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Abstract⎯A nonlinear Schrödinger equation (NSE) describing packets of weakly nonlinear waves in an inho-
mogeneously vortical infinitely deep fluid has been derived. The vorticity is assumed to be an arbitrary func-
tion of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is
shown that the modulational instability criteria for the weakly vortical waves and potential Stokes waves on
deep water coincide. The effect of vorticity manifests itself in a shift of the wavenumber of high-frequency fill-
ing. A special case of Gerstner waves with a zero coefficient at the nonlinear term in the NSE is noted.
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The nonlinear Schrödinger equation (NSE) is an
effective model for studying the propagation of wave
packets on the surface of a fluid. For waves on deep
water, the NSE was derived for the first time by
Zakharov using Hamiltonian formalism [1]. Hasimoto
and Ono [2] and Davey [3] obtained the same result
independently by multiple-scale expansions in Eulerian
coordinates. Yuen and Lake, in turn, derived the NSE
on the basis of the averaged Lagrangian [4]. In all those
works, the wave motion was assumed to be potential.

At the same time, the propagation of waves in the
ocean rather often occurs against the background of
vortical f lows. Using the method of multiple-scale
expansions, Johnson [5] studied the slow modulation
of a harmonic wave running along a shear f low with an
arbitrary profile  where y is the vertical coordi-
nate. He obtained the NSE with coefficients depend-
ing in a complicated way on the shear f low. Baumstein
[6] studied modulational instability of a train of Stokes
waves on a f low with a homogeneous velocity shift
when  Thomas et al. [7] generalized
their results to the case of a finite depth of the f luid and
confirmed that a shear f low with a linear velocity pro-
file can have a significant effect on the stability of
weakly linear Stokes waves. In particular, for waves
propagating in the direction of the f low, the Benja-
min–Feir instability is absent in the case of positive
vorticity for any depth.

In the traditional consideration of the propagation
of weakly nonlinear waves on a f low, the shear f low

determines the vorticity of the zero approximation [5].
Depending on the shape of the f low profile, the vor-
ticity can be to a certain extent arbitrary. At the same
time, the vorticity in the first and subsequent approx-
imations in the wave steepness parameter already
depends on the profile shape and is quite definite. In
this approach, the form of vorticity perturbations is
very difficult to predict in this case. They are no longer
functions only of y; they also depend on the variables
x and t. From this point of view, there is the possibility
of developing a somewhat different approach, accord-
ing to which the unperturbed shear f low is absent and
vorticities of wave perturbations are specified as some
arbitrary functions. The NSE form in this case
depends on the form of these functions. In particular,
Hjelmervik and Trulsen [8] obtained the NSE for a
vorticity distribution of the following form:

  where x and z
are the horizontal coordinates, ω is the wave fre-
quency, and ε is the small parameter of wave steep-
ness; the last is equal to the product of the character-
istic wave amplitude and wavenumber. The vertical
vorticity component exceeds horizontal components
by an order of magnitude. This vorticity distribution
corresponds to a weak (on the order of ε) horizontally
inhomogeneous shear f low.

Below, in contrast to [8], two-dimensional f lows in
the ( ) plane, when only the z component of vortic-
ity is different from zero, are studied. The analysis was
carried out in Lagrangian variables a and b (the first of
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them is the horizontal coordinate; the second one, the
vertical coordinate). In the absence of an unperturbed
shear f low, the general expression for the vorticity of a
plane f low is written as follows:

Earlier, one of the authors of this paper has solved
the problem about the propagation of a wave packet in
the case    [9]. For the complex
amplitude of the wave packet envelope, an evolutionary
equation was constructed and reduced to the NSE by a
simple substitution. In this work, it is assumed that the
vorticity of waves depends on both the Lagrangian vari-
ables. The vorticity distribution is specified in the fol-
lowing form:   where  is an
arbitrary function. The hydrodynamics equations in the
Lagrange form are solved by multiple-scale expansions.
For the envelope amplitude, the nonlinear Schrödinger
equation with an additional term has been obtained.
Different ways to reduce it to integrable equations are
considered. The case of a weakly linear Gerstner wave
for which, as is shown below, the coefficient at the non-
linear NSE term vanishes is distinguished.

1. FORMULATION OF THE PROBLEM
Let us consider the propagation of a packet of sur-

face waves in a vortical infinitely deep f luid. The equa-
tions of two-dimensional hydrodynamics of an ideal
incompressible f luid are written in the following form
[10, 11]:

(1)

(2)

(3)

where X and Y are the horizontal and vertical coordi-
nates of the trajectory of the liquid particle, t is time,
ρ is the density, p is the pressure, g is the acceleration
of gravity, and subscripts denote differentiation with
respect to the corresponding variable. The square
brackets denote the Jacobian. The b axis is directed
upwards and  corresponds to the free surface.
Equation (1) is the equation of continuity and Eqs. (2)
and (3) are the momentum equations. The f low region
is associated with the condition  (Fig. 1).

Using cross-differentiation, one can exclude the
pressure from system (2), (3) and obtain the condition
of vorticity conservation along the trajectory [10]:

(4)

This equation is equivalent to equations of f luid
motion (2), (3), but explicitly includes the vorticity of
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liquid particles Ω, which is a function of only Lagrang-
ian coordinates in the case of two-dimensional f lows.

Let us introduce a complex coordinate of the liquid
particle trajectory   the
bar is the sign of complex conjugation. In the new vari-
ables, Eqs. (1) and (4) take the following form:

(5)

(6)

and system of equations (2), (3) after easy algebraic
transformations is reduced to a single equation

(7)

Below, Eqs. (5), (6) are used for finding the complex
coordinate of liquid particle trajectories and Eq. (7) is
used for determining the pressure in the fluid. The non-
flow condition at the bottom (  as ) and
condition of pressure constancy on the free surface (at

) serve as the boundary conditions.

2. METHOD OF SOLUTION
Let us use the method of multiple scales. Represent

function W as follows:

(8)

where ε is the small wave steepness parameter. Let us
represent the unknown functions p and w as a series in
this parameter:

(9)

In the expression for the pressure, the term with
hydrostatic pressure is written separately and  is the
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Fig. 1. Geometry of the problem:  is the average hori-
zontal f low.
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constant atmospheric pressure on the f luid surface;
the atmospheric pressure can be immediately set to
zero. Let us substitute representations (8) and (9) into
Eqs. (5)–(7). In the first approximation, the solution
has the following form:

(10)

Here and below, A is the complex amplitude of the
wave running to the left (to write expressions for a
wave running to the right, one should change the sign
of the frequency in them). The function ψ1 is real and
its form is determined when considering the next
approximation. Expression (10) describes the wave
motion in the laboratory frame of reference. The
motion consists of the vibrational motion of liquid
particles along a circumference and average motion.

We do not present the calculations in detail, but
restrict ourselves by mentioning the main results in
higher approximations. An analysis of the second
approximation yields a pair of equations

(11)

(12)

here,  is the group velocity of linear waves
on the water. Using Eqs. (11) and (12), we come in
the third approximation to the following evolution
equation:

(13)

This equation is written in a frame of reference mov-
ing with the group velocity to the left. It has an inhomo-
geneous summand containing the function  The
function is obtained by the integration of Eq. (12) with
respect to b:

(14)

From now on, the variable a denotes the “slow” coor-
dinate  or  (the choice is made for the ease of con-
venience when solving Eq. (13)). Function 
describes horizontally inhomogeneous and vertically
homogeneous (not depending on coordinate b)
unsteady potential f low. Substituting relationship (14)
into Eq. (13), we come to the final form of the equa-
tion for the wave packet envelope amplitude:

(15)
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Writing this equation, we used the substitutions

   This is a modified NSE

for weakly vortical waves. Different versions of its pos-
sible analytical solutions are considered below.

3. EXAMPLES OF WAVES

Potential Stokes waves. In the case 
Eq. (15) goes over into the classical nonlinear Schrö-
dinger equation for waves on deep water

(16)

As applied to waves in the ocean, three analytical
forms of NSE solutions are discussed most fre-
quently—the Peregrine breather localized both in
space and time [12], the so-called Akhmediev breather
(a solution which is periodic in space and localized in
time [13]), and the Kuznetsov breather (a solution
which is periodic in time and localized in space [14]).
The problem of the formation and propagation of
abnormal oceanic waves (rogue waves) in the context
of the classical NSE has been discussed many times
(see the survey [15], papers [16, 17], and references
therein), and we will not dwell on it.

Gerstner waves:  Ger-
stner’s exact solution for waves on the surface of a f luid
in the complex form is written as follows [10]:

(17)

It describes stationary running vortex waves with a
trochoidal profile. Their dispersion characteristic
coincides with the dispersion law for linear waves on
deep water  Liquid particles move along cir-
cumferences and the drift f low is absent. In represen-
tation (9), the Gerstner wave has the following form:

Substituting it into the expression for vorticity (6),
we obtain that Gerstner waves are not vorticial in the
linear approximation ( ) but have a vorticity

 in the quadratic approximation.
For this vorticity distribution, the two first summands
in the square brackets of Eq. (15) annihilate each other.
From the physical point of view, this is related to the fact
that the flow induced by vorticity exactly compensates
the Stokes drift. Therefore, in this approximation, the
packet of weakly nonlinear Gerstner waves does not
undergo the action of nonlinearity and the effect of
modulational instability is absent for Gerstner waves.

Waves with a nonuniform vorticity distribution:
  In the general case, one can

assume that the vorticity function depends on three
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coordinates: a1, a2, and b. Under this assumption,
Eq. (13) is an NSE with an inhomogeneous coefficient
at the additional linear term. For simplicity, let us con-
sider the case where the function  depends only on
the coordinates a2 and b. Then it is convenient to pass in
Eq. (13) to the coordinates t1 and a2 and, after the sub-

stitutions    it takes the form

(18)

Using the substitution 

it is reduced to the NSE:

(19)

This equation has the same coefficients as the NSE
for potential waves on deep water. It follows that condi-
tions of modulational instability for the considered
waves with a nonuniform vorticity distribution are the
same as for potential waves and all known analytical and
numerical calculations of the formation of rogue waves
for potential waves can be also extended to them.

We present here a modification of the solution in
the form of the Peregrine breather, which is an analyt-
ical model of rogue waves [12, 15]:

where A0 is the amplitude of the unperturbed mono-
chromatic wave. As is seen, the vorticity has an effect
only on the shift of the spatial wavenumber—by
decreasing it when compared to the Stokes wave.
Compared to the Peregrine breather in an ideal f luid,
vorticity leads to changes in the carrier wavelength,
which has an effect on the number of individual waves
in the wave packet.

Waves in a weakly vortical fluid in the presence of an
additional potential flow:  In
this case, Eq. (13) can be rewritten as follows:

(20)

Equation (20) is one version of the variable coeffi-
cient nonlinear Schrödinger equation (VCNSE) being
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actively studied in optics and hydrodynamics. Under
certain conditions, it has solutions in the form of
breathers and demonstrates the possibility of rogue
wave formation in the inhomogeneous nonlinear
Schrödinger equation. As applied to optical problems, a
survey of cases where the VCNSE can be reduced to an
NSE with constant coefficients was presented in [18];
however, linear damping of the wave packet was also
taken into account in that paper. It is clear that large
amplitude waves can also be generated in more general
cases where the breather solution cannot be obtained.
We mention, for example, an important case where
the function U is a linear function only of time. Intro-
ducing dimensionless variables

where the bar is the sign of complex conjugation and
α is a constant, we reduce Eq. (20) to the following
equation:

which has an exact one-soliton solution [19]:

where ξ and η are constants and  is the initial time
instant. It describes a nonuniformly moving soliton of
the envelope with an amplitude of 2η. The parameter ξ
specifies a point where the soliton velocity 
changes the sign (blocking point). The existence of a
soliton with a constant amplitude is caused by the
competition of two effects: the dispersion compres-
sion of the wave momentum due to the frequency
modulation and a spread in the inhomogeneous
medium. The existence of the soliton of the envelope
is typical for a focusing nonlinear Schrödinger equa-
tion, which points to the possible manifestation of
modulational instability and rogue waves.

4. ON THE RELATION 
BETWEEN THE LAGRANGIAN 

AND EULERIAN DESCRIPTIONS
All solutions of the equations presented in this work

were obtained in Lagrangian coordinates. In connec-
tion with this, a natural question arises: are they differ-
ent from NSE solutions in Eulerian variables? We con-
sider it using the example of calculating the shift of the
free boundary.
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In our description, it is determined by the formula

here,  is a solution of any of Eqs. (15), (17), (18),
or (20). This expression defines the wave profile in
Lagrangian coordinates (subscript “L” at quantity Y).
To write it in Eulerian coordinates, it is necessary to
express Lagrangian coordinates in terms of Eulerian
variables. It follows from relations (8) and (9) that

and, therefore, the shift of the free surface in Eulerian
coordinates is

Thus, coordinate a plays the part of X. This result
can be called the principle of correspondence between
the Lagrangian and Eulerian descriptions.

5. CONCLUSIONS
In this work, the dynamics of wave packets propa-

gating on the surface of an inhomogeneously vortical
f luid has been studied using the method of multiple-
scale expansions in Lagrangian variables. The f luid
vorticity Ω was specified as an arbitrary function qua-
dratic in the small wave steepness parameter of a func-
tion of Lagrangian coordinates. The calculations were
carried out by introducing a complex coordinate of the
liquid particle trajectory.

For wave packets, an evolutionary equation for the
envelope has been obtained. From the mathematical
point of view, the novelty of the equation is related to
the appearance of a new summand proportional to the
envelope amplitude with a factor depending on the
spatial coordinate. It determines the average f low
related to the presence of vorticity in the f luid. Cases
in which the equation can be reduced by a simple sub-
stitution to the NSE with the same coefficients as for
potential waves on deep water are mentioned. It has
been shown that the effect of vorticity is related to the
shift of the high-frequency filling wavenumber. The
criteria of modulational instability for the considered
weakly vortical waves and potential waves on deep
water coincide. All known analytical and numerical
solutions of the NSE are also applicable to these
weakly vortical waves. The special case of Gerstner
waves for which the coefficient at the nonlinear NSE
term vanishes has been distinguished.
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