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Ann. Inst. Fourier, Grenoble
66, 2 (2016) 785-831

PROPER AFFINE ACTIONS ON SEMISIMPLE LIE
ALGEBRAS

by Ilia SMILGA

Abstract. — For any noncompact semisimple real Lie group G, we construct
a group of affine transformations of its Lie algebra g whose linear part is Zariski-
dense in Ad G and which is free, nonabelian and acts properly discontinuously
on g.
Résumé. — Pour tout groupe de Lie réel semisimple non compact G, on

construit un groupe discret de transformations affines de son algèbre de Lie g
dont la partie linéaire est Zariski-dense dans Ad G et qui est libre, non abélien et
agit proprement sur g.

1. Introduction

1.1. Background and motivation

The present paper is part of a larger effort to understand discrete groups
Γ of affine transformations (subgroups of the affine group GLn(R) n Rn)
acting properly discontinuously on the affine space Rn. The case where Γ
consists of isometries (in other words, Γ ⊂ On(R)nRn) is well-understood:
a classical theorem by Bieberbach says that such a group always has an
abelian subgroup of finite index.
We say that a group G acts properly discontinuously on a topological

spaceX if for every compactK ⊂ X, the set {g ∈ G | gK ∩K 6= ∅} is finite.
We define a crystallographic group to be a discrete group Γ ⊂ GLn(R)nRn
acting properly discontinuously and such that the quotient space Rn/Γ is

Keywords: Discrete subgroups of Lie groups, Affine groups, Auslander conjecture, Mil-
nor conjecture, Flat affine manifolds, Adjoint representation, Margulis invariant, Quasi-
translation, Free group, Schottky group.
Math. classification: 20G20, 22E40, 20H15.



786 Ilia SMILGA

compact. In [5], Auslander conjectured that any crystallographic group
is virtually solvable, that is, contains a solvable subgroup of finite index.
Later, Milnor [16] asked whether this statement is actually true for any
affine group acting properly discontinuously. The answer turned out to be
negative: Margulis [14, 15] gave a nonabelian free group of affine transfor-
mations with linear part Zariski-dense in SO(2, 1), acting properly discon-
tinuously on R3. On the other hand, Fried and Goldman [12] proved the
Auslander conjecture in dimension 3 (the cases n = 1 and 2 are easy). Re-
cently, Abels, Margulis and Soifer [3] proved it in dimension n 6 6. See [4]
for a survey of already known results.
Margulis’s counterexample was also generalized by Abels et al. in [1] to

subgroups of SO(2n+2, 2n+1) for all values of n. The author improved this
result in [17] by giving an explicit construction of associated fundamental
domains. (For Margulis’s original counterexample, this had been done by
Drumm in [9, 10].) However, as far as I know, no other counterexamples to
the Milnor conjecture were known until today. In this paper, we construct
another family of counterexamples. Here is the result we prove:

Main Theorem. — Let G be any noncompact semisimple real Lie
group. Consider the “affine group” G n g, for the adjoint action of G on
its Lie algebra g. Then there is a subgroup Γ ⊂ Gn g whose linear part is
Zariski-dense in G and that is free, nonabelian and acts properly discon-
tinuously on the affine space corresponding to g.

The general strategy of the proof comes from Margulis’s original pa-
per [15]; some ideas were also inspired by [2]. (Since the neutral compo-
nent of SO(2, 1) acting on R3 is isomorphic to PSL2(R) acting on sl2(R),
Margulis’s first example is indeed a particular case of this theorem.) Like
Margulis, we introduce for some affine maps g an invariant that measures
the translation part of g along its neutral space A=

g (defined later). The key
part of our argument, just as in [15], it to show that under some conditions,
the invariant of the product of two maps is roughly equal to the sum of
their invariants (Proposition 4.1). There are two difficulties that were not
present in [15].
First, while the original Margulis invariant was a scalar, our invariant is

a vector. To define it properly, we need to introduce some canonical identi-
fications between different spaces A=

g , and then follow the transformations
of the canonical representative of some vector living in one of these spaces
as it gets projected to other spaces.
Second, it turns out that in the general case, g restricted to A=

g is not
always a pure translation. It sometimes has a rotation part, but that part

ANNALES DE L’INSTITUT FOURIER



PROPER AFFINE ACTIONS ON SEMISIMPLE LIE ALGEBRAS 787

is always confined to a proper vector subspace of A=
g . The argument still

works, but becomes more complicated.
Another novelty of this paper is the notion of a C-non-degenerate pair of

spaces, which, in the case of affine spaces, encompasses both a quantitative
measure of transversality and an upper bound on the distance of these
spaces from the origin. It makes the proofs somewhat clearer and simpler.

1.2. Plan of the paper

In Section 2, we give some definitions and basic algebraic and metric
properties. In Subsection 2.1, we replace the affine space by a linear space
ĝ with one more dimension, more practical to work with; and we define,
for every element of the group G n g, a family of “dynamical” vector and
affine subspaces. In Subsection 2.2, we define some classical subalgebras
of g, including the centralizer l of a Cartan subspace. In Subsection 2.3,
we give some basic algebraic properties: we relate the dynamical subspaces
of an R-regular map (see Definition 2.2) with the classical subalgebras,
and we show that for every such map, the “geometry of the problem” is
essentially given by a pair of transverse affine minimal parabolic algebras.
In Subsection 2.4, we introduce an important class of automorphisms of
the affine space parallel to l, called quasi-translations. In Subsection 2.5,
we use the previous two subsections to identify (up to quasi-translation)
different pairs of transverse affine minimal parabolic algebras, and to show
that these identifications are “natural”; this allows us to define a generalized
Margulis invariant (which is a vector). In Subsection 2.6, we introduce a
Euclidean metric on the “extended affine space” ĝ, and use it to define
two important things: the notion of a C-non-degenerate pair of transverse
affine minimal parabolic algebras (which means that we may pretend that
they are perpendicular and err by no more than some function of C), and
the contraction strength of an R-regular map. In Subsection 2.7, we relate
these metric properties of an element of Gn g and those of its linear part.
In Section 3, we show that the product of two R-regular maps “in gen-

eral position” is still R-regular, and relate the geometry and contraction
strength of the product to the relative geometry and contraction strengths
of the factors. We do this by examining the dynamics of these maps acting
on some exterior power Λpĝ. This section is more or less a generalization
of Section 3 of the author’s earlier paper [17], with very similar proofs.
Section 4 contains the key part of our argument. We show that under

suitable hypotheses, the Margulis invariant of a product of two R-regular
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788 Ilia SMILGA

maps is approximately equal to the sum of their Margulis invariants. We
also relate the Margulis invariants of a map and of its inverse.
In Section 5, we use induction to show a similar result for the product

of an arbitrary number of maps.
In Section 6, we construct a group satisfying the Main Theorem. As gen-

erators, we take a family of R-regular, strongly contracting maps in general
position with suitable Margulis invariants. Using the result of the previous
section, we show that elements of the group have Margulis invariants that
grow unboundedly, which turns out (by Lemma 6.1) to ensure a properly
discontinuous action.

2. Preliminary definitions and properties

We fix a noncompact semisimple real Lie group G. Without loss of gen-
erality, we may assume that G is connected with trivial center. We see the
group G as a group of automorphisms of g, via the adjoint representation;
in other words, we identify the abstract group G with the linear group
AdG ⊂ GL(g). Let gAff be the affine space corresponding to g. The group
of affine transformations of gAff whose linear part lies in G may then be
written Gn g (where g stands for the group of translations).

Remark 2.1. — As g is the tangent space to G at the neutral element,
the underlying space of the group Gng is actually the tangent bundle TG.
In particular, if Γ is some abstract group, any representation ρAff : Γ →
G n g can be seen as an infinitesimal deformation of the representation
ρ : Γ→ G corresponding to its linear part. This paper makes no use of this
remark; see however the work of Danciger, Guéritaud and Kassel [7, 8] for
a lot of interesting results derived from this idea.

2.1. Extended affine space and dynamical subspaces

We begin with a few definitions.
We choose once and for all a point of gAff that we take as an origin;

we call R0 the one-dimensional vector space formally generated by this
point, and we set ĝ := g⊕R0 the extended affine space corresponding to g.
Then gAff is the affine hyperplane “at height 1” of this space, and g is the
corresponding vector hyperplane:

g = g× {0} ⊂ g× R0; gAff = g× {1} ⊂ g× R0.

ANNALES DE L’INSTITUT FOURIER
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Any affine map g with linear part `(g) and translation vector v, defined on
gAff by

g : x 7→ `(g)(x) + v,

can be extended in a unique way to a linear map defined on ĝ, given by the
matrix (

`(g) v

0 1

)
.

This gives a natural action of the affine group Gn g on the vector space ĝ.
We define an extended affine subspace of ĝ to be a vector subspace of ĝ

not contained in g. There is a one-to-one correspondence between extended
affine subspaces of ĝ and affine subspaces of gAff of dimension one less. For
any extended affine subspace A (or A1, Ag etc.), we denote by V (or V1, Vg
etc.) the space A ∩ g (which is the linear part of the corresponding affine
space A ∩ gAff).
By abuse of terminology, elements of the normal subgroup g C G n g

will still be called translations, even though we shall see them mostly as
endomorphisms of ĝ (so that they are formally transvections). For any
vector v ∈ g, we write τv the corresponding translation.

For every g ∈ Gn g, we decompose ĝ into a direct sum of three spaces
ĝ = V >

g ⊕A=
g ⊕ V <

g ,

called dynamical subspaces of g, that are all stable by g and such that all
eigenvalues λ of the restriction of g to V >

g (resp. A=
g , V <

g ) satisfy |λ| > 1
(resp. |λ| = 1, |λ| < 1). We also define A>

g := V >
g ⊕A=

g and A6
g := V <

g ⊕A=
g .

In this case, we have of course V >
g ⊂ g and V <

g ⊂ g but A=
g 6⊂ g (which

justifies the choice of the letters A and V ). It follows that
g = V >

g ⊕ V =
g ⊕ V <

g ,

where V =
g means A=

g ∩ g according to our convention.

Definition 2.2. — An element g ∈ Gn g is said to be R-regular if its
linear part is R-regular, i.e. if the dimension of the space A=

g (or of its linear
part V =

g ) is the lowest possible.

By contrast, when g is a translation, we have V >
g = V <

g = 0 and A=
g

(resp. V =
g ) is the whole space ĝ (resp. g).

2.2. Lie algebra structure

Now we introduce a few classical subalgebras of g (defined for instance
in Knapp’s book [13], though our terminology and notation differ slightly

TOME 66 (2016), FASCICULE 2



790 Ilia SMILGA

from his). Their value is that if an element g ∈ Gn g is R-regular, then its
dynamical subspaces are, up to conjugacy, equal to some of these subalge-
bras (see Corollary 2.6).
We choose in g:
• a Cartan involution θ. Then we have the corresponding Cartan
decomposition g = k ⊕ q, where we call k the space of fixed points
of θ and q the space of fixed points of −θ. We call K the maximal
compact subgroup with Lie algebra k.

• a Cartan subspace a compatible with θ (that is, a maximal abelian
subalgebra of g among those contained in q). We set A := exp a.

• a system Σ+ of positive restricted roots in a∗. Recall that a re-
stricted root is a nonzero element α ∈ a∗ such that the root space

gα := {Y ∈ g | ∀X ∈ a, [X,Y ] = α(X)Y }
is nontrivial. They form a root system Σ; a system of positive roots
Σ+ is a subset of Σ contained in a half-space and such that Σ =
Σ+ t −Σ+. We call

a+ :=
{
X ∈ a

∣∣ ∀α ∈ Σ+, α(X) > 0
}

the corresponding (open) Weyl chamber of a.
Then we call:

• M the centralizer of a in K, m its Lie algebra.
• L the centralizer of a in G, l its Lie algebra. It is clear that l = a⊕m,

and well known (see e.g. [13, Proposition 7.82a]) that L = MA.
• n+ (resp. n−) the sum of the restricted root spaces of Σ+ (resp. of
−Σ+).

• p+ := l⊕n+ and p− := l⊕n− the corresponding minimal parabolic
algebras.

• l̂, p̂+ and p̂− the vector extensions of the affine subspaces of gAff
parallel respectively to l, p+ and p− and passing through the origin.
In other words:

l̂ := l⊕ R0 and p̂± := p± ⊕ R0.

It is convenient for us to define a minimal parabolic algebra (abbreviated
as m.p.a. in the sequel) in g as the image of p+ (or p−) by any element
of G. Similarly, we define an affine m.p.a. in ĝ as the image of p̂+ (or p̂−)
by any element of Gng. Equivalently, a subspace p̂1 ⊂ ĝ is an affine m.p.a.
iff it is not contained in g and its linear part p̂1 ∩ g is a m.p.a.
We say that two m.p.a.’s (resp. affine m.p.a.’s) are transverse if their in-

tersection has the lowest possible dimension (namely dim l, resp. dim l + 1).
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Example 2.3. — An important special case is G = PSLn(R). In this case
we may take as θ the involution X 7→ −Xt, as a the set of all (traceless)
diagonal matrices, and as Σ+ the set of all roots ei − ej such that i < j.
Then:

• k (resp. q) is the set of traceless antisymmetric (resp. symmetric)
matrices, and K = PSOn(R);

• a+ is the set of traceless matrices of the form Diag(λ1, . . . , λn) with
λ1 > · · · > λn;

• m is trivial; l is equal to a; A (resp. M , L) is the group of diagonal
matrices with determinant 1 whose coefficients are positive (resp.
equal to ±1, arbitrary);

• n+ (resp. n−) is the set of traceless upper (resp. lower) triangular
matrices with vanishing diagonal coefficients;

• p+ (resp. p−) is the set of all traceless upper (resp. lower) triangular
matrices.

Example 2.4. — Another interesting example is G = PSO+(n, 1), so
that

g = so(n, 1) =






 A B

Bt 0



∣∣∣∣∣∣
B ∈ Rn, A = −At



 .

In this case we may take:
• as θ the map

θ :


 A B

Bt 0


 7→


 A −B

−Bt 0


 ;

• as a the line RX generated by the vector

X :=




0

0
...
0
1

0 . . . 0 1 0




;

• as Σ+ the unique restricted root that is positive on X.
With these choices:

• k =






 ∗ 0

0 0





∩g; q =






 0 ∗

∗ 0





∩g; K ' PSOn(R);

TOME 66 (2016), FASCICULE 2



792 Ilia SMILGA

• a+ is the ray formed by positive multiples of X;

• m =








A′
0 0
...

...
0 0

0 . . . 0 0 0
0 . . . 0 0 0




∣∣∣∣∣∣∣∣∣∣∣∣

A′ = −(A′)t





' son−1(R);

• A = {exp(tX) | t ∈ R}; M ' PSOn−1(R) turns out to be con-
nected in this case; L is the direct product of A and M .

• n+ =








0 −B′ B′

(B′)t 0 0
(B′)t 0 0




∣∣∣∣∣∣∣∣
B′ ∈ Rn−1




;

• n− =








0 B′ B′

−(B′)t 0 0
(B′)t 0 0




∣∣∣∣∣∣∣∣
B′ ∈ Rn−1




.

Note that G = PSO+(2, 1) = SO+(2, 1) ' PSL2(R) is a particular case
of both examples.

2.3. Basic algebraic properties

We have the following algebraic facts.

Claim 2.5. — Let g ∈ Gn g.
(i) The map g is R-regular iff it is conjugate (by an element of Gn g)

to a product τvm exp(a) with v ∈ l, m ∈ M and a ∈ a+ (here we
identify the subgroup of the affine group Gng fixing the “origin” R0
with the linear group G).

(ii) In that case, A>
g and A6

g are transverse affine m.p.a.’s.
(iii) Moreover, in that case V >

g (resp. V <
g ) is uniquely determined by A>

g

(resp. by A6
g ), as the nilradical of its linear part.

Proof.
(i) Let us show that for any g ∈ Gn g, we have dimA=

g > dim l̂, with
equality (i.e. R-regularity of g) iff g has the required form.

Using the Jordan decomposition (see e.g. [11, Theorem 2.19.24]),
we may decompose g in a unique way as a product g = τvghgegu,

ANNALES DE L’INSTITUT FOURIER
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where v is some vector in g, gh ∈ G is hyperbolic (semisimple
with positive real eigenvalues), ge ∈ G is elliptic (semisimple with
eigenvalues of modulus 1), gu ∈ G is unipotent (some power of
gu− Id is zero), and the last three maps commute with each other.
Up to conjugation, we may suppose that A=

g passes through the
origin R0, which means that v ∈ V =

g (in fact we could even assume
that v belongs to the actual 1-eigenspace).

Since ge and gu have all eigenvalues of modulus 1 and commute
with gh, we have A=

g = A=
gh
. Up to conjugation, we may suppose

that gh = exp a where a is an element of a, and even more specifi-
cally, of the closure of a+. Then clearly the space A=

gh
is the sum of l̂

and of any restricted root spaces gα such that the value α(a) hap-
pens to vanish. This shows that A=

gh
contains l̂, and that equality

occurs iff a ∈ a+.
Clearly if g has the required form, then by uniqueness of the

Jordan decomposition we have gh = exp a, ge = m and gu = 1, so
that a ∈ a+. Conversely, suppose that a ∈ a+; let us show that g
has the required form. We start with the observation that any two
distinct Weyl chambers are always disjoint; thus the only conjugate
of a+ containing a is a+ itself. It follows that ZG(a) = ZG(a) = L.
Then ge is an elliptic element of L, hence an element of M ; gu is a
unipotent element of L, hence equal to 1; and v ∈ V =

g = l. It follows
that g = τvge exp a with v ∈ l, ge ∈M and a ∈ a+, as required.

(ii) By the previous point, up to conjugation, we may suppose that
g = τvm exp a with v ∈ l, m ∈ M and a ∈ a+. But then clearly
A>
g = A>

exp a = p̂+ and similarly A6
g = p̂−.

(iii) If g is of the form τvm exp a, then, similarly, we have V >
g = n+; and

we know that n+ is the nilradical (largest nilpotent ideal) of p+.
Hence for any R-regular g, V >

g is the nilradical of V >
g , which is the

linear part of A>
g (in other words V >

g = A>
g ∩ g). Similarly, V <

g is
the nilradical of the linear part of A6

g . �

Corollary 2.6. — For every R-regular map g ∈ G n g, there is a
“canonizing” map φ ∈ Gn g such that:

φ(V =
g ) = l φ(A=

g ) = l̂

φ(V >

g ) = n+ φ(V >
g ) = p+ φ(A>

g ) = p̂+

φ(V <

g ) = n− φ(V 6
g ) = p− φ(A6

g ) = p̂−;

and any map φ satisfying the last two equalities on the right satisfies all
eight of them.

TOME 66 (2016), FASCICULE 2
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Example 2.7.
• For G = PSLn(R), a map g ∈ G n g is R-regular iff its linear
part, seen as an automorphism of Rn (not of g as by our usual
convention), has real eigenvalues with distinct absolute values.

• For G = PSO+(n, 1), a map g ∈ G n g is R-regular iff its linear
part, seen as an isometry of the hyperbolic space Hn, is loxodromic
(acts on the ideal boundary with exactly two fixed points).

Claim 2.8. — Any pair of transverse m.p.a.’s (resp. transverse affine
m.p.a.’s) may be sent to (p+, p−) (resp. (p̂+, p̂−)) by some element of G
(resp. of Gn g).

Proof. — Let us prove the linear version; the affine version follows im-
mediately. Let (p1, p2) be such a pair. By definition, for i = 1, 2, we may
write pi = φi(p+) for some φi ∈ G. Let us apply the Bruhat decomposition
to the map φ−1

1 φ2: we may write
φ−1

1 φ2 = p1wp2,

where p1, p2 belong to the minimal parabolic subgroup P+ := NG(p+),
and w is an element of the Weyl group W := NG(a)/ZG(a) (see e.g. [13,
Theorem 7.40]). Let φ := φ1p1 = φ2p

−1
2 w−1; then we have

p1 = φ(p+) and p2 = φ(wp+).
It follows that wp+ is transverse to p+. This occurs iff w is equal to w0,
the longest element of the Weyl group; but w0p

+ = p−. Thus p1 = φ(p+)
and p2 = φ(p−) as required. �

Claim 2.9. — Any map φ ∈ G n g leaving invariant both p̂+ and p̂−

belongs to the group Ln l.

Proof. — It is well-known (this follows for example from Lemma 7.64
in [13]) that NG(p+) ∩NG(p−) = ZG(a) = L; so the linear part of such a
map φ must lie in L. Since φ leaves invariant the space p̂+ ∩ p̂− = l̂, its
translation part must lie in l. �

2.4. Quasi-translations

In this subsection, we develop upon Claim 2.9: we study the action of
elements of Ln l on the space l̂.

Definition 2.10. — A quasi-translation is any affine automorphism of l̂
induced by an element of the group Ln l.

ANNALES DE L’INSTITUT FOURIER



PROPER AFFINE ACTIONS ON SEMISIMPLE LIE ALGEBRAS 795

Let us explain and justify this terminology. We define Z := Z(L) to be
the center of L, D := [L,L] to be its derived subgroup, and z and d to be
the corresponding Lie algebras. It is well-known that L is reductive, hence
we may write l = z⊕ d.

Remark 2.11. — Since l may also be decomposed as a ⊕ m and a is
abelian, we have z = a⊕ z(m) (a plus the center of the Lie algebra m) and
d = [m,m]. In other words:

(2.1) l =
z︷ ︸︸ ︷

a⊕ z(m)⊕ d︸ ︷︷ ︸
m

.

So the following Proposition, and in fact every single statement in the rest
of the paper, would still be true if we substituted, respectively, a and m

for z and d. The advantage of introducing z and d is that the Margulis
invariants (see below) live in a larger space (z instead of a), and so are finer
invariants. Maybe this could be helpful for further study.

In fact it is possible to show (see [13, Theorem 7.53b and c]) that Z
meets every connected component of L. Thus we may also write

L = ZD.

By definition, L acts trivially on z and Z acts trivially on l; the only non-
trivial action is that of D on d. Moreover, D preserves the Killing form,
which is negative definite on d (since d ⊂ m ⊂ k). To sum everything up:

Proposition 2.12. — Any quasi-translation is an element of

(O(d) n d)× z.

In other words, quasi-translations correspond to affine isometries of lAff =
l̂ ∩ gAff that preserve the directions of d and z and act only by translation
on the z component.

Example 2.13.
(1) For G = PSLn(R), since the algebra l = a is abelian, z coincides

with l or equivalently d is trivial, so a quasi-translation is simply a
translation.

(2) Take G = SO+(4, 1); in this case we have d = m ' so(3). This is
the simplest example that requires the full strength of the proofs
given in this paper.

(3) Take G = PSU(3, 1) ' PSO∗(6): then m ' su(2) ⊕ R as a Lie
algebra, so that z(m) ' R and d ' su(2). This shows that all three
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spaces in the decomposition (2.1) can be nonzero, even when G is
simple.

A table giving the algebra m for every simple algebra g may be found in [13,
Appendix C].

2.5. Canonical identifications

Here we introduce canonical identifications (up to quasi-translation) be-
tween different spaces A=

g (Corollary 2.14), and use them to define the
Margulis invariant of an R-regular map. We also check that these identifi-
cations commute with certain “natural” projections (Lemma 2.18).
The following two properties are immediate consequences of Claims 2.5,

2.8 and 2.9:

Corollary 2.14. — Let (p̂1, p̂2) be a pair of transverse affine m.p.a.’s.
Then any map φ ∈ Gng such that φ(p̂1, p̂2) = (p̂+, p̂−) gives, by restriction,
an identification of the intersection p̂1 ∩ p̂2 with l̂, which is unique up to
composition on the left by a quasi-translation.

Here by φ(p̂1, p̂2) we mean the pair (φ(p̂1), φ(p̂2)). Note that if p̂1 ∩ p̂2
is obtained in another way as an intersection of two affine m.p.a.’s, the
identification with l̂ may differ not just by a quasi-translation, but also by
an element of the Weyl group.

Corollary 2.15. — Let g ∈ Gng be an R-regular map. Let φ ∈ Gng

be any map such that φ(A>
g , A

6
g ) = (p̂+, p̂−). Then the restriction of the

conjugate φgφ−1 to l̂ is a quasi-translation.

This leads to the following proposition. We call πz the projection from l

onto z parallel to d.

Proposition 2.16. — Let g ∈ G n g be an R-regular map. Take any
point x in the affine space A=

g ∩ gAff and any map φ ∈ G such that
φ(V >

g , V
6
g ) = (p+, p−). Then the vector

M(g) := πz(φ(g(x)− x)) ∈ z

does not depend on the choice of x or φ.

Definition 2.17. — The vector M(g) is called the Margulis invariant
of g.
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The proposition is more or less an immediate consequence of all the
previous statements; but since the Margulis invariant is the central object
of this paper, we give the detailed proof.

Proof of Proposition 2.16.
• Let us first check that M(g) ∈ z. By hypothesis we have x ∈ A=

g ,
hence also g(x) ∈ A=

g . On the other hand, since g is an extended
affine map, it stabilizes the affine space gAff ; and the difference
between two elements of gAff (two affine points) is an element of g
(a vector). It follows that

g(x)− x ∈ A=
g ∩ g = V =

g .

Using the definition of φ and a purely linear version of Corollary 2.6,
we then have

φ(g(x)− x) ∈ l,

hence
πz(φ(g(x)− x)) ∈ z.

• The independence of the result on the choice of φ essentially follows
from a linear version of Corollary 2.14. Indeed, let φ′ be another el-
ement of G satisfying the hypothesis; then a linear version of Corol-
lary 2.14 says that in restriction to l, we have φ′ = lφ where l is
some quasi-translation that is also an element of G. Now by Propo-
sition 2.12, a quasi-translation without translation part is just an
element of O(d), and acts trivially on z. It follows that φ(g(x)− x)
and l(φ(g(x)− x)) have the same z-component.

• The independence on the choice of x is a consequence of Corol-
lary 2.15. Indeed, let φ̂ be an element of Gn g whose restriction to
g (linear part) is equal to φ and such that

φ̂(A>
g , A

6
g ) = (p̂+, p̂−).

Then we may rewrite

(2.2) M(g) = πz(g′(x′)− x′),

where we set g′ := φ̂gφ̂−1 and x′ = φ̂(x). By Corollary 2.6, φ̂
induces a bijection between the extended affine spaces A=

g and l̂,
hence between the actual affine spaces A=

g ∩gAff and l̂∩gAff ; so now
our task is to show that the formula (2.2) gives the same result for
every choice of x′ ∈ l̂ ∩ gAff .
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Now by Corollary 2.15, g′ is a quasi-translation. By Proposi-
tion 2.12, it follows that g′ acts only by translation on the z-compo-
nent. In other words, let π̂z be an affine version of πz, defined as
the projection from l̂ onto ẑ := z⊕ R0 parallel to d; then we have

π̂z ◦ g′ = τv ◦ π̂z
for some vector v ∈ z, so that

πz(g′(x′)− x′) = π̂z(g′(x′)− x′) = τv(π̂z(x′))− π̂z(x′).

Here π̂z(x′) is an element of the actual affine space ẑ∩gAff . It follows
that

τv(π̂z(x′))− π̂z(x′) = v,

and the vector M(g) = v does not depend on the choice of x′
(or x). �

Lemma 2.18. — Take any affine m.p.a. p̂1. Let n1 be the nilradical of
its linear part, and p̂2 and p̂′2 be any two affine m.p.a.’s both transverse
to p̂1. Let φ (resp. φ′) be an element of G n g that sends the pair (p̂1, p̂2)
(resp. (p̂1, p̂

′
2)) to (p̂+, p̂−). Let

ψ : p̂1 ∩ p̂2 −−−−−→ p̂1 ∩ p̂′2

be the projection parallel to n1. Then the map ψ defined by the commuta-
tive diagram

l̂ l̂

p̂1 ∩ p̂2 p̂1 ∩ p̂′2

ψ

ψ

φ φ′

is a quasi-translation.

The maps φ and φ′ exist by Claim 2.8, and their restrictions that appear
in the diagram are unique up to quasi-translation by Corollary 2.14. The
projection ψ is well-defined because p̂+ = n+ ⊕ l̂ = n+ ⊕ (p̂+ ∩ p̂−), and so
p̂1 = φ′−1(p̂+) = n1 ⊕ (p̂1 ∩ p̂′2).

Proof. — Without loss of generality, we may assume that φ = Id (other-
wise we simply replace the three affine m.p.a.’s by their images under φ−1.)
Then we have p̂1 = p̂+, p̂2 = p̂− and p̂′2 = φ′−1(p̂−), where φ′ can be any
map stabilizing the space p̂+. We want to show that the map φ′ ◦ ψ is a
quasi-translation.
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We know that φ′ lies in the stabilizer NGng(p̂+), which is equal to
P+ n p+, where P+ := NG(p+) is the minimal parabolic subgroup with
Lie algebra p+. We shall use the Langlands decomposition

P+ = MAN+ = LN+,

where N+ is the connected group with Lie algebra n+ (see e.g. [13, Propo-
sition 7.83]). Since L normalizes n+ and l + n+ = p+, this generalizes to
the “affine Langlands decomposition”

P+ n p+ = (Ln l)(N+ n n+).

Thus we may write φ′ = l ◦ n with l ∈ Ln l and n ∈ N+ n n+.
We shall use the following fact: every element n of the group N+ n n+

stabilizes the space n+ and induces the identity map on the quotient space
p̂+/n+. Indeed, when n lies in the “linear” group N+, since N+ is con-
nected, this follows from the fact that n+ is an ideal of p+. When n is a
pure translation by a vector of n+, this is obvious.
By definition, ψ also stabilizes n+ and induces the identity on p̂+/n+;

hence so does the map n ◦ ψ. But we also know that n ◦ ψ is defined on
p̂1 ∩ p̂2 = l̂, and sends it onto

n ◦ ψ(p̂1 ∩ p̂2) = n(p̂1 ∩ p̂′2) = l−1(̂l) = l̂.

Hence the map n ◦ ψ is the identity on l̂. It follows that ψ = φ′ ◦ ψ =
l ◦ n ◦ ψ = l (in restriction to l̂), hence ψ is a quasi-translation as required.

�

2.6. Metric properties

Here we introduce some conventions and define two important metric
properties of R-regular maps: C-non-degeneracy (which means that the
geometry of the map is not too close to a degenerate case), and contraction
strength.
We introduce on ĝ a Euclidean norm such that the subspaces n+, n−, d, z

and R0 are pairwise orthogonal, and whose restriction to d agrees with the
Killing form up to sign (indeed the latter is negative definite on d ⊂ m ⊂ k).
For any linear map g acting on ĝ, we write ‖g‖ := supx 6=0

‖g(x)‖
‖x‖ its operator

norm.
Consider a Euclidean space E (for the moment, the reader may suppose

that E = ĝ; later we will also need the case E = Λpĝ for some integer p).

TOME 66 (2016), FASCICULE 2



800 Ilia SMILGA

We introduce on the projective space P(E) a metric by setting, for every
x, y ∈ P(E),

α(x, y) := arccos |〈x, y〉|‖x‖‖y‖ ∈ [0, π2 ],

where x and y are any vectors representing respectively x and y (obviously,
the value does not depend on the choice of x and y). This measures the
angle between the lines x and y. For shortness’ sake, we will usually simply
write α(x, y) with x and y some actual vectors in E \ {0}.
For any vector subspace F ⊂ E and any radius ε > 0, we shall denote

the ε-neighborhood of F in P(E) by:

BP(F, ε) := {x ∈ P(E) | α(x,P(F )) < ε} .
(You may think of it as a kind of “conical neighborhood”.)
Consider a metric space (M, δ); let X and Y be two subsets ofM. We

shall denote the ordinary, minimum distance between X and Y by

δ(X,Y ) := inf
x∈X

inf
y∈Y

δ(x, y),

as opposed to the Hausdorff distance, which we shall denote by

δHaus(X,Y ) := max
(

sup
x∈X

δ
(
{x}, Y

)
, sup
y∈Y

δ
(
{y}, X

))
.

Finally, we introduce the following notation. Let A and B be two positive
quantities, and p1, . . . , pk some parameters. Whenever we write

A .p1,...,pk B,

we mean that there is a constant K, depending on nothing but p1, . . . , pk,
such that A 6 KB. (If we do not write any subscripts, this means of course
that K is an “absolute” constant — or at least, that it does not depend
on any “local” parameters; we consider the “global” parameters such as
the choice of G and of the Euclidean norms to be fixed once and for all.)
Whenever we write

A �p1,...,pk B,

we mean that A .p1,...,pk B and B .p1,...,pk A at the same time.

Definition 2.19. — Take a pair of affine m.p.a.’s (p̂1, p̂2). An optimal
canonizing map for this pair is a map φ ∈ Gn g satisfying

φ(p̂1, p̂2) = (p̂+, p̂−)

and minimizing the quantity max
(
‖φ‖, ‖φ−1‖

)
. By Claim 2.8 and a com-

pactness argument, such a map exists iff p̂1 and p̂2 are transverse.
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We define an optimal canonizing map for an R-regular map g ∈ G n g

to be an optimal canonizing map for the pair (A>
g , A

6
g ).

Let C > 1. We say that a pair of affine m.p.a.’s (p̂1, p̂2) (resp. an R-regular
map g) is C-non-degenerate if it has an optimal canonizing map φ such that∥∥φ±1∥∥ 6 C.
Now take g1, g2 two R-regular maps in Gng. We say that the pair (g1, g2)

is C-non-degenerate if every one of the four possible pairs (A>
gi , A

6
gj ) is

C-non-degenerate.

The point of this definition is that there are a lot of calculations in which,
when we treat a C-non-degenerate pair of spaces as if they were perpendic-
ular, we err by no more than a (multiplicative) constant depending on C.
The following result will often be useful:

Lemma 2.20. — Let C > 1. Then any map φ ∈ GL(E) such that
‖φ±1‖ 6 C induces a C2-Lipschitz continuous map on P(E).

Proof. — It is sufficient to check this for the restriction of φ to every
2-dimensional subspace of E. But in 2-dimensional space, using singular
value decomposition (see the proof of Lemma 3.8 (iii) for a definition), this
identity is straightforward. In fact it turns out that the Lipschitz constant
of φ acting on P(E) is exactly ‖φ‖‖φ−1‖. �

Remark 2.21. — The set of transverse pairs of extended affine spaces
is characterized by two open conditions: there is of course transversality
of the spaces, but also the requirement that each space not be contained
in g. What we mean here by “degeneracy” is failure of one of these two
conditions. Thus the property of a pair (p̂1, p̂2) being C-non-degenerate
actually encompasses two properties.
First, it implies that the spaces p̂1 and p̂2 are transversal in a quantitative

way. More precisely, this means that some continuous function that would
vanish if the spaces were not transversal is bounded below. An example of
such a function is the smallest non identically vanishing of the “principal
angles” defined in the proof of Lemma 3.8 (iv).
Second, it implies that both p̂1 and p̂2 are “not too close” to the space g

(in the same sense). In purely affine terms, this means that the affine spaces
p̂1 ∩ gAff and p̂2 ∩ gAff contain points that are not too far from the origin.
Both conditions are necessary, and appeared in the previous literature

(such as [15] and [1]); but so far, they have always been treated separately.
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Definition 2.22. — Let s > 0. For an R-regular map g ∈ G n g, we
say that g is s-contracting if we have:

∀(x, y) ∈ V <

g ×A>
g ,

‖g(x)‖
‖x‖ 6 s

‖g(y)‖
‖y‖ .

(Note that by Corollary 2.6 the spaces V <
g and A>

g always have the same
dimensions as n− and p̂+ respectively, hence they are nonzero.)
We define the strength of contraction of g to be the smallest number s(g)

such that g is s(g)-contracting. In other words, we have

s(g) =
∥∥∥g|V <g

∥∥∥
∥∥∥g−1∣∣

A
>
g

∥∥∥ .

In yet other words, s(g) is the inverse of the “singular value gap” between
V <
g and A>

g (see the proof of Lemma 3.8 (iii) for the definition of singular
values). We chose the convention where a “strongly contracting” map has
a small value of s.

Remark 2.23. — Even though we will not use it, it is useful to keep in
mind the following property. One can show that if g is C-non-degenerate
with s(g) 6 1, we actually have s(g−1) �C s(g). Thus the apparent lack of
symmetry in the definition (why take V <

g and A>
g rather than A6

g and V >
g ?)

is not a real problem.

Remark 2.24. — Note that for any R-regular map g ∈ Gn g, we have

log s(gN ) ∼
N→∞

−N log ρ,

where ρ is the spectral gap of g between V <
g and A>

g . By definition, ρ > 0;
it follows that

s(gN ) →
N→∞

0.

2.7. Comparison of metric properties in the affine and linear
case

For any map f ∈ Gn g, we denote by `(f) the linear part of f , seen as
an element of Gn g by identifying G with the stabilizer of the “origin” R0.
In other words, for every (x, t) ∈ g⊕ R0 = ĝ, we set

`(f)(x, t) = f(x, 0) + (0, t).

(Seeing G as a subgroup of Gn g allows us to avoid introducing new defi-
nitions of C-non-degeneracy and contraction strength for elements of G.)
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Lemma 2.25. — Let C > 1, and take any C-non-degenerate R-regular
map g (or pair of maps (g, h)) in Gn g. Then:

(i) The map `(g) (resp. the pair (`(g), `(h))) is still C-non-degenerate;
(ii) We have s(`(g)) 6 s(g);
(iii) Suppose that s(g−1) 6 1. Then we actually have

s(g) �C s(`(g))
∥∥∥g|A=

g

∥∥∥ .

The proof of the first two points is just a formal verification, and contains
no surprises.

Proof.
(i) We will show the result only for one map g; for a pair of maps the

reasoning is analogous.
Let φ be some optimal canonizing map for g. Then clearly A>

`(g) =
V >
g ⊕ R0, and

`(φ)(A>
`(g)) = `(φ)(V >

g ⊕ R0)
= φ(V >

g )⊕ R0

= p̂+;

similarly, `(φ)(A6
`(g)) = p̂−. Thus `(φ) is a canonizing map for `(g).

On the other hand, we have

‖`(φ)‖ = max
(∥∥∥φ|g

∥∥∥ , 1
)

6 max (‖φ‖ , 1)
6 max(C, 1),

and similarly for φ−1. As C > 1, we get that `(g) is C-non-degene-
rate.

(ii) We have:

s(`(g)) =
∥∥∥`(g)|V <

`(g)

∥∥∥
∥∥∥`(g)−1∣∣

A
>
`(g)

∥∥∥

=
∥∥∥g|V <g

∥∥∥max
(∥∥∥g−1∣∣

V
>
g

∥∥∥ , 1
)

6
∥∥∥g|V <g

∥∥∥max
(∥∥∥g−1∣∣

A
>
g

∥∥∥ , 1
)

= s(g).

To justify the last equality, note that V =
g ⊂ A>

g is nonzero by Corol-
lary 2.6, and that all eigenvalues of g−1 restricted to the former
subspace have modulus 1, hence

∥∥∥g−1∣∣
A

>
g

∥∥∥ >
∥∥∥g−1∣∣

V =
g

∥∥∥ > 1.
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(iii) We have, by definition:

s(g) =
∥∥∥g|V <g

∥∥∥
∥∥∥g−1∣∣

A
>
g

∥∥∥ .

Let φ be an optimal canonizing map for g. Since g is C-non-de-
generate (and φ(A=

g ) = l̂ is orthogonal to φ(V >
g ) = n+, the latter

equality following from Corollary 2.6), it follows that

s(g) �C
∥∥∥g|V <g

∥∥∥max
(∥∥∥g−1∣∣

A=
g

∥∥∥ ,
∥∥∥g−1∣∣

V >g

∥∥∥
)
.

Clearly we have
∥∥∥g−1∣∣

A=
g

∥∥∥ >
∥∥∥g−1∣∣

V =
g

∥∥∥ > 1 (see previous point).

On the other hand, since s(g−1) 6 1, we have
∥∥∥g−1∣∣

V >g

∥∥∥ 6 1. It
follows that

s(g) �C
∥∥∥g|V <g

∥∥∥
∥∥∥g−1∣∣

A=
g

∥∥∥ .

By Corollary 2.15, the conjugate of g|A=
g
by φ is a quasi-translation.

By Proposition 2.12 characterizing quasi-translations, we may write

φg|A=
g
φ−1 = τvρ,

where ρ is an orthogonal automorphism of the subspace d, and
τv is the translation by some vector v ∈ l. Since ρ preserves the
Euclidean norm (it preserves the Killing form, and by convention
they agree on d), it has no influence on the operator norm; and
clearly ‖τv‖ = ‖τ−v‖. It follows that ‖ρ−1τ−1

v ‖ = ‖τ−v‖ = ‖τv‖ =
‖τvρ‖, hence

∥∥∥g−1∣∣
A=
g

∥∥∥ �C
∥∥∥g|A=

g

∥∥∥. Thus we get

s(g) �C
∥∥∥g|V <g

∥∥∥
∥∥∥g|A=

g

∥∥∥ .

A similar estimate holds for `(g); but since `(g) restricted to A=
`(g)

has no translation part, the second factor disappears:

s(`(g)) �C
∥∥∥`(g)|V <g

∥∥∥ .

Since g and `(g) coincide on V <
g , we conclude that

s(g) �C s(`(g))
∥∥∥g|A=

g

∥∥∥

as required. �
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3. R-regularity of products

The goal of this section is to prove Proposition 3.6, which essentially
states in a quantitative way that under some conditions, the product of
two R-regular maps is still R-regular.

3.1. Proximal case

Let E be a Euclidean space. (In practice, we will apply the results of this
subsection to E = Λpĝ for some integer p.)
Our first goal is to show Proposition 3.4, which is analogous to Proposi-

tion 3.6 (and will be used to prove it), but with proximal maps instead of
R-regular ones. We begin with a few definitions.

Definition 3.1. — Let γ ∈ GL(E). Let λ be an eigenvalue of γ with
maximal modulus. We say that γ is proximal if λ is unique and has multi-
plicity 1. We may then decompose E into a direct sum of a line Esγ , called
its attracting space, and a hyperplane Euγ , called its repelling space, both
stable by γ and such that:




γ|Esγ = λ Id
for every eigenvalue µ of γ|Euγ , |µ| < |λ|.

Definition 3.2. — Consider a line Es and a hyperplane Eu of E, trans-
verse to each other. An optimal canonizing map for the pair (Es, Eu) is a
map φ ∈ GL(E) satisfying

φ(Es) ⊥ φ(Eu)

and minimizing the quantity max
(
‖φ‖, ‖φ−1‖

)
.

We define an optimal canonizing map for a proximal map γ ∈ GL(E) to
be an optimal canonizing map for the pair (Esγ , Euγ ).
Let C > 1. We say that the pair formed by a line and a hyperplane

(Es, Eu) (resp. that a proximal map γ) is C-non-degenerate if it has an
optimal canonizing map φ such that

∥∥φ±1∥∥ 6 C. (The condition for a pair
is equivalent to the condition that the angle between Es and Eu is larger
than or equal to 2 arctan(C−2).)

Now take γ1, γ2 two proximal maps in GL(E). We say that the pair
(γ1, γ2) is C-non-degenerate if every one of the four possible pairs (Esγi , E

u
γj )

is C-non-degenerate.
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Definition 3.3. — Let γ ∈ GL(E) be a proximal map. We define the
strength of contraction of γ by

s̃(γ) :=

∥∥∥γ|Euγ
∥∥∥

|λ| ;

we say that γ is s̃-contracting if s̃(γ) 6 s̃.

Note that this definition is different from the one we used in the context
of R-regular maps (hence the new notation s̃).

Proposition 3.4. — For every C > 1, there is a positive constant s̃1(C)
with the following property. Take a C-non-degenerate pair of proximal maps
γ1, γ2 in GL(E), and suppose that both γ1 and γ2 are s̃1(C)-contracting.
Then γ1γ2 is proximal, and we have:

(i) α
(
Esγ1γ2 , E

s
γ1

)
.C s̃(γ1);

(ii) s̃(γ1γ2) .C s̃(γ1)s̃(γ2).

Before proceeding, we need the following technical lemma, which says
roughly that a proximal map γ is strongly contracting in the sense of Defi-
nition 3.3 if and only if it is strongly Lipschitz-contracting on some subset
of the projective space P(E).
For any set X ⊂ P(E), we introduce the following notation for the Lip-

schitz constant of γ restricted to X:

L(γ,X) := sup
(x,y)∈X2

x 6=y

α(γ(x), γ(y))
α(x, y) .

Lemma 3.5. — For any C > 1, ζ ∈ ]0, π2 [, for any proximal C-non-
degenerate map γ, we have:

L
(
γ, BP(Esγ , ζ)

)
�C,ζ s̃(γ)(3.1a)

L
(
γ, P(E) \BP(Euγ , ζ)

)
�C,ζ s̃(γ).(3.1b)

We shall actually only use the & part of (3.1a) and the . part of (3.1b).
Note that clearly whenever X ⊂ Y we have L(γ,X) 6 L(γ, Y ); hence for
these two inequalities, it is sufficient to restrict our attention to small values
of ζ. The idea of this Lemma is that knowing just the Lipschitz constant
of γ on a tiny neighborhood of its attracting space allows us to control s̃(γ);
but knowing s̃(γ) actually allows us to control the Lipschitz constant of γ
almost everywhere, except for a tiny neighborhood of its repelling space
(that we have no hope to control).
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Proof. — Let C > 1, ζ ∈ ]0, π2 [. Consider a C-non-degenerate proximal
map γ; let φ be an optimal canonizing map for γ. Then without loss of
generality, we may replace γ by γ′ := φγφ−1. Indeed s̃(γ) �C s̃(γ′) is
obvious. As for the other side, by Lemma 2.20, we have L(φ,P(E)) �C 1,
hence L(γ,X) �C L(γ′, φ(X)) for any set X. We also have

φ
(
BP(Esγ , ζ)

)
⊃ BP(Esγ′ , C−2ζ),

φ
(
P(E) \BP(Euγ , ζ)

)
⊂ P(E) \BP(Euγ′ , C−2ζ);

and as remarked previously, X ⊂ Y always implies L(γ,X) 6 L(γ, Y ).
It remains to show that for any ζ ′ ∈ ]0, π2 [, we have

L
(
γ′, BP(Esγ′ , ζ ′)

)
�ζ′ s̃(γ′)

(this implies (3.1a) by taking ζ ′ = C−2ζ, and (3.1b) by taking ζ ′ > π
2 −

C−2ζ). Indeed, consider the projection

πu : P(E) \ P(Euγ′) // Euγ′

x � // xu
xs
,

where xu and xs denote the components of x in the decomposition E =
Euγ′ ⊕ Esγ′ (and to make sense of division by xs, we choose an isomet-
rical identification of Esγ′ with R). Since Esγ′ and Euγ′ are, by construc-
tion, orthogonal, it induces a homeomorphism from BP(Esγ′ , ζ ′) to the ball{
x ∈ Euγ′

∣∣ ‖x‖ 6 tan ζ ′
}
. A straightforward calculation shows that the said

homeomorphism is bilipschitz, with a Lipschitz constant K(ζ ′) that does
not at all depend on γ or C. On the other hand, the Lipschitz constant of
the conjugate map πuγ′π−1

u (which is linear) is nothing other than s̃(γ′).
Hence γ′ is Lipschitz-continuous with constant K(ζ ′)2s̃(γ′). The conclusion
follows. �

Proof of Proposition 3.4. — Let C > 1, and let (γ1, γ2) be a C-non-
degenerate pair of s̃1(C)-contracting proximal maps (for a value s̃1(C)
to be specified later). Then by Lemma 2.20, for every i and j we have
α(Esγi , E

u
γj ) > η where we set η := π

2C2 .
An immediate corollary of Lemma 3.5 is that for every C-non-degenerate

proximal map γ and every ζ 6 η, we have

(3.2) γ
(
P(E) \BP(Euγ , ζ)

)
⊂ BP

(
Esγ , K (C, ζ) s̃(γ)

)

for some constant K(C, ζ). Indeed, Esγ ∈ P(E) \BP(Euγ , ζ) is a fixed point
of γ and diam(P(E) \BP(Euγ , ζ)) 6 π

2 . 1.
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For i = 1, 2, we introduce the numbers ηi := K(C, η3 )s̃(γi) and the sets
{
X+
i := BP(Esγi , ηi)

X−i := BP(Euγi ,
η
3 ).

Then by (3.2), for every i we have γi(P(E) \ X−i ) ⊂ X+
i . Since s̃(γi) 6

s̃1(C), if we choose s̃1(C) small enough, we may suppose that ηi 6 η
3 .

Then these four sets are pairwise disjoint: for every i and j, we have X+
i ⊂

P(E) \X−j . In particular, it follows that

γ1γ2
(
P(E) \X−2

)
⊂ X+

1 .

Now by (3.1b), we know that for every i

(3.3) L
(
γi, P(E) \X−i

)
.C s̃(γi) 6 s̃1(C).

Once again, choosing s̃1(C) small enough, we may actually suppose that

L
(
γi, P(E) \X−i

)
< 1.

Since X+
1 ⊂ P(E) \X−2 , it follows that X+

1 is stable by γ1γ2 and that

L
(
γ1γ2, X

+
1
)
< 1.

We deduce from this that γ1γ2 is proximal and Esγ1γ2 ∈ X+
1 (see [18,

Lemma 3.8] for a proof), which settles the inequality (i). On the other hand,
it is easy to see that Euγ1γ2 ⊂ X−2 (indeed, consider any point x ∈ P(E) be-
longing to Euγ1γ2 but not to X−2 : then we would have limn→∞(γ1γ2)n(x) =
Esγ1γ2 , which contradicts the fact that Euγ1γ2 is a stable subspace). It follows
that

α(Esγ1γ2 , E
u
γ1γ2) > α(Esγ1 , E

u
γ2)− η1 − η

3

> η − η
3 −

η
3

= η
3 .

Clearly, this implies that γ1γ2 is C ′-non-degenerate for some constant C ′
that depends only on η, hence only on C.

This allows us to apply (3.1a) to γ1γ2:

s̃(γ1γ2) .C L
(
γ1γ2, BP(Esγ1γ2 ,

η
3 )
)
.

We know that BP(Esγ1γ2 ,
η
3 ) ⊂ BP(Esγ1 ,

2η
3 ) ⊂ P(E) \X−2 , hence

L
(
γ1γ2, BP(Esγ1γ2 ,

η
3 )
)
6 L

(
γ1γ2, P(E) \X−2

)
.

On the other hand, from (3.3), it follows that

L
(
γ1γ2, P(E) \X−2

)
.C s̃(γ1)s̃(γ2).
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Stringing together these inequalities, we get
s̃(γ1γ2) .C s̃(γ1)s̃(γ2);

thus (ii) is also proved. �

3.2. R-regular case

The following proposition estimates the position of dynamical spaces
and the contraction strength for a product of two sufficiently contracting
R-regular maps forming a non-degenerate pair.
Proposition 3.6. — For every C > 1, there is a positive constant

s1(C) 6 1 with the following property. Take any C-non-degenerate pair
(g, h) of R-regular maps in G n g; suppose that the maps g±1 and h±1

are all s1(C)-contracting. Then gh is R-regular, 2C-non-degenerate, and
we have:

(i)




αHaus

(
A>
gh, A

>
g

)
.C s(g)

αHaus
(
A6
gh, A

6
h

)
.C s(h−1)

;

(ii) s(gh) .C s(g)s(h).
Recall that the distinction between s(h−1) and s(h) is not essential here:

see Remark 2.23.
Before giving the proof, let us first formulate a particular case:
Corollary 3.7. — Under the same hypotheses, we have




αHaus

(
V >
gh, V

>
g

)
.C s(`(g))

αHaus
(
V 6
gh, V

6
h

)
.C s(`(h)−1).

Proof. — If a pair (g, h) satisfies the hypotheses of Proposition 3.6,
then Lemma 2.25 shows that the pair (`(g), `(h)) still does. But for ev-
ery R-regular f , since `(f) and f have the same action on g, obviously we
have V >

`(f) = V >
f and V 6

`(f) = V 6
f . �

To prove Proposition 3.6, we use the result of the previous subsection,
by establishing a correspondence between R-regularity and proximality in
a suitable exterior power.
We introduce the integers:

p := dim p̂+ = dim p+ + 1;
q := dim n−;
d := dim ĝ = dim g + 1 = q + p.
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For every g ∈ Gng, we may define its exterior power Λpg : Λpĝ→ Λpĝ. The
Euclidean structure of ĝ induces in a canonical way a Euclidean structure
on Λpĝ.
Lemma 3.8.
(i) For g ∈ G n g, Λpg is proximal iff g is R-regular. Moreover, the

attracting (resp. repelling) space of Λpg depends on nothing but
A>
g (resp. V <

g ):

(3.4)
{
EsΛpg = ΛpA>

g

EuΛpg =
{
x ∈ Λpĝ

∣∣ x ∧ ΛqV <
g = 0

}
.

(ii) For every C > 1, whenever (g1, g2) is a C-non-degenerate pair of
R-regular maps, (Λpg1,Λpg2) is a Cp-non-degenerate pair of proxi-
mal maps.

(iii) For every C > 1, for every C-non-degenerate R-regular map g ∈
Gn g, we have

s(g) .C s̃(Λpg).

If in addition s(g) 6 1, we have

s(g) �C s̃(Λpg).

(Recall the Definitions 2.22 and 3.3 of the “contraction strengths”
s(g) and s̃(γ), respectively.)

(iv) For any two p-dimensional subspaces A1 and A2 of ĝ, we have

αHaus(A1, A2) � α (ΛpA1, ΛpA2) .

Proof.
(i) Let g ∈ Gn g. Let λ1, . . . , λd be the eigenvalues of g (acting on ĝ)

counted with multiplicity and ordered by nondecreasing modulus.
Then we know that the eigenvalues of Λpg counted with multiplicity
are exactly the products of the form λi1 · · ·λip , where 1 6 i1 < · · · <
ip 6 d. As the two largest of them (by modulus) are λq+1 · · ·λd and
λqλq+2 · · ·λd, it follows that Λpg is proximal iff |λq| < |λq+1|.
On the other hand, by Claim 2.5 (i), we know that dimA=

g >

dim l̂ = d − 2p, with equality iff g is R-regular. Now since the
linear part of g preserves the Killing form, the space V <

g is Killing-
orthogonal to V 6

g , which is supplementary (in g) to V >
g ; hence

dimV <
g 6 dimV >

g . By symmetry, we get dimV <
g = dimV >

g . It
follows that dimV <

g = 1
2 (d − dimA=

g ) 6 q, with equality iff g is
R-regular.
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In particular, we always have |λq+1| = 1. Putting everything
together, we conclude that

Λpg is proximal ⇐⇒ |λq| < 1 ⇐⇒ dimV <

g = q ⇐⇒ g is R-regular.

As for the expression of Es and Eu, it follows immediately by
considering a basis that trigonalizes g.

(ii) Take any pair of indices (i, j) ∈ {1, 2}2. Let φ be an optimal can-
onizing map for the pair (A>

gi , A
6
gj ). Then we have φ(A>

gi) = p̂+

and (by Claim 2.5 (iii)) φ(V <
gj ) = n−. In the Euclidean structure we

have chosen, p̂+ is orthogonal to n−; hence Λpp̂+ is orthogonal to
the hyperplane {x ∈ Λpĝ | x ∧ Λqn− = 0}. By the previous point, it
follows that Λpφ is a canonizing map for the pair (EsΛpgi , E

u
Λpgj ). As

‖Λpφ‖ 6 ‖φ‖p and similarly for φ−1, the conclusion follows.
(iii) Let C > 1, and let g ∈ Gng be a C-non-degenerate R-regular map.

First remark the following thing: let φ be an optimal canonizing
map for g, and let g′ = φgφ−1. Then it is clear that s(g′) �C s(g)
and s̃(Λpg′) �C s̃(Λpg). Thus we may suppose that V <

g , A=
g and V >

g

are pairwise orthogonal.
We call singular values of g the square roots of the eigenvalues

of the map g∗g (where g∗ is the adjoint map, with respect to the
Euclidean norm). Let s1 6 · · · 6 sp (resp. s′1 6 · · · 6 s′q) be the
singular values of g restricted to A>

g (resp. V <
g ), so that

∥∥∥g−1∣∣
A

>
g

∥∥∥ =

s−1
1 and

∥∥∥g|V <g
∥∥∥ = s′q. Since the spaces A>

g and V <
g are stable by g

and orthogonal, we get that the singular values of g on the whole
space ĝ are

s′1, . . . , s
′
q, s1, . . . , sp

(note however that if we do not suppose s(g) 6 1, this list might fail
to be sorted in nondecreasing order.) On the other hand, we know
that the singular values of Λpg are products of p distinct singular
values of g. Since EsΛpg is orthogonal to EuΛpg, we may once again
analyze the singular values separately for each subspace. We know
that the singular value corresponding to Es is equal to s1 · · · sp; we
deduce that ‖Λpg|Eu‖ is equal to the maximum of the remaining
singular values. In particular it is larger than or equal to s′q ·s2 · · · sp.
On the other hand, if λ is the largest eigenvalue of Λpg, then we
have

|λ| = |λq+1 · · ·λd| =
∣∣∣det(g|

A
>
g

)
∣∣∣ = s1 · · · sp
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(where λ1, . . . , λd are the eigenvalues of g sorted by nondecreasing
modulus). It follows that:

(3.5) s̃(Λpg) =

∥∥∥Λpg|EuΛpg
∥∥∥

|λ| >
s′q · s2 · · · sp
s1 · · · sp

= s′qs
−1
1 = s(g),

which is the first estimate we were looking for.
Now suppose that s(g) 6 1. Then we have s′q 6 s1, which means

that the singular values of Λpg are indeed sorted in the “correct”
order. Hence s′q · s2 · · · sp is actually the largest singular value of
Λpg|Eu , and the inequality becomes an equality: s̃(Λpg) = s(g).
The second estimate follows.

(iv) Let A1 and A2 be two p-dimensional subspaces of ĝ. Define

α1 := αHaus(A1, A2);
α2 := α(ΛpA1,ΛpA2).

We may find an orthonormal basis (e1, . . . , ed) of ĝ such that A1
has basis (e1, . . . , ep) and A2 has basis

((cos θi)ei + (sin θi)ep+i)1 6 i 6 p ,

for some angles π
2 > θ1 > · · · > θq > θq+1 = · · · = θp = 0 (of course

ej is not defined when j > d, but in this formula all such vectors
have coefficient 0). In this case, we have α1 = θ1 and cosα2 =∏p
i=1 cos θi, hence

(cosα1)p 6 cosα2 6 cosα1.

On the other hand, for every θ ∈ [0, π2 ], we have arccos((cos θ)p) 6√
p θ. Indeed, for θ > π

2√p this is obvious, and for θ ∈ [0, π
2√p ] this

is equivalent to the inequality p log cos θ > log cos(√pθ). The latter
is clearly true for θ = 0, and follows for the other values of θ by
integrating the inequality −p tan θ > −√p tan(√pθ), which is true
by convexity of the tangent function. Finally we get

α1 6 α2 6
√
p α1. �

We also need the following technical lemma:

Lemma 3.9. — There is a constant ε > 0 with the following property.
Let p̂1, p̂2 be any two affine m.p.a.’s such that

{
αHaus(p̂1, p̂

+) 6 ε
αHaus(p̂2, p̂

−) 6 ε.
Then they form a 2-non-degenerate pair.
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(Of course the constant 2 is arbitrary; we could replace it by any number
larger than 1.)

Proof. — Let P be the set of all pairs of affine m.p.a.’s, P ′ ⊂ P the
subset of transverse pairs. Since P ′ is an open subset of P, for ε sufficiently
small p̂1 and p̂2 will be transverse. Moreover, P ′ is a homogeneous space
under the action of Gn g (by Claim 2.8), hence the orbital map that maps
an element φ ∈ G n g to the pair φ(p̂+, p̂−) is open. It follows that for
any C, the set of “strictly C-non-degenerate” (meaning C ′-non-degenerate
for some C ′ < C) pairs is open. �

Proof of Proposition 3.6. — Let C > 1, and let (g, h) be a C-non-
degenerate pair of R-regular maps in Gn g. Suppose that g±1 and h±1 are
s1(C)-contracting, for some constant s1(C) to be specified later.
Take γ1 = Λpg and γ2 = Λph. Let us check the conditions of Proposi-

tion 3.4. Indeed:
• By Lemma 3.8 (i), γ1 and γ2 are proximal.
• By Lemma 3.8 (ii), the pair (γ1, γ2) is Cp-non-degenerate.
• Since we have supposed s1(C) 6 1, it follows by Lemma 3.8 (iii)
that s̃(γ1) .C s(g) and s̃(γ2) .C s(h). If we choose s1(C) suffi-
ciently small, then γ1 and γ2 are sufficiently contracting to apply
Proposition 3.4, namely s̃1(Cp)-contracting.

Now we apply Proposition 3.4 to the map Λp(gh) = γ1γ2. It remains to
deduce the conclusions of Proposition 3.6.

• That gh is R-regular follows by Lemma 3.8 (i).
• From Proposition 3.4 (i), using Lemma 3.8 (i), (iii) and (iv), we get

αHaus
(
A>
gh, A

>
g

)
.C s(g),

which shows the first line of Proposition 3.6 (i).
• By applying Proposition 3.4 to γ−1

2 γ−1
1 instead of γ1γ2, we get in

the same way the second line of Proposition 3.6 (i).
• Let φ be an optimal canonizing map for the pair (A>

g , A
6
h ). By

hypothesis,
∥∥φ±1∥∥ 6 C. But if we take s1(C) sufficiently small, the

two inequalities that we have just shown, together with Lemma 3.9,
allow us to find a map φ′ with ‖φ′‖ 6 2, ‖φ′−1‖ 6 2 and

φ′ ◦ φ(A>
gh, A

6
gh) = (p̂+, p̂−).

It follows that the composition map gh is 2C-non-degenerate.
• The last inequality, namely Proposition 3.6 (ii), now follows from
Proposition 3.4 (ii) by using Lemma 3.8 (iii). �
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4. Additivity of Margulis invariant

Proposition 4.1 below is the key ingredient of the paper. It explains
how the Margulis invariant behaves under group operations (inverse and
composition). The first point is trivial to prove, but still important. The
proof of the second point occupies the entirety of this section. We prove it
by reducing it successively to Lemma 4.5, then to Lemma 4.7.

We call w0 any map inG such that w0(p+, p−) = (p−, p+). (By Claim 2.9,
the result stated below does not depend on the choice of w0.)
Proposition 4.1.
(i) For every R-regular map g ∈ Gn g, we have

M(g−1) = −w0(M(g)).

(ii) For every C > 1, there are positive constants s2(C) 6 1 and µ(C)
with the following property. Let g, h ∈ Gng be a C-non-degenerate
pair of R-regular maps, with g±1 and h±1 all s2(C)-contracting.
Then gh is R-regular, and we have:

‖M(gh)−M(g)−M(h)‖ 6 µ(C).

Let C > 1. We choose some constant s2(C) 6 1, small enough to satisfy
all the constraints that will appear in the course of the proof. For the
remainder of this section, we fix g, h ∈ G n g a C-non-degenerate pair of
R-regular maps such that g±1 and h±1 are s2(C)-contracting.
The following remark will be used throughout this section.

Remark 4.2. — We may suppose that the pairs (A>
gh, A

6
gh), (A>

hg, A
6
hg),

(A>
g , A

6
gh) and (A>

hg, A
6
g ) are all 2C-non-degenerate. Indeed, recall that

(by Proposition 3.6), we have



αHaus

(
A>
gh, A

>
g

)
.C s(g)

αHaus
(
A6
gh, A

6
h

)
.C s(h−1)

and similar inequalities with g and h interchanged. On the other hand, by
hypothesis, (A>

g , A
6
h ) is C-non-degenerate. If we choose s2(C) sufficiently

small, these four statements then follow from Lemma 3.9.

Proof of Proposition 4.1.
(i) Considering that V >

g−1 = V 6
g and vice-versa, and that w0 commutes

with πz, this is obvious from the definition of the Margulis invariant.
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(ii) If we take s2(C) 6 s1(C), then Proposition 3.6 ensures that gh is
R-regular.
To estimate M(gh), we decompose gh : A=

gh → A=
gh into a product

of several maps.
• We begin by decomposing the product gh into its factors. We
have the commutative diagram

A=
gh A=

hg A=
ghg h

gh

Indeed, since hg is the conjugate of gh by h and vice-versa, we
have h(A=

gh) = A=
hg and g(A=

hg) = A=
gh.

• Next we factor the map g : A=
hg → A=

gh through the map
g : A=

g → A=
g , which is better known to us. We have the

commutative diagram

A=
gh A=

hg

A=
g A=

g

πg

g

πg

g

where πg is the projection onto A=
g parallel to V >

g ⊕ V <
g . (It

commutes with g because A=
g , V >

g and V <
g are all invariant

by g.)
• Finally, we decompose again every diagonal arrow from the last
diagram into two factors. For any two R-regular maps u and v,
we introduce the notation

A=
u,v := A>

u ∩A6
v .

We call P1 (resp. P2) the projection onto A=
g,gh (resp. A=

hg,g),
still parallel to V >

g ⊕ V <
g . To justify this definition, we must

check that A=
g,gh (and similarly A=

hg,g) is supplementary to
V >
g ⊕ V <

g . Indeed, by Remark 4.2, A6
gh is transverse to A>

g ,
hence (by Claim 2.5 (iii)) supplementary to V >

g ; thus A>
g =

V >
g ⊕ A=

g,gh and ĝ = V <
g ⊕ A>

g = V <
g ⊕ V >

g ⊕ A=
g,gh. Then we

have the commutative diagrams

A=
gh A=

g,gh A=
g

πg

P1 πg
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and
A=
hg A=

hg,g A=
g

πg

P2 πg

The second and third step can be repeated with h instead of g.
The way to adapt the second step is straightforward; for the third
step, we factor πh : A=

hg → A=
h through A=

h,hg and πh : A=
gh → A=

h

through A=
gh,h.

Combining these three decompositions, we get the lower half of
Diagram 1. (We left out the expansion of h; we leave drawing the
full diagram for especially brave readers.) Let us now interpret all
these maps as endomorphisms of l̂. To do this, we choose some
optimal canonizing maps

φg, φgh, φhg, φg,gh, φhg,g

respectively of g, of gh, of hg, of the pair (A>
g , A

6
gh) and of the pair

(A>
hg, A

6
g ). This allows us to define ggh, hgh, gg,gh, g=, P1, P2, ψ1, ψ2

to be the maps that make the whole Diagram 1 commutative.
Now let us define

{
Mgh(g) := πz(ggh(x)− x)
Mgh(h) := πz(hgh(x)− x)

for any x ∈ lAff , where lAff := l̂∩gAff is the affine space parallel to l

and passing through the origin. Since gh is the conjugate of hg by g
and vice-versa, the maps ggh and hgh stabilize the spaces p̂+ and p̂−;
by Claim 2.9, they are thus quasi-translations. It follows that these
values Mgh(g) and Mgh(h) do not depend on the choice of x. Com-
pare this to the alternative formula (2.2) for the Margulis invariant:
we have M(gh) = πz(ggh ◦ hgh(x)− x) for any x ∈ lAff . It immedi-
ately follows that

M(gh) = Mgh(g) +Mgh(h).

Thus it is enough to show the estimates ‖Mgh(g) −M(g)‖ .C 1
and ‖Mgh(h)−M(h)‖ .C 1. This is an immediate consequence of
Lemma 4.5 below. (Note that while the vectorsMgh(g) andMgh(h)
are elements of z, the maps ggh and hgh are extended affine isome-
tries acting on the whole subspace l̂.) �

Remark 4.3. — In contrast to actual Margulis invariants, the values
Mgh(g) andMgh(h) do depend on our choice of canonizing maps. Choosing
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l̂ l̂ l̂

l̂ l̂

l̂ l̂

A=
gh A=

hg A=
gh

A=
g,gh A=

hg,g

A=
g A=

g

P1 P2

ggh hgh

ψ1 ψ2

gg,gh

g=

P1

φgh

P2

g

φhg

h

φgh

πg

φg,gh

πg

φhg,gφg

g

φg

Figure 1.

full diagram for especially brave readers.) Let us now interpret all
these maps as endomorphisms of l̂. To do this, we choose some
optimal canonizing maps

φg, φgh, φhg, φg,gh, φhg,g

respectively of g, of gh, of hg, of the pair (A�
g , A�

gh) and of the pair
(A�

hg, A�
g ). This allows us to define ggh, hgh, gg,gh, g=, P1, P2, ψ1,

ψ2 to be the maps that make the whole Diagram 1 commutative.
Now let us define{

Mgh(g) := πz(ggh(x)− x)
Mgh(h) := πz(hgh(x)− x)

for any x ∈ lAff , where lAff := l̂ ∩ gAff is the affine space parallel to
l and passing through the origin. Since gh is the conjugate of hg by

ANNALES DE L’INSTITUT FOURIER

Diagram 1.

other canonizing maps would force us to subtract some constant from the
former and add it to the latter.

Definition 4.4. — We shall say that a linear bijection f between two
subspaces of ĝ is K(C)-bounded if it is bounded by a constant depending
only on C, that is, ‖f‖ .C 1 and ‖f−1‖ .C 1. We say that two auto-
morphisms f1, f2 of l̂ (depending somehow on g and h) are K(C)-almost
equivalent, and we write f1 ≈C f2, if they satisfy the condition

‖f1 − ξ ◦ f2 ◦ ξ′‖ .C 1

for some K(C)-bounded quasi-translations ξ, ξ′. This is indeed an equiva-
lence relation.

Lemma 4.5. — The maps ggh and hgh are K(C)-almost equivalent to
g= and h=, respectively.

To show this, we use the following property:
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Lemma 4.6. — All the non-horizontal arrows in Diagram 1 represent
K(C)-bounded, bijective maps.

Note that Lemma 4.6 alone does not imply Lemma 4.5: indeed, while
the maps ψ1 and ψ2 are quasi-translations by Lemma 2.18, the maps P 1
and P 2 need not be. This issue will be addressed in Lemma 4.7.
Proof of Lemma 4.6.
• For the vertical arrows, this is an immediate consequence of Re-
mark 4.2.

• Let us take care of the maps P1 : A=
gh → A=

g,gh, P2 : A=
hg → A=

hg,g,
πg : A=

g,gh → A=
g and πg : A=

hg,g → A=
g . All of these maps are

projections parallel to V >
g ⊕V <

g ; thus to show that they are bijective
and K(C)-bounded, it is enough to give a positive lower bound,
depending only on C, on the five angles between V >

g ⊕V <
g and each

of the five subspaces

A=
gh, A

=
g,gh, A

=
g , A

=
hg,g, A

=
hg.

(For bijectivity alone it would be enough to check that these angles
are positive, i.e. that each of these five subspaces is supplementary
to V >

g ⊕ V <
g . This is obvious for A=

g , and has already been done for
A=
g,gh and A=

hg,g to justify that P1 and P2 are well-defined.)
Let us estimate these angles:
– The fact that

α(A=
g , V

>

g ⊕ V <

g ) &C 1

is a direct consequence of the fact that g is C-non-degenerate.
– Let us estimate the position of A=

g,gh. We know that φg,gh
sends, respectively, A6

gh and V >
g to p̂− and n+ (using Claim 2.5

(iii) about uniqueness of V >). By convention, the latter two
spaces are orthogonal; since the pair (A>

g , A
6
gh) is 2C-non-

degenerate (Remark 4.2), it follows by Lemma 2.20 about the
Lipschitz constant of bounded maps that

α(A6
gh, V

>

g ) &C 1

(in fact the left-hand side is precisely bounded below by 1
4C2

π
2 ),

and in particular

α(A=
g,gh, V

>

g ) &C 1.

Next we apply the map φg; since ‖φg‖ 6 C and ‖φ−1
g ‖ 6 C,

the distance is, once again, divided by at most C2. But after
applying this map, the space φg(A>

g ) = p̂+, containing both
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φg(A=
g,gh) and φg(V >

g ), is orthogonal to φg(V <
g ) = n+; hence

we have
α
(
φg(A=

g,gh), φg(V >

g )
)

= α
(
φg(A=

g,gh), φg(V >

g ⊕ V <

g )
)
.

Applying φ−1
g to get the original spaces, we introduce again a

factor no smaller than 1
C2 . We conclude that

α(A=
g,gh, V

>

g ⊕ V <

g ) &C 1
as required.

– For A=
hg,g, by symmetry, the same calculation holds, mutatis

mutandis. By applying the map φhg,g, we find similarly that
α(A>

hg, V
<

g ) &C 1,
hence in particular

α(A=
hg,g, V

<

g ) &C 1.
When we apply φg, we get that

α(φg(A=
hg,g), φg(V <

g )) = α(φg(A=
hg,g), φg(V >

g ⊕ V <

g ));
applying φ−1

g , we conclude that
α(A=

hg,g, V
>

g ⊕ V <

g ) &C 1.
– To show that the space A=

gh is “far” from V >
g ⊕ V <

g , we will
show that it is “close” to the space A=

g,gh, that we have already
shown to be “far” from V >

g ⊕ V <
g .

We shall use the following property: if the linear subspaces F
and G are perpendicular (meaning that the orthogonal supple-
ments of F ∩G respectively in F and G are orthogonal to each
other), then for any subspace F ′, we have

αHaus(F ∩G,F ′ ∩G) 6 αHaus(F, F ′),
provided that F ′ ∩G still has the same dimension as F ∩G.
Taking as F , G and F ′ the images by the K(C)-bounded map
φgh of the spaces A>

gh, A
6
gh and A>

g respectively, we deduce
that

αHaus (A=
gh, A

=
g,gh

)
.C αHaus

(
A>
gh, A

>
g

)
.

On the other hand, Proposition 3.6 tells us that

αHaus
(
A>
gh, A

>
g

)
.C s(g).

Since s(g) 6 s2(C), taking s2(C) small enough, we may sup-
pose that the Hausdorff distance between A=

gh and A=
g,gh is less
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than half our lower bound for the minimal distance between
A=
g,gh and V >

g ⊕ V <
g . We conclude that

α(A=
gh, V

>

g ⊕ V <

g ) &C 1.

– To estimate the position of A=
hg, similarly, we show that it is

close to A=
hg,g. We apply the same property as above, taking

now as F , G and F ′ the images by φhg of A6
hg, A

>
hg and A6

g

respectively. We deduce that

αHaus (A=
hg, A

=
hg,g

)
.C αHaus

(
A6
hg, A

6
g

)
.

Using once again Proposition 3.6 and choosing s2(C) small
enough, we conclude that

α(A=
hg, V

>

g ⊕ V <

g ) &C 1.

This shows that all the diagonal arrows in the lower half of the
diagram represent K(C)-bounded bijections.

• The maps P1, P2, ψ1 and ψ2 from the upper half of the diagram
are now compositions of K(C)-bounded bijections, hence they are
themselves bijective and K(C)-bounded. This completes the proof
of Lemma 4.6. �

Proof of Lemma 4.5. — We shall concentrate on the estimate ggh ≈C g=;
the proof of the estimate hgh ≈C h= is analogous.
According to Lemma 2.18, the maps ψ1 and ψ2 are quasi-translations.

Hence gg,gh is also a quasi-translation.
We would like to pretend that ggh and gg,gh are actually translations.

To do that, we modify slightly the upper right-hand corner of Diagram 1.
We set {

φ′hg := `(ggh) ◦ φhg
φ′hg,g := `(gg,gh) ◦ φhg,g,

where ` stands for the linear part as defined in Section 2.7, and we define
P ′2, ψ′2, g′gh, g′g,gh so as to make the new diagram commutative (see Dia-
gram 2). The factors `(ggh) and `(gg,gh) we introduced (the short horizontal
arrows in Diagram 2) have norm 1: indeed, being quasi-translations of l̂ fix-
ing R0, they are orthogonal linear transformations (by Proposition 2.12).
Thus Lemma 4.6 still holds for Diagram 2; but now, the modified maps g′gh
and g′g,gh are translations by construction.
We may write:

g′gh = (P1
−1 ◦ g′g,gh ◦ P1) ◦ (P1

−1 ◦ P ′2).
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l̂ l̂ l̂

l̂ l̂ l̂

l̂ l̂

A=
gh A=

hg

A=
g,gh A=

hg,g

A=
g A=

g

P1

P ′2

g′
gh

P2

`(ggh)

ψ1

ψ′2

g′
g,gh

ψ2

`(gg,gh)

g=

P1

φgh

P2

g

φ′hg φhg

πg

φg,gh

πg

φ′hg,g φhg,gφg

g

φg

Diagram 2.

Then, since g′gh and g′g,gh are translations, P1
−1 ◦ P ′2 is also a translation.

By Lemma 4.6 (applied to Diagram 2), it is the composition of two K(C)-
bounded maps, hence K(C)-bounded. Thus we have

g′gh ≈C P1
−1 ◦ g′g,gh ◦ P1.

Since `(ggh), `(gg,gh), ψ1 and ψ2 are K(C)-bounded quasi-translations,
ggh is K(C)-almost equivalent to g′gh and g= is K(C)-almost equivalent
to g′g,gh. It remains to check that the map g′g,gh is K(C)-almost equivalent
to its conjugate P1

−1 ◦ g′g,gh ◦ P1.
This follows from Lemma 4.7 below. Indeed, let us call P ′′1 the quasi-

translation constructed in Lemma 4.7. Let v ∈ l be the translation vector
of g′g,gh, so that

g′g,gh = τv.
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Then we have
∥∥∥P1

−1 ◦ g′g,gh ◦ P1 − P ′′1
−1 ◦ g′g,gh ◦ P ′′1

∥∥∥ =
∥∥∥τ
P1
−1(v) − τP ′′1 −1(v)

∥∥∥ .

Keep in mind that, for any vector u, while we call the map τu a “transla-
tion”, it is actually a transvection; so its norm ‖τu‖ is equal to the norm of
the matrix

( Id ‖u‖
0 1

)
. In particular we have ‖u‖ 6 ‖τu‖ 6 ‖u‖+ 1. It follows

that
∥∥∥τ
P1
−1(v) − τP ′′1 −1(v)

∥∥∥ 6
∥∥∥P1

−1(v)− P ′′1
−1(v)

∥∥∥+ 1

6
∥∥∥ (P1

−1 − P ′′1
−1)
∣∣∣
l

∥∥∥ ‖v‖+ 1

(as v ∈ l).
Now by Proposition 2.12, we know that the quasi-translation P ′′1 re-

stricted to l is an element of the group D; since it is compact, the map
ρ 7→ ρ−1 is Lipschitz-continuous on that group. Then we may deduce from
Lemma 4.7 that ∥∥∥ (P1

−1 − P ′′1
−1)
∣∣∣
l

∥∥∥ .C s(`(g)).

On the other hand, we have ‖v‖ 6 ‖τv‖ =
∥∥∥g′g,gh

∥∥∥ .C
∥∥∥g|A=

g

∥∥∥, since g′g,gh
is the composition of g|A=

g
with several K(C)-bounded maps. It follows

that
∥∥∥P1

−1 ◦ g′g,gh ◦ P1 − P ′′1
−1 ◦ g′g,gh ◦ P ′′1

∥∥∥ .C s(`(g))
∥∥∥g|A=

g

∥∥∥+ 1.

By Lemma 2.25 (iii), we have s(`(g))
∥∥∥g|A=

g

∥∥∥ .C s(g); and we know that
s(g) 6 1. Finally we get

∥∥∥P1
−1 ◦ g′g,gh ◦ P1 − P ′′1

−1 ◦ g′g,gh ◦ P ′′1
∥∥∥ .C 1.

To complete the proof of Lemma 4.5, and hence also the proof of Proposi-
tion 4.1, it remains only to prove Lemma 4.7. �

Lemma 4.7. — The linear part of the map P1 is “almost” a quasi-
translation. More precisely, there is a quasi-translation P ′′1 such that

∥∥∥ (P1 − P ′′1 )
∣∣∣
l

∥∥∥ .C s(`(g)).

Recall that `(g) is the map with the same linear part as g, but with no
translation part: see subsection 2.7. We use the double prime because the
relationship between P ′′1 and P1 is not the same as the relationship between
P ′2 and P2.
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Proof. — Let P ′′1 : A=
gh → A=

g,gh be the projection parallel to V <

gh (recall
that P1, by contrast, was along V >

g ⊕ V <
g ); we set P ′′1 := φg,gh ◦ P ′′1 ◦ φ−1

gh

the corresponding endomorphism of l̂. Then by Lemma 2.18, P ′′1 is a quasi-
translation.
We need to show that for any x ∈ l, we have

‖P1(x)− P ′′1 (x)‖ .C s(`(g))‖x‖.

By Remark 4.2, this is true iff for any x ∈ V =
gh, we have

‖P1(x)− P ′′1 (x)‖ .C s(`(g))‖x‖.

Take any x ∈ V =
gh. Let us decompose it in two ways:

x =: x1︸︷︷︸
∈V =

g,gh

+ x2︸︷︷︸
∈V <g

+ x3︸︷︷︸
∈V >g

=: x′1︸︷︷︸
∈V =

g,gh

+ x′2︸︷︷︸
∈V <

gh

,

so that x1 = P1(x) and x′1 = P ′′1 (x). Our first goal is to establish the
estimate (4.1) below. Roughly, the idea is that since x ∈ V =

gh ⊂ V >
gh, and

since the latter subspace is “close” to V >
g = V =

g,gh ⊕ V >
g , the component x2

is “small”.
More precisely, x2 is the image of x by the projection onto V <

g parallel
to V >

g ; hence φg(x2) is the image of φg(x) by the projection onto n− parallel
to p+, which is an orthogonal projection. It follows that

‖φg(x2)‖
‖φg(x)‖ = sinα

(
φg(x), p+)

6 α
(
φg(x), p+)

6 αHaus
(
φg(V >

gh), φg(V >
g )
)
.

Since g is C-non-degenerate, using Lemma 2.20 we get

‖x2‖ .C αHaus(V >
gh, V

>
g )‖x‖.

From Corollary 3.7, it follows that

(4.1) ‖x2‖ .C s(`(g))‖x‖.

On the other hand, we have:

x2 = (x′1 − x1)︸ ︷︷ ︸
∈V =

g,gh

− x3︸︷︷︸
∈V >g

+ x′2︸︷︷︸
∈V <

gh

,
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hence

‖φg,gh(x2)‖2 = ‖φg,gh(x′1 − x1)‖2 + ‖φg,gh(x3)‖2 + ‖φg,gh(x′2)‖2

and in particular

‖φg,gh(x′1 − x1)‖ 6 ‖φg,gh(x2)‖.

Since (A>
g , A

6
gh) is 2C-non-degenerate (Remark 4.2), it follows that

(4.2) ‖x′1 − x1‖ .C ‖x2‖.

Combining this with (4.1), we get

‖x′1 − x1‖ .C s(`(g))‖x‖;

Lemma 4.7, and therefore Lemma 4.5 and Proposition 4.1, are now proved.
�

5. Margulis invariants of words

We have already studied how contraction strengths (Proposition 3.6) and
Margulis invariants (Proposition 4.1) behave when we take the product of
two R-regular, C-non-degenerate, sufficiently contracting maps. The goal
of this section is to generalize these results to words of arbitrary length on
a given set of generators.

Definition 5.1. — Take k generators g1, . . . , gk. Consider a word g =
gσ1
i1
· · · gσlil of length l > 1 on these generators and their inverses (for everym

we have 1 6 im 6 k and σm = ±1). We say that g is reduced if for every m
such that 1 6 m 6 l − 1, we have (im+1, σm+1) 6= (im,−σm). We say that
g is cyclically reduced if it is reduced and also satisfies (i1, σ1) 6= (il,−σl).

Proposition 5.2. — For every C > 1, there is a positive constant
s3(C) 6 1 with the following property. Take any family of maps g1, . . . , gk ∈
Gn g satisfying the following hypotheses:
(H1) Every gi is R-regular.
(H2) Any pair taken among the maps {g1, . . . , gk, g

−1
1 , . . . , g−1

k } is
C-non-degenerate, except of course if it has the form (gi, g−1

i ) for
some i.

(H3) For every i, we have s(gi) 6 s3(C) and s(g−1
i ) 6 s3(C).
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Take any nonempty cyclically reduced word g = gσ1
i1
· · · gσlil (where we have

1 6 im 6 k and σm = ±1 for every m). Then g is R-regular, 2C-non-
degenerate, and we have

∥∥∥∥∥M(g)−
l∑

m=1
M(gσmim )

∥∥∥∥∥ 6 lµ(2C)

(where µ(2C) is the constant introduced in Proposition 4.1).

The proof proceeds of course by induction, with Proposition 3.6 and
Proposition 4.1 providing the induction step; however, there is a subtlety.
When we suppose that the pair (g, h) is C-non-degenerate, we can only
conclude that gh is 2C-non-degenerate; this would break the induction if
we used a direct approach. To guarantee 2C-non-degeneracy for all words,
we must use the fact that the contraction strength of g grows exponentially
with its length, so that the (Hausdorff) distance between A>

g and A>
g
σ1
i1

is in
fact a sum of exponentially diminishing increments and remains bounded.
To take this into account, we shall prove by induction a series of slightly
more complicated statements.
Proof. — Let us fix C > 1, a positive constant s3(C) 6 1 to be de-

termined in the course of the proof, and a family g1, . . . , gk satisfying the
hypotheses (H1), (H2) and (H3). We will show by induction on max(l, l′)
that whenever we take a nonempty cyclically reduced word g = gσ1

i1
· · · gσlil ,

we have the following properties:
(i) The map g is R-regular.

(ii)





αHaus
(
A>
g , A

>
g
σ1
i1

)
.C 2

(
1− 2−(l−1)) s3(C)

αHaus
(
A6
g , A

6
g
σl
il

)
.C 2

(
1− 2−(l−1)) s3(C).

(iii) s(g) 6 2−(l−1)s3(C).

(iv)
∥∥∥∥∥M(g)−

l∑

m=1
M(gσmim )

∥∥∥∥∥ 6 (l − 1)µ(2C).

(v) If h = g
σ′1
i′1
· · · gσ

′
l′
i′
l′

is another nonempty cyclically reduced word
such that gh is also cyclically reduced, the pair (g, h) is 2C-non-
degenerate.

In particular, the properties (i), (iv) and (v) imply the Proposition.
Indeed, all five statements are true for l = 1 (and l′ = 1). Now let

l > 2, and suppose that statements (i) through (v) are true for all cyclically
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reduced words of length m with 1 6 m 6 l−1. Take any cyclically reduced
word g = gσ1

i1
· · · gσlil . Then we claim that it is possible to decompose g into

two cyclically reduced subwords

g′ := gσ1
i1
· · · gσmim and g′′ := g

σm+1
im+1

· · · gσlil ,
both nonempty (that is, 0 < m < l).
Indeed, suppose the contrary: suppose that for every such m, we have

(im, σm) = (i1,−σ1) or (im+1, σm+1) = (il,−σl).
Let us show, by induction on m, that the first condition always fails, hence
the second always holds. For m = 1, this is obvious. Suppose we know it
for m− 1; then we have

(im, σm) = (il,−σl) = (i2, σ2) 6= (i1,−σ1)

because the word is reduced. Now taking m = l−1, we get a contradiction.
By induction hypotheses (i) and (v), g′ and g′′ are R-regular and form

a 2C-non-degenerate pair; by induction hypothesis (iii), we have s(g′) 6
2−(m−1)s3(C) 6 s3(C) and we may suppose that s3(C) 6 s1(2C) (similarly
for g′−1, g′′, g′′−1). Thus the pair (g′, g′′) satisfies Proposition 3.6 (with
constant 2C). Let us show that g satisfies the properties (i) through (v).

• The property (i) (that g is R-regular) is a direct consequence of
Proposition 3.6.

• Let us check the property (iii). From Proposition 3.6 (ii), it follows
that s(g) .C s(g′)s(g′′); we then have, by induction hypothesis (iii):

s(g) .C
(

2−(m−1)s3(C)
)(

2−(l−m−1)s3(C)
)

= s3(C)
(

2−(l−2)s3(C)
)
.

If we take s3(C) sufficiently small, we get

s(g) 6 2−(l−1)s3(C).

• Now we check (ii); it is enough to check the first inequality (the
second one follows by substituting g−1.) Remember that αHaus is a
metric on the set of all vector subspaces of ĝ, so we have

αHaus
(
A>
g , A

>
g
σ1
i1

)
6 αHaus

(
A>
g , A

>
g′

)
+ αHaus

(
A>
g′ , A

>
g
σ1
i1

)
.

Estimating the first term by Proposition 3.6 (i) and the second
term by induction hypothesis (ii), we get:

αHaus
(
A>
g , A

>
g
σ1
i1

)
.C s(g′) + 2

(
1− 2−(m−1)

)
s3(C).
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Now by induction hypothesis (iii) we have s(g′) 6 2−(m−1)s3(C),
hence

αHaus
(
A>
g , A

>
g
σ1
i1

)
.C 2−(m−1)s3(C) + 2

(
1− 2−(m−1)

)
s3(C)

= 2
(
1− 2−m

)
s3(C)

6 2
(

1− 2−(l−1)
)
s3(C),

since m 6 l − 1. (Here the implicit multiplicative constant is the
same as in Proposition 3.6 (i), and does not change after the induc-
tion step.)

• Next we check (iv). By induction hypothesis (iv), we have




∥∥∥∥∥M(g′)−
m∑

p=1
M(gσpip )

∥∥∥∥∥ 6 (m− 1)µ(2C)

∥∥∥∥∥M(g′′)−
l∑

p=m+1
M(gσpip )

∥∥∥∥∥ 6 (l −m− 1)µ(2C).

If we take s3(C) 6 s2(2C), then g′ and g′′ satisfy Proposition 4.1,
hence

‖M(g)−M(g′)−M(g′′)‖ 6 µ(2C).
Adding these three inequalities together, we get the desired conclu-
sion.

• It remains to check (v): let h = g
σ′1
i′1
· · · gσ

′
l′
i′
l′

be another cyclically re-
duced word (with 1 6 l′ 6 l) such that gh is also cyclically reduced.
We need to check that the four pairs (A>

g , A
6
g ), (A>

g , A
6
h ), (A>

h , A
6
g )

and (A>
h , A

6
h ) are 2C-non-degenerate. This follows by Lemma 3.9

from the property (ii) (applied to both g and h) and from the hy-
pothesis (H2), provided we take s3(C) small enough. �

6. Construction of the group

We now show (Lemma 6.1) that if we take a group generated by a family
of R-regular, C-non-degenerate, sufficiently contracting maps with suitable
Margulis invariants, it satisfies all of the conclusions of the Main Theorem,
except Zariski-density. We then exhibit such a group that is also Zariski-
dense (and thus prove the Main Theorem).
Recall (from Section 4) that w0 is some element of G with the property

that w0(p+, p−) = (p−, p+). Note that there is a nonzero vector v ∈ z
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that is fixed by −w0. Indeed, w0 normalizes the space p+ ∩ p− = l; hence
it normalizes its split center a. Since w0 exchanges positive and negative
roots, the open Weyl chamber a+ is stable by the involution −w0. Since
a+ is a convex set, we may take v = v′ − w0(v′) for any v′ in a+. Then we
have indeed v 6= 0, v ∈ a ⊂ z and −w0(v) = v.
From now on, we fix a vector M0 collinear to v and such that ‖M0‖ =

2µ(2C).

Lemma 6.1. — Take any family g1, . . . , gk ∈ G n g satisfying the hy-
potheses (H1), (H2) and (H3) from Proposition 5.2, and also the additional
condition
(H4) For every i, M(gi) = M0.

Then these maps generate a free group acting properly discontinuously on
the affine space gAff .

Proof. — To show that the group is free, simply remark that any non-
empty reduced word on the g±1

i is conjugate to some cyclically reduced
word, which, by Proposition 5.2, is R-regular and in particular different
from the identity.
To show proper discontinuity, the first step is to prove the inequality (6.1)

below, which says that cyclically reduced elements of the group have Mar-
gulis invariants that grow unboundedly. Take any cyclically reduced word
g = gσ1

i1
· · · gσlil . Then from Proposition 5.2, it follows that

‖M(g)‖ >
∥∥∥∥∥

l∑

m=1
M(gσmim )

∥∥∥∥∥− lµ(2C).

On the other hand, we know that for every i and σ, we have

M(gσi ) = M0.

Indeed if σ = +1, this is true by hypothesis; if σ = −1, we have

M(g−1
i ) = −w0(M(gi)) = −w0(M0) = M0,

by Proposition 4.1 (i) and by definition of M0. We conclude that

(6.1)
‖M(g)‖ > ‖lM0‖ − lµ(2C)

= 2lµ(2C)− lµ(2C)
= lµ(2C).

Now let K be any compact subset of the affine space gAff , and suppose
that g is any reduced (not necessarily cyclically reduced) word on the g±1

i .
We need to show that when g is sufficiently long, we have g(K) ∩K = ∅.
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Note first that it is always possible to find an index i and a sign σ such
that gσi g is cyclically reduced. Then we have:

g(K) ∩K = ∅ ⇐⇒ gσi g(K) ∩ gσi (K) = ∅.
Setting K ′ =

⋃
i,σ g

σ
i (K) (which is of course still compact), it is sufficient

to prove that whenever g is cyclically reduced and sufficiently long, we have

(6.2) g(K) ∩K ′ = ∅.
Let φg be an optimal canonizing map for g, and let us define π̂z on the whole
space ĝ as the (orthogonal) projection onto z⊕ R0 parallel to d⊕ n+ ⊕ n−

(which may be seen as an affine map acting on gAff). Then by definition of
the Margulis invariant, we have

π̂z ◦ φg (g(K)) = τM(g) ◦ π̂z ◦ φg(K)
= π̂z ◦ φg(K) +M(g).

Now note that, on the one hand, g is 2C-non-degenerate by Proposition 5.2,
hence

‖π̂z ◦ φg(x− y)‖ 6 ‖φg(x− y)‖ 6 2C‖x− y‖
for any x, y ∈ gAff . On the other hand, recall the inequality (6.1):

‖M(g)‖ > lµ(2C),

where l is the length of g. It follows that whenever

l >
2C

µ(2C) max
x∈K,y∈K′

‖x− y‖,

the images π̂z ◦ φg(g(K)) and π̂z ◦ φg(K ′) are disjoint. This implies (6.2),
which in turn implies the conclusion. �

Proof of Main Theorem. — The strategy is now clear: we find a positive
constant C > 1 and a family of maps g1, . . . , gk ∈ Gn g (with k > 2) that
satisfy the conditions (H1) through (H4) and whose linear parts generate
a Zariski-dense subgroup of G, then we apply Lemma 6.1. We proceed in
several stages.

• By a result of Benoist (Lemma 7.2 in [6]), we may find a family
of maps γ1, . . . , γk ∈ G (that we shall see as elements of Gn g, by
identifying G with the stabilizer of R0), such that:
(i) Every γi is R-regular (this is (H1)).
(ii) For any two indices i, i′ and signs σ, σ′ such that (i′, σ′) 6=

(i,−σ), the spaces V >
γσ
i
and V 6

γσ
′

i′
are transverse.

(iii) Any single γi generates a Zariski-connected group.
(iv) All of the γi generate together a Zariski-dense subgroup of G.
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Note that Zariski-density is only possible if k > 2.
• Clearly, every pair of transverse spaces is C-non-degenerate for some

finite C; and here we have a finite number of such pairs. Hence if
we choose some suitable value of C (that we fix for the rest of this
proof), the hypothesis (H2) becomes a direct consequence of the
condition (ii) above.

• From condition (iii) (Zariski-connectedness), it follows that any al-
gebraic group containing some power γNi of some generator must
actually contain the generator γi itself. This allows us to replace ev-
ery γi by some power γNi without sacrificing condition (iv) (Zariski-
density). Clearly, conditions (i), (ii) and (iii) are then preserved as
well. If we choose N large enough, we may suppose that the num-
bers s(γ±1

i ) are as small as we wish: this gives us (H3). In fact, we
shall suppose that for every i, we have s(γ±1

i ) 6 s4(C) for an even
smaller constant s4(C), to be specified soon.

• To satisfy (H4), we replace the maps γi by the maps

gi := τφ−1
i

(M0) ◦ γi

(for 1 6 i 6 k), where φi is a canonizing map for γi.
We need to check that this does not break the first three condi-

tions. Indeed, for every i, we have γi = `(gi); even better, since the
translation vector φ−1

i (M0) lies in the subspace V =
γi stable by γi,

obviously the translation commutes with γi, hence gi has the same
geometry as γi (by this we mean that A>

gi = A>
γi = V >

γi ⊕ R0 and
A6
gi = A6

γi = V 6
γi ⊕ R0). Hence the gi still satisfy the hypotheses

(H1) and (H2), but now we have M(gi) = M0 (this is (H4)). As for
contraction strength, we have, by Lemma 2.25:

s(gi) .C s(γi)‖τM0‖ 6 s4(C)‖τM0‖,

and similarly for g−1
i . Recall that ‖M0‖ = 2µ(2C), hence ‖τM0‖

depends only on C. It follows that if we choose s4(C) small enough,
the hypothesis (H3) is satisfied.
We conclude that the group generated by the elements g1, . . . , gk

acts properly discontinuously (by Lemma 6.1), is free (by the same
result), nonabelian (since k > 2), and has linear part Zariski-dense
in G. �
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