
Abstract. We discuss the properties of two-dimensional, non-
linear, potential, and vortex waves on the surface of an ideal
liquid of infinite depth. It is shown that in the quadratic order in
the amplitude, the vorticity of the Gerstner wave is equal in
magnitude to and different in sign from that of the Stokes drift
current in a surface layer. This allows a classic Stokes wave
obtained in the framework of potential theory to be interpreted
as a superposition of the Gerstner wave and Stokes drift. It is
proposed that the nonlinearity coefficient in the nonlinear
SchroÈ dinger equation can be physically interpreted as the Dop-
pler frequency shift along the vertically averaged Stokes drift
current.

Keywords: waves on water, vorticity, Stokes drift, Gerstner wave,
nonlinear SchroÈ dinger equation

1. Introduction

Gravity waves traveling on a water surface are an essential
component of any course on the theory of nonlinear wave
processes; the origin of this theory is closely related to the first
attempts to determine the shape of stationary waves of finite
amplitude propagating over the surface of a heavier fluid.
Stokes and Gerstner waves are two classical examples of
water waves of different physical natures. Although Stokes
waves are more common in the physical literature, we begin
with Gerstner waves, which represent an exact solution of the

equations of vortex dynamics [1]. The profile of a stationary
Gerstner wave is a trochoid; fluid particles move in this wave
along circles with a radius decaying exponentially with depth
(Fig. 1). For the maximum amplitude, the profile is described
by a cycloid with a singularity at the crest (the cusp angle
equals zero). Surprisingly, despite the nonlinearity, the
dispersion relation for Gerstner waves is independent of the
wave amplitude and coincides with the linear dispersion
relation (we assume deep water here and hereafter). Because
fluid particlesmove along circles, they do not drift inGerstner
waves [1±3].

In contrast, the Stokes wave is a solution of the equation
of potential fluid motion [4]. Stokes waves can exist if their
amplitudes (more precisely, curvatures) are less than critical.
The highest Stokes wave has an angle of 120� at its crests.
Nonlinearity in a Stokes wave is manifested through the
occurrence of higher harmonics and a nonlinear correction
to the dispersion equation. A stationary Stokes wave is
unstable to smooth perturbations of its envelope, and this
effect finds a firm explanation in the framework of the
nonlinear SchroÈ dinger equation (NSE), which plays a
fundamental role in modern nonlinear physics [5±9]. Fluid
particles in a Stokes wave also trace circles in the linear
approximation, with radii exponentially decaying with depth;
however, for finite amplitudes, fluid particles are displaced
over a period in the direction of wave propagation (Fig. 2).
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Figure 1. Proéle of a Gerstner wave (upper curve) and circular trajectories
of êuid particles.
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The mean horizontal motion of fluid particles in a potential
wave, known as the Stokes drift [2-4], is characterized by a
vertical shear, and is therefore vortical. Thus, although the
Stokes wave is potential, it generates a mean vortical shear
flow. The vortical Gerstner wave, in contrast, does not
generate a mean flow.

The relation among these three phenomena is the subject
of this methodological note.

2. Stokes drift

Webriefly recall how the Stokes drift emerges in the quadratic
approximation in the wave steepness.We choose a coordinate
system with the y axis directed vertically upward and the
horizontal x axis aligned with the plane of unperturbed fluid
motion, as shown in Fig. 2. Equations of two-dimensional
fluid dynamics of an ideal incompressible fluid in the field of
gravity are written as

HHv � 0 ; �1�
qv
qt
� �vHH�v � ÿHHp

r
ÿ g ; �2�

where v�x; y; t� is the velocity vector,HH is the two-dimensional
gradient operator with respect to the Cartesian coordinates x
and y, t is the time, p is the pressure, and g is the gravity
acceleration. Equation (1) is known as the continuity
equation and (2) is the Euler equation [10]. Assuming that
the motion is potential, we can introduce a flow potential
j�x; y; t� such that v � Hj. Then Eqns (1) and (2) transform
into the following equations [2, 9, 11]:

Dj � 0 ; �3�
qj
qt
� 1

2
�Hj�2 � pÿ p0

r
� gy � 0 : �4�

Here, p0 is the constant pressure on the fluid surface.
Expression (4) is known as the Cauchy±Lagrange integral.
The problem of computing waves on a fluid surface is thus
reduced to solving Laplace equation (3) under the constraint
that the pressure is constant on the free and still unknown
surface y � Z�x; t�, as follows from Eqn (4). The equation
should be augmented with the kinematic boundary condition

Zt � Zxjx ÿ jy � 0 ; y � Z�x; t� ; �5�

and the condition that perturbations decay with the depth:

j
���
y�ÿ1

� 0 : �6�

The boundary condition for pressure and the kinematic
condition are nonlinear and create a major difficulty in
analytic studies of water waves. Exact analytic solutions of
problems (3)±(6) are still lacking. To solve this problem
approximately, Stokes resorted to the method of successive
approximations in the small wave steepness parameter
e � kA, where k is the wave number and A is the wave
amplitude. Solutions derived in this framework are called
`Stokes expansions'.

Through the second order in the small wave steepness
parameter, the potential of wave motion j�x; y; t� and the
vertical free surface displacement y � Z�x; t� of stationary
wave motion are written as [2, 4]

j�x; y; t� � Ac exp �ky� sin �k�xÿ ct�� ; �7�

Z�x; t� ÿ 1

2
kA2 � A cos

�
k�xÿ ct��� 1

2
kA2 cos

�
2k�xÿ ct�� :

�8�

This solution is written in the laboratory frame of reference;
the wave propagates to the right with the linear phase velocity
c � ��������

g=k
p

. The nonlinearity leads to the generation of the
second harmonic and to a shift of the mean water level above
the zero level �y � 0�. Following Ref. [2], we keep this term in
the left-hand side.

System of equations (7) and (8) describes the Stokes wave
in the Eulerian variables x, y. FromEqn (7), it follows that the
Eulerian velocity field v�r; t� � Hj, v � fvx; vyg, r � fx; yg
takes the form

vx � kcA exp �ky� cos �k�xÿ ct�� ; �9�
vy � kcA exp �ky� sin �k�xÿ ct�� :

Field (9) is periodic in time; hence, its mean value over a
period is equal to zero. However, as already found by Stokes,
fluid particles do not stay at their initial positions on average,
but drift in the direction of wave propagation (Stokes drift).
We consider this in more detail.

We let vL�r0; t� denote the velocity of the fluid element that
at the time instant t � 0 has the coordinate r � r0 � fa; bg;
the components of the vector r0 are called the Lagrangian
coordinates and the vector vL is called the Lagrangian
velocity. The position of the fluid element at subsequent
time instants is described as

r � r0 �
� t

0

vL�r0; t 0� dt 0 : �10�

The Eulerian velocity v�r; t� at the point r given by Eqn (10)
equals the Lagrangian velocity vL�r0; t�, i.e., the velocity of the
particle that arrived to the point r at the time instant t. Then

vL�r0; t� � v

�
r0 �

� t

0

vL�r0; t 0� dt 0; t
�

� v�r0; t� �
�� t

0

vL�r0; t 0� dt 0
�
Hr0v�r0; t� � . . . ; �11�

where the Taylor expansion is used and Hr0 denotes the
gradient operator with respect to the components of r0.
Because only small velocities (of the order of e) are
considered, the second term in the right-hand side of
Eqn (10) has the order e 2. This implies that the Lagrange
and Eulerian velocities agree in the first order,

vL�r0; t� � v�r; t� �O�e� ; �12�
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Figure 2. Proéle of a Stokes wave (upper curve) and open trajectories of
êuid particles.

308 A A Abrashkin, E N Pelinovsky Physics ±Uspekhi 61 (3)



just like the Eulerian and Lagrangian variables r �
r0 �O�e�. Replacing the Eulerian coordinates with the
Lagrangian ones in (9) and integrating over time, we arrive
at the representation of fluid particle trajectories in the
linear approximation [10]:

x � aÿ A exp �kb� sin �k�aÿ ct�� ; �13�
y � b� A exp �kb� cos �k�aÿ ct�� :

It follows that particles in linear gravity waves describe circles
around points x0 � a, y0 � b with the radius decaying
exponentially downward in the fluid.

What happens in the quadratic approximation? Inserting
expression (12) into the integral in the right-hand side of
Eqn (11), we find that up to the second-order terms (of the
Stokes expansion), the Lagrangian velocity is determined by
the relation (see also Ref. [12])

vL�r0; t� � v�r0; t� �
�� t

0

v�r0; t 0� dt 0
�
Hr0v�r0; t� : �14�

To calculate it, the Eulerian coordinates must once again be
replaced by the Lagrangian ones in the representation for
velocity (9) and inserted into equality (14). However, we are
interested not in the general expression for velocity but in its
value averaged over the period. Performing the necessary
calculations and averaging the expression obtained, we
obtain


vL�r0; t�
� � c�kA�2 exp �2kb� i � US�b� i ; �15�

where the angular brackets denote averaging over the wave
period, and i is the unit vector in the positive horizontal
direction. Fluid particles, in addition to performing oscilla-
tory motion, drift in the wave propagation direction with the
velocity US�b� � c�kA�2 exp �2kb�. This plane-parallel flow
was called the Stokes drift. In the Eulerian coordinates, with
Eqn (10) taken into account, it is written as

US�y� � c�kA�2 exp �2ky� : �16�

Flows (15) and (16) are shear flows and hence have
vorticity. How can it be explained that part of a potential
Stokes wave is a vortical flow? Surprisingly, none of the
authors touching on the Stokes drift has commented on this
fact. Even Stokes ignored it. In our opinion, this question
needs a rigorous analysis. To answer it, we turn to the other
fluid wave motion featuring in the title of this note.

3. Gerstner wave

The solution for this wave was found by the Czech scientist
Franz Joseph von Gerstner in 1804. In contrast to the Stokes
wave, the Gerstner wave is an exact solution of the equations
of fluid dynamics (it is given below in this section). It is
unique in that it is the only known exact solution of the full
system of hydrodynamic equations for stationary gravity
waves on deep water. This solution is less known because it is
written in the Lagrangian coordinates, which are used very
rarely in hydrodynamic problems because they contain a
more complicated form of nonlinearity than equations in the
Eulerian form. For example, the Lagrangian form of
hydrodynamic equations is fully omitted in the fundamental
course Fluid Mechanics by Landau and Lifshitz [10], and

hence the Gerstner wave and Stokes drift are not mentioned
there.

Equations of two-dimensional fluid dynamics have the
following form in the Lagrangian variables [2, 3, 13, 14]:

D�X;Y�
D�a; b� � �X;Y � � 1 ; �17�

XttXa � �Ytt � g�Ya � ÿ 1

r
pa ; �18�

XttXb � �Ytt � g�Yb � ÿ 1

r
pb ; �19�

whereX�a; b; t�,Y�a; b; t� are the coordinates of the trajectory
of a fluid particle with the Lagrangian coordinates a and b,
and the subscripts denote differentiation with respect to the
appropriate variable. The b axis is directed upward and b � 0
corresponds to the free surface. The square brackets denote
the Jacobian. In system of equations (17)±(19), the first
equation is the continuity equation and the other two are
momentum equations.

Using cross differentiation, we eliminate pressure from
Eqns (18) and (19) [2, 14],

XtaXb ÿ XtbXa � YtaYb ÿ YtbYa � O�a; b� : �20�

Equation (20) is equivalent to momentum equations (18) and
(19), but it explicitly includes the vorticity of fluid particlesO,
which is a function of only Lagrangian coordinates in the case
of two-dimensional flows.

Gerstner succeeded in finding an exact solution of
Eqns (17) and (20). By direct substitution, it can be verified
that their solution is the pair of relations

X � aÿ A exp �kb� sin �k�aÿ ct�� ; �21�
Y � b� A exp �kb� cos �k�aÿ ct�� :

The Gerstner solution has exactly the same form as solution
(13) for a linear potential wave. The dispersion equation for
the Gerstner wave o � �����

gk
p

coincides with that for linear
waves. We stress that it is independent of the wave amplitude.
Fluid particles in the Gerstner wave also describe circles.
However, the amplitude of the Gerstner wave is finite instead
of being small. The profile of the Gerstner wave is a trochoid.
For the wave amplitudeA � kÿ1 (a limit value), the wave has
a cusp at its crest, and its shape is described by a cycloid. The
angle of the cusp of the limit Gerstner wave equals zero [2, 3].

TheGerstner wave exhibits onemore distinctive property:
its vorticity is given by the expression

OG � 2k 3A2c exp �2kb�
1ÿ k 2A2 exp �2kb� : �22�

We expand vorticity (22) in a series in the small parameter kA:

OG � 2k 3A2c exp �2kb��1� k 2A2 exp �2kb� � . . .
�

� OG2 �O
ÿ�kA�4� : �23�

It follows from (23) that in the linear approximation, the
Gerstner wave does not carry vorticity and is therefore fully
equivalent to a linear potential wave. It acquires vorticity only
in the quadratic approximation. In other words, weak
circular motion of fluid particles generates vorticity only in
the second order in the small parameter of wave steepness.
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4. Stokes wave
in the Lagrangian description

We return to the question posed at the end of Section 2: How
can a vortical shear flow be hidden inside a potential Stokes
wave? According to the Lagrange theorem, the vorticity
cannot be created in an ideal homogeneous incompressible
fluid in the field of potential forces. In the case of water waves
considered here, all theorem conditions are observed. Hence,
in each approximation, the net flow vorticity must vanish.
Eulerian representation (7), (8) of the Stokes wave in the
quadratic approximation does not allow demonstrating this
explicitly. But the situation changes as we pass to the
Lagrangian form.

In the Lagrangian variables, the solution obtained by
Stokes for a surface gravity wave on deep water can be
expressed as [2, 15]

X � aÿ ekÿ1 exp �kb� sin �k�aÿ ct��� e 2ct exp �2kb� ; �24�
Y � b� ekÿ1 exp �kb� cos �k�aÿ ct�� :
The motion of particles described by system (24) is a
superposition of oscillatory and drift components. If we
select a sufficiently small amplitude of Gerstner waves, the
oscillatory motions of fluid particles in Eqns (21) and (24)
coincide. The difference between the Stokes and Gerstner
waves in the quadratic approximation is therefore due to the
presence of the drift term in the potential wave (Stokes drift).
The vorticity of the Gerstner wave equals OG2 in this
approximation [see Eqn (23)], whereas the vorticity of the
Stokes drift is

OS � ÿ dUS

db
� ÿ2kce 2 exp �2kb� � ÿOG2 ;

whence the total vorticity of the Stokes wave is zero, as it
should be.

This can be interpreted in the following way. The motion
of fluid particles in the Stokes wave is a superposition of two
flows: a rotational flow along circles (the `Gerstner' flow) and
a shear flow (the Stokes drift). Each of these flows carries
vorticity, but their net vorticity is equal to zero.

Solution (24) was obtained by Stokes [4]; however, neither
Stokes himself nor other researchers who reproduced his
result have related the oscillatory part of this solution to the
Gerstner wave. Symbolically, the Stokes result can be written
as

Stokes wave = Gerstner wave + Stokes drift. (25)

This result, despite its obvious character, has not been
formulated in the literature. This is probably related to the
fact that the solution for the potential of the Stokes wave is
typically written in Eulerian variables. The representation of
the Stokes solution in Lagrangian coordinates (24), in
contrast, highlights our symbolic formula (25). We stress,
first, its nonobvious character and, second, its nontriviality:
the principle of flow superposition works in a nonlinear
approximation.

Thus, there is a close connection between Stokes and
Gerstner waves and the Stokes drift. However, it turns out
that it is not limited to only this example. Unexpectedly for
the authors, it is manifested in the modulation instability of
the Gerstner wave.

5. Nonlinear SchroÈ dinger equation
for the Gerstner wave

We consider the propagation of a package of surface gravity
waves in a fluid of unbounded depth. Because we are
interested in the case of a Gerstner wave, we assume that the
propagating wave carries a weak vorticity (of the order of the
curvature squared).

We use Lagrangian variables. We introduce the complex-
valued trajectory of a fluid particle W � X� iY �W �
Xÿ iY�, where the bar denotes complex conjugation. In the
new variables, Eqns (17) and (20) take the form [14, 16, 17]

�W;W � � ÿ2i ; �26�
Re �Wt;W � � O�a; b� ; �27�

and system of equations (18), (19), after simple algebraic
manipulations, reduces to a single equation

Wtt � ÿig� irÿ1� p;W � : �28�

In what follows, we use Eqns (26) and (27) to find the
complex-valued coordinate of the fluid particle trajectory,
and find the pressure in the fluid from Eqn (28). The
boundary conditions are the impermeability condition at the
bottom (Yt ! 0 at b! ÿ1) and the constant-pressure
condition on the surface (at b � 0).

We use the method of multiple scales. The function W is
written as

W � a0 � ib� w�al; b; tl� ; al � e la ; tl � e lt ; l � 0; 1; 2 ;

�29�

where e is the small parameter of wave steepness.Wewrite the
unknown functions p and w as series in this parameter,

w �
X
n�1

e nwn ; p � p0 ÿ rgb�
X
n�1

e npn : �30�

A term with hydrostatic pressure is separated in the
expression for the pressure, and p0 is the constant atmosphe-
ric pressure on the fluid surface, which can be set to zero. The
vorticity O is assumed to be quadratic in the steepness
parameter, as in the Gerstner wave:

O � e 2O2�a; b� : �31�

The precise form of the function O2 that corresponds to the
Gerstner wave is better to specify later, after obtaining the
third-order evolution equation.

We insert representations (29)±(31) into Eqns (26)±(28).
In the first approximation, the solution becomes

w1 � A�a1; a2; t1; t2� exp
�
i�ka0 ÿ ot0� � kb

�
� c1�a1; a2; b; t1; t2� : �32�

Here and hereafter, A is the complex-valued wave amplitude
of a wave propagating to the right. The function c1 is real
valued, and its form is determined by considering the next
approximation. Expression (32) describes the wave motion in
the laboratory frame. Just as for stationary potential wave
(24), it consists of oscillatory motion of fluid particles along
circles and the mean flow.

We skip the details of computations, giving only the main
results in higher-order approximations. There are two
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equations in the second-order approximation:

At1 � cgAa1 � 0 ; �33�

c1t1
� kojAj2 exp �2kb� ÿ

� b

ÿ1
O2�a1; b 0� db 0 ; �34�

where cg � g=�2o� is the group velocity of linear gravity
waves. We note that the first term in Eqn (34) coincides with
the expression for the Stokes drift. Using Eqns (33) and (34),
in the third order, we arrive at the evolution equation

i
qA
qt2
ÿ o
8k 2

q2A
qa 2

1

ÿ 2k 2A

� 0

ÿ1
c1t1

exp �2kb� db � 0 ; �35�

written in the reference frame moving with the group velocity
cg.

System (34), (35) is the modified nonlinear SchroÈ dinger
equation (NSE) for weakly vortical waves, which requires a
special investigation in the general case. We limit ourselves to
its analysis as applied to the Gerstner wave.

In representation (29), (30), the function w1 for the
Gerstner wave is described by expressions that are analo-
gous to relations (21) but for the amplitude A times the
parameter e. Using Eqn (21) for the vorticity, we find that for
the Gerstner wave,

O2 � 2k 2ojAj2 exp �2kb� � OG2 :

Inserting this into Eqn (34), we find thatct1
� 0. The effective

shear flow related to the vorticity of the Gerstner wave [the
second term in the right-hand side of Eqn (34)] exactly
compensates the Stokes drift. Thus, a package of weakly
nonlinear Gerstner waves is not affected by the nonlinearity
in this approximation, and the effect ofmodulation instability
is absent for it.

This is the second aspect of the connection of theGerstner
wave and Stokes drift, this time related to the NSE.

6. Physical meaning of the nonlinearity
coefficient in the SchroÈ dinger equation

If O2 � 0, Eqn (35) transforms into the classic NSE for
potential waves:

i
qA
qt2
ÿ o
8k 2

q2A
qa 2

1

ÿ 1

2
ok 2jAj2A � 0 : �36�

This equation was first derived for potential waves on deep
water by Zakharov, who used the Hamiltonian formalism [5]
(see also Ref. [16]). This same result was obtained indepen-
dently by Hasimoto and Ono [15] and Davey [18] with the
help of the multiple expansion method, and by Yuen and
Lake based on the method of the averaged Lagrangian [19].
Here, we describe how the NSE can be derived in Lagrangian
coordinates.

To write Eqn (36) in Eulerian coordinates, we need to
express the horizontal Lagrangian coordinate a through the
horizontal Eulerian coordinate X. It follows from relations
(29) and (30) that

X � a� eRe

�
w1 �

X
n�2

e nÿ1wn

�
� a�O�e� ;

and hence, in order to pass to the Eulerian form, we should
simply replace the Lagrangian coordinate by the respective

Eulerian variable �al ! Xl�. It is apparent that the inverse
coordinate transformation is also possible; hence, all known
solutions of the NSE in the Eulerian variables can be written
in the Lagrangian coordinates.

In deriving the NSE in Section 5, we mentioned that the
first term in Eqn (34) coincides with the expression for the
Stokes drift, but with the amplitude A in it being a variable
quantity. In the case of zero vorticity of waves �O2 � 0�, that
term alone determines the form of the function c1t1

and hence
the nonlinearity coefficient in the NSE [see Eqn (35)]. The
derivation of the NSE is often carried out formally, and we
therefore believe that it is important to relate one of its terms
to the Stokes drift. To our knowledge, this point has not been
mentioned in the literature dealing with waves on water.

Very popular among physicists is a heuristic derivation of
the NSE based on the nonlinear dispersion equation for the
Stokes wave. We recall it. The nonlinear dispersion relation
for the Stokes wave is obtained in the third order of the Stokes
expansion and takes the form [2, 4, 9]

o �
�����
gk

p �
1� 1

2
k 2A2

�
: �37�

For a narrow wave package, we expand expression (37) in the
vicinity of some constant k0, keeping terms of the second
order in the wave number and nonlinearity. Then the
perturbations of the wavenumber k 0 and frequency o 0

satisfy the equation

o 0 ÿ o0

2k0
k 0 � o0

8k 2
0

k 0 2 ÿ 1

2
o0k

2
0A

2 � 0 ; o0 �
�����
gk

p
: �38�

Considering the frequency and wavenumber in Eqn (38) to be
operators in accordance with

ÿio 0 ! q
qt
; ik 0 ! q

qx
;

we arrive at the nonlinear SchroÈ dinger equation [20±23]:

i

�
qA
qt
� cg

qA
qX

�
ÿ o
8k 2

q2A
qX 2
ÿ 1

2
ok 2jAj2A � 0 :

This equation is analogous to Eqn (36) if it is written in the
reference frame moving to the right with the group velocity,
and the transformation

A! A

e
; t2 ! e 2t ; a1 ! eX

is done. This heuristic derivation explicitly indicates that the
nonlinearity coefficient in the NSE coincides with the
nonlinear correction to the dispersion relation for linear
waves. This derivation is well known, and is reproduced
here for completeness.

We write dispersion relation (37) in a somewhat different
form,

oÿ ku � o0 ; �39�
where the quantity u � o0kA

2=2 is introduced that corres-
ponds to a nonlinear correction to the phase velocity. From
Eqn (39), it follows that it can be interpreted as a surface flow
ensuring the Doppler frequency shift. This velocity satisfies
the relations

u � k

� 0

ÿ1
US�y� dy � k

� 0

ÿ1
US�b� db ;
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and has the meaning of bulk horizontal transport through a
cross section of unit length (times k�. Taking into account that
the drift velocity magnitude decays exponentially with depth,
being substantial only in the near-surface layer with a
thickness of the order of the wavelength, we can conjecture
that it is approximately equal to the Stokes drift velocity
averaged along the vertical.

We recall in this respect that the drift motion of fluid
particles is absent in the Gerstner wave �u � 0� and that its
dispersion relation coincides with that for linear potential
waves. Thus, following the heuristic approach of deriving the
NSE based solely on the dispersion equation, we could argue
from the very beginning that it would contain no nonlinearity.
However, the reason would remain obscure. Furthermore, as
it seems to us, it would hardly be possible to elucidate it
without resorting to the NSE for weakly vortical waves.

7. Conclusions

This note is devoted to the analysis of classic examples of
waves on deep water.We draw attention to the fact that in the
Lagrangian description, the solution for the Stokes wave in
the quadratic approximation can be viewed as a superposition
of two flows: the vortical Gerstner wave and the shear flow of
the Stokes drift. The vorticity of these flows is the same in
absolute value, but differs in sign. It follows that this same
feature explains the absence of a nonlinear term in the
nonlinear SchroÈ dinger equation for the Gerstner wave. The
proof is based on the derivation of the NSE for weakly
vortical waves in Lagrangian variables. It is shown that the
nonlinearity coefficient in the NSE for potential waves
coincides in magnitude with the vertically averaged Stokes
drift.

The authors are indebted to S N Vlasov for the helpful
discussions.
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