conjugated either with the map a1 :
Rn → Rn defined by a1(x1, x2, . . . , xn) = (2x1,

1
2x2, . . . ,

1
2xn) or with the map a−1

1 . In this
section we describe canonical manifolds defined by the action of the map a1 and prove
Proposition 4.3 allowing to define similar canonical manifolds for the homeomorphism
f ∈ G(Sn).

Put Uτ = {(x1, ..., xn) ∈ Rn| x2
1(x2

2 + ... + x2
n) ≤ τ2}, τ ∈ (0, 1], U = U1; U0 =

{(x1, ..., xn) ∈ Rn| x1 = 0}, Ns = U\Ox1, Nu = U\U0, N̂s = Ns/a1, N̂u = Nu/a1. Denote
by ps : Ns → N̂s, pu : Nu → N̂u the natural projections and put V̂ s = ps(U0).

Figure 3: Fundamental domains Ñ s, Ñu of the action of the homeomorphism a1 on the sets
Ns,Nu

The following statement is proved in [11] (Propositions 2.2, 2.3).

Statement 4.4. The space N̂s is homeomorphic to the direct product Sn−2× S1× [−1, 1],
the space N̂u consists of two connected components each of which is homeomorphic to the
direct product Bn−1 × S1.
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Recall that an annulus of dimension n is a manifold homeomorphic to Sn−1 × [0, 1].
On the Figure 3 we present the neighborhoods Ns,Nu and the fundamental domains

Ñ s = {(x1, . . . , xn) ∈ Ns|14 ≤ x
2
2 + · · ·+ x2

n ≤ 1}, Ñu = {(x1, . . . , xn) ∈ Nu||x1| ∈ [1, 2]} of
the action of the diffeomorphism a1

5. Put C = {{(x1, . . . , xn) ∈ Rn|14 ≤ x2
2 + · · · + x2

n ≤
1}. The set Ns is the union of the hyperplanes Lt = {(x1, ..., xn) ∈ N s|x2

1(x2
2 + · · · +

x2
n) = t2}, t ∈ [−1, 1]. Then the fundamental domain Ñ s is the union of the pairs of

annuli Kt = Lt ∩ C, t ∈ [−1, 1] and the space N̂s can be obtained from Ñ s by gluing the
connected components of the boundary of each annulus by means of the diffeomorphism
a1. The set Ñu consist of two connected components each of which is homeomorphic to
the direct product Bn−1 × [0, 1]. The space N̂u is obtained from Ñu by gluing the disk
B1 = {(x1, . . . , xn) ∈ Nu|x1 = 1} to the disk B2 = {(x1, . . . , xn) ∈ Nu|x1 = 2} and the
disk B−1 = {(x1, . . . , xn) ∈ Nu|x1 = −1} to the disk B−2 = {(x1, . . . , xn) ∈ Nu|x1 = −2}
by means of the diffeomorphism a1.

Proposition 4.3. Suppose f ∈ G(Sn); then there exists a set of pair-vise disjoint neighbor-
hoods {Nσ}σ∈Ω1

f∪Ωn−1
f

such that for any neighborhood Nσ there exists a homeomorphism

χσ : Nσ → U such that χσf |Nσ = a1χσ|Nσ whenever λσ = 1 and χσf |Nσ = a−1
1 χσ|Nσ

whenever λσ = n− 1.

Proof: Put V δ
Ωif

=
⋃

q∈Ωif

V δ
q , V̂ δ

Ωif
=
⋃

q∈Ωif

V̂ δ
q , i ∈ {0, 1, n− 1, n}, δ ∈ {s, u} and denote

by pδ
Ωif

: V δ
Ωif
→ V̂ δ

Ωif
the natural projection such that pδ

Ωif
|V δq = pδq|V δq for any point q ∈ Ωf .

Put Σf = Ω1
f ∪ Ωn−1

f , L̂uΣf = ps
Ω0
f
(V u

Ω1
f
∪ V u

Ωn−1
f

).

The set L̂uΣf consists of finite number of compact topological submanifolds. Then there

is a set of pair-vise disjoint compact neighborhoods {K̂u
σ , σ ∈ Σf} of these manifolds in

V̂ s
Ω0 . For every point σ ∈ Σf put Ku

σ = (ps
Ω0
f
)−1(K̂u

σ ) and Ñσ = Ku
σ ∪W s

σ .

Let Uσ ⊂ Ñσ be a neighborhood of the point σ such that a homeomorphism gσ : Uσ →
Rn satisfying the condition gσf |Uσ = aλσgσ|Uσ is defined.

Put uτ = {(x1, ..., xn) ∈ Uτ | x2
2 + ...+ x2

n ≤ 1, |x1| ≤ 2τ}, Du
τ = {(x1, ..., xn) ∈ Uτ | τ <

|x1| ≤ 2τ}, Ds
τ = {(x1, ..., xn) ∈ Uτ | 1

4 ≤ x
2
2 + ...+ x2

n ≤ 1}, ũτ = g−1
σ (uτ ), D̃δ

τ = g−1
σ (Dδ

τ ),
δ ∈ {s, u}, and Nτ =

⋃
i∈Z

f i(ũτ ).

Let us show that there is a number τ1 > 0 such that for any i ∈ N the intersection
f i(D̃u

τ1) ∩ ũτ1 is empty. Suppose σ ∈ Ωn−1
f (the argument for the case σ ∈ Ω1

f is similar).
By the Statement 4.2, the set

⋃
i∈N

f i(D̃u
τ ) lies in the stable manifold of a unique sink point

ω. Since the homeomorphism f is locally conjugated with the linear compression a0 in
a neighborhood of the point ω, we have that there exists a ball Bn ⊂ W s

ω \ Uσ such
that ω ⊂ Bn and f(Bn) ⊂ int Bn. Since D̃u

τ is compact, there is i∗ > 0 such that
f i(D̃u

τ ) ∩ Uσ ⊂ Bn for all i > i∗. Hence the set of numbers ij such that f ij (D̃u
τ ) ∩ ũτ 6= ∅

is finite. Then one can choose τ1 ∈ (0, τ) such that ũτ1 ∩ f i(D̃u
τ )) = ∅ and therefore

ũτ1 ∩ f i(D̃u
τ1)) = ∅ for any i ∈ N. Similarly one can show that there exists a number

τ2 ∈ (0, τ1] such that for any i ∈ N the intersection of f−i(D̃s
τ2) ∩ ũτ2 is empty.

5A fundamental domain of the action of a group G on a set X is a closed set D
G
⊂ X containing a subset

D̃
G
with the following properties: 1) cl D̃

G
= D

G
; 2) g(D̃

G
) ∩ D̃

G
= ∅ for any g ∈ G distinct from the neutral

element; 3)
⋃

g∈G
g(D̃

G
) = X.

9



Suppose λσ = 1, putNσ =
⋃
i∈Z

f i(ũτ2), and define a homeomorphism χ∗σ : Nσ → Uτ2 by

the following: χ∗σ(x) = gσ(x) whenever x ∈ ũτ2 , and χ∗σ(x) = a−kλσ (gσ(fk(x))) whenever x ∈
Nσ \ (ũτ2), where k ∈ Z is such that fk(x) ∈ ũτ2 . The homeomorphism χ∗σ conjugates the
homeomorphism f |Nσ with the linear diffeomorphism a1|Uτ2 . Since the homeomorphism
a1|Uτ2 is topologically conjugated with a1|U by means of the diffeomorphism g(x1, ..., xn) =(
x1√
τ2
, ..., xn√τ2

)
, we see that the superposition χσ = gχ∗σ : Nσ → U topologically conjugates

f |Nσ with a1|U. A homeomorphism χσ for the case λσ = n− 1 can be constructed in the
same way.

�

Put Nu
σ = Nσ \W s

σ , Nτ,σ = χ−1
σ (Uτ ), N s

σ = Nσ \W u
σ , N̂ s

σ = N s
σ/f , N̂u

σ = Nu/f .

5 Triviality of the scheme of the homeomorphism
f ∈ G(Sn)

This section is devoted to the proof of Lemma 3.1. In subsections 5.1-5.3 we establish
some axillary results.

5.1 Introduction results on the embedding of closed curves
and their tubular neighborhoods in a manifold Mn

Further we denote by Mn a topological manifold possibly with non-empty boundary.
Recall that a manifold Nk ⊂ Mn of dimension k without boundary is locally flat

in a point x ∈ Nk if there exists a neighborhood U(x) ⊂ Mn of the point x and a
homeomorphism ϕ : U(x)→ Rn such that ϕ(Nk∩U(x)) = Rk, where Rk = {(x1, ..., xn) ∈
Rn| xk+1 = xk+2 = ... = xn = 0}.

A manifold Nk is locally flat in Mn or the submanifold of the manifold Mn if it is
locally flat at each its point.

If the condition of local flatness fails in a point x ∈ Nk then the manifold Nk is called
wild and the point x is called the point of wildness.

A topological space X is called m-connected (for m > 0) if it is non-empty, path-
connected and its first m homotopy groups πi(X), i ∈ {1, . . . ,m} are trivial. The require-
ments of being non-empty and path-connected can be interpreted as (-1)-connected and
0-connected correspondingly.

A topological space P generated by points of a simplicial complex K with the topology
induced from Rn is called the polyhedron. The complex K is called the partition or the
triangulation of the polyhedron P .

A map h : P → Q of polyhedra is called piece-vise linear if there exists partitions K,L
of polyhedra P,Q correspondingly such that h move each simplex of the complex K into
a simplex of the complex L (see for example [29]).

A polyhedron P is called the piece-vise linear manifold of dimension n with boundary
if it is a topological manifold with boundary and for any point x ∈ int P (y ∈ ∂P )
there is a neighborhood Ux (Uy) and a piece-vise linear homeomorphism hx : Ux → Rn
(hy : Uy → Rn+ = {(x1, ..., xn) ⊂ Rn| x1 ≥ 0}).

The following important statement follows from Theorem 4 of [19].
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Statement 5.1. Suppose that Nk,Mn are compact piece-vise linear manifolds of dimen-
sion k, n correspondingly, Nk is the manifold without boundary, Mn possibly has a non-
empty boundary, ẽ, e : Nk → int Mn are homotopic piece-vise linear embeddings, and the
following conditions hold:

1. n− k ≥ 3;

2. Nk is (2k − n+ 1)-connected;

3. Mn is (2k − n+ 2)-connected.

Then there exists a family of piece-vise linear homeomorphisms ht : Mn → Mn, t ∈
[0, 1], such that h0 = id, h1ẽ = e, ht|∂Mn = id for any t ∈ [0, 1].

We will say that a topological submanifoldNk ⊂Mn of the manifoldMn is an essential
if a homomorphism eγ∗ : π1(Nk)→ π1(Mn) induced by an embedding e

Nk
: Nk →Mn is

the isomorphism. We will call an essential manifold β homeomorphic to the circle S1 the
essential knot.

Let β ∈Mn be an essential knot and h : Bn−1× S1 →Mn be a topological embedding
such that h({O} × S1) = β. Call the image Nβ = h(Bn−1 × S1) the tubular neighborhood
of the knot β.

Proposition 5.1. Suppose that Pn−1 is either Sn−1 or Bn−1, β1, ..., βk ⊂ intPn−1 ×
S1 are essential knots and x1, ..., xk ⊂ int Pn−1 are arbitrary points. Then there is a

homeomorphism h : Pn−1 × S1 → Pn−1 × S1 such that h(
k⋃
i=1

βi) =
k⋃
i=1
{xi} × S1 and

h|
∂ Pn−1×S1

= id.

Proof: Put bi = {xi} × S1, i ∈ {1, ..., k}. Choose pair-vise disjoint neighborhoods
U1, . . . , Uk of knots β1, . . . , βk in intPn−1×S1. It follows from Theorem 1.1 of the paper [10]
that there exists a homeomorphism g : Pn−1× S1 → Pn−1× S1 that is identity outside the

set
k⋃
i=1

Ui and such that for any i ∈ {1, ..., k} the set g(βi) is a subpolyhedron.

By assumption, piece-vise linear embeddings ẽ : S1 × Zk → Pn−1 × S1, e : S1 × Zk →

Pn−1 × S1 such that ẽ(S1 × Zk) =
k⋃
i=1

g(βi), e(S1 × Zk) =
k⋃
i=1

bi are homotopic. By

Statement 5.1, there exists a family of piece-vise linear homeomorphisms ht : Pn−1×S1 →
Pn−1 × S1, t ∈ [0, 1], such that h0 = id, h1ẽ = e, ht|∂ Pn−1×S1

= id for any t ∈ [0, 1]. Then
h1 is the desired homeomorphism. �

The following Statement 5.2 is proved in the paper [11] ( see Lemma 2.1).

Statement 5.2. Let h : Bn−1 × S1 → int Bn−1 × S1 be a topological embedding such that
h({O}× S1) = {O}× S1. Then a manifold Bn−1× S1 \ int h(Bn−1× S1) is homeomorphic
to the direct product Sn−2 × S1 × [0, 1].

Proposition 5.2. Suppose that Y is a topological manifold with boundary, X is a closed
component of its boundary, Y1 is a manifold homeomorphic to X × [0, 1], and Y ∩ Y1 =
X. Then a manifold Y ∪ Y1 is homeomorphic to Y . Moreover, if the manifold Y is
homeomorphic to the direct product X × [0, 1] then there exists a homeomorphism h :
X × [0, 1]→ Y ∪ Y1 such that h(X × {1

2}) = X.
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Proof: By [1] (Theorem 2), there exists a topological embedding h0 : X × [0, 1]→ Y
such that h0(X × {1}) = X. Put Y0 = h0(X × [0, 1]). Let h1 : X × [0, 1] → Y1 be a
homeomorphism such that h1(X × {0}) = X = h0(X × {1}).

Define homeomorphisms g : X×[0, 1]→ X×[0, 1] , h̃1 : X×[0, 1]→ Y1, h : X×[0, 1]→
Y0 ∪ Y1 by g(x, t) = (h−1

1 (h0(x, 1)), t), h̃1 = h1g,

h(x, t) =

{
h0(x, 2t), t ∈ [0, 1

2 ];

h̃1(x, 2t− 1), t ∈ (1
2 ; 1],

and define a homeomoprhism H : Y ∪ Y1 → Y by

H(x) =

{
h0(h−1(x)), x ∈ Y0 ∪ Y1;

x, x ∈ Y \ Y0.

To prove the second item of the statement it is enough to put Y = Y0. Then the
homeomorphism h : X × [0, 1]→ Y ∪ Y1 defined above is the desired one. �

Proposition 5.3. Suppose that Pn−1 is either the ball Bn−1 or the sphere Sn−1, β1, ..., βk ⊂
intPn−1 × S1 are essential knots, Nβ1 , ..., Nβk ⊂ Pn−1 × S1 are their pair-vise disjoint
neighborhoods, Dn−1

1 , ..., Dn−1
k ⊂ Pn−1 are pair-vise disjoint disks, and x1, ..., xk are inner

points of the disks Dn−1
1 , ..., Dn−1

k correspondingly. Then there exist a homeomorphism
h : Pn−1 × S1 → Pn−1 × S1 such that h(βi) = {xi} × S1, h(Nβi) = Dn−1

i × S1, i ∈ {1, ..., k}
and h|

∂ Pn−1×S1
= id.

Proof: By Proposition 5.1, there exists a homeomorphism h0 : Pn−1×S1 → Pn−1×S1

such that h0(βi) = {xi} × S1, h0|∂ Pn−1×S1
= id. Put Ñi = h0(Nβi). By [1], there exist

topological embeddings ei : Sn−2×S1×[0, 1]→ intPn−1×S1 such that ei(Sn−2×S1×{1}) =
∂Ñβi , ei(Sn−2 × S1 × [0, 1]) ∩ ej(Sn−2 × S1 × [0, 1]) = ∅ for i 6= j, i, j ∈ {1, ..., k}. Put
Ui = ei(Sn−2 × S1 × [0, 1]) ∪ Ñi.

Suppose thatDn−1
0,1 , ..., Dn−1

0,k , D
n−1
1,1 , ..., Dn−1

1,k ⊂ Pn−1 are disks such that xi ⊂ intDn−1
j,i ,

Dn−1
j,i ⊂ intD

n−1
i , j ∈ {0, 1}, Dn−1

0,i ⊂ intD
n−1
1,i , and Dn−1

1,i × S1 ⊂ int Ñi.
By Proposition 5.2, every set Ñi \ (intDn−1

1,i × S1), (Dn−1
1,i \ intD

n−1
0,1 ) × S1 is homeo-

morphic to the direct product Sn−2×S1× [0, 1]. By Proposition 5.2, there exists a homeo-
morphism gi : Sn−2×S1× [0, 1]→ Ui \ intDn−1

0,i ×S1 such that gi(Sn−2×S1×{t1}) = ∂ Ñi,
gi(Sn−2 × S1 × {t2}) = ∂ Dn−1

1,i × S1 for some t1, t2 ⊂ (0, 1). Let ξ : [0, 1] → [0, 1] be a
homeomorphism that is identity on the ends of the interval [0, 1] and such that ξ(t1) = t2.
Define a homeomorphism g̃i : Sn−2× S1× [0, 1]→ Sn−2× S1× [0, 1] by g̃i(x, t) = (x, ξ(t)).

Define a homeomorphism hi : Pn−1 × S1 → Pn−1 × S1 by

hi(x) =

{
gi(g̃i(g

−1
i (x))), x ∈ Ui \ intDn−1

0,i × S1;

x, x ∈ (Pn−1 × S1 \ Ui).

The superposition η = hk · · ·h1h0 maps every knot βi into the knot {xi} × S1, the
neighborhood Nβi into the set Dn−1

1,i × S1, and keeps the set ∂ Pn−1 × S1 fixed. Construct
a homeomorphism Θ : Pn−1× S1 → Pn−1× S1 that be identity on the set ∂ Pn−1× S1 and
on the knots {x1}×S1, ..., {xk}×S1 and move the set Dn−1

1,i ×S1 into the set Dn−1
i ×S1 for
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every i ∈ {1, ..., k}. It follows from the Annulus Theorem6 that the set Dn−1
i \ intDn−1

1,i

is homeomorphic to the annulus Sn−2 × [0, 1]. Then apply the construction similar to
one described above to define a homeomorphism θ : Pn−1 → Pn−1 such that θ(xi) = xi,
θ(Dn−1

i ) = Dn−1
1,i , θ|

∂ Pn−1 = id. Put Θ(x, t) = (θ−1(x), t), x ∈ Pn−1, t ∈ S1. Then h = Θη
is the desired homeomorphism. �

Corollary 5.1. If N ⊂ Sn−1 × S1 is a tubular neighborhood of an essential knot than the
manifold (Sn−1 × S1) \ int N is homeomorphic to the direct product Bn−1 × S1.

5.2 A surgery of the manifold Sn−1 × S1 along an essential
submanifold homeomorphic to Sn−2 × S1

Recall that we put Qn = Sn−1 × S1. Suppose that N ⊂ Qn is an essential submanifold
homeomorphic to Bn−1 × S1, T = ∂N , and eT : Sn−2 × S1 × [−1; 1]→ Qn is a topological
embedding such that eT (Sn−2 × S1 × {0}) = T . Put K = eT (Sn−2 × S1 × [−1; 1]) and
denote by N+, N− connected components of the set Qn \ intK. It follows from Propo-
sitions 5.3, 5.2 that the manifolds N+, N− are homeomorphic to Bn−1 × S1. Let N ′+, N ′−
manifolds homeomorphic to Bn−1 × S1. Denote by ψδ : ∂ Nδ → ∂ N ′δ an arbitrary home-
omorphism reversing the natural orientation, by Qδ a manifold obtained by gluing the
manifolds Nδ and N ′δ by means of homeomorphism ψδ, and by πδ : (Nδ ∪ N ′δ) → Qδ the
natural projection, δ ∈ {+,−}.

We will say that the manifolds Q+, Q− are obtained from Qn by the surgery along the
submanifold T .

Note that Sn−2× S1 is the boundary of Bn−1× S1. By [22] (Theorem 2), the following
statement holds.

Statement 5.3. Let ψ : Sn−2 × S1 → Sn−2 × S1 be an arbitrary homeomorphism. Then
there exists a homeomorphism Ψ : Bn−1×S1 → Bn−1×S1 such that Ψ|

Sn−2×S1
= ψ|

Sn−2×S1
.

Proposition 5.4. The manifolds Q+, Q− are homeomorphic to Qn.

Proof: Let Dn−1 ⊂ Sn−1 be an arbitrary disk, Nδ = Dn−1×S1 and hδ : πδ(Nδ)→ Nδ
be an arbitrary homeomorphism. Put ψ̃δ = hδπδψδπ

−1
δ h−1

δ |∂ Nδ . Due to Proposition 5.3 a
homeomorphism ψ̃δ can extend up to a homeomorphism h′δ : πδ(N

′
δ)→ Qn \ intNδ. Then

a map Hδ : Qδ → Qn defined by Hδ(x) = hδ(x) whenever x ∈ πδ(Nδ) and Hδ(x) = h′δ(x)
whenever x ∈ πδ(N ′δ) is the desired homeomorphism. �

5.3 A surgery of manifolds homeomorphic to Sn−1 × S1 along
essential knots

Let Qn1 , . . . , Qnk+1 be manifolds homeomorphic to Qn . Denote by β1, ..., β2k ⊂
k+1⋃
i=1

Qni es-

sential knots such that for any j ∈ {1, ..., k} knots β2j−1, β2j belongs to distinct manifolds

6The Annulus Theorem states that the closure of an open domain on the sphere Sn+1 bounded by two
disjoint locally flat spheres Sn

1 , S
n
2 is homeomorphic to the annulus Sn × [0, 1]. In dimension 2 it was proved by

Rado in 1924, in dimension 3 — by Moise in 1952, in dimension 4 — by Quinn in 1982, and in dimension 5 and
greater — by Kirby in 1969.
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from the union
k+1⋃
i=1

Qni and every manifold Qni contains at least one knot from the set

β1, ..., β2k. Let Nβ1 , ..., Nβ2k
be tubular neighborhoods of the knots β1, ..., β2k correspond-

ingly.
Let K1, ...,Kk be manifolds homeomorphic to the direct product Sn−2 × S1 × [−1; 1].

For every j ∈ {1, . . . , k} denote by Tj ⊂ Kj a manifold homeomorphic to Sn−2 × S1 that
cuts Kj into two connected components whose closures are homeomorphic to Sn−2× S1×
[0; 1], and by ψj : ∂N2j−1 ∪ ∂N2j → ∂Kj an arbitrary reversing the natural orientation
homeomorphism.

Glue manifolds Q̃ =
k+1⋃
i=1

Qni \
2k⋃
ν=1

int Nν and K =
k⋃
j=1

Kj by means of the homeomor-

phisms ψ1, ..., ψk, denote by Q the obtained manifold and by π : Q̃ ∪K → Q the natural
projection. We will say that the manifold Q is obtained from Qn1 , ..., Q

n
k+1 by the surgery

along knots β1, ..., β2k and call every pair β2j−1, β2j the binding pair, j ∈ {1, 2, ..., k}.

Proposition 5.5. The manifold Q is homeomorphic to Qn and every manifold π(Tj) cuts
Q into two connected components whose closures are homeomorphic to Bn−1 × S1.

Proof: Prove the proposition by induction on k. Consider the case k = 1. Due
to Propositions 5.3, 5.2 manifolds Ñ1 = Qn1 \ intN1, Ñ2 = Qn2 \ intN2, Ñ1

⋃
ψ1|∂ N1

K1

are homeomorphic to the direct product Bn−1 × S1. By definition, the manifold T1 cuts
the manifold K1 into two connected components whose closures are homeomorphic to
Qn−1×[0, 1]. It follows from Proposition 5.2 that T1 cuts Ñ1

⋃
ψ1|∂ N1

K1 into two connected
components such that the closure of one of which, denote it by N , is homeomorphic to
Bn−1 × S1 and the closure of another is homeomorphic to Qn−1 × [0, 1]. Suppose that
Dn−1

0 ⊂ Sn−1 is an arbitrary disk, N0 = Dn−1
0 × S1 and h0 : π(Ñ1

⋃
K1) → N0 is an

arbitrary homeomorphism. Put ψ̃1 = h0πψ
−1
1 π−1h−1

0 |∂ N0 . In virtue of Proposition 5.3 a
homeomorphism ψ̃ can be extended up to a homeomorphism h1 : π(Ñ2) → Qn \ intN0.
Then the map h : Q → Qn defined by h(x) = h0(x) for x ∈ π(Ñ1

⋃
K1) and h(x) =

h1(x) for x ∈ π(Ñ2) is the desired homeomorphism. The manifold π(T1) cuts Q into two
connected components such that the closure of one of them is π(N) which is homeomorphic
to Bn−1 × S1. By Corollary 5.1, the closure of another connected component is also
homeomorphic to Bn−1 × S1.

Suppose that the statement is true for all λ = k and show that it is true also for
λ = k + 1. Since 2k ≥ k + 1 we have that there exists at least one manifold among the
manifolds Qn1 , ..., Qnλ+1, say Q

n
λ+1, containing exactly one knot from the set β1, ..., β2k (if

every of that manifolds would contain no less than two knots, then the total number of
all knots be no less than 2k + 2). Let β2λ ⊂ Qnλ+1, β2λ−1 ⊂ Qni , i ∈ {1, . . . , λ}, be a
binding pair. By the induction hypothesis and Corollary 5.1, the manifold Qλ obtained
by the surgery of manifolds Qn1 , ..., Qnλ along knots β1, ..., β2λ−2 is homeomorphic to Qn;
the projection of every manifold (Tj) cuts Qλ into two connected components such that
the closure of each of which is homeomorphic to Bn−1×S1; and the projection of the knot
β2λ−1 is the essential knot. Now apply the surgery to manifolds Qλ, Qnλ+1 along knots
π(β2λ−1), β2λ and use the first step arguments to obtain the desired statement. �

5.4 Proof of Lemma 3.1
Step 1. Proof of the fact that the manifold V̂f is homeomorphic to Qn and every connected

14



component Qn−1 of the set L̂uf ∪ L̂sf cuts V̂f into two connected components whose closures
are homeomorphic to Bn−1 × S1.

Put ki = |Ωi
f |, i ∈ {0, 1, n− 1, n}. Due to Statement 4.2 and the fact that the closure

of every separatrix of dimension (n − 1) cuts the ambient sphere Sn into two connected
components one gets k0 = k1 + 1, kn = kn−1 + 1.

Denote by β1, ..., β2k1 the essential knots in the set V̂ =
⋃

ω∈Ω0
f

V̂ s
ω which are projections

(by means of p
V̂
) of all one-dimension unstable separatrices of the diffeomorphism f . With-

out loss of generality assume that knots β2j−1, β2j are the projection of the separatrices of
the same saddle point σj ∈ Ω1

f , j ∈ {1, ..., k1}.
It follows from Statement 4.2 that every manifold V̂ s

ω contains at least one knot from
the set β1, ..., β2k1 . Since stable and unstable manifolds of different saddle points do not
intersect we have that for any j ∈ {1, ..., k1} knots β2j−1, β2j belong to distinct connected
components of V̂ . Indeed, if one suppose that β2j−1, β2j ⊂ V̂ s

ω for some j, ω, then the
set clW u

σj = W u
σj ∪ ω is homeomorphic to the circle. Since clW s

σj divides the sphere Sn

into two parts and intersect the circle clW u
σj at the point σj we have that there exists at

least one point in clW s
σj ∩ clW

u
σj different from σj . This fact contradicts to the item 1 of

Statement 4.1.
Let Nσj , χσj : Nσj → U be the neighborhood of the point σj and the homeomorphism

defined in Proposition 4.3. Further we use denotations of the sections 4.2, 4.3. Denote
by N2j−1, N2j the connected components of the set N̂u

σj containing knots β2j−1, β2j cor-
respondingly. Let ψ : ∂N̂u → ∂N̂s be a homeomorphism such that ψpu|∂U = ps|∂U. Put
Kj = N̂ s

σj , Tj = V̂ s
σj and define homeomorphisms ϕu,j : N2j−1∪N2j → N̂u, ϕs,j : Kj → N̂s,

ψj : ∂N2j−1 ∪ ∂N2j → ∂Kj by

ϕu,j = puχσjp
−1

V̂f
|N2j−1∪N2j ,

ϕs,j = psχσjp
−1

V̂f
|Kj ,

ψj = ϕ−1
s,jψϕu,j |∂N2j−1∪∂N2j

,

and denote by

Ψ :

k1⋃
j=1

(∂N2j−1 ∪ ∂N2j)→
k1⋃
j=1

Kj

the homeomorphism such that

Ψ|
∂N2j−1∪∂N2j

= ψj |∂N2j−1∪∂N2j
.

Since

Vf =

 ⋃
ω∈Ω0

f

V s
ω \

 ⋃
σ∈Ω1

f

V u
σ


⋃

 ⋃
σ∈Ω1

f

V s
σ

 =

Vf \
 ⋃
σ∈Ω1

f

Nu
σ


⋃

 ⋃
σ∈Ω1

f

N s
σ


it follows that
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V̂f =

V̂f \
 ⋃
σ∈Ω1

f

N̂u
σ


 ∪Ψ

 ⋃
σ∈Ω1

f

N̂ s
σ

 =

V̂f \
2k1⋃
j=1

Nj

 ∪Ψ

 k1⋃
j=1

Kj

 .

So, the manifold V̂f is obtained from
⋃

ω∈Ω0
f

V̂ s
ω by the surgery along knots β1, ..., β2k1 .

Due to Proposition 5.5, the manifold V̂f is homeomorphic to Qn and every connected
component of the set L̂sf cuts the set V̂f into two connected components such that the
closure of each of which is homeomorphic to Bn−1 × S1.

From the other hand

Vf =

 ⋃
α∈Ωnf

V u
α \

 ⋃
σ∈Ωn−1

f

V s
σ


⋃

 ⋃
σ∈Ωn−1

f

V u
σ

 =

Vf \
 ⋃
σ∈Ωn−1

f

N s
σ


⋃

 ⋃
σ∈Ωn−1

f

Nu
σ

 .

Similar to previous arguments one can conclude that the set V̂f is obtained from
⋃

α∈Ωnf

V̂ u
α

by the surgery along the projections of all one-dimensional stable separatrices of the saddle
points of the diffeomorphism f . In virtue of Proposition 5.5 every connected component
of the set L̂uf cuts the set V̂f into two connected components such that the closure of each
of which is homeomorphic to Bn−1 × S1.

Step 2. Proof of the fact that there is a set L̂mf ⊂ Qn and a homeomorphism ϕ̂ :

V̂f → Qn such that ϕ̂(L̂sf ∪ L̂uf ) = L̂mf .
Denote byQn−1

1 , ...,Qn−1
k1+kn−1

all elements of the set L̂sf∪L̂uf and suppose thatQn−1
1 is an

element such that all elements of the set L̂sf ∪ L̂uf \Q
n−1
1 are contained exactly in one of the

connected component of the manifold V̂f\Qn−1
1 . Denote byN1 the closure of this connected

component. By Step 1, N1 is homeomorphic to Bn−1×S1. By Proposition 5.3, there exists
a disk Dn−1

1 ⊂ Sn−1 and a homeomorphism ψ0 : V̂f → Qn such that ψ0(N1) = Dn−1
1 × S1.

If k1 + kn−1 = 1 then the proof is complete and ϕ̂ = ψ0, L̂mf = ∂Dn−1
1 × S1.

Let k1 +kn−1 > 1. Denote the images of Qn−1
1 , ...,Qn−1

k1+kn−1
under the homeomorphism

ψ0 by the same symbols as their originals. For i ∈ {2, . . . , k1 + kn−1} denote by Ni the
connected component of the set Qn \ Qn−1

i contained in the set Dn−1
1 × S1. Without loss

of generality suppose that the numeration of the sets Qn−1
1 , ...,Qn−1

k1+kn−1
is chosen in such

a way that there exist a number l1 ∈ [2, k1 + kn−1] and pair-vise disjont sets N2, . . . , Nl1

such that
l1⋃
i=2

Ni =
k1+kn−1⋃
i=2

Ni. Choose in the interior of the disk Dn−1
1 arbitrary pair-

vise disjoint disks Dn−1
2 , . . . , Dn−2

l1
. Due to Proposition 5.3 there exists a homeomorphism

ψ1 : Qn → Qn such that ψ1|Qn\intDn−1
1 ×S1 = id, ψ1(Ni) = Dn−1

i × S1, i ∈ {2, . . . , l1}. If

l1 = k1 + kn−1 then the proof is complete and ϕ̂ = ψ1ψ0, L̂mf =
l1⋃
i=1

∂ Dn−1
i × S1.

Let l1 < k1 + kn−1. Denote the images of Qn−1
1 , . . . ,Qn−1

k1+kn−1
and N1, . . . , Nk1+kn−1

under the homeomorphism ψ1 by the same symbols as their originals. Put N =
k1+kn−1⋃
i=l1+1

Ni.
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If for fixed i ∈ {2, ..., l1} the set Ni has non-empty intersection with the set N , then
denote by li, k̃i, li ≤ k̃i, the positive numbers such that Ni,1, ..., Ni,k̃i

are all elements
from Ni ∩ N and Ni,1, ..., Ni,li are pair-vise disjoint elements from Ni ∩ N such that
li⋃
j=1

Ni,j =
k̃i⋃
j=2

Ni,j . Choose in the interior of the every disk Dn−1
i pair-vise disjoint disks

Dn−1
i,1 , . . . Dn−1

i,li
. It follows from Proposition 5.3 that there exists a homeomorphism ψi :

Qn → Qn such that ψi|Qn\intNi = id, ψi(Ni,j) = Dn−1
i,j × S1, j ∈ {1, . . . , li}, i ∈ {2, ..., l1}.

If Ni ∩N = ∅, put ψi = id.
If li = k̃i for any i ∈ {2, . . . , l1} such that the numbers li, k̃i are defined, then the

proof is complete and ϕ̂ = ψl1ψl1−1 · · ·ψ1, L̂mf =
l1⋃
i=1

li⋃
j=1

∂Dn−1
i,j ×S1. Otherwise, continue

the process and after finite number of steps get the desired set L̂mf and the desired
homeomorphism ϕ̂ as a superposition of all constructed homeomorphisms.

6 Embedding of diffeomorphisms from the class
G(Mn) into topological flows

6.1 Free and properly discontinuous action of a group of
maps
In this section we collect an axillary facts on properties of the transformation group
{gn, n ∈ Z} which is an infinite cyclic group acting freely and properly discontinuously on
a topological (in general, non-compact) manifold X and generated by a homeomorphism
g : X → X7.

Denote by X/g the orbit space of the action of the group {gn, n ∈ Z} and by p
X/g

:
X → X/g the natural projection. In virtue of [33] (Theorem 3.5.7 and Proposition 3.6.7)
the natural projection p

X/g
: X → X/g is a covering map and the space X/g is a manifold.

Denote by η
X/g

: π1(X/g) → Z a homeomorphism defined in the following way. Let
ĉ ⊂ X/g be a loop non-homotopic to zero in X/g and [ĉ] ∈ π1(X/g) be a homotopy class
of ĉ. Choose an arbitrary point x̂ ∈ ĉ, denote by p−1

X/g
(x̂) the complete inverse image of x̂,

and fix a point x̃ ∈ p−1
X/g

(x̂). As p
X/g

is the covering map then there is a unique path c̃(t)
beginning at the point x̃ (c̃(0) = x̃) and covering the loop c (such that p

X/g
(c̃(t)) = ĉ).

Then there exists the element n ∈ Z such that c̃(1) = fn(x̃). Put η
X/g

([ĉ]) = n. It follows
from [21] (гл. 18) that the homomorphism η

X/g
is an epimorphism.

The next statement 6.1 can be found in [21] (Theorem 5.5) and [4] (Propositions 1.2.3
и 1.2.4).

Statement 6.1. Suppose that X, Y are connected topological manifolds and g : X → X,
h : Y → Y are homeomorphisms such that groups {gn, n ∈ Z}, {hn, n ∈ Z} acts freely

7A group G acts on the manifold X if there is a map ζ : G ×X → X with the following properties:
1) ζ(e, x) = x for all x ∈ X, where e is the identity element of the group G;
2) ζ(g, ζ(h, x)) = ζ(gh, x) for all x ∈ X and g, h ∈ G.
A group G acts freely on a manifold X if for any different g, h ∈ X and for any point x ∈ X an inequality

ζ(g, x) 6= ζ(h, x) holds.
A group G acts properly discontinuously on the manifold X if for every compact subset K ⊂ X the set of

elements g ∈ G such that ζ(g,K) ∩K 6= ∅ is finite.
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and properly discontinuously on X, Y correspondingly. Then:

1) if ϕ : X → Y is a homeomorphism such that h = ϕgϕ−1 and ϕ∗ : π1(X/g)→ π1(Y/h)
is the induced homomorphism, then a map ϕ̂ : X/g → Y/h defined by ϕ̂ = p

Y/h
ϕp−1

X/g

is a homeomorphism and η
X/g

= η
Y/h

ϕ∗;

2) if ϕ̂ : X/g → Y/h is a homeomorphism such that η
X/g

= η
Y/h

ϕ∗ and x̂ ∈ X/g,
x̃ ∈ p−1

X/g
(x), y = ϕ̂(x), ỹ ∈ p−1

Y/h(y), then there exists a unique homeomorphism
ϕ : X → Y such that h = ϕgϕ−1 and ϕ(x̃) = ỹ.

6.2 Proof of Theorem 1
Suppose that a Morse-Smale diffeomorphism f : Sn → Sn has no heteroclinic intersection
and satisfy Palis conditions. To prove the theorem it is enough to construct a topological
flow Xt

f such that its time one map X1
f belongs to the class G(Sn) and the scheme SX1

f
is

equivalent to the scheme Sf (see Section 3).
Step 1. It follows from Lemma 3.1 and Proposition 6.1 that there exists a homeomor-

phism ψ
f

: Vf → Sn−1 × R such that:
1) f |Vf = ψ−1

f
aψ

f
, where a is the time one map of the flow at(x, s) = (x, s + t),

x ∈ Sn−1, s ∈ R;
2) for (n−1)-dimensional separatrix lσ of an arbitrary saddle point σ ∈ Ωf there exists

a sphere Sn−2
σ ⊂ Sn−1 such that ψ

f
(lσ) =

⋃
t∈R

at(Sn−2
σ ).

Recall that we denote by Lsf and Luf the union of all (n − 1)-dimensional stable and
unstable separatrices of the diffeomorphism f correspondingly. Put Ls = ψf (Lsf ), Lu =

ψf (Luf ). Then Lδ is the union of pair-vise disjoint cylinders Q̃δ1 ∪ · · · ∪ Q̃δkδ , δ ∈ {s, u}.
Denote by N(Lδ) = N(Q̃δ1)∪ · · · ∪N(Q̃δ

kδ
) the set of their pair-vise disjoint closed tubular

neighborhoods such that N(Q̃δi ) = Kδ
i × R, where Kδ

i ⊂ Sn−1 is an annulus of dimension
(n− 1), i = 1, . . . , kδ.

Define a flow at1 on the set U = {(x1, ..., xn) ∈ Rn| x2
1(x2

2 + ... + x2
n) ≤ 1} by

at1(x1, x2, ..., xn) = (2tx1, 2
−tx2, ..., 2

−txn). It follows from Statements 4.4, 6.1 that there
exists a homeomorphism χsi : N(Q̃si ) → Ns such that a1

1|Ns = χsia
1(χsi )

−1|Ns . Denote by
χs : N(Ls) → U × Zks a homeomorphism such that χs|N(Q̃si )

= χsi for any i ∈ {1, ..., ks}.
Put Qs = (Sn−1 × R) ∪χs (U × Zks). A topological space Qs is a connected oriented
n-manifold without boundary.

Denote by πs : (Sn−1×R)∪(U×Zks)→ Qs a natural projection. Put πs,1 = πs |Sn−1×R,
πs,2 = πs |U×Zks . Define a flow Ỹ t

s on the manifold Qs by

Ỹ t
s (x) =

{
πs,1(at(π−1

s,1
(x))), x ∈ πs,1(Sn−1 × R);

πs,2(at1(π−1
s,2

(x))), x ∈ πs,2(U× {i}), i ∈ Zks
.

By construction the non-wandering set of the flow Ỹ t
s consists of ks equilibria such

that the flow Ỹ t
s is locally topologically conjugated with the flow at1 at the neighborhood

of each equilibrium.
Step 2. Denote the images of the sets Lu, N(Lu) by means of the projection πs by the

same symbols as their originals. Due to Statements 4.4, 6.1 there exists a homeomorphism
χui : N(Q̃ui ) → Nu such that a−1

1 |Nu = χui Ỹ
1
s (χui )−1, i = 1, . . . , ku. Denote by χu :

N(Lu) → U × Zku the homeomorphism such that χu|N(Q̃ui ) = χui |N(Q̃ui ) for any i =

1, . . . , ku. Put Qu = Qs ∪χu (U × Zku). A topological space Qu is a connected oriented
n-manifold without boundary.
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Denote by πu : Qs ∪ (U × Zku) → Qu the natural projection. Put πu,1 = πu |Qs ,
πu,2 = pu |U×Zlu . Define a flow Ỹ t

u on the manifold Qu by

Ỹ t
u(x) =

{
πu,1(Ỹ t

s (π−1
u,1

(x))), x ∈ πu,1(Qs);

πu,2(a−t1 (π−1
u,2

(x))), x ∈ πu,2(U× {i}), i ∈ Zku
.

The non-wandering set ΩỸ tu
of the flow Ỹ t

u consists of ks equilibria such that the flow
Ỹ t
u is locally topological conjugated with the flow at1 in each of their neighborhoods and
ku equilibria such that the flow Ỹ t

u is locally topologically conjugated with the flow a−t1 in
each of their neighborhoods.

Step 3. Put Rs = Qu \W s
Ω
Ỹ tu

, denote by ρs1, . . . , ρ
s
ns connected components of the

set Rs and put ρ̂si = ρsi/Ỹ 1
u
. A union of the orbit spaces

ns⋃
i=1

ρ̂si is obtained from the

manifold V̂a by a sequence of the surgeries along essential submanifolds of codimension
1. In virtue of Proposition 5.4 for any i ∈ {1, ..., ns} the manifold ρ̂si is homeomorphic to
Sn−1×S1, the manifold ρsi is homeomorphic to Sn−1×R and the flow Ỹ t

u |ρsi is topologically
conjugated with the flow at|Rn\O by means of a homeomorphism νsi . Denote by νs : Rs →
(Rn \ {0})× Zns the homeomorphism consisting of the homeomorphisms νs1, . . . , νsns . Put
M s = Qu∪νs (Rn×Zns). Then M s is a connected oriented n-manifold without boundary.

Put M̄ s = Qu ∪ (Rn × Zns) and denote by qs : M̄ s →M s the natural projection. Put
qs,1 = qs |Qu , qs,2 = qs |Rn×Zns . Define a flow X̃t

s on the manifold M s by

X̃t
s(x) =

{
qs,1(Ỹ t

u(q−1
s,1

(x))), x ∈ qs,1(Qu);

qs,2(at(q−1
s,2

(x))), x ∈ qs,2(Rn × {i}), i ∈ Zns
.

By construction the non-wandering set of the time one map of the flow X̃t
s consists of ks

saddle topologically hyperbolic fixed points of index 1, ku saddle topologically hyperbolic
fixed points of index (n− 1) and ns sink topologically hyperbolic fixed points.

Step 4. Put Ru = M s \W u
Ω
X̃ts

and denote by ρu1 , . . . , ρunu connected components of
the set Ru. Similar to Step 3 one can prove that every component ρui is homeomorphic to
Sn−1×R and the flow X̃t

s|ρui is conjugated with the flow a−t|Rn\{O} by a homeomorphism
µui . Denote by µu : Ru → (Rn \ {O}) × Znu a homeomorphism consisting of the homeo-
morphisms µu1 , . . . , µunu . Put Mu = M s∪µu (Rn×Znu). Mu is a connected closed oriented
n-manifold.

Put M̄u = M s∪ (Rn×Znu), denote by qu : M̄u →Mu the natural projection, and put
qu,1 = qu |Ms , qu,2 = qu |Rn×Znu . Define a flow X̃t

u on the manifold Mu by

X̃t
u(x) =

{
qu,1(X̃t

s(q
−1
u,1

(x))), x ∈ qu,1(M s);

qu,2(a−t0 (q−1
u,2

(x))), x ∈ qu,2(Rn × {i}), i ∈ Znu
.

By construction the non-wandering set of the time one map of the flow X̃t
u consists of ks

saddle topologically hyperbolic fixed points of index 1, ku saddle topologically hyperbolic
fixed points of index (n− 1), ns sink and nu source topologically hyperbolic fixed points.

Step 5. Put f̃ = X̃1
u. By construction f̃ is a Morse-Smale homeomorphism on the

manifold Mu and its restriction f̃ |Vf̃ is topologically conjugated with the diffeomorphism
f |Vf by a homeomorphism mapping the (n− 1)-dimensional separatrices of the diffeomor-
phism f̃ to the (n − 1)-dimensional separatrices of the diffeomorphism f and preserving
their stability. Due to Statement 3.1 homeomorphisms f̃ and f are topologically conju-
gated. Hence Mu = Sn and Xt = X̃t

u is the desired flow.
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gradient-like diffeomorphisms on 3-manifolds, Topology, 2004, Vol. 43, 369 – 391.

[4] Ch. Bonatti, V. Grines, O. Pochinka, Classification of Morse-Smale diffeomorphisms
with a finite set of heteroclinic orbits on 3-manifolds, Proc. Steklov Inst. Math. 2005,
No. 3(250), 1–46

[5] J.C. Cantrell, Almost locally flat sphere Sn−1 in Sn, Proceeding of the American
Mathematical society, 1964. Vol. 15, No. 4, 574 – 578.

[6] N.J. Fine, G.E. Schweigert, On the group of homeomorphisms of an arc, Ann. of
Math., 1955, Vol. 62, No. 2, 237 – 253.

[7] N.E. Foland, W.R. Utz, The embedding od discrete flows in continuous flows, Ergodic
Theory, New York, 1963, 121 – 134.

[8] M.K. Fort, Jr, The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc.
1955, Vol. 6, 960 – 967.

[9] V. Grines, O. Pochinka, Morse-Smale cascades on 3-manifolds, Uspekhi Mat. Nauk,
2013, Vol. 68, No. 1(409), 129–188; translation in Russian Math. Surveys, 2013, Vol.
68, No. 1, 117 – 173.

[10] H. Gluck, Embeddings in the trivial range, Ann. Math. Ser. 2, 1965, Vol. 81, 195 –
210.

[11] V. Grines, E. Gurevich, V. Medvedev, Classification of Morse-Smale diffeomorphisms
with a one-dimensional set of unstable separatrices, Tr. Mat. Inst. Steklova, 2010,
Vol. 270, Differentsial’nye Uravneniya i Dinamicheskie Sistemy, 62 – 85; translation
in Proc. Steklov Inst. Math., 2010. Vol. 270, No.1, 57 – 79.

[12] V. Grines, E. Gurevich, V. Medvedev, O. Pochinka, On the embedding of Morse-Smale
diffeomorphisms on a 3-manifold in a topological flow, Mat. Sb., 2012, Vol.203, No.
12, 81 – 104; translation in Sb. Math., 2012, Vol. 203, No. 11-12, 1761 – 1784.

[13] V. Grines, E. Gurevich, O. Pochinka, Topological classification of Morse–Smale dif-
feomorphisms without heteroclinic intersections, Journal of Mathematical Sciences,
2015, Vol. 208, No. 1, 81 – 90.

[14] V. Grines, E. Gurevich, V. Medvedev, O. Pochinka, An analogue of Smale’s theorem
for homeomorphisms with regular dynamics, Mat. Zametki, 2017, Vol. 102, No. 4, 613
– 618; translation in Math. Notes 2017, Vol. 102, No. 3-4, 569 – 574.

[15] V. Grines, T. Medvedev, O. Pochinka, Dynamical Systems on 2- and 3-Manifolds.
Springer International Publishing Switzerland, 2016.

[16] V. Grines, E. Zhuzhoma, V. Medvedev, O. Pochinka Global attractor and repeller
of Morse-Smale diffeomorphisms, Tr. Mat. Inst. Steklova, 2010, Vol. 271, Differ-
entsial’nye Uravneniya i Topologiya. II, 111 –133; translation in Proc. Steklov Inst.
Math. 2010, Vol. 271, No. 1, 103 – 124.

20



[17] V. Grines, E. Gurevich, On Morse–Smale diffeomorphisms on manifolds of dimension
higher than three, Dokl. Math., 2007, Vol. 762, 649 – 651.

[18] V. Grines, E. Gurevich, V. Medvedev, The Peixoto graph of Morse-Smale diffeomor-
phisms on manifolds of dimension greater than three, Tr. Mat. Inst. Steklova, 2008,
Vol. 261, Differ. Uravn. i Din. Sist., 61–86; translation in Proc. Steklov Inst. Math.
2008, Vol. 261, No. 1, 59 – 83.

[19] J. F. P. Hudson, Concordance and isotopy of PL embeddings, Bull. Amer. Math. Soc.
1966, Vol. 72, No. 3, 534 – 535.

[20] R. C. Kirby,On the set of non-locally flat points of a submanifold of codimension one,
Ann. of Math. 1968, Vol. 88, No. 2. 281 – 290.

[21] C. Kosniwski, A first course in algebraic topology, Cambridge etc., 1980.

[22] N. Max, Homeomorphisms of Sn × S1, Bull. Amer. Math. Soc., 1967, Vol. 73, No. 6,
939 – 942.

[23] E. Zhuzhoma, V. Medvedev, Morse-Smale systems with few non-wandering points,
Topology and its Applications, 2013, Vol. 160, No. 3, 498 – 507.

[24] T. Medvedev, O. Pochinka The wild Fox-Artin arc in invariant sets of dynamical
systems, Dynamical Systems, 2018, to appear.

[25] J. Palis, W.de Melo, Geometric Theory of Dynamical Systems : an Introduction. New
York: Springer-Verlag, 1982.

[26] J. Palis, On Morse-Smale dynamical systems, Topology, 1969, Vol. 8, No. 4, 385 –
404.

[27] J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 1974,
Vol. 80, 503 – 505.

[28] J. Palis, S. Smale, Structural Stability Theorem Global Analysis, Proc.Symp. in Pure
Math. № 14 - American Math. Soc., 1970.

[29] C. P. Rourke, B. J. Sanderson, Introduction to piecewise-linear topology, Springer-
Verlag, 1972.

[30] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 1967, Vol. 73,
No. 6, 747 – 817.

[31] S. Smale, On Gradient Dynamical Systems, Annals of Mathematics Second Series,
1961, Vol. 74, No. 1, 199 – 206.

[32] H. Seifert, W. Threlfall, A text book of topology, Academic Press, 1980.

[33] W. Thurston, Three-Dimensional Geometry and Topology, Princeton University
Press, 1997.

[34] S. M. Saulin, D. V. Treschev, On the Inclusion of a Map Into a Flow, Regul. Chaotic
Dyn., 2016, Vol. 21, No. 5, 538 – 547.

[35] W.R.Utz, The embedding of homeomorphisms in continuous flows. Topology Proc-
cedings, 1981, Vol. 6, 159 – 177.

[36] E. Zhuzhoma, V. Medvedev, Continuous Morse-Smale flows with three equilibrium
states, Mat. Sb., 2016, Vol. 207, No. 5, 69 – 92; translation in Sb. Math. 2016, Vol.
207, No. 5 – 6, 702 – 723.

21


