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Abstract. The leximin (leximax) preference ordering compares two n-di-
mensional real vectors as follows: the coordinates of these vectors are first ordered
in ascending (descending) order and then the resulting two vectors are compared
lexicographically. It is well known that the leximin (leximax) preference ordering on
R" is not representable (by a utility function). In this paper, given two integers n >1
and m =2, we consider the set X of all n-dimensional vectors with integer coor-
dinates assuming values between 1 and m. Equipping X with the leximin (leximax)

preference ordering induced from R”", called the threshold (dual threshold) rule,
every vector from X (and its indifference class) is canonically assigned a unique ordi-
nal number in such a way that a vector from X is considered more leximin- (Ileximax-)
preferable if it lies in an indifference class with greater ordinal number. We present
a rigorous recursive algorithm for the evaluation of multiplicities of the coordinates
in a vector from Xvia the ordinal number of the indifference class with respect to the
ordering, to which this vector belongs. The novelty of our algorithm is twofold: first, it
exhibits new properties of the classical binomial coefficients in their interplay with the
leximin (leximax) preference ordering and, second, it relies on four integer parame-
ters, each one being obtained by a different cyclic procedure. The joint work of these
procedures is based on our main theorem concerning some subtle properties of the
enumerating preference function, which represents the leximin (leximax) preference
ordering onX.
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1. Introduction

The paper addresses the following problem. Suppose Xis the set of
all n-dimensional vectors x =(x,,...,x,) with integer coordinates 1<x, <m
for some integer m >2. We equip Xwith the leximin (leximax) preference
ordering induced from R". Recall that, under the leximin (leximax), the
coordinates of two vectors are first ordered in ascending (descending)
order and then the resulting two vectors are compared lexicographically.
The leximin (leximax) preference ordering partitions X into indifference
(= equivalence) classes, each of which being uniquely assigned an ordinal
number with respect to the ordering in such a way that a vector from Xis
considered more leximin- (leximax-) preferable if it lies in an indifference
class with greater ordinal number. The problem is to restore the whole indif-
ference class by knowing its ordinal number.

! The authors express their sincere gratitude to Professor F.T. Aleskerov (NRU HSE, Moscow) for several stimulating
discussions, concerning this paper, and encouragement.
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The lexicographic, leximin and leximax preference orderings in dif-
ferent contexts have been studied extensively in the literature, mainly in the
axiomatic approach (Bridges, Mehta, 1995; Chistyakov, 2014; d’Aspremont,
Gevers, 2002; Fishburn, 1970, 1975, 1999; Moulin, 1988; Sen, 1970; Vilkas,
1986). In general, no utility function exists for these preference orderings.

In this paper, we shall be interested in the leximin (leximax) prefer-
ence ordering, restricted to the above set X of n-dimensional vectors. In this
case, the interval of natural numbers [1, n]={1,...,n} can be interpreted as
the set of agents, number x; (between 1 and m ) — as the i-th agent’s grade,
ie[1,n], and vector x=(x,,...,x,)€ X — as an alternative estimated by the
agents from [1,n]. The preference ordering on X, corresponding to the
leximin (leximax), which is originated from (Aleskerov, Yakuba, 2007;
Aleskerov, Yakuba, Yuzbashev, 2007) for m =3, is called the threshold rule
(dual threshold rule). The complete axiomatic characterization of the rule(s)
for arbitrary integer m >3 was given in (Aleskerov et al., 2010a, 2010b); dif-
ferent perspectives of the rule(s) were considered in (Podinovskii, 1975).

The axioms used in the characterization of the threshold rule are
Pairwise Compensation, Pareto Domination, Noncompensatory Threshold and
Contraction. In order to get a better feeling of the threshold rule, we present
a small citation from (Aleskerov et al., 2010b, p. 628—629).

“The Pairwise Compensation axiom means that if all agents, but two,
evaluate two alternatives equally, and the two agents put ‘mutually inverse’
grades, then the two alternatives have the same rank in the social decision
(which may be interpreted as ‘anonymity of grades’).

The Pareto Domination axiom states that if the grades of all agents for
one alternative are not less than for the second alternative and the grade of
at least one agent for the first alternative is strictly greater than that of the
second one, then in the social ranking the first alternative has a higher rank
than the second alternative.

The Noncompensatory Threshold axiom reveals the main idea of the
threshold aggregation: if at least one agent evaluates an alternative as ‘bad’,
then, no matter how many ‘good’ grades it admits, in the social ranking this
alternative is ranked lower than any alternative evaluated as ‘average’ by all
agents.

In this context, the Contraction means that if for two alternatives the
evaluations of some agent are equal, then the agent may be ‘excluded’ from
the consideration when the social ranking is constructed, and the social deci-
sion is achieved by the remaining agents’ evaluations.”

The real-life applications of the threshold rule were presented in
(Aleskerov et al., 2014) for the evaluation of the bank branch performance
and (Goncharov, Chistyakov, 2012) for noncompensatory ranking of stu-
dents of the National Research University Higher School of Economics (to
mention a few).

In contrast to the general case of the leximin (leximax) on R”",
for the threshold preference ordering of X, a surjective utility function
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of the form ®: X —[1,s]={1,...,s} exists for some integer s. Interestingly,
the explicit formula for @ can be given combinatorially in terms of bino-
mial coefficients (see (Aleskerov, Chistyakov, 2013b; Chistyakov, 2009;
Chistyakov, Kalyagin, 2008) and Theorem 1 in Section 2). Since @ repre-
sents the leximin (leximax) on X, the collection {X,:/€[1,s]} of coun-
terimages X, =® ' (/)={xe X : ®(x) =/} is exactly the family of all indiffer-
ence classes with respect to the leximin (leximax) preference ordering.
In other words, the problem above can be reformulated in terms of
‘inversing’ the discrete function @ as follows: given ¢ €[1,s], restore the
class X, =®7'(¢). So, knowing the ordinal number of (the indifference class
of) the alternative x € X it will be possible to obtain the whole collec-
tion of agents’ grades x;,...,x,. To the best of our knowledge, it is the
first time in the literature that the aggregation procedure (which is the
threshold rule based on the leximin on X) permits to return back the
rather ‘big’ input data x,...,x, by means of the relatively ‘small’ aggre-
gate ordinal number of x.

We do not aim at the applications in this paper, concentrating on
the mathematical problem of inversing the ‘discrete’ function ®. The real-
life applications are postponed until subsequent publications.

We solve the problem of restoring the indifference classes by pre-
senting a rigorous recursive algorithm. Its novelty is twofold. First, it exhib-
its new properties of the classical binomial coefficients in their interplay
with the leximin (leximax) preference ordering. Second, the algorithm
involves four integer parameters n, m, L, and ¢ (indexed by je[l,m]),
each one being obtained by a different procedure: » is obtained through
the decomposition of the natural ‘interval’ [1,s] into a disjoint union of
smaller intervals, m — by subtracting 1, L — by putting #» and m into a bino-
mial coefficient, and the ‘new’ value of ¢ — by subtracting L from the ‘previ-
ous’ value of ¢. This ‘cyclic procedure’ is made possible to work successfully
by our main result, Theorem 3, concerning some subtle properties of the
function ®.

The paper is organized as follows. In Section 2, we review certain
definitions and auxiliary facts and recall explicit formulas for the enumer-
ating preference functions representing the leximin/leximax preference
orderingon X (Theorems 1 and 2). Our main result, Theorem 3 in Section
3, is devoted to the evaluation of multiplicities of coordinates in a given vec-
tor from X . The algorithm for restoring indifference classes in the case of
the leximin preference ordering on X , based on Theorem 3, is presented
in Section 4 and illustrated by an example. Finally, in Section 5, the restor-
ing of indifference classes in the case of the leximax is reduced to the case of
the leximin preference ordering and the corresponding algorithm.

2. Preliminaries

We begin by reviewing certain definitions and facts needed for our
results.
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Throughout the paper » is a positive integer and R” is the set of all
n-dimensional vectors x = (x,,...,x,) with real coordinates x, € R. Given two
nonnegative integers k£ and [ with k<[, theset {k,k+1,...,.} is denoted by
[£,l] and said to be the (natural) interval with endpoints k& and ¢ (if k>,
we set [k,[]=). Of main interest below is the set X =[1,m]" < R", with
integer m>2, of all n -dimensional vectors x =(x,,...,x,) with coordinates
x, €[1,m]. The elements of [1,m] may be interpreted as ordered grades
1<2<...<m—-1<m, and the elements of [1,n] — as agents (criteria, param-
eters, entities, or properties). The number of elements in [1,m]" is equal to

|[1,m]n n

=m .

A vector yeR" is said to be lexicographically preferred to xeR" (in
symbols, xZ,y) provided x, <y, or there is ke€[2,n] such that x, =y, for
all ie[1,k—1] and x, <y,. It is well known (Fishburn 1970, 1975) that the
lexicographic preference £, on R" is transitive (i.e., x£,y and yZ, z imply
xZ,z ), the negation of £ is of the form: —(x£, y) iff (=<if and onlyif) y/£ x
or y=x, and £, is trichotomous (i.e., either x£ y, or yZ x, or x=Yy).
Thus, £, isalinear order on R".

Putting the coordinates of x=(x,,...,x,) € R" in ascending (respec-
tively, descending) order, we denote the resulting vector by x = (xl, . ,x")
with x, <...<x, (resp., by x,=(x.,...,x.,) with x,>...>x, ) and call it
the nondecreasing (respectively, nonincreasing) representative of x. If X is a
nonempty subset of R”, weset X" ={x :xe X} and X, ={x,:xe X}.

Avector yeR" is said to be preferred to x e R" in the sense of the leximin
(resp., leximax) provided x Z,y", also written as xZ,y (resp., x.Z, 3., also
written as xZ,,y). It is well known (Bridges, Mehta, 1995; Fishburn, 1970;
Sen, 1970; Vilkas, 1986) that the lexicographic ordering £

leximin Z, and leximax Z., preference orderings, are not representa-

.» aswell as the
ble on R", i.e., there is no (utility) function ¢:R" - R such that, given
x,yeR", xZ,y iff @(x)<@(y). It is to be noted that £, and Z,, are not
linear orders on R": if we set (x,y)e P iff yZ,x (or (x,y)e P iff y£, x),
then P isaweak order on R" in the following sense (Aleskerov, Bouyssou,
Monjardet, 2007).

A binary relation P on aset X is said to be a weak orderon X if it
has the following three properties, for all x,y,z € X:

(i) (x,y)€ P and (y,z) € P imply (x,z) € P (transitivity);

(ii) (x,x) ¢ P (irreflexivity);

(iii) (x,y)¢ P and (y,z) ¢ P imply (x,z) ¢ P (negative transitivity).

The inclusion (x,y)e P is conventionally interpreted as ‘x is pre-

ferred to y’ (with respect to P). The indifference relation I, on X, induced
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by P, is defined as usual by: given x,y € X, (x,y) € I, iff (x,y) ¢ P and (y,x) ¢ P.
Clearly, I, is an equivalence relation on X.

A weak order P(¢p) on aset X, generated by a nonconstant function
¢: X = R, is defined as follows: given x,y e X, set (x,y) € P() iff o(x)> ¢(y).
Clearly, (x,y) €1, iff @(x)=¢(y). A binary relation P on X is said to be
representable (by ¢ ) if P = P(¢), in which case ¢ is called a preference (or util-
ity) function for P (note that preference functions for P are determined
nonuniquely in general).

Fromnowon, X=X, , =[1,m]" with integers n>1 and m=>2.

m,n

The monotone representatives of x=(x,,...,x,)€[1,m]" are of the

form x‘ - (1v1(x) sz(X) (m _1)vm4 (x) mvm(x))

x, = (mvm(ﬂ ,(m _ l)vm—l (x) e .’21)2(%) ’lvl (x) ) ,

where v,;(x)=[{ie[l,n]:x,=j}| is the multiplicity of grade je[l,m] in
v (x)

(1)

x, and j denotes j,j,...,j repeated v,(x) times (if v;(x)=0, the
term ;% is omitted in the notation of x* and x,). Note at once that
v].(x*) =v;(x.)=v,(x) forall je[l,m] and

v (x)+...+v,(x)=n forall xe[l,m]". (2)
It was shown in (Aleskerov, Chistyakov, Kalyagin, 2010b) that if X =[1,m]",

then

3 —-1)!
|X*|=|X*|=Cm_l_ =C" =M’ (3)
n+m—1 n+m—1
n!(m—1)!

where C' = (Z ) =nl/ [k! (n— k)!] is the usual binomial coefficient if £ €[0,n],
and 0!=1.

Theleximin £, andleximax Z., preference orderingson X =[1,m]"
can be given alternative characterizations (more suitable for our purposes)
as follows. Given x € X, define two vectors v(x) and z_;(x) from [0,n]""" by
v(x)=(v, (x),0y(%),...,v, ;(x)) and ;(x)=(vm (%),v,,_,(%x),...,05(x)). The threshold
preference order P,_, (resp., dual threshold preference order Pu1)on X=[1,m]",
which is a weak order on X, is defined, for x,y< X, by (Aleskerov, Yakuba,
Yuzbashev, 2007; Aleskerov, Chistyakov, Kalyagin, 2010b)

(x,))€ B, iff v(x)Z, 0(y) (vesp.,(x,))e P, iff v())Z, v (x)).
It was shown by (Aleskerov, Chistyakov, 2013b) that
yZix iff (x,9)€ P, |, and yZ, x iff (x,y)eP ,_,. (4)
In what follows, we treat /£, and Z,, intermsof P, | and Pu1, respectively.
The indifference relations I,, corresponding to P=P, , and P =P,
are of the (same) form: (x,y)el, iff v(x)=uv(y) iff ;(x)=5(y), i.e., taking
into account (2), (x,y)el, iff v;(x)=v;(y) for all je[l,m]. This means

that (x,y)el, iff x =y iff x, =y, iff vectors x and y can be transformed
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into each other by certain permutations of their coordinates (which may
be interpreted as the anonymity of agents from [1,n]). Given xe X, let
[x], ={ye X:(x,y)el,} be the indifference (=equivalence) class of x, and
X /1I,={[x], :x€ X} be the quotient set of X with respect to I,. Clearly,
the number of elements |X/IP| in X /I, is equal to (3).

A weak order P on a finite set X gives rise to the canonical rank-
ing of X (Aleskerov, Bouyssou, Monjardet, 2007; Hausdorff, 2005), which
we recall now. Given YcX, let n(Y)={yeY:(xy)gP for all xeV|
be the set of the most preferred elements from Y with respect to P.
We set X|=n(X). Inductively, if £>2, and nonempty disjoint subsets
X|,...X;,; of X such that X]u...uUX, , #X are already constructed, we
put X; =n(X\(X/u...uX;)). Since X is finite, there is a unique pos-
itive integer s=s,(X) (more precisely, s=|X /I,|) such that X =TJ X;

k=1
(disjoint union). Now, setting X, =X/, for ke[l,s], we obtain the collec-

tion {Xk ke [l,s]} =X /I, of indifference classes (called the canonical rank-
ing of X), partitioning X, which characterizes P as follows: given x,ye X,
(x,y)ePiff xeX, and ye X, for some k,le[l,s] with k<[. In other words,
x is preferred to y with respect to P iff x lies in an indifference class with
greater ordinal number. Clearly, (x,y) eI, iff x,ye X, for some ke[Ls].

Define the function <I)=(I),,:X—>[1,s] in the following manner:

given xe X, since X =[] X, (disjoint union), we have xe X, for some
k=1

unique number k=k_ €[l,s], and so, we set @ (x)=k. Thus, CD(y): k for
all ye[x], =X,,and
x€ X :{y eX:CD(y):q)(x):kx} for all xeX.

The function @ is well-defined, uniquely determined, and surjective (from
X onto [l,s]) preference function for P. In (Aleskerov, Chistyakov, 2013b;
Chistyakov, 2009) it is called the enumerating preference function for P (EPFE,
for short). Any other preference function ¢:X — R, representing P (i.e.,
(x,y)€ P iff ¢(x)>o(y)), can be expressed by means of ® as follows: there
is a strictly increasing function f:[1,s]— R such that ¢(x)=f(®(x)) for all
xeX.

If J:X—>X /I, is the canonical surjection defined by J(x)=[x],,
xeX, and ®:X/I,-[ls] is the quotient function given by
®([x],)=D(x), xeX, then q)(x):(i)(](x)) for all x € X. Clearly, ® is a
bijection between X /I, and [L,s].

In the case when X =[1,m]" and P=P, , or P=P, ,, we have (cf.
3) s=|X/1,l4x°

functions @ for P, , (corresponding to the leximin (4) ) and ® for P,

=C" |. Furthermore, the enumerating preference

n+m—1°
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(corresponding to the leximax (4)) can be given combinatorially in terms
of binomial coefficients as presented in Theorem 1 below (cf. (Aleskerov,
Chistyakov, 2013b, Theorems 3.1 and 6.1)). To formulate it, we adopt the
convention that C;™' =0 for all integers k>0 and C) =1, and set

Vi(x)=v,(x)+...4+v;(x) for all je[l,m] and xe[l,m]".

Theorem 1.
A. TheEPFd):X:[lm [ LC" |1 for P, , is given by

n+m—1
O (x) = ZC;" Vemj +1 forall xe X (5)
~
B.The EPF ®: X =[1,m]' [ 1,5\ |1 for B, is of the form

m—1

O(x)=C") ZC geja Jorall xe X

n+m—1

By Theorem 1 (A), glven a vector x €[1,m]", we know the ordinal
number ¢ =® (x) ofits indifference class [x], = X, under the leximin order-
ing £, of [1,m]", corresponding to the weak order P =P, ,.In addition, if
ye[l,m]", we have yZ, x iff (x y) _, iff ®(x)>D(y) (by Theorem 1 (B),
similar conclusions hold for the lexnnax ordering Z*n and Pm_l).

The purpose of this paper is to solve the inverse problem (for
P=P, ) given Ze[l s] [1 crl 1} restore the indifference class X, , i.e
those vectors x€ X=[L,m]", for which ®(x)={ or, equivalently, [x],=X,
(in other words, find the inverse ‘value’ (@) (é) =[x], of the bijection
O X/1,—> [l,s]). Since [x], = {y eX:v(x)= v(y)}, the problem amounts to
the evaluation of the multiplicities v,(x) , ..., v,_;(x), which together with
equality (2) gives the nondecreasing representative x* of x from (1).

For instance, for m=2 we have C"!  =n+1, P =P, on XxX with

n+m—1

=[L2]",and ®(x) = (D(x) =v,(x)+1forall xe X.So,given / [l,n + 1] ,wefind
xeX, (e, d(x)=0)iff v,(x)=n—(+1 and v,(x)=¢~-1 iff x" = (1"'“1,2”'1 ) .
In this way, we have restored the indifference class [x], = [x]; from its ordi-
nal (or aggregate) number ®(x)=/ under the weak order P, = P, (note that
P, , # P, foranyinteger m>3).

The possibility of restoring the indifference class [x], via its ordi-
nal number ®(x)={ under the threshold preference order P=P, ; on
X =[L,m]" in the general case m >3 was indicated in (Aleskerov, Chistyakov,
2013b, Theorems 3.2 and 3.3), which we recall as Theorem 2.

Theorem 2. Suppose { is a positive integer and n, =n. We have:

n+m—1

satisfying 0<n;<n, , for all je[lm=2] such that {e[L+1, L+1+n,_,],

a)le [1 cr! ] iff there is a unique collection of m —2 integers n,,...,n,,_,

where L = ZC "

nj+m—j— 1’

—2
2 More explicitly, ®(x) = Z—)’ (k + v, (x))+ v, (x)+1.
7 ( m—=7) k=0 i=j+1

% More explicitly, ®(x)=C""}  — zi L ﬁ(k + Z/:vl (x) ) .
j=1 ] k=0

i=1
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b) given (e[1,C1) ], xe X, (ie, ®x)=0)iff v,(x)=n, , —n, forall
je[lm-2], v, (x)=L+1+n, ,—(, and v, (x)={—L-1.

However, no explicit procedure how to evaluate numbers n,,...,n,,_,
via the given number ¢ was presented in (Aleskerov, Chistyakov, 2013b).
In this paper, to evaluate these numbers, we present a rigorous recursive

algorithm.

3. Main Theorem

Our recursive algorithm for restoring indifference classes is based
on the following theorem concerning (more subtle) properties of the EPF
@ from (5).

Theorem 3. Let ke[0m—-2], 0<n,<n,_ <..<n<n,=n be

integers, and L, z cr (with Ly=0). Given xe X =[1,m]" such that

+m—j-1
v (x)=n,, —n, forall]e[l k], and i[0,n, ], we have
v,m(x) =n i iff O)-L e[ CLIL LN |- (6)
Furthermore, if n,,...,n,_, (and so, L,,...,L,_,) are already calculated, we get
v, (X)=0(x)-L, ,~1 and v, (x)=n, ,—v, (x).
P r o o f. We divide the proof into four steps for clarity. In the first
step, we need the formula for the summation of binomial coefficients over
successive lower indices (see (Graham et al., 1994, formulas (5.9) and

(5.10))): given two nonnegative integers p and ¢,

p = P p  _ bl g
kZC[H—k 1 + C{H—l +...t C}H—q C[)+r[+l C[{+r[+l (7)
Step 1. First, we show that
Vea () <m, =i iff O(x)> L +CLEL (8)

Let ye[L,m]* be such that its nondecreasing representative y* is of
the form y° :(12k(k+1)m) ie, v (y=n_, —n, for
all je[Lk], v,,(y)=mn,—i, v;(y)=0 for all je[k+2,m—1], and v, (y)=1.
Making use of (5), let us calculate the value ®(y). In order to do this, note
that

Vi(y)=n-n, Vje[l k] and V,(y)=n-i Vje[k+1,m—1] (9)
(and, by (2), V, (y)=n).1f i=0, we find, by (5) and (9),

m—=1

(D(y) Zn +ml1+zcnmnl+mjl

Jj=k+1
In the second sum at the rlght the summation index je [k +1,m —1] , which

implies m—j—1e [O, m —2 k} and so, C"7 . =0. It follows that

m—j—1

D(y)=d(y')= ZC’“ +1=1L, +1. (10)

n;+m—j-1

Now, if i>1, we have, by virtue of (5) (9), and (7),
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k m—
cD(y) q) ch +m—j-1 Z Ct’-’f-m]] 1+1 L + Z C[Z 11+m ]
Jj=1

s s (11)

:L,(+1+ZCl1 =L, +C"" =L, +C"kl .

i-1+p i— 1+m k-1)+1 — i+m—k—

Since C" ) =1 (10) implies that (11) holds for ¢=0 as well.

m—k—

In order to prove (8), suppose v,,,(x)<n, —i.Since v;(x)=n, , —n,

1
for all je[Lk] and v, (x)<n, —i=v,,(y), we find v(x)L m_lv(y), a]nd so],
(x,y)eP,., (and yZ,x, by (4)). Noting that, by Theorem 1 (A), @ is a pref-
erence function for P, |, we get ®(x) > ®(y). Taking into account (11), this
proves the ‘only if” part in (8).
To prove the ‘if’ part in (8), we assume that ®(x) > L, + C/".* | i.e., by
(11), ®(x) > ®(y). Theorem 1 (A) implies (x,y) €P,

and so, v(x)z 71v(y),
where the two vectors v(x)=(7,(x),...,v,_,(x)) and v(y)=(v,(y),....v,_,(y))

m-1s m

are given by
v(x)=(n—n,n — Ny sy =Ny, U1 (%), 0,0 (%),.., 0, (%)), (12)
u(y)=(n-n,,n, —ny,...n,_, —n,,n, —i,0,...,0) €[0,n]" "
n;=v,(y) for all je[lk] and v;(x)>0=v,(y) for all
j€[k+2,m—1], the definition of the lexicographic order £, (on R"™)

Since v, (x)=n,_
implies v,,,(x) <wv,,,(y)=n, —i. This completes the proof of (8).

Step 2. In this step, we show that

Uy () >y —i iff O(x) <L, +Cl1L5L + (13)

Let z€[1,m]" be such that its nondecreasing representative 2" is of
the form z" =(1"",2""™,. . k"™ (k+1)"" (k+2 ), ie., v, ( )=n
forall je[Lk], v, (z)=n,—i, v,,(x)=i,and (if k+3<m) v j(z)—O for all
j€[k+3,m]. Let us evaluate ®(z) by means of (5). Since V,(z)=n—n, for

all je[Lk], V,M(x)z n—i,and V,(z)=n for all je[k+2 m] applying (5),
t + m
we ge CD(Z) ZC;”+]M -1 +Cn " l+m (k+1)— + z Cm ]] 1
J=1 j=k+2

In the third term at the right, the summation index je [k +2,m —1] , which
implies m—j—-1e [O,(m —3)—k] and so, C'/, =0. It follows that

m—j—1
O(2) =D () =L, +Cl1L, +1. (14)
To prove (13), suppose v,,,(x)>n, —i. Since v,(z)=n, , —n; =v;(x)
for all je[Lk] and v, (z)=n, —i<v,,(x), we find v(z)£, v(x), and so,
(z,x)eP,

m—1"*

By Theorem 1 (A), ® is a preference function for P, ,, and so,
®(z) > P(x), which together with (14) proves implication (=) in (13).

In order to prove implication (<) in (13), we assume that
D(x) <D(z), where ®(z) is given by (14). Applying Theorem 1 (A), we
find (zx)eP, ;, and so, v(z)Z
v(z)e[O,n]’”'l — by u(z) :(n—nl,n1 — Ny, Wy =Ny, My, — 1, i,O,...,O). Since

v,(z)=n, , —n, =v;(x) for all j[Lk], the definition of v(z)Z, ,u(x) implies

v(x), where u(x) is given by (12) and

m—1

that either
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a) ny, —i=1,,,(z) <y, (x), or
b) (if k+% <m)

c) (it k+4<m) n,—i=v,,,(x), i=v,,(x) and 0=1v, ,(z) <v,,,(x), or
d) (if k+5<m) n,—i=v,,,(x), i=v,,(x), and there is pe[k+4,m—-1]
such that 0=v,(z) =v;(x) forall j e [k+ 3,p- 1] and 0=v,(z) <v,(x).

Let us show that p0531b111tles b), ¢), and d) cannot hold. In fact, if

ny = 1=, (%) and i =1, ,,(2) <y, (x), or

any one of the three possibilities holds, then n, =v, ,(x)+¢, and so, by (2),
we get

k
Uy () +...+ v, (x)=n— ZU 2:4(71]71 —nj)=n—(n—nk)=nk =v,,,(x)+1,
=
whence i=v, ,(x)+...+v, (x). It follows that i>v, ,(x), and so, b) is impos-
sible. Furthermore, if i=wv,,,(x), then v (x)=0 for all je[k+3,m], which
implies that c¢) and d) cannot hold as well. Thus, only possibility a) above
holds, which proves implication (<) in (13).
Step 3. Assertion (8) implies v,,,(x)>n, —i iff ®(x)—L, <CX5

and assertion (18) implies v, (x)<n, —i iff ®(x)-L, >C"*} +1. This
completes the proof of assertion (6).

Step 4. Now suppose that, by means of (6), the numbers #,,...,n,_,
are already calculated, which corresponds to the case k=m—2. Noting that,

forall je[l,m—2], we have v,(x)=n, , —n, and, by (2),

Zv (x)=n- Z]: (no—nj)znj, (15)

by virtue of (5) , we get O(x)= ZC"’ S v () +1=L

i1 o TV, (x)+1. Since
the value of L, _, is already known we find
v, (x)=0(x)-L, ,—1. (16)

On the other hand, putting k=m-2 in (6), we get
m—k—1=m-— (m - 2) —1=1, and so, assertion (6) reads as follows: given
S [0,nm_2 ], we have

v, ,(x)=n, ,—i iff ®(x)-L, ,e[C/+1C.,]= an
=[i+Li+1] iff ®x)-L, ,=i+l.
From here and (16) , we conclude that
U, (0)=n, ,—i=n,,~(®(x)-L, ,~1)=n, , ~v,(x). (18)
This completes the proof of Theorem 3.

Remark. Theorem 3 applies in the particular case when m =2 as
well: in fact, we have k=0, L, =L, =0, and, for ie[O,nO ]=[0 n] assertion
(6) means that (given xe[1,2]") v (x)=n—i iff ®(x)e[C +1,C.,]={i+1}
iff ®(x)=i+1, whence ®(x)=(n—-v,(x))+1=v,(x)+1. Hence, if {=d(x),
then i=/-1, v,(x)=n—i=n—(+1 and v,(x)=(-1, ie, x" =(1"""27"),
(e[0,n].
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Remark. The quantities v, (x) and wv,(x) in Theorem 3
and Theorem 2 are coherent (=the same) in the sense that, by (18),
v, (x)=L+1+n, ,—¢ and, by (16), v, (x)=¢—-L-1, where L=L,_, and
{=D(x).

4. Algorithm for Restoring Indifference Classes
Let n>2 and m>3 be integers, X =[1,m]", and P=P, | be the
threshold preference order on X (corresponding to the leximin ordering

Z,). Given a number 56[1,8]=[1,C'”'1 J, we are looking for members x

n+m—1
from the indifference class X, = {x e X:®(x)= é} (the EPF @ for P, | given
by (5)), which is equivalent to finding multiplicities v, (x), ..., v, (x) in the
nondecreasing representative (1) of xe X, .
The idea of the recursive algorithm, restoring x € X, , lies in the fact
n+m—1

that the interval [1,C""1 } can be decomposed into the following disjoint
union of (adjacent) natural intervals:

(Lo =Ulen +1enl, = (19)
et +1em, e, (20)
i=0

We will apply the following ‘cyclic procedure’. Suppose numbers n, m, L
and /¢ are such that
(-Le[1C ] (21)

We set ('=/¢—L.By (21) and (19), there is a unique number »'€[0,n] such
that

CelCr,+LC =[G e, a0 ] (22)
Now we set m'=m—-1 and L'=C"} ,=C’. . .. By (22), we find that
CelL'+1L,L'+C}) |, and so, ¢'~L'e[1C)0, .

Having obtained (21) for the new (primed) numbers n’, m', L' and
', we reduced the dimension (at least in m), and may apply the procedure
one more time. In order to evaluate the multiplicities v, (x), in what follows
we combine the cyclic procedure with Theorem 3 by introducing nonneg-
ative integers j and defining numbers n=n;, m=m;, L=L; and =/,
L'=Cy,, ,and ('=¢,

and their primed counterparts n'=n,,, m'=m,,, |
appropriately.

Before we turn to the general algorithm, for the sake of clarity we
first present the initial part of it (having its own additional details) when the
first three multiplicities v, (x), v, (x), and v, (x) are evaluated. Note that the

‘nonprimed’ numbers L,..., L,

'm—27

to be used below, are exactly the num-
bers from Theorem 3.

4.1. Evaluation of v, (x)
We set n, =n, m,=m, L, =0, and (, =/, where { = (x) €[ 1,C}",\ | |

n+m-1
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Since /, e[l,Ciﬂ_lJ, (19) implies the existence of a unique n, €[0,n] such
that
EO e|:Cvm—l +1,Cm—l ]:[Cm—l +1’Cm—l . +C(m—l)—l :|' (2?))

ny+m—2 0y +m—1 n+m—2 n +m—2 'y +(m-1)-1
Noting that the first interval here coincides with the interval from (6) with
k=0 and i=n;, and {, = ®(x)—L,, by Theorem 3 (with k=0 and i=n,),
we find
v (x)=n,—n, =n—-n,. (24)
If n, =0, then, by virtue of (2) (and (23) ), v,(x)=v,(x)=...=v, (x)=0.

4.2. Evaluation of v, (x)

Now, knowing 1<n, <n,weset m; =m, -1, L| =1, = C,;'l‘fm,g =G,
and ¢, =0, L. By (23), £, e[ L/ +LL/+C}"} , ], and so, ¢, e[LCM) ]

From (19) (with n replaced by n, and m — by m,), we obtain a unique num-
ber n, €[0,n, ] such that

zle[cmﬂ RS RO = FOXatINESS N oINS o\ ] (25)

Ny +my — ng +my —1 ng +m—3 ng +m—3 ng +(my —1)-1

The first interval here is of the form [C;Zfﬁw +1,CZ1:}171J and coincides
with the interval from (6) with k=1 and i=n,, equality (24) holds with
1<n, <ny=n, and ¢, =®(x)—L,. By Theorem 3 (with k=1 and i=n,), we
get

Uy (x) =10, —n,. (26)
If n, =0, then by (2) and (24) , v,(x)=v,(x)=...=v, (x)=0.

4.3. Evaluation of v, (x)

Knowing 1<n, <n,, we set my =m, —1=m—-2, L, =C;Z’fwg =G,
and (,=(,~1]. By (25), £, e[ L3+ +C) ] and so, £, €160 ).

By (19) (with n replaced by n, and m — by m, ), there is a unique number
n, from [0,n, ] such that
T [ S Ko w o oS Ko o

ng +mg — ng +my — ng +m—4 ng+m—4 ng+(m2 71)*1

The first interval here is of the form [C”'Q_l +1,cm 3! ] and coincides

ng +m—2-2 ng +m—2-1
with the interval from (6) with k=2 and i=n,, 1<n,<n, <n,=n,
equalities (24) and (26) hold, and /,=/(—L,=(/, —L{)—L':

=50_C;:’:}n44 _C:;:-fn—Z—lzq)(’x)_LZ' By Theorem 3 (with k=2 and
i=mn,), we find v,(x)=n,—n,. If n, =0, then by (2), (24), and (26),
v, (%) =v5(x)=...=v,(x)=0.

Now, we are in a position to present the general algorithm.

4.4. Recursive Algorithm for Restoring v, (x)....,v,, (x)

2 ¥m

The initial input data (for j=0) is as follows:
ny=n, my=m, L,=L,=0, and ¢ =/, where (=®(x)e[1,C}, ]

n+m-1
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Assume that, for je[0,m—3], we already know integers

0<n,<n_,<..<n<n,=n, m, =m—j, L, =0, L= C:’Hﬂ L if j=1, and
¢, =®(x)~L,, suchthat /,_, [1 L 1] and we know that
v(x)=n-n,, 112(9c)—n1 Ny, vy U (X)=1, =1, (27)

(the previous line being treated as empty if j=0). In Sections 4.1—4.3, the
validity of this assumption is explicitly verified for j=0,1,2, respectively.
We set (=0, ~L. Since £, €[LC", |, by virtue of (19) (with
n replaced by n; and m —by m,), there exists a unique n,, E[O,nj] such
that*
‘; [c S N o }: (28)

( M)er -2 (n,“l)er]fl

— m/_l i~ -l (m7—1)—1
‘[C(m(m,fl) LG +C<n,u>+<mfl>fl}' 29

The interval in (28) coincides with the interval from (6) with k=j and
j1; we have equalities (27) with 0<n; <n,  <...<n, <n,=n,and

=t =Ly =(P) =L, )=Crl = O~ L. (30)

If n,, =0,

then, by (2) and (27) UHQ( x)=...=v, (x) =0, so we may assume that n/.+1 >1.

Now, we set m;,, =m;—1 and L;+1 —C(r:’” {1 (cf. (29)), note that (30)

holds and, by (29), (mpa)
=L )
Thus, our assumption (preceding (27)) holds with j replaced by j+1.

We set =(,-L,, =®(x)-L,,, (which
follows from (30) ), and repeat the whole procedure once again.

i=n

By Theorem 3 (with k=j and i=n,,,), we get v, ,(x)=n,—n,,.

Cia take into account equality /¢

J+l
Putting  successively j=0,L2,...,m—3, we obtain integers

0<n,,<n, ,<.<n, <n,=n, and so, integers L,...,L ,, and

bo=l—L, ly=l—Ly . by s =L—L, ,=®(x)-L

m-2"*

By Theorem 3, we
conclude that
Y (x) =n,,—n, Vje [1,m —2], U, (x) =/(,,-1 and v, , (x) =N, ,—U, (x)

Let us verify that if xe X satisfies conditions on the previous line, then
(D(x) =/.In fact, by Virtue of (5) and (15) , we have

(I)( ) zczl+jm Jj= l+vm( )+1 Lm 2 (fmf2_1)+1:
j=1 (31)
=L, ,+((-L,,-1)+1=L
Remark. Equalities for v,_ (x) and v, (x) may also be written in
,, and v, (x)=n

the form v, ,(x)=n, ,—n -n,,. It suffices to denote

m m—1
i€[0n, ] in (17) by i=n,_, and note that, by (16), n, , =v, (x), and so,
n, =0.
Let us illustrate the above algorithm by an example (with small
dimensions).

* For the sake of better (nonambiguous) readability, number n;,, is written as (nﬁl )

P 24 N
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Example 1. Let n=11 and m=6, so that X=[16]" and

=C"}  =C} =4368. We are going to restore the indifference class

$= |X* n+m—1
Xy under P=P, =P, (corresponding to £,)), i.e., x=(x,...,.x,, )€ X
such that x € X,y (or ®(x)=/¢ with ¢=2202). For this, we evaluate the

quantities v, (x),...,v,(x).

Since intervals at the right-hand side in decomposition (19) are
adjacent, we calculate only the right endpoints C",' | for i=0,...,n, noting
that C"/ =1 (for i=0)and C""' =m (fori=1).

Step 1. Set n=11, m=6, and ¢, =2202<[1,4368]. The right end-

points are of the form C"' =C®.,i=0,..,11, and assume the values®:

i+m—1 i+5?

l 011 2 |3 4 5 6 7 8 9 10 11

C, | 1 | 6 |21 |56 |126 252|462 | 792 [1287|2002 | 3003 | 4368

It is seen from the table that ¢, =2202 belongs to [2002+1,3003],
which corresponds to i=10. Thus, L/ =2002, n, =10, and v,(x)=n—n, =
=11-10=1.

Step 2. Set n=n,=10, m=6-1=5, and ¢, =/, - L; =2202-2002 =
=200, so that ¢, €[1,1001]. The right endpoints C,", =C,,, i[0,10] , are
given by

l 0 1 2 3 4 5 6 7 8 9 10

ch, |1 5 |15 | 35 | 70 | 126 | 210 | 330 | 495 | 715 | 1001

Number ¢, =200 belongs to the interval [126+1, 210], which corre-
sponds to i =6. It follows that L, =126, n, =6, and v,(x)=n, —n, =10-6=4.
Step 3. Set n=n, =6, m=5-1=4, and ¢, =¢, - L, =200-126="74,
and so, £, [1, 84]. The right endpoints C}!,", =C?,,, i [0, 6], are as follows:

i+m—1

? 0 1 2 3 4 5 6

cl, 1 4 10 20 35 56 84

Number ¢, =74 belongs to the interval [56+1, 84], which corre-
sponds to i=6. Hence, L; =56, n, =6, and v,(x)=n, —n, =6-6=0.
Step 4. Set n=n, =6, m=4-1=3, and (,=(,—L;=74-56=18,

which implies ¢, €[1, 28]. The right endpoints C!,', =C?,, i€[0, 6], are
given by
i 0 1 2 3 4 5 6
cz, 1 3 6 10 15 21 28

Number /¢, =18 belongs to the interval [15+1, 21], which corre-
sponds to i=5. Hence, L; =15, n, =5, and v, (x)=n, —n, =6-5=1.

51n computing binomial coefficients, the reduction formula C:H = (n +1)C: /(n +1—k), ke [O,n] , is efficient. For
instance, if i =6 (see the table), we have C;, = (l 1/6)C150 =11x252/6=462.

P 25 '\
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Step 5. Set (,=(,—L;=18-15=3. Noting that ¢,={, , and
n, =n,_, with the initial value m =6, we conclude that y;(x)=/¢, -1=3-1=2,
and v, (x)=n, —v;(x)=5-2=3.

Thus, v,(x)=1, v,(x)=4, v,(x)=0, v,(x)=1, v;(x)=3, and v;(x) =2,
ie., x' =(11,24,30,41,53,62)=(1,2,2,2,2,4,5,5,5,6,6). Flnally, let us calculate
the value @ (x) by means of (5). Since V| (x) =1, V,(x)=5, V,(x)=5,V,(x)=6,
Vi(x)=9 (and Vﬁ(x)zll ), we get (cf. (31))

cb(x):Zc" / +1=C), +Cy +C; +C2 +Cy +1 =

11- V x)+6—j-1

=L+, +L3’+L; +74(x)+1=2002+126+56 +15+2+1=2202.

5. Restoring Indifference Classes for the Leximax

The restoring of indifference classes via their ordinal numbers
under the leximax preference ordering Z., of X =[1,m]" (corresponding
to the dual threshold preference order P =P, | ) can be reduced to the case
of Z (and P=P, ).

Let r: [l,m —>[1,m] be the function given by r(]) =m—j+1,je[lm]
(this function ‘reverses’ the natural order of [lm] ). Define the vector-func-
tion r: X =[1,m]" -> X by r(x) = (T(x1 ),...,T(xn )), xX= (xl,. X, ) € X. Clearly,
r(r(]))zj for all je[l,m], and r(r(x)) =x for all xe X. Furthermore
(Aleskerov, Chistyakov, 2013b; Aleskerov et al., 2010b), given je[l,m] and

x € X, we have

v (r(x)) =, (%), (32)
(x)=0v(r(x)), r(x")=(r(x)), and r(x.)=(r(x))"
Suppose ?e[l C;"Ml 1] is given (note that szsp(x) C:lnwll i

P=P, ). In order to restore the class X. (i.e., xe X such that <D( )= v
with @ given by Theorem 1 (B)), we make use of the following observation.
Since, for je[l,m] and xe X (cf (32)),

V)=o) = Lt () =T s)= 3 ()

k=m—j+1

we have, by (2), n—-V. (r(x)) =V _ ( ), and so, (5) and Theorem 1 (B) imply

m

m-1

D (r(x))=>.C +m]]+1—ZC’ i 1=
Jj=1 i=1

. (83)
=C" D) +1=C" —T+1.

n+m-1 n+m-1

Weset (=C) , —7+1.Since 7€[LC],), |, we find, from (33),

n+m—1 n+m—1
®(r(x))=re[LC, ] (34)
Making use of the algorithm from Section 4.4 and taking into

account (34), we restore the values (32) forall j=1,...,m (i.e., v, (x),...,7, (x)).
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Let us illustrate this procedure by an example.
Example 2. Asin Example 1, we assume thatn =11, m =6, X =[], 6]",
and so, s=|X.|=C"" =C] =4368. Let us restore the indifference class
X000 under P =P, | =P, (corresponding to the leximax ordering Z.,)), i.e.,
x = (%;,%y,...,%;, ) € X such that ®(x) = ¢ with ¢ =2202.In order to do this, we
evaluate the quantities v (x) = L (%), wos vy (x) = Y,(6) (x).

We set (=C"!  —/+1=4368-2202+1=2167, and r(j)=7-j if

j€[L, 6]. As in Example 1, we calculate only the right endpoints Cc''in

the decomposition (19) for i=0,...,n, whose values, for the first four steps
below, are presented in the corresponding tables in Example 1.

Step 1. Set n=11, m=6, and (,=2167¢€[l, 4368]. Since
l, € [2002+1, 3003] (which corresponds to i=10), we have L] =2002,
n, =10, and, by virtue of (82), v, (x)=v,,, (x) =1, (r(x))=n-n,=11-10=1.

Step 2. Set n=n, =10, m=5, and ¢, ={,— L/ =2167—-2002=165, so
that ¢, €[126+1, 210] (corresponding to i=6). We find L, =126, n, =6,
and, by (32), v,(x) = U, (x) =1y —ny, =10-6=4.

Step 3.Set n=n,=6, m=4,and (, =(, - L, =165-126 =39, and so,
(, €[35+1, 56] (which corresponds to i =5). Hence, L; =35, n, =5, and, by
(32), v, (x):v,(g)(x)=n2 -n,=6-5=1.

Step 4. Set n=n, =5, m=3, and £, =10, —L; =39-35=4. We have
(, €[3+1, 6] (which corresponds to i=2), and so, L; =3, n, =2, and, by
(82), v, (x) =10, (x)=n, —n, =5-2=3.

Step 5.Set 0, =(,—L;=4-3=1.Noting that ¢, =(, _, and n,=n,_,
with the initialvalue m =6, we conclude that v, (x) = Uy6) (x)=¢,-1=0,and
vy (x)=n, — U,(6) (x)=n, —v,(x)=2.

Thus, v,(x)=0, v,(x)=2, v,(x)=3, v,(x)=1, v, (x)=4, and
v (x)=1, ie., x =(1"2"8"4"5'6')=(223,3,3,4,5,5556). Let us calcu-
late the value (T)(x) by means of formula in Theorem 1 (B). Since V, (x) =0,
Vo (x)=2, Vy(x)=5, V,(x)=6, V;(x)=10 (and V,(x)=11), we get

5
(T)(x) = C1617+16—1 _Z;Cli/.(xﬁj—l = C156 _Cé - C32 _C73 _C; _C154 =
=4368—v, (x)—L; —Lg’]—l?' —L/=4368-0-3-35-126-2002 =2202.

Remark. From (34) and (19), there is a unique i€[0,n] such that
Clr,+1<@(r(x))<Clr),, andso, by (33), weget Cy  —C/l +1<®(x) =

=(<Cr) —Crl . This gives rise to an idea of the following decomposi-

n+m-1 i+m=2"

tion of the interval [I,C'"'1 ] into the disjoint union of (adjacent) natural

n+m—1

intervals:
n
m—1 _ m—1 m—1 m—1 m—1
':LCnerfl ] - U|:Cn+mfl - Ci+mfl + 1’ Cnerfl - Ci+mf‘2 :|
i=0
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Applied in place of (19), this decomposition may be used to develop
an alternative recursive algorithm for restoring v, (x),...,u, (x) in the case of
the leximax ordering Z., of X =[1,m]"; then, the case of the leximin order-
ing £, of X can be reduced to the former case by means of (33) written
as (TD(r(x)) =C) .~ +1with (=d(x)e [1, c! ] We omit further details.

n+m-1 n+m-1
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HanuonaibHbIi HCCIeA0BaTENbCKUI YHUBEPCUTET BhIcImas mKo/Ia 9KOHO-
muxu, Huxanit Hosropog,

K.O.Yymakosa
HannonanpHbIi 1CCa€10BATENBCKUH YHUBEPCUTET BhIcimas MmKoza 3KoHo-
mukn, Huxanit Hosropoa

BoccTaHOB/NIeHUe KlacCcoB 6e3pa3nnuusa

Nno NOpPSAAKOBbIM HOMepaM NMpPU AUCKPETHbIX

yrnopsaao4eHUsX npeano4yTeHUsi TeKCUMMUH

M NeKCUMaKC

AHHOTAIWS. YIIOPSI0YeHIE IPETOUTE IS TeKCHMUH (JIEKCHMAKC) CPABHII-
BAET B2 NMEPHEIX BENIECTBEHHBIX BEKTOPA N0 IPABYITY: RHASANE KOOPAHHATEL STHX

BCKTOPOB yIIOPAAOIUBAIOTCS 110 BO3PACTAHUIO (y6I)IBaHI/IIO) 1 3aTEeM IIOJTydUBIINCCA
JBa BCKTOpPA CPAaBHUBAIOTCA JIeKCI/IKOFpan)I/I“ICCKI/I. XOpOHIO HU3BECTHO, YTO YIIOPAAO-
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4YeHUe NPEAITOYTEHNS JEeKCUMUH (JIEKCHMAKC) He mpeacTaBuMo Ha R" (kaxoit1n6o
¢yHKknMei nose3nocTn). B Hacrosmein paboTe I HebIX Yucea n=1u m>2 paccMma-
TPUBAETCS MHOKXECTBO X BCEX N-MEPHBIX BEKTOPOB € LEJIBIME KOOPAUHATAMY, [IPU-
HUMAIOIUMU 3HaueHus Mexay 1 u m. Crabaus X ynopsjodeHueM IPEAIOYTEHHS
JIEKCUMUH (JIEKCMMAKC), MHAYIIMPOBAHHBIM 13 R" 11 Ha3bIBa€MbIM IOPOTOBBIM (JBOII-
CTBEHHBIM IIOPOTOBBIM) IPABIJIOM, KaXI0My BeKTOpy 13 X (1 €ro Kiaccy 6e3pasiu-
UHsl) KAHOHMYECKH IPUCBANBACTCS €AMHCTBEHHBIH MOPSAAKOBBIN HOMED TaKUM 06pa-
30M, YTO BEKTOpP M3 X CcUuTaeTcss Gojee MPEANOUYTUTENbHBIM B CMbICIE JIEKCUMUH
(JIeKCMMAKC), €CITM OH JIEKUT B KJIacce 6e3pasandus ¢ 6OJIbIINM ITOPAAKOBLIM HOME-
pom. IlpezncrasiieH cTPOro 060CHOBAHHBIN PEKYPCUBHBII aJITOPUTM JJIs1 BHIYUCICHUS
KpaTHOCTEH KOOPAMHAT BeKTopa U3 X Ha OCHOBE IOPSIKOBOTO HOMEpA Ki1acca 6e3-
Pa3IMYMs IO OTHOMIEHUIO K PACCMATPUBAEMOMY YIIOPASOUYEHUIO, KOTOPOMY STOT BEK-
TOP IPUHALIEKNUT. Hal aropuTy™ SBIGETCs HOBBIM B IBYX ACHEKTaX: BO-TIEPBBIX, OH
BBISIBJISIET HOBBIE CBOIMCTBA KJIACCUYECKUX GMTHOMUAIBHBIX KO3(P(UIMEHTOB BO B3au-
MOJIEHICTBUH C YIIOPSATOUYECHUEM MPEATIOUTEHUS JIEKCUMHUH (JIEKCMMAKC) U, BO-BTOPBIX,
OH ONHMPAETCH HA YETBIPE IEJOUYNCICHHBIX ITapaMeTpa, KaXAbli U3 KOTOPBIX HOJy-
JaeTcs B pe3yJabTaTe CBOCH MHAMBUAYAILHON IUKIMYEeCKOU mporeaypbl. CoBMecTHas
paboTa 3TuX npoueAyp 6a3upyeTcs Ha Halllel OCHOBHOM Teopeme, Kacaloueiics HeKo-
TOPBIX TOHKUX CBOMCTB (DYHKIIUU MEPEUNCICHH, KOTOPAS MPEACTABIAET YIIOPsg0de-
HUE IPEAIOYTEHHS JEKCUMUH (JIEKCUMaKC) Ha X.

KnioueBble cioBa: c1abolii nopadox, xiacc 0espaziunus, aexcuxoepagureckoe
npeonoumenue, ACKCUMUH, LEKCUMAKC, NOPAOKOBBLL HOMED, PYHKYUA NePpeuucienus.

Kiaccudukarnus JEL: C020, C810, D790, E190.
DOLI: 10.31737 /2221-2264-2018-39-3-1

JKyprax HIA,
N3 (39), 2018,
c. 12-31



