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1. Introduction

A proper coloring of a graph G is a mapping c : V (G) −→ N such that c(u) ̸= c(v) for any two adjacent vertices u and
v of G. Elements of the set {c(v)| v ∈ V (G)} are said to be colors. The chromatic number of a graph G denoted by χ (G) is the
minimum number k such that G can be properly colored in k colors. For a given graph G and a number k, the coloring problem
(the col problem, for short) is to decide whether χ (G) ≤ k or not.

For a given graph G and a function w : V (G) −→ N, a pair (G, w) is called a weighted graph. For a weighted graph (G, w),
the weighted coloring problem (the wcol problem, for short) is to find the smallest number k such that there is a function
c : V (G) −→ 2{1,2,...,k}, where |c(v)| = w(v) for any v ∈ V (G) and c(v1)∩ c(v2) = ∅ for any edge v1v2 of G. Thewcol problem
becomes the col problem for the all-ones vector of vertex weights.

A class of simple graphs is called hereditary if it is closed under deletion of vertices. Any hereditary (and only hereditary)
graph class X can be defined by a set of its forbidden induced subgraphs S. We write X = Free(S), and the graphs in X are
said to be S-free. If S = {G}, then we write ‘‘G-free’’ instead of ‘‘{G}-free’’.

The computational complexity of the col problem was intensively studied for families of hereditary classes defined by
small graphs only or by a small number of forbidden induced structures. Wewouldmention the papers [2–6,8–12,14] in this
field. The computational complexity of the col problem was completely determined for all classes of the form Free({G}) [9].
Namely, if ⊆i is the induced subgraph relation, then the problem is polynomial-time solvable for Free({G}) whenever G⊆i P4
or G⊆i P3 + K1, otherwise it is NP-complete. A study of forbidden pairs was also initiated in [9]. The following result shows
some recent advances in classification of the complexity of the col problem for {G1,G2}-free graphs. Note that by symmetry
the graphs G1 and G2 may be swapped in each of the subcases of the theorem.

Theorem 1 ([5]). Let G1 and G2 be two fixed graphs. The coloring problem is NP-complete for Free({G1,G2}) if:

1. Cp ⊆i G1 for p ≥ 3, and Cq ⊆i G2 for q ≥ 3
2. K1,3 ⊆i G1, and K1,3 ⊆i G2 or K2 + O2 ⊆i G2 or Cr ⊆i G2 for r ≥ 4 or K4 ⊆i G2
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3. G1 and G2 contain a spanning subgraph of a 2K2 as an induced subgraph
4. bull⊆i G1, and K1,4 ⊆i G2 or C4 + K1 ⊆i G2
5. C3 ⊆i G1, and K1,p ⊆i G2 for p ≥ 5
6. C3 ⊆i G1 and P22 ⊆i G2
7. Cp ⊆i G1 for p ≥ 5, and G2 contains a spanning subgraph of a 2K2 as an induced subgraph
8. Cp + K1 ⊆i G1 for p ∈ {3, 4} or Cq ⊆i G1 for q ≥ 6, and G2 contains a spanning subgraph of a 2K2 as an induced subgraph
9. K5 ⊆i G1 and P7 ⊆i G2

10. K6 ⊆i G1 and P6 ⊆i G2.

It is polynomial-time solvable for Free({G1,G2}) if:

1. G1 is an induced subgraph of a P4 or a P3 + K1
2. G1 ⊆i K1,3, and G2 ⊆i hammer or G2 ⊆i bull or G2 ⊆i P5
3. G1 ̸= K1,5 is a forest on at most six vertices or G1 = K1,3 + 3K1, and G2 ⊆i paw
4. G1 ⊆i sK2 or G1 ⊆i P5 + Os for s > 0, and G2 is a complete graph or G2 ⊆i hammer
5. G1 ⊆i P4 + K1 or G1 ⊆i P5, and G2 ⊆i P4 + K1 or G2 ⊆i P5
6. G1 ⊆i K2 + O2, and G2 ⊆i 2K2 + K1 or G2 ⊆i P3 + O2 or G2 ⊆i P3 + K2

7. G1 ⊆i K2 + O2, and G2 ⊆i 2K2 + K1 or G2 ⊆i P3 + O2 or G2 ⊆i P3 + P2
8. G1 ⊆i K2 + Os for s > 0 or G1 = P5, and G2 ⊆i K2 + Ot for t > 0
9. G1 ⊆ O4 and G2 ⊆ P3 + O2

10. G1 ⊆ P5, and G2 ⊆i C4 or G2 ⊆ P3 + O2.

For all but three cases eitherNP-completeness or polynomial-time solvabilitywas shown for the colproblem in the family
of all hereditary classes defined by four-vertex forbidden induced structures [10]. A similar result was obtained in [11] for
two connected five-vertex forbidden induced fragments, where the number of open cases was 13. A list of the open cases is
presented below, where the numbers in parentheses show the number of sets of the given type.

1. {K1,3,G}, where G ∈ {bull, butterfly} (2)
2. {fork, bull} (1)
3. {P5,G}, where G is an arbitrary connected five-vertex complement graph of the line graph of a forest with at most 3

leaves in each connected component and G ̸∈ {K5, gem} (10).

Recently, the number of the open cases was reduced to 10 by showing that the col problem can be solved in polynomial
time for Free({P5, P5}), Free({K1,3, bull}), Free({P5, P3 + O2}) [8,12]. Next, the number of the remaining open cases was
reduced to eight by showing that the col problem can be polynomially solved for {P5, P3 + P2}-free graphs and for
{P5, Kp −e}-free graphs [14]. In the present paper we also narrow the set of the open cases by proving that thewcol problem
can be solved for {P5, banner}-free graphs and for {P5, dart}-free graphs in polynomial time on the sumof vertexweights. As a
corollary, this result gives polynomial-time solvability of the col problem for {P5, banner}-free graphs and for {P5, dart}-free
graphs. Themain result relies on the Strong Perfect Graph Theorem and on the polynomial-time algorithm to solve thewcol
problem for perfect graphs.

2. Notation

As usual, Pn, Cn,On, Kn stand for a simple path, a chordless cycle, an edgeless graph, and a complete graph on n vertices,
respectively. A graph Kp,q is a complete bipartite graph with p vertices in the first part and q vertices in the second one. A
graph Kp − e can be obtained from a Kp by deleting an arbitrary edge.

The graphs paw, bull, hammer, fork, gem, butterfly, banner, dart are depicted in Fig. 1.
For a vertex x of a graph,N(x) is its neighborhood. For a graphG and a subset V ′

⊆ V (G),G(V ′) is the subgraph of G induced
by V ′. A graph G1 + G2 is the disjoint union of graphs G1 and G2 having disjoint sets of vertices. A graph kG is the disjoint
union of k copies of a graph G. A graph G is the complement graph of a graph G.

Let A and B be disjoint subsets of vertices of a given graph. If all possible edges are present between the sets A and B, then
A is said to be complete to B. If no edges between A and B are present, then A is said to be anti-complete to B.

The symbol ‘‘≜’’ means the equality by definition.

3. Auxiliary results

3.1. Prime graphs and their application to the weighted coloring problem

Let G be a graph. A non-empty setM ⊆ V (G) is amodule in G if either x is adjacent to all elements ofM or to none of them
for each x ∈ V (G) \ M . A module in a graph is trivial if it contains only one vertex or all vertices of the graph, otherwise it is
non-trivial. A graph is prime if all its modules are trivial.

Let [X ]P be the class of all graphs whose every prime induced subgraph belongs to X .
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Fig. 1. The graphs paw, bull, hammer, fork, gem, butterfly, banner, dart .

Lemma 1 ([8]). If thewcol problem can be solved for a hereditary class X in polynomial time on the sum of weights, then it can
be solved for [X ]P in polynomial time on the sum of vertex weights as well.

3.2. Properties of prime {P5, banner}-free graphs and {P5, dart}-free graphs containing long induced odd cycles

Lemma 2. No prime {P5, banner}-free graph containing an induced odd cycle of length at least 5 contains a triangle.

Proof. Assume the opposite, i.e. there is a prime {P5, banner}-free graph G ≜ (V , E) containing an induced odd cycle C of
length at least 5 and a triangle. Then G is connected, as it is prime and it contains at least 5 vertices. We will show that
there exists a vertex adjacent to all vertices of C . To this end, it is sufficient to show that there is a vertex adjacent to two
consecutive vertices of C . Indeed, if a vertex x has two adjacent neighbors on C , then {x} is complete to V (C). Let us consider
a longest path P ≜ (v1, . . . , vk) of vertices of C each adjacent to x. Suppose that k ̸= |V (C)|. Then 2 ≤ k ≤ |V (C)| − 2, as G is
P5-free. Let vk+1 be the neighbor of vk on C distinct from vk−1, and let vk+2 be the neighbor of vk+1 on C distinct from vk. As
P is longest, xvk+1 ̸∈ E. As G is P5-free, xvk+2 ̸∈ E. Then vk−1, vk, vk+1, vk+2, and x induce a banner .

The distance between a vertex v and the cycle C is the minimum among usual distances between v and vertices of C . Let
Ni be the set of vertices v such that the distance between v and C is equal to i. Clearly, N0 = V (C). As G is banner-free, any
triangle ofG has a vertex inN0∪N1∪N2. Similarly, some triangle has a vertex inN0∪N1. Suppose that a triangle T ofG and the
cycle C have a common vertex u. We may assume that V (T ) ∩ V (C) = {u}, otherwise some vertex of T has two consecutive
neighbors on C and this case has already been considered in the first paragraph. As G is {P5, banner}-free, either a vertex of
V (T ) \ {u} is adjacent to a neighbor of u on C or V (T ) \ {u} is complete to {w1, w2}, where w1 and w2 lie at distance 2 from u
in C . Indeed, if V (T )\ {u} = {u1, u2}, {u1, u2} is not complete to {w1, w2}, and {v1, v2} is anti-complete to {u1, u2}, where vi is
the common neighbor of u andwi on C , then u1, u2, u, and either v1, w1 or v2, w2 induce a P5 or a banner . As C is odd, the last
observation leads to the fact that some element of V (T ) \ {u} has two consecutive neighbors on C . Now suppose that there
is a triangle T ′ of G such that V (T ′)∩ N0 = ∅ and V (T ′)∩ N1 ̸= ∅. We may assume that no two vertices of T ′ have a common
neighbor on C , for otherwise we are back in the previous case. If a1 ∈ V (T ′)∩ N1, then a1 must have two adjacent neighbors
on C . Otherwise, all vertices of T ′, a neighbor a2 of a1 on C , and a neighbor of a2 on C induce a banner , as G is P5-free.

In all possible cases we obtained that there is a vertex of G, which is adjacent to all vertices of C .
Let V ′ be the set of all vertices of G each adjacent to all vertices of C . This set is not empty. Let V ′′ be the set of all vertices

of the connected component of G \ V ′ containing C . We will show that V ′′ is a module in G. It is obvious whenever V ′
= N1.

Therefore, wewill suppose that V ′
̸= N1. Any element ofN1 \V ′ has no two consecutive neighbors on C . Hence, if |V (C)| = 5,

then any element of N1 \ V ′ has exactly one neighbor on C or exactly two non-adjacent neighbors on it, as G is {P5, banner}-
free. As G is {P5, banner}-free, V ′ is complete toN1 \V ′ whenever C has exactly 5 vertices. Suppose that |V (C)| ≥ 7. Let v ∈ V ′

and u ∈ N1 \ V ′. There are adjacent vertices v1 and v2 on C , a vertex v3 ∈ V (C) such that v1u ̸∈ E, v2u ̸∈ E, v3u ∈ E and
v1v3 ̸∈ E, v2v3 ̸∈ E, as C is an odd cycle of length at least 7 and none of the elements ofN1 \V ′ has two consecutive neighbors
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on C . The vertices v and u are adjacent, otherwise v1, v2, v, v3, u induce a banner . Hence, V ′ is complete to N1 \ V ′ whenever
|V (C)| ≥ 7.

Let a ∈ V ′′
∩N2. Hence, there is a vertex b ∈ V ′′

∩N1 such that ab ∈ E. Clearly, b ∈ N1 \V ′. As C is odd and b ∈ N1 \V ′, the
vertex b has two adjacent non-neighbors c ′ and c ′′ on C . The vertex a is adjacent to all vertices of V ′, for otherwise, c ′, c ′′, a, b,
and any vertex of V ′ induce a banner . Hence, V ′ is complete to N2 ∩V ′′. As V ′

⊂ N1, none of the elements of V ′ has a neighbor
in N3. Hence, N3 ∩ V ′′

= ∅, to avoid an induced banner . Therefore, V ′′ is non-trivial module in G. ■

Recall that a dominating set of a graph G is a subset D ⊆ V (G) such that any element of V (G) \ D has a neighbor in D.

Lemma 3. No prime {P5, dart}-free graph containing an induced odd cycle of length at least 7 contains a triangle. If a prime
{P5, dart}-free graph contains an induced 5-cycle that is not a dominating set, then it contains no triangles.

Proof. Assume that there is a prime {P5, dart}-free graph G ≜ (V , E) containing a triangle. Additionally, assume that C is an
induced odd cycle of G of length at least 5, and that if C = C5, then V (C) is not a dominating set of G. Therefore G is connected.

Let Ni be the set of vertices of G lying at distance i from C . Clearly, N2 ̸= ∅, if C is of length five. Let a vertex x be adjacent
to at least two consecutive vertices of C . If C has exactly 5 vertices and x is not adjacent to all its vertices, then x has exactly
two or three consecutive neighbors on C , as G is P5-free. Hence, {x} is complete to

⋃
i≥2Ni, as G is dart-free. Hence, G contains

an induced dart . Therefore, xmust be adjacent to all vertices of C .
Suppose that |V (C)| ≥ 7. Let us consider a longest path P ≜ (v1, . . . , vk) of vertices of C each adjacent to x. Suppose that

k ̸= |V (C)|. Then 2 ≤ k ≤ |V (C)| − 2, as G is P5-free. Let v0 be the neighbor of v1 on C distinct from v2, and let vk+1 be
the neighbor of vk on C distinct from vk−1. As P is longest, xv0 ̸∈ E and xvk+1 ̸∈ E. If k ≥ 5, then v0, v2, v3, x, v5 induce a
dart . If 3 ≤ k ≤ 4, then v0vk+1 ̸∈ E and v0, v1, v2, x, vk+1 induce a dart . If k = 2, then x, v0, v1, v2, v4 induce a dart . Hence,
k = |V (C)|, i.e. xmust be adjacent to all vertices of C .

So, any vertex having at least two adjacent neighbors on C must be adjacent to all vertices of C .
Let V ′ be the set of all vertices in N1 each adjacent to all vertices of C . Let V ′′ be the set of all vertices of N1 each having

not a pair of adjacent neighbors on C . Clearly, N1 = V ′
∪ V ′′. As G is dart-free, V ′ is complete to V (C)∪ V ′′

∪
⋃

i≥2Ni. Hence,
V (C) ∪ V ′′

∪
⋃

i≥2Ni is a non-trivial module in G whenever V ′
̸= ∅.

Let us justify that V ′
̸= ∅. Suppose that V ′

= ∅. Hence, none of the elements of N1 has two adjacent neighbors on C . If
there is a triangle (a, b, c), where a ∈ V (C), then, to avoid an induced P5 or dart , each of the vertices b and c is simultaneously
adjacent to both vertices w1 and w2 that are at distance two from a in C . Hence, w′

1, w
′

2, w1, b, c induce a dart , where w′

i is
the common neighbor of a and wi on C , i = 1, 2. We just proved that any two adjacent vertices both lying in N1 have not a
common neighbor on C . If (a′, b′, c ′) is a triangle of G such that {a′, b′, c ′

} ∩ V (C) = ∅ and a′
∈ N1, then, as C is odd, there are

pairwise distinct vertices a′′, a′′

1, a
′′′ on C such that a′a′′

∈ E, a′a′′

1 ̸∈ E, a′a′′′
̸∈ E, a′′a′′

1 ∈ E, a′′

1a
′′′

∈ E. Let a′′

2 be the neighbor
of a on C distinct from a′′

1 . As G is P5-free, none of the vertices a′′

1 and a′′

2 has a neighbor in {b′, c ′
}. To avoid a dart induced by

a′′′, a′′, a′, b′, c ′, the vertex a′′′ must have a neighbor in {b′, c ′
}. Then a′′′, a′, b′, c ′, a′′

2 induce a dart . Hence, we may suppose
that any triangle of G has not a vertex in N0 ∪N1. Let i∗ ≜ min{i| Ni contains a vertex of some triangle}, and let T be a triangle
having a vertex of Ni∗ . Clearly, i∗ > 1. Then all vertices of T , some vertex in Ni∗−1, and a vertex of C induce a dart . We have a
contradiction with the initial assumption. ■

3.3. Some properties of P5-free graphs and {P5, dart}-free graphs containing an induced 5-cycle

Let G ≜ (V , E) be a connected P5-free graph containing an induced C5 ≜ (v1, v2, v3, v4, v5). We associate the following
notation with G taking the indices modulo 5 throughout this subsection:

• Vi ≜ {x ̸∈ V (C5)| N(x) ∩ V (C5) = {vi−1, vi+1}},
• V ′

i ≜ {x ̸∈ V (C5)| N(x) ∩ V (C5) = {vi−1, vi, vi+1}},
• V ′′

i ≜ {x ̸∈ V (C5)| N(x) ∩ V (C5) = V (C5) \ {vi}},
• V ′′′

i ≜ {x ̸∈ V (C5)| N(x) ∩ V (C5) = {vi−2, vi, vi+2}},
• V ′′′′ be the set of all vertices adjacent to all vertices of the 5-cycle.

Lemma 4 ([14]). Every element of V \ V (C5) having a neighbor on the 5-cycle belongs to
5⋃

j=1

(Vj ∪ V ′

j ∪ V ′′

j ∪ V ′′′

j ) ∪ V ′′′′.

For each i, none of the elements of Vi ∪ V ′

i has a neighbor outside
⋃5

j=1N(vj).

Lemma 5. For each i, every of the following statements is true:
(1) The set Vi is complete to⋃

j∈{i−1,i+1}

(Vj ∪ V ′

j ∪ V ′′

j ) ∪ V ′′′

i

and Vi is anti-complete to
⋃

j∈{i−2,i+2}V
′

j .
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(2) The set V ′

i is complete to⋃
j∈{i−1,i+1}

(Vj ∪ V ′

j ) ∪

⋃
j∈{i−2,i+2}

V ′′

j ∪

⋃
j∈{i−2,i,i+2}

V ′′′

j

and V ′

i is anti-complete to
⋃

j∈{i−2,i+2}Vj ∪
⋃

j∈{i−1,i+1}V
′′′

j .
(3) The set V ′′

i is complete to⋃
j∈{i−1,i+1}

Vj ∪
⋃

j∈{i−2,i+2}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′′

j .

(4) The set V ′′′

i is complete to

Vi ∪
⋃

j∈{i−2,i,i+2}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′

j ∪

⋃
j∈{i−1,i+1}

V ′′′

j

and V ′′′

i is anti-complete to
⋃

j∈{i−1,i+1}V
′

j .

Proof. (1) Let a ∈ Vi and

b ∈

⋃
j∈{i−1,i+1}

(Vj ∪ V ′

j ∪ V ′′

j ) ∪ V ′′′

i .

Assume that ab ̸∈ E. If b ∈
⋃

j∈{i−1,i+1}(Vj ∪ V ′

j ), then a, b, and either vi−1, vi−2, vi+2 or vi−2, vi+1, vi+2 induce a P5. If
b ∈

⋃
j∈{i−1,i+1}V

′′

j , then either vi+2, b, vi, vi−1, a or vi−2, b, vi, vi+1, a induce a P5. If b ∈ V ′′′

i , then vi−2, b, vi, vi+1, a induce a
P5. Let c ∈

⋃
j∈{i−2,i+2}V

′

j . Then ac ̸∈ E, otherwise either vi+2, b, a, vi−1, vi or vi−2, b, a, vi+1, vi induce a P5.
(2) Let a ∈ V ′

i and

b ∈

⋃
j∈{i−1,i+1}

(Vj ∪ V ′

j ) ∪

⋃
j∈{i−2,i+2}

(V ′′

j ∪ V ′′′

j ) ∪ V ′′′

i .

Assume that ab ̸∈ E. By the previous part,

b ∈

⋃
j∈{i−1,i+1}

V ′

j ∪

⋃
j∈{i−2,i+2}

(V ′′

j ∪ V ′′′

j ) ∪ V ′′′

i .

If b ∈
⋃

j∈{i−1,i+1}V
′

j , then a, b, and either vi−2, vi+1, vi+2 or vi−1, vi−2, vi+2 induce a P5. If b ∈
⋃

j∈{i−2,i+2}V
′′

j , then
a, vi, b, vi−2, vi+2 induce a P5. If b ∈ V ′′′

i , then b, vi−2, vi−1, a, vi+1 induce a P5. Let c ∈
⋃

j∈{i−2,i+2}Vj ∪
⋃

j∈{i−1,i+1}V
′′′

j . By
the previous part, one may assume that c ∈

⋃
j∈{i−1,i+1}V

′′′

j . Then ac ̸∈ E, otherwise vi, a, c, vi+2, vi−2 induce a P5.
(3) Let a ∈ V ′′

i and

b ∈

⋃
j∈{i−1,i+1}

Vj ∪
⋃

j∈{i−2,i+2}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′′

j .

If b ∈
⋃

j∈{i−1,i+1}Vj ∪
⋃

j∈{i−2,i+2}V
′

j , then ab ∈ E, by the previous parts. If b ∈
⋃

j∈{i−2,i+2}V
′′′

j , then ab ∈ E, otherwise either
vi+2, a, vi−1, vi, c or vi−2, a, vi+1, vi, b induce a P5.

(4) The set V ′′′

i is complete to

Vi ∪
⋃

j∈{i−2,i,i+2}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′

j

and anti-complete to
⋃

j∈{i−1,i+1}V
′

j , by the previous parts. Let a ∈ V ′′′

i and b ∈
⋃

j∈{i−1,i+1}V
′′′

j . Then ab ∈ E, otherwise
vi+2, a, vi, vi−1, b or vi−2, a, vi, vi+1, b induce a P5. ■

Recall that an independent set and a clique in a graph are subsets of its pairwise non-adjacent and pairwise adjacent
vertices, respectively. In all the next lemmas from this subsection we additionally assume that G is a prime dart-free graph.

Lemma 6. For each i, every of the following statements is true:
(1) Each of the sets V ′

i , V
′′

i , V ′′′

i is a clique. The set V ′

i is complete to V ′′′

i .
(2) If Vi ̸= ∅, then

⋃5
j=1,j̸=iV

′′

j ∪ V ′′′′
= ∅. If V ′′′

i ̸= ∅, then the set

⋃
j∈{i−1,i+1}

V ′′′

j ∪

5⋃
j=1,j̸=i

V ′′

j ∪ V ′′′′

is empty.
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(3) The set Vi is anti-complete to V ′

i ∪ V ′′

i , and the set V ′′′

i is anti-complete to

5⋃
j=1,j̸=i

Vj ∪
⋃

j∈{i−2,i+2}

V ′′′

j ∪ V ′′

i .

(4) None of the elements of V ′′

i ∪ V ′′′′ has a neighbor outside
⋃5

j=1N(vj).

Proof. (1) Let a, b ∈ V ′

i or a, b ∈ V ′′

i or a, b ∈ V ′′′

i . Then ab ∈ E, otherwise either a, vi, vi−1, b, vi−2 or a, vi−2, vi+2, b, vi−1
induce a dart . Let a ∈ V ′

i and b ∈ V ′′′

i . Then ab ∈ E, otherwise a, vi−1, vi, vi+1, b induce a dart .
(2) Let a ∈ Vi and b ∈

⋃5
j=1,j̸=iV

′′

j ∪V ′′′. Then ab ∈ E, otherwise either a, b, vi−2, vi−1, vi or a, b, vi+2, vi+1, vi induce a dart .
Hence, a, b, vi, and either vi+1, vi−2 or vi−1, vi+2 induce a dart . Let a ∈ V ′′′

i and

b ∈

⋃
j∈{i−1,i+1}

V ′′′

j ∪

5⋃
j=1,j̸=i

V ′′

j ∪ V ′′′′.

If b ∈
⋃

j∈{i−2,i+2}V
′′

j ∪
⋃

j∈{i−1,i+1}V
′′′

j , then ab ∈ E, by Lemma5 (part 4). Then either a, b, vi−1, vi−2, vi+1 or a, b, vi+1, vi+2, vi−1
induce a dart . If b ∈

⋃
j∈{i−1,i+1}V

′′

j , then ab ∈ E, otherwise a, vi−2, vi+2, b, and either vi−1 or vi+1 induce a dart . Then
a, b, vi−1, vi, vi+1 induce a dart . If b ∈ V ′′′′, then ab ∈ E, otherwise, b, vi−1, vi, vi+1, a induce a dart . Then a, vi−2, vi−1, b, vi+1
induce a dart .

(3) Let a ∈ Vi and b ∈ V ′

i ∪ V ′′

i . Then ab ̸∈ E, otherwise either a, b, vi, vi+1, vi+2 or a, b, vi, vi−1, vi+1 induce a dart . Let
a ∈ V ′′′

i and

b ∈

5⋃
j=1,j̸=i

Vj ∪
⋃

j∈{i−2,i+2}

V ′′′

j ∪ V ′′

i .

If b ∈
⋃

j∈{i−2,i+2}(Vj ∪V ′′′

j ), then ab ̸∈ E, otherwise vi−2, vi+2, a, b, and either vi+1 or vi−1 induce a dart . If b ∈
⋃

j∈{i−1,i+1}Vj ∪

V ′′

i , then ab ̸∈ E, otherwise either vi+1, vi+2, a, b, vi−1 or vi−1, vi−2, a, b, vi+1 induce a dart .
(4) If an element a ∈ V ′′

i ∪ V ′′′′ has a neighbor b ̸∈
⋃5

j=1N(vj), then vi+1, a, vi+2, vi−2, b induce a dart . ■

Lemma 7. If
⋃5

j=1Vj =
⋃5

j=1V
′′′

j = ∅, then G is O3-free.

Proof. Recall that G is connected. By this fact and by Lemmas 4, 6 (part 4), V =
⋃5

j=1N(vj). Let a and b be non-adjacent
elements of V ′′′′. Then any element of Ṽ ≜

⋃5
j=1V

′

j ∪
⋃5

j=1V
′′

j has a neighbor in {a, b}, otherwise a, b, some two consecutive
vertices of the 5-cycle, and an element of Ṽ induce a dart . Similarly, if c ∈ V ′′′′ and ac ̸∈ E, bc ̸∈ E, then every element of Ṽ is
adjacent to all the vertices a, b, c. Indeed, every vertex x ∈ Ṽ has at least two neighbors in {a, b, c}. If some x ∈ Ṽ is adjacent
to precisely two of a, b, c , then a, b, c, x and any neighbor vi of x induce a dart in G, a contradiction. Moreover, any element
of V ′′′′

\ {a, b, c} has three or at most one neighbor in the set {a, b, c}.
Suppose that V̂ be a maximum independent set of G(V ′′′′) and |V̂ | ≥ 3. Let V ∗ be the union of V̂ and the set of elements

of V ′′′′
\ V̂ having the only one neighbor in V̂ . Hence, |V ∗

| ≥ 3. By the reasonings from the first paragraph, V ∗ is complete to
Ṽ . Similarly, V ′′′′

\ V ∗ is complete to V̂ . If a vertex d1 ∈ V ′′′′
\ V ∗ is not adjacent to an element d2 of V ∗

\ V̂ , then any vertex
of the 5-cycle, any two non-neighbors of d2 in V̂ , d1 and d2 induce a dart . Hence, V ∗ is complete to V ′′′′

\ V ∗. Therefore, V ∗ is
a non-trivial module in G. Hence, G(V ′′′′) is O3-free.

Suppose that {x, y, z} be independent. By the reasonings from the previous paragraphs, V ′′′′
∩ {x, y, z} has at most one

element. If x = vi for some i, then y and z must belong to {vi−2, vi+2} ∪ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i . Hence, y and z are adjacent, by
Lemmas 5 (part 2) and 6 (part 1). If at least two of the vertices x, y, z belong to

⋃5
j=1V

′

j , then we may consider that x ∈ V ′

i
and y ∈ V ′

i+2, by Lemmas 5 (part 2) and 6 (part 1). Similarly, z ∈ V ′′

i+1 ∪ V ′′′′. Then x, vi, z, vi+2, y induce a P5. If at least two
of the vertices x, y, z belong to

⋃5
j=1V

′′

j , then we may consider that either x ∈ V ′′

i , y ∈ V ′′

i+1 or x ∈ V ′′

i , y ∈ V ′′

i+2, by Lemma 6
(part 1). If z ∈ V ′′′′, then vi+1, vi+2, x, y, z induce a dart or x, vi, z, vi+2, y induce a P5. Otherwise, by Lemmas 5 (part 2) and 6
(part 1), the vertex z belongs to

V ′

i ∪ V ′

i+1 ∪ V ′′

i−2 ∪ V ′′

i−1 ∪ V ′′

i+2

in the first case and to

V ′′

i+1 ∪ V ′′

i−2 ∪ V ′′

i−1 ∪ V ′

i+1

in the second one. Then x, y, z, and two non-adjacent vertices of the 5-cycle induce a P5. If x ∈ V ′′′′, y ∈ V ′

i , and z ∈
⋃5

j=1V
′′

j ,
then z ∈ V ′′

i−1 ∪ V ′′

i ∪ V ′′

i+1, by Lemma 5 (part 2). Then x, y, z, and some two non-adjacent vertices of the 5-cycle induce
a P5. ■
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Lemma 8. For each i, every of the following statements is true:
(1) Any two vertices of Vi have the same sets of neighbors in⋃

j∈{i−1,i+1}

Vj ∪

5⋃
j=1

(V ′

j ∪ V ′′

j ∪ V ′′′

j ) ∪ V ′′′′
∪ (V \

5⋃
j=1

N(vj)).

(2) The vertex vi and any element v′

i ∈ V ′

i have the same sets of neighbors in

(
5⋃

j=1

Vj ∪
⋃

j∈{i−1,i,i+1}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′

j ∪

5⋃
j=1

V ′′′

j ∪ (V \

5⋃
j=1

N(vj))) \ {vi, v
′

i}.

(3) The vertex vi and any element of Vi have the same sets of neighbors in⋃
j∈{i−1,i+1}

Vj ∪

5⋃
j=1,j̸=i

V ′

j ∪

5⋃
j=1

V ′′

j ∪ V ′′′

i ∪ V ′′′′
∪ (V \

5⋃
j=1

N(vj)).

(4) Any two elements of V ′

i have the same sets of neighbors in

5⋃
j=1

Vj ∪
⋃

j∈{i−1,i+1}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′

j ∪

5⋃
j=1

V ′′′

j ∪ (V \

5⋃
j=1

N(vj)).

Any two elements of V ′′

i have the same sets of neighbors in⋃
j∈{i−1,i,i+1}

Vj ∪
⋃

j∈{i−2,i+2}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′′

j .

(5) The set V ′′′

i has at most one element.
(6) The set V \

⋃5
j=1N(vj) has at most one element.

Proof. (1) The fact follows from Lemmas 4, 5 (part 1), 6 (parts 2 and 3).
(2) The fact follows from Lemmas 4, 5 (part 2), 6 (parts 1 and 3).
(3) The fact follows from Lemmas 4, 5 (part 1), 6 (parts 2 and 3).
(4) The fact follows from Lemmas 4, 5 (parts 2 and 3), 6 (part 3).
(5) By Lemma 6 (part 1) and as G is dart-free, any neighbor of a vertex in V ′′′

i that lies outside
⋃5

j=1N(vj) must be adjacent
to all elements of V ′′′

i . By this fact, Lemmas 5 (part 4), and 6 (parts 2 and 3), V ′′′

i is a module in G. Hence, |V ′′′

i | ≤ 1.
(6) By Lemmas 4 and 5 (part 4), V \

⋃5
j=1N(vj) is anti-complete to

5⋃
j=1

(Vj ∪ V ′

j ∪ V ′′

j ) ∪ V ′′′′.

By this fact and as G is a connected P5-free graph, each vertex in V \
⋃5

j=1N(vj) has a neighbor in
⋃5

j=1V
′′′

j . Let a vertex
a ∈ V ′′′

i be adjacent to a vertex b ∈ V \
⋃5

j=1N(vj), and let c be an arbitrary element of V ′′′

i−2 ∪ V ′′′

i+2. By Lemma 6 (part 2),
V ′′′

i−1∪V ′′′

i+1 = ∅. By Lemma 6 (part 3), ac ̸∈ E. Then bc ∈ E, otherwise b, a, vi+2, c, vi−1 or b, a, vi−2, c, vi+1 induce a P5. Hence,
by Lemma 8 (part 5), b is adjacent to all vertices in

⋃5
j=1V

′′′

j . Hence, V \
⋃5

j=1N(vj) is a module in G. Therefore, it has at most
one element. ■

Lemma 9. For each i, the set Vi is independent and |Vi| ≤ 3.

Proof. To avoid an induced dart , for any i, G(Vi) must be P3-free, i.e. this graph is the disjoint union of complete graphs.
By Lemma 8 (part 1), any two vertices in Vi have the same sets of neighbors in V \ (Vi−2 ∪ Vi ∪ Vi+2). As G is dart-free, any
two vertices of any connected component of G(Vi) have the same sets of neighbors in Vi−2 ∪ Vi+2. Hence, all vertices of any
connected component of G(Vi) form a module in G. Therefore, Vi must be independent.

Suppose that Vi has at least four elements. None of the elements of Vi−2 ∪ Vi+2 have two neighbors in Vi, to avoid an
induced dart . Let a, b ∈ Vi be distinct. By Lemma 8 (part 1), there is a vertex c ∈ Vi−2 ∪ Vi+2 adjacent to exactly one element
of {a, b}, otherwise {a, b} is a module in G. Hence, there are vertices a′, b′

∈ Vi, a number j ∈ {i−2, i+2}, vertices a′′, b′′
∈ Vj

such that a′a′′
∈ E, b′b′′

∈ E, a′b′′
̸∈ E, a′′b′

̸∈ E. Then b′′, b′, and either vi−1 or vi+1, a′, a′′ induce a P5. ■

In the next lemmas we will also address to Lemmas 5, 6, 8. To simplify readability of the text, we repeat some of their
results rephrasing statements of Lemma 8.
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Lemma 5. For each i, every of the following statements is true:
Part 1: The set Vi is complete to⋃

j∈{i−1,i+1}

(Vj ∪ V ′

j ∪ V ′′

j ) ∪ V ′′′

i

and Vi is anti-complete to
⋃

j∈{i−2,i+2}V
′

j .
Part 2: The set V ′

i is complete to⋃
j∈{i−1,i+1}

(Vj ∪ V ′

j ) ∪

⋃
j∈{i−2,i+2}

V ′′

j ∪

⋃
j∈{i−2,i,i+2}

V ′′′

j

and V ′

i is anti-complete to
⋃

j∈{i−2,i+2}Vj ∪
⋃

j∈{i−1,i+1}V
′′′

j .
Part 4: The set V ′′′

i is complete to

Vi ∪
⋃

j∈{i−2,i,i+2}

V ′

j ∪

⋃
j∈{i−2,i+2}

V ′′

j ∪

⋃
j∈{i−1,i+1}

V ′′′

j

and V ′′′

i is anti-complete to
⋃

j∈{i−1,i+1}V
′

j .

Lemma 6. For each i, every of the following statements is true:
Part 1: Each of the sets V ′

i , V
′′

i , V ′′′

i is a clique. The set V ′

i is complete to V ′′′

i .
Part 2: If Vi ̸= ∅, then

⋃5
j=1,j̸=iV

′′

j ∪ V ′′′′
= ∅. If V ′′′

i ̸= ∅, then the set

⋃
j∈{i−1,i+1}

V ′′′

j ∪

5⋃
j=1,j̸=i

V ′′

j ∪ V ′′′′

is empty.
Part 3: The set Vi is anti-complete to V ′

i ∪ V ′′

i , and the set V ′′′

i is anti-complete to

5⋃
j=1,j̸=i

Vj ∪
⋃

j∈{i−2,i+2}

V ′′′

j ∪ V ′′

i .

Lemma 8. For each i, every of the following statements is true:
Part 2: The vertex vi and any element v′

i ∈ V ′

i have the same sets of neighbors in

V \ ({vi, v
′

i} ∪

⋃
j∈{i−2,i+2}

V ′

j ∪

⋃
j∈{i−1,i,i+1}

V ′′

j ∪ V ′′′′).

Part 3: The vertex vi and any element of Vi have the same sets of neighbors in

V \ (
⋃

j∈{i−2,i,i+2}

Vj ∪ V ′

i ∪

5⋃
j=1,j̸=i

V ′′′

j ).

Part 4: Any two elements of V ′

i have the same sets of neighbors in

V \ (
⋃

j∈{i−2,i,i+2}

V ′

j ∪

⋃
j∈{i−1,i,i+1}

V ′′

j ∪ V ′′′′).

Any two elements of V ′′

i have the same sets of neighbors in

V \ (
⋃

j∈{i−2,i+2}

Vj ∪
⋃

j∈{i−1,i,i+1}

V ′

j ∪

5⋃
j=1

V ′′

j ∪

⋃
j∈{i−1,i,i+1}

V ′′′

j ∪ V ′′′′).

Lemma 10. The following properties are true:
(1) If Vi ̸= ∅, then

⋃5
j=1V

′

j ∪ V ′′

i = ∅.
(2) If

⋃5
j=1Vj = ∅ and V ′′′

i ̸= ∅, then

V ′

i−1 ∪ V ′

i+1 = ∅ and |V ′

i ∪ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i | ≤ 4.

Proof. (1) Assume that a ∈ Vi. Hence, by Lemma 6 (part 2), the set
⋃5

j=1,j̸=iV
′′

j ∪ V ′′′′ is empty. Suppose that b ∈ V ′

i . By
Lemma 6 (part 3), ab ̸∈ E. By Lemma 8 (part 2), {b, vi} is not a module in G iff there is a vertex c ∈ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i adjacent
to b. By Lemmas 5 (part 1) and 6 (part 3), ac ̸∈ E. Hence, either vi, b, c, vi+1, a or vi, b, c, vi−1, a induce a dart .
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Suppose that b ∈ V ′

i+1. The case when b ∈ V ′

i−1 can be considered in a similar way. By Lemma 5 (part 1), ab ∈ E. By
Lemma 8 (part 2), {b, vi+1} is not a module in G iff there is a vertex c ∈ V ′

i−1 ∪V ′

i−2 ∪V ′′

i adjacent to b. If c ∈ V ′

i−1, then ac ∈ E,
by Lemma 5 (part 1), and a, b, c, vi, vi−2 induce a dart . If c ∈ V ′

i−2, then ac ̸∈ E, by Lemma 5 (part 1), and a, b, c, vi, vi+1
induce a dart . By Lemma 6 (part 3), we have ac ̸∈ E. If c ∈ V ′′

i , then bc ̸∈ E, and a, b, c, vi, vi+1 induce a dart .
Now suppose that b ∈ V ′

i−2. The case when b ∈ V ′

i+2 can be considered in a similar way. By Lemma 5 (part 1), ab ̸∈ E. By
the previous reasonings, we may assume that V ′

i = V ′

i+1 = ∅. Then, by Lemma 8 (part 2), {b, vi−2} is a module in G.
Suppose that b ∈ V ′′

i . Hence,
⋃5

j=1,j̸=iV
′′′

j ∪ V ′

i = ∅, by Lemma 6 (part 2) and by the previous reasonings. By this fact,
Lemmas 8 (part 3) and 9, {a, vi} is not a module in G iff there is a vertex Vi−2 ∪ Vi+2 adjacent to a. We have a contradiction
with Lemma 6 (part 2), as if V ′′

i ̸= ∅, then Vi−2 ∪ Vi+2 = ∅.
(2) Assume that a ∈ V ′′′

i . Hence,⋃
j∈{i−1,i+1}

V ′′′

j ∪

5⋃
j=1,j̸=i

V ′′

j ∪ V ′′′′

is empty, by Lemma 6 (part 2). Suppose that b ∈ V ′

i−1. The casewhen b ∈ V ′

i+1 can be considered in a similar way. By Lemma 5
(part 2), ab ̸∈ E. By Lemma 8 (part 2), {b, vi−1} is not a module in G iff there is a vertex c ∈ V ′

i+1 ∪ V ′

i+2 ∪ V ′′

i adjacent to
exactly one element of {b, vi−1}. If c ∈ V ′

i+1 ∪ V ′

i+2, then bc ∈ E. If c ∈ V ′′

i , then bc ̸∈ E and ac ̸∈ E (by Lemma 6, part 3), and
b, vi−1, c, vi+2, a induce a P5. If c ∈ V ′

i+1, then ac ̸∈ E, by Lemma 5 (part 2), and a, vi−2, b, c, vi+1 induce a P5. If c ∈ V ′

i+2, then
ac ∈ E, by Lemma 5 (part 2), and a, c, vi+2, vi+1, b induce a dart .

By Lemmas 5 (part 4) and 6 (part 3), V ′′′

i is complete to V ′

i−2 ∪ V ′

i ∪ V ′

i+2 and is anti-complete to V ′′

i . Hence, V
′′

i is anti-
complete to V ′

i , otherwise a vertex of V ′′

i , a vertex of V ′

i , vi−1, vi+1, a induce a dart . Similarly, V ′

i−2 ∪ V ′

i+2 is anti-complete to
V ′

i , otherwise a, a vertex in V ′

i−2 ∪ V ′

i+2, a vertex in V ′

i , vi−1, vi+1 induce a dart . Recall that

V ′

i−1 ∪ V ′

i+1 ∪

⋃
j∈{i−1,i+1}

V ′′′

j ∪

5⋃
j=1,j̸=i

V ′′

j ∪ V ′′′′
= ∅.

Hence, by Lemmas 6 (part 1) and 8 (part 4), each of the sets V ′

i , V
′

i−2, V
′

i+2, V
′′

i is a module in G. Hence, |V ′

i ∪ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i |

≤ 4. ■

Lemma 11. If
⋃5

j=1(Vj ∪ V ′′′

j ) ̸= ∅, then |V | ≤ 26.

Proof. If
⋃5

j=1Vj ̸= ∅, then
⋃5

j=1(V
′

j ∪ V ′′

j ) ∪ V ′′′′
= ∅, by Lemmas 10 (part 1) and 6 (part 2). Hence,

|V | ≤ |V (C5)| +

5∑
j=1

|Vj| +

5∑
j=1

|V ′′′

j | + |V \

5⋃
j=1

N(vj)| ≤ 26,

by Lemmas 8 (parts 5 and 6) and 9. If
⋃5

j=1Vj = ∅ and V ′′′

i ̸= ∅ for some i, then

|V | ≤ |V (C5)| + |V ′

i ∪ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i | + |V ′′′

i ∪ V ′′′

i−2 ∪ V ′′′

i+2| + |V \

5⋃
j=1

N(vj)| ≤ 13,

by Lemmas 6 (part 2), 8 (parts 5 and 6), 10 (part 2). ■

3.4. Some complexity results for the weighted coloring problem

Lemma 12 ([14]). Thewcol problem for any O3-free graph (G, w) can be solved in O((
∑

v∈V (G)w(v))3) time.

Lemma 13 ([14]). For each fixed C, thewcol problem can be solved in polynomial time on the sum of vertex weights in the class
of all graphs having at most C vertices.

4. Main result

A graph is said to be Berge if it belongs to the class Free({C2i+1| i > 1} ∪ {C2i+1| i > 1}). A graph is said to be perfect if for
every its induced subgraph G the chromatic number of G equals the size of a maximum clique of G. The Strong Perfect Graph
Theorem (see [1]) states that a graph is perfect iff it is Berge. Thewcol problem can be solved in polynomial time for perfect
graphs [7].

Theorem 2. The wcol problem can be solved for {P5, banner}-free graphs and for {P5, dart}-free graphs in polynomial time on
the sum of vertex weights.
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Proof. Note that a graph is prime if and only if its complement is prime. Note furthermore that C5 = C5, and that every
P5-free graph is {C2i+1| i ≥ 3}-free. Lemma 2 now implies that if a graph is prime and {P5, banner}-free, then either it is
Berge (and therefore perfect [1]) or it is O3-free. There is a trivial polynomial-time algorithm of verification whether a given
graph is O3-free. Hence, by these facts, results of [7], Lemmas 1 and 12, thewcol problem can be solved for {P5, banner}-free
graphs in polynomial time on the sum of vertex weights.

By Lemmas 3, 7 and 11, if a prime {P5, dart}-free graph on at least 27 vertices is not O3-free, then it is Berge (and therefore
prefect [1]). By this fact, results of [7], Lemmas 1, 12, 13, the wcol problem can be solved for {P5, dart}-free graphs in
polynomial time on the sum of vertex weights. ■

A straightforward corollary from Theorem 2 is the fact that the col problem can be solved in polynomial time for
{P5, banner}-free graphs and for {P5, dart}-free graphs.

5. Conclusions and problems for future work

There are many gaps in understanding the complexity of the col problem for hereditary classes. For example, the
complexity of the col problem is known for all but three classes in the family of hereditary classes defined by forbidden
induced subgraphs each on at most four vertices [10]. The remaining three classes are the classes of {C4,O4}-free graphs,
{K1,3,O4}-free graphs, {K1,3,O4, K2 + O2}-free graphs [10]. Determining the complexity of the col problem for these three
classes is an interesting problem for future research. There is known an approximation polynomial-time algorithm for the
col problem and the three classes. More specific, there exists a polynomial-time algorithm computing a number p(G) for a
graph G such that χ (G) ≤ p(G) ≤ r ·χ (G)+O(1), where r =

3
2 if G is {O4, K3,3}-free and r =

4
3 if G is {K1,3,O4, K2 +2K1}-free

(see [13]).
In this paper we considered the complexity of the col problem for {G1,G2}-free graphs, where G1 and G2 are both

connected graphs each on at most five vertices. Prior to our study, the complexity of the col problem was open for each
of the eight pairs {G1,G2} described below (see [8,11,12,14]):

1. {K1,3,G}, where G ∈ {bull, butterfly}
2. {for k, bull}
3. {P5,G}, where G ∈ {banner, dart, bull, K3 + O2, K3 + K2, 2K2 + K1}.

In this paper we showed that the (w)col problem can be solved in polynomial time (on the sum of vertex weights)
for {P5, banner}-free graphs and for {P5, dart}-free graphs. Clarification of the complexity of the (w)col problem for the
remaining six pairs is an interesting research problem for future work.
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