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Abstract: The independent set problem for a given simple graph is to determine the size of a maximal set
of its pairwise non-adjacent vertices. We propose a new way of graph reduction leading to a new proof of
the NP-completeness of the independent set problem in the class of planar graphs and to the proof of NP-
completeness of this problem in the class of planar graphs having only triangular internal facets of maximal
vertex degree 18.
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1 Introduction
An independent set (briefly, i.s.) of a simple graph is a subset of its pairwise non-adjacent vertices. Amaximal
independent set (briefly, amaximal i.s.) of a graph𝐺 is an i.s. of the graph𝐺withmaximal number of vertices;
its size 𝛼(𝐺) is called the independence number of the graph 𝐺. The independent set problem (briefly, the IS
problem) for a given graph 𝐺 and a natural number 𝑘 is to check whether the inequality 𝛼(𝐺) ≥ 𝑘 holds or
not.

Several algorithmic instruments for the graph reduction are known for solving the IS problem. For exam-
ple, if in a graph𝐺 a vertex 𝑎 adjacently absorbs a vertex 𝑏 (that is, 𝑎𝑏 ∈ 𝐸(𝐺) and𝑁(𝑎) ⊇ 𝑁(𝑏) \ {𝑎}, where
𝑁(𝑣) is the neighbourhood of a vertex 𝑣), then 𝛼(𝐺) = 𝛼(𝐺 \ {𝑎}). This is the so-called the adjacency ab-
sorption rule. The adjacency absorption is a particular case of the so-called compressions [1] (a compression
is a self-mapping of the vertex set of a graphwhich is not an automorphism and under which any two distinct
non-adjacent vertices aremapped into distinct non-adjacent vertices). So, a compressions transforms a graph
into its induced subgraph; it obviously preserves the independence number. Recall that a graph𝐻 is induced
by a subgraph of a graph𝐺 if𝐻 is obtained by removing some vertices of the graph𝐺.

In the present paper, we propose a newmethod of graph transformation. This method is based on “local
surgery”: if in a given graph 𝐺 there is a fragment 𝐺1 with a special entry in the graph 𝐺, then the fragment
𝐺1 is replaced by the graph𝐺2; note that the difference between the independence numbers of the resulting
graph and the graph 𝐺 depends only on 𝐺1 and 𝐺2 and does not depend on 𝐺. Out method is a particular
case of the so-called replacements schemes introduced in [3]. In [3] a fairly general class of transformations is
considered underwhich the independence number is accurately preserved,moreover, it is noted that nothing
principally newwill arise if the independence number is allowed to change by some constant. However, in [3]
too little attention was paid to concrete replacements schemes and their applications to the analysis of the
computational complexity of the IS problem in various classes of graphs.

We shall employ our method to prove the NP-completeness of the IS problem in two classes of graphs.
The first class is the class of planar graphs P. The NP-completeness of the IS problem in the class Pwas first
proved in [6]; the principal idea of this paper is the “planarization” of a given graph; that is, an introduc-
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tion of a special “shunt” into each intersection of edges of the graph. Unfortunately, in [6] no explanation is
provided about how the corresponding “shunt” was obtained. Using the “local surgery” method we propose
a different “shunt”, whose construction is seemingly simpler. The second class is the set of planar almost-
triangulations with maximal vertex degree 18. Recall that a planar almost-triangulation is a planar graph in
which each face (except, possibly, an exterior face) is bounded by a 3-cycle. Our result improves to some ex-
tent the corresponding assertion from [4] on the NP-completeness of the IS problem in the class 4-connected
almost-triangulations with vertex-logarithmic maximal degree of vertices. For some available cases of poly-
nomial solvability of the IS problem in subsets of the class P, see [5,8–10].

2 Notation
Throughout we shall adopt the following notation:
≜means the equality by definition,
𝑎, 𝑏 denotes the set {𝑎, 𝑎 + 1, . . . , 𝑏}, where 𝑎 < 𝑏 are given integer numbers,
𝑁(𝑥) is the neighbourhood of a vertex 𝑥, deg(𝑥) is the degree of 𝑥,
if𝐺 is a graph and𝑉󸀠 ⊆ 𝑉(𝐺), then𝐺[𝑉󸀠] is the subgraph of the graph𝐺 induced by the vertex subset𝑉󸀠,
and𝐺\𝑉󸀠 is the result of removing from the graph𝐺 all elements of the set𝑉󸀠 (togetherwith their incident
edges),
𝑂2 is the empty graph with two vertices,𝐾1,3 is the graph with four vertices, of which one vertex is adja-
cent to the remaining three vertices, which are in turn pairwise non-adjacent.

3 The replacement operation and its significance
Let𝐻1 and𝐻2 be graphs,𝐴 ⊆ 𝑉(𝐻1) ∩ 𝑉(𝐻2). We say that𝐻1 and𝐻2 are 𝛼-similar with respect to𝐴 if there
exists a constant 𝑐 such that the equality 𝛼(𝐻1 \ 𝑋) = 𝛼(𝐻2 \ 𝑋) + 𝑐 is satisfied for any 𝑋 ⊆ 𝐴 (and in
particular, for𝑋 = ⌀). It is clear that 𝑐 = 𝛼(𝐻1) − 𝛼(𝐻2).

Let 𝐺 be some graph and let 𝐻 be some its induced subgraph. A subset 𝐴 ⊆ 𝑉(𝐻) will be called 𝐻-
separating if no vertex of the graph𝐻 \ 𝐴 is adjacent to any of the vertices of the graph𝐺 \ 𝑉(𝐻).

Let𝐻1 and𝐻2 be graphs,𝐴 ⊆ 𝑉(𝐻1)∩ 𝑉(𝐻2), and let𝐻1 and𝐻2 be𝛼-similar with respect to𝐴. Assume
that the graph 𝐺 contains an induced subgraph𝐻1 with an𝐻1-separating set 𝐴. The replacement of𝐻1 by
𝐻2 in the graph 𝐺 consists in the formation of a graph 𝐺∗ with the vertex set (𝑉(𝐺) \ 𝑉(𝐻1)) ∪ 𝑉(𝐻2) and
the edge set (𝐸(𝐺) \ 𝐸(𝐻1)) ∪ 𝐸(𝐻2).

The following lemma holds.

Lemma 1. If the graph 𝐺∗ is the result of the replacement of𝐻1 by𝐻2 in the graph 𝐺, then the graphs 𝐺∗ and
𝐺 are 𝛼-similar with respect to𝐴.

Proof. Assume that 𝐴 = {𝑣1, . . . , 𝑣𝑘}. Consider an arbitrary subset 𝐼 ⊆ 1, 𝑘. Let 𝐺𝐼 ≜ 𝐺 \ {𝑣𝑖| 𝑖 ∈ 𝐼} and
𝐺∗𝐼 ≜ 𝐺∗ \{𝑣𝑖| 𝑖 ∈ 𝐼}. Let 𝑆𝐼 be amaximal i.s. of the graph𝐺𝐼,𝑀𝐼 ≜ 𝑆𝐼 \𝑉(𝐻1) and𝑋𝐼 ≜ ⋃𝑥∈𝑀𝐼

(𝑁(𝑥)∩𝑉(𝐻1)),
where the neighbourhood of a vertex𝑥 is considered in the graph𝐺𝐼. Since𝑋𝐼 ⊆ 𝐴 and𝐴 is an𝐻1-separating
set, we have 𝛼(𝐺𝐼) = |𝑀𝐼| +𝛼(𝐻1 \𝑋𝐼). If the set𝑀𝐼 in the graph𝐺∗𝐼 is augmented with amaximal i.s. of the
graph𝐻2 \𝑋𝐼, thenwe obtain an i.s. of cardinality |𝑀𝐼|+𝛼(𝐻2 \𝑋𝐼). Therefore,𝛼(𝐺∗𝐼 ) ≥ |𝑀𝐼|+𝛼(𝐻2 \𝑋𝐼) =
𝛼(𝐺𝐼) − 𝛼(𝐻1 \ 𝑋𝐼) + 𝛼(𝐻2 \ 𝑋𝐼) = 𝛼(𝐺𝐼) − 𝛼(𝐻1) + 𝛼(𝐻2). The converse inequality is proved in the
same way.

The proof of Lemma 1 shows that 𝛼(𝐺∗) = 𝛼(𝐺) + 𝛼(𝐻2) − 𝛼(𝐻1).
Let𝐻 be some graph and 𝐴 ⊆ 𝑉(𝐻). Consider the familyM(𝐻, 𝐴) consisting of subsets 𝑋 ⊆ 𝐴 such

that 𝛼(𝐻 \ (𝐴 \ 𝑋)) > 𝛼(𝐻 \ (𝐴 \ 𝑌)) for any 𝑌 ⊂ 𝑋. For example, for a simple path𝐻 ≜ (𝑣1, 𝑣2, 𝑣3) the set
M(𝐻, {𝑣1, 𝑣2, 𝑣3}) coincides with the set {{𝑣1}, {𝑣2}, {𝑣3}, {𝑣1, 𝑣3}}. The following result holds.
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Lemma 2. Let𝐻1 and𝐻2 be graphs and𝐴 ⊆ 𝑉(𝐻1) ∩ 𝑉(𝐻2). Then𝐻1 and𝐻2 are 𝛼-similar with respect to𝐴
if and only ifM(𝐻1, 𝐴) =M(𝐻2, 𝐴).
Proof. It is clear that if𝐻1 and𝐻2 are 𝛼-similar with respect to𝐴, thenM(𝐻1, 𝐴) =M(𝐻2, 𝐴).

Assume that𝐴 = {𝑣1, . . . , 𝑣𝑘} and thatM(𝐻1, 𝐴) =M(𝐻2, 𝐴). For each 𝑖 ∈ 1, 2, we define the function
𝑓(𝐻𝑖,𝐴)(⋅) : {0, 1}𝑘 󳨀→ {0, . . . , 𝑘} as follows. For a Boolean vector (𝑥1, . . . , 𝑥𝑘) the value𝑓(𝐻𝑖,𝐴)(⋅) on this vector
is defined to be 𝛼(𝐻𝑖) − 𝛼(𝐻𝑖 \ {𝑣𝑗| 𝑥𝑗 = 1}). It is clear that both functions 𝑓(𝐻1,𝐴)(⋅) and 𝑓(𝐻2,𝐴)(⋅) are mono-
tone, and besides 𝑓(𝐻1,𝐴)(0, . . . , 0) = 𝑓(𝐻2,𝐴)(0, . . . , 0) = 0. Hence, for each 𝑖 ∈ 1, 2 the function 𝑓(𝐻𝑖,𝐴)(⋅)
is uniquely determined by the tuple (𝑀(𝑖)1 ,𝑀(𝑖)2 , . . . ,𝑀(𝑖)𝑘 ), where𝑀(𝑖)𝑗 is the set of all bottom arguments on
which the function 𝑓(𝐻𝑖,𝐴)(⋅) assumes the value 𝑗. For each 𝑖 ∈ 1, 2 the setM(𝐻𝑖, 𝐴) consists exactly of all
elements corresponding to the (bottom) arguments on which the value of the function 𝑓(𝐻𝑖,𝐴)(⋅) is changed.
Hence fromM(𝐻1, 𝐴) = M(𝐻2, 𝐴), 𝑓(𝐻1,𝐴)(0, . . . , 0) = 𝑓(𝐻2,𝐴)(0, . . . , 0) = 0 it follows that𝑀(1)𝑗 = 𝑀(2)𝑗 for
any 𝑗 ∈ 1, 𝑘. This proves that the functions 𝑓(𝐻1,𝐴)(⋅) and 𝑓(𝐻2,𝐴)(⋅) coincide. Hence𝐻1 and𝐻2 are 𝛼-similar
with respect to𝐴.

4 New proof of the NP-completeness of the IS problem in the class
of planar graphs

The classical proof of theNP-completeness of the IS problem in the classP, as proposed in [6], depends on the
polynomial reduction of the IS problem to this problem for planar graphs and is based on the following idea.
Let𝐺be anarbitrary graph. Consider the planar “drawing” of the graph𝐺 inwhich the vertices of𝐺 are shown
by points, and the edges of𝐺 by intervals. We shall assume that no three edges intersect at one point and no
edge contains any vertex as its inner point. It is clear that such a drawing always exists. Moreover, each such
embedding of the graph𝐺may be constructed in𝑂(|𝑉(𝐺)|)-time (see [7]). In the drawing, we consider each
intersection of two edges. The number of intersections of edges is estimated from above by (|𝐸(𝐺)|2 ). For a point
of intersection of any two intersecting edges (𝑎, 𝑏) and (𝑎󸀠, 𝑏󸀠), we consider a small Euclidean neighbourhood
of this point which does not contain any vertex or a part of an edge distinct from the two intersecting edges
under consideration. We remove from the graph𝐺 the edges (𝑎, 𝑏) and (𝑎󸀠, 𝑏󸀠), augment the resulting graph
with the edges (𝑎, 𝑣), (𝑢, 𝑏), (𝑎󸀠, 𝑣󸀠), (𝑢󸀠, 𝑏󸀠), and identify the vertices 𝑣, 𝑢, 𝑣󸀠, 𝑢󸀠 with similarly-named vertices
of the “shunt”𝐻 depicted in Fig. 1.

Fig. 1: The “shunt”𝐻
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Clearly, the graph thus obtained is planar. To see this it suffices to place the “shunt” 𝐻 in the neigh-
bourhood of the point of intersection of the edges (𝑎, 𝑏) and (𝑎󸀠, 𝑏󸀠) and place the vertices 𝑣, 𝑢, 𝑣󸀠, 𝑢󸀠 on the
boundary of this neighbourhood. According to [6], this “shunting” of each intersection point of edges in-
creases the independence number of the graph by 9. Thus, the IS problem is polynomially reducible to the
same problem in the class P.

Unfortunately, in [6] no explanation is given how the graph𝐻 was obtained. Next, using the “surgery”
from the previous section of the present paper, we construct a different “shunt”𝐻∗. Even though the graph
𝐻∗ contains more vertices than the graph 𝐻, the process of its construction is more clear, to our opinion,
than that of the graph𝐻.

Lemma 3. The graphs𝐺1 and𝐺2 from Fig. 2 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

The graph𝐺1 The graph𝐺2
Fig. 2: The graphs𝐺1 and𝐺2
Proof. The equality

M(𝐺1, {𝑣1, 𝑣2, 𝑣3, 𝑣4}) =M(𝐺2, {𝑣1, 𝑣2, 𝑣3, 𝑣4}) = {{𝑣1, 𝑣2}, {𝑣1, 𝑣3}, {𝑣2, 𝑣4}, {𝑣1, 𝑣2, 𝑣3, 𝑣4}}
may be verified directly. Hence by Lemma 2 the graphs𝐺1 and𝐺2 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4}.
Lemma 4. The graphs𝐺3 and𝐺4 from Fig. 3 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}.

The graph𝐺3 The graph𝐺4
Fig. 3: The graphs𝐺3 and𝐺4
Proof. In the graph 𝐺3 we consider the subgraph whose edges are shown in bold in Fig. 4. This subgraph is
isomorphic to the graph 𝐺1. We replace the subgraph by the graph 𝐺2 (see Fig. 4). In the resulting graph we
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also consider the subgraph whose edges are shown in bold and which is isomorphic to 𝐺1, and replace it by
𝐺2 (see Fig. 4). As a result, we get the graph isomorphic to the graph𝐺4. Hence by Lemmas 1 and 3 the graphs
𝐺3 and𝐺4 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}.

Fig. 4: Transformation of the graph𝐺3 into the graph𝐺4
Lemma 5. The graphs𝐺5 and𝐺7 from Figs. 5 and 6 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

The graph𝐺5 The graph𝐺6
Fig. 5: The graphs𝐺5 and𝐺6
Proof. It is easy to check thatM(𝐺5, {𝑣1, 𝑣2, 𝑣3, 𝑣4}) = {{𝑣1, 𝑣3}, {𝑣2, 𝑣4}, {𝑣1, 𝑣2, 𝑣3, 𝑣4}}. Consider the graph
𝐺6 from Fig. 5. We claim that the setM(𝐺6, {𝑣1, 𝑣2, 𝑣3, 𝑣4}) is the same.

All vertices of the graph 𝐺6 may be split into 3 cycles: (𝑣4, 𝐴𝐷1, 𝐶𝐷2, 𝐵𝐶1), (𝑣2, 𝐴𝐷2, 𝐴𝐵2, 𝐵𝐶2),
(𝑣1, 𝐴𝐵1, 𝐴𝐵3, 𝑣3, 𝐶𝐷3, 𝐶𝐷1). Any i.s. of the graph 𝐺6 contains at most two vertices of each of the first two
cycles and at most three vertices of the third cycle. Assume that 𝛼(𝐺6) = 7. Then any maximal i.s. of the
graph 𝐺6 contains exactly two vertices of the first two cycles and three vertices of the third cycle. In the first
cycle, a maximal i.s. of the graph 𝐺6 may contain either only the vertices 𝐴𝐷1 and 𝐵𝐶1 or only the vertices
𝑣4 and𝐶𝐷2; the second cycle may contain either𝐴𝐷2 and𝐵𝐶2 or𝐴𝐵2 and 𝑣2. The pairs of vertices (𝑣4, 𝐶𝐷2)
and (𝑣2, 𝐴𝐵2) may not simultaneously belong to any i.s. of the graph 𝐺6. Hence, for any maximal i.s. of the
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graph𝐺6 at least one of the pairs of vertices (𝐴𝐷1, 𝐵𝐶1) and (𝐴𝐷2, 𝐵𝐶2) belong to it. Consequently, for any
maximal i.s. of the graph 𝐺6 at least one of the two families of vertices (𝐶𝐷1, 𝐶𝐷3) and (𝐴𝐵1, 𝐴𝐵3) does
not belong to it. Hence, no maximal i.s. of the graph 𝐺6 may contain simultaneously three vertices of the
cycle (𝑣1, 𝐴𝐵1, 𝐴𝐵3, 𝑣3, 𝐶𝐷3, 𝐶𝐷1), which leads to a contradiction. As a result, 𝛼(𝐺6) < 7. Additionally,
{𝑣1, 𝑣4, 𝐴𝐷2, 𝐶𝐷2, 𝐵𝐶2, 𝐶𝐷3} is an i.s. of the graph𝐺6, and hence, 𝛼(𝐺6) = 6.

Fig. 6: The graph𝐺7
Consider in the graph 𝐺6 the following subsets of its vertices {𝑣1, 𝑣2, 𝐴𝐵2, 𝐴𝐵3, 𝐴𝐷1, 𝐵𝐶1},

{𝑣3, 𝑣4, 𝐶𝐷1, 𝐶𝐷2, 𝐴𝐷2, 𝐵𝐶2}, {𝑣2, 𝑣3, 𝐴𝐵1, 𝐴𝐵2, 𝐴𝐷1, 𝐵𝐶1}, {𝑣1, 𝑣4, 𝐶𝐷2, 𝐶𝐷3, 𝐴𝐷2, 𝐵𝐶2}. Each such
a subset is an i.s. of the graph𝐺6. Hence 𝛼(𝐺 \ {𝑣𝑖, 𝑣(𝑖+1) mod 4}) = 𝛼(𝐺) for any 𝑖 ∈ 1, 4.

After removing the vertices 𝑣2 and 𝑣4 from the graph 𝐺6 all the remaining vertices belong
to the cycle (𝑣1, 𝐴𝐵1, 𝐴𝐷2, 𝐴𝐵2, 𝐵𝐶2, 𝐴𝐵3, 𝑣3, 𝐶𝐷3, 𝐵𝐶1, 𝐶𝐷2, 𝐴𝐷1, 𝐶𝐷1) consisting of 12 vertices. If
𝛼(𝐺6 \ {𝑣2, 𝑣4}) = 6, then the vertices of any maximal i.s. of the graph 𝐺6 \ {𝑣2, 𝑣4} should interlace in this
cycle, but this is impossible. Besides, in the graph 𝐺6 \ {𝑣2, 𝑣4} there exists an i.s. {𝑣1, 𝐴𝐷2, 𝐵𝐶2, 𝑣3, 𝐵𝐶1};
that is, 𝛼(𝐺6 \ {𝑣2, 𝑣4}) = 5.

Consider the graph𝐺6\{𝑣1, 𝑣3}. Assume that𝛼(𝐺6\{𝑣1, 𝑣3}) = 6. Consider two subgraphsof the graph𝐺6\
{𝑣1, 𝑣3} induced by the sets of vertices {𝑣4, 𝐴𝐷1, 𝐵𝐶1, 𝐶𝐷1, 𝐶𝐷2, 𝐶𝐷3} and {𝑣2, 𝐴𝐷2, 𝐵𝐶2, 𝐴𝐵1, 𝐴𝐵2, 𝐴𝐵3}.
Clearly, none of these subgraphsmay containmore than three vertices of any i.s. of the graph𝐺6\{𝑣1, 𝑣3}. The
first of these subgraphs contains only two three–vertex i.s. (these are {𝑣4, 𝐶𝐷2, 𝐶𝐷1} and {𝑣4, 𝐶𝐷2, 𝐶𝐷3}); the
second subgraph also contains only two three-vertex i.s. (these are {𝑣2, 𝐴𝐵2, 𝐴𝐵1} and {𝑣2, 𝐴𝐵2, 𝐴𝐵3}). Since
the vertices 𝐶𝐷2 and 𝐴𝐵2 may not simultaneously belong to any i.s. of the graph 𝐺6 \ {𝑣1, 𝑣3}, we obtain
a contradiction with the equality 𝛼(𝐺6 \ {𝑣1, 𝑣3}) = 6. Additionally, in the graph𝐺6 \ {𝑣1, 𝑣3} there exists the
i.s. {𝑣4, 𝐶𝐷2, 𝐶𝐷1, 𝑣2, 𝐴𝐵1}; that is, 𝛼(𝐺6 \ {𝑣2, 𝑣4}) = 5.

After removing from the graph 𝐺6 any three vertices lying in the set {𝑣1, 𝑣2, 𝑣3, 𝑣4}, one of the fol-
lowing i.s. is formed in the resulting subgraph: {𝑣1, 𝐴𝐷1, 𝐴𝐵2, 𝐴𝐵3, 𝐶𝐷3}, {𝑣2, 𝐴𝐵1, 𝐴𝐵2, 𝐶𝐷3, 𝐴𝐷1},
{𝑣3, 𝐵𝐶1, 𝐴𝐵2, 𝐴𝐵1, 𝐶𝐷1}, {𝑣4, 𝐶𝐷2, 𝐶𝐷1, 𝐵𝐶2, 𝐴𝐵1}. Hence, using the arguments from the previous two
paragraphs, we see that the independence number of the resulting subgraph is 5.
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After removing the vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 from the graph 𝐺6, the vertex set of the resulting graph
may be covered by two cycles (𝐴𝐷1, 𝐶𝐷1, 𝐶𝐷3, 𝐵𝐶1, 𝐶𝐷2) and (𝐴𝐷2, 𝐴𝐵1, 𝐴𝐵3, 𝐵𝐶2, 𝐴𝐵2). Each of
these cycles contains at most two vertices of any i.s. of the graph 𝐺6 \ {𝑣1, 𝑣2, 𝑣3, 𝑣4}, and hence,
𝛼(𝐺6 \ {𝑣1, 𝑣2, 𝑣3, 𝑣4}) < 5. Besides, the graph 𝐺6 \ {𝑣1, 𝑣2, 𝑣3, 𝑣4} contains the i.s. {𝐶𝐷1, 𝐵𝐶1, 𝐴𝐵1, 𝐵𝐶2}. It
follows that 𝛼(𝐺6 \ {𝑣1, 𝑣2, 𝑣3, 𝑣4}) = 4.

Thus,M(𝐺5, {𝑣1, 𝑣2, 𝑣3, 𝑣4}) = M(𝐺6, {𝑣1, 𝑣2, 𝑣3, 𝑣4}). Hence, by Lemma 2 the graphs 𝐺5 and 𝐺6 are 𝛼-
similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

The process of generation of the graph 𝐺7 from the graph 𝐺6 is depicted in Fig. 7. In each step of this
process one considers a subgraph induced by the boldface edges. This subgraph, which is isomorphic to the
graph𝐺3, is replaced by the graph𝐺4.

Hence by Lemmas 1 and 4 the graphs 𝐺6 and 𝐺7 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4}. This proves
that the graphs𝐺5 and𝐺7 are 𝛼-similar with respect to {𝑣1, 𝑣2, 𝑣3, 𝑣4}.
The “shunt”𝐻∗, mentioned at the beginning of the present section coincides with the graph𝐺7.

Fig. 7: The process of generation of the graph𝐺7 from the graph𝐺6
5 NP-completeness of the IS problem in one class of planar
almost-triangulations with maximal vertex degree 18

The main result of the present section is the following statement.

Theorem 1. The IS problem is NP-complete in the class of planar almost-triangulations with maximal vertex
degree 18.

It is well known that the IS problem is NP-complete in the class P(3) of planar graphs with vertex degree at
most 3. This follows, for example, from the results of [6] and the machinery of reduction of graph vertices
of [2]. We claim that the IS problem in the classP(3) is polynomially reducible to the same problem for planar
almost-triangulations with maximal vertex degree 18. The result of Theorem 1 then follows.
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If 𝑣 is a pendant vertex of the graph 𝐺 and if 𝑢 is the neighbour of 𝑣, then 𝛼(𝐺) = 𝛼(𝐺 \ {𝑢}) by the

adjacency absorption rule. If𝐺1, . . . , 𝐺𝑝 are all connected components of the graph𝐺, then𝛼(𝐺) =
𝑝
∑𝑖=1 𝛼(𝐺𝑖).

Thus, the IS problem in the class P(3) is polynomially reducible to the same problem for connected graphs
from P(3) without pendant vertices.

Lemma 6. Let the graph𝑂2 be formed by the vertices 𝑣 and 𝑢, and let the graph𝐾1,3 be formed by the vertex 𝑥
and its neighbours 𝑦, 𝑣, 𝑢, Then they are 𝛼-similar with respect to {𝑣, 𝑢}.

Proof. The equalityM(𝑂2, {𝑣, 𝑢}) = M(𝐾1,3, {𝑣, 𝑢}) may be verified directly. Hence the graphs 𝑂2 and 𝐾1,3
are 𝛼-similar with respect to {𝑣, 𝑢} by Lemma 2.

We note that if in the embedding of a planar graph some edge lies inside a face, thenwhen counting the edges
bounding this edge we count this edge two times. So, for example, in Fig. 8, the faces are bounded by seven
and eight edges, respectively.

Fig. 8: The faces bounded by 7 and 8 edges

Below we will implement a polynomial reduction of the IS problem in the set of connected P(3)-graphs
without pendant vertices to the IS problem in the class of planar almost-triangulations with maximal vertex
degree 18. This implementation will be represented as a solid text without separation into lemmas and the
theorem.

Consider an arbitrary connected graph 𝐺 ∈ P(3) without pendant vertices and take its planar embed-
ding. All its faces are bounded by cycles. For each inner face of the embedding of the graph𝐺we execute the
following operation consisting of two suboperations.

Suboperation 1. This operation applies to the inner face of the graph 𝐺 bounded by 𝑛 ≥ 6 edges. Such
a face is split by 𝑘 smaller faces, each having five or six cycle edges (see Fig. 9).

By Lemmas 1 and 6 a subdivision of an inner face of the graph 𝐺 increases its independence number
by 𝑘 − 1.

Suboperation 1 is applied to each inner face of the graph𝐺. As a result, we get a planar graph𝐺󸀠 in which
every vertex has degree at most 6 (because each vertex of the graph𝐺 is contained in at most three its faces).
The graph 𝐺󸀠 contains inner faces of only the following types: those bounded by 3-, 4-, 5-cycles and those
bounded by seven and eight edges, as shown in Fig. 9.

Suboperation 2. An inner face of the graph 𝐺󸀠 is subdivided into triangles as shown in Fig. 10 (the edges
of the faces of the graph𝐺󸀠 are shown in bold).

Applying Suboperation 2 to each inner face of the graph 𝐺󸀠 we get the graph 𝐺󸀠󸀠. Consider in each of
the subdivisions from Fig. 10 the vertex labeled by the letter𝐴. Such a vertex will be called an𝐴-vertex. The
neighbourhood of each of the 𝐴-vertices is strictly contained in the union of neighbourhoods of any of its
neighbours and of the neighbour itself. Hence, by the adjacency absorption rule, the set of all𝐴-vertices lies
in some maximal i.s. of the graph𝐺󸀠󸀠. Hence, the removing of any𝐴-vertex together with its neighbourhood
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from the graph 𝐺󸀠󸀠 decreases its independence number exactly by 1. So, after removal of all 𝐴-vertices and
their neighbourhoods, we get the graph isomorphic to the graph𝐺󸀠.

Fig. 9: Subdivision of a face of the graph, Suboperation 1

Fig. 10: Subdivision of a face of the graph, Suboperation 2

By the construction of the graph𝐺󸀠󸀠, we see that if 𝑥 is a vertex of maximal degree and deg(𝑥) ≥ 8, then
𝑥 is not a pendant vertex of the graph 𝐺󸀠. If 𝑥 ∈ 𝑉(𝐺), then this vertex is contained in at most three faces of
the graph𝐺, and hence, in atmost six faces of the graph𝐺󸀠. Hence, in the graph𝐺󸀠󸀠, in each face of the graph
𝐺󸀠 at most two new edges are incident with 𝑥. Hence, deg(𝑥) ≤ 18. If 𝑥 is a vertex of the graph 𝐺󸀠 incident
with a pendant vertex of this graph, then 𝑥 lies precisely in two edges of the graph𝐺󸀠. By the construction of
the graph𝐺󸀠󸀠, one of these faces contains at most five edges incident with 𝑥, and the other face, at most four
such edges. As a result, deg(𝑥) ≤ 7. Consequently, the degree of any vertex of the graph𝐺󸀠󸀠 is at most 18.

Thus, the IS problem on the setP(3) is polynomially reducible to the same problem in the class of planar
almost-triangulations with maximal vertex degree 18. The result of Theorem 1 then follows.
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