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ROOT SYSTEMS IN NUMBER FIELDS

VLADIMIR L. POPOV1,2 AND YURI G. ZARHIN3

Abstract. We classify the types of root systems R in the rings
of integers of number fields K such that the Weyl group W (R)
lies in the group L(K) generated by Aut(K) and multiplications
by the elements of K∗. We also classify the Weyl groups of roots
systems of rank n which are isomorphic to a subgroup of L(K) for
a number field K of degree n over Q.

1. Introduction

In what follows, we call the type of a (not necessarily reduced) root
system the type of its Dynkin diagram.
Let L be a free Abelian group of a finite rank n > 0. We shall consider

it as a lattice of full rank in the n-dimensional linear space V := L⊗ZQ

over Q. Since every root is a integer linear combination of simple roots,
for every type R of the root systems of rank n, there is a subset R in L
of rank n, which is a root system of type R. However, if the pair (V, L)
is endowed with an additional structure, then the Weyl group W (R)
of such a realization may be inconsistent with this structure. Say, if
the space V is endowed with a scalar product, then it may happen
that the group W (R) does not preserve it (for instance, if n = 2 and
e1, e2 is an orthonormal basis in L, then {±e1,±e2,±(e1 + e2)} is the
root system of type A2 in V , whose Weyl group does not consist of
orthogonal transformations). Therefore, it is of interest only finding
such realizations, the Weyl group of which is consistent with some
additional structures on the pair (V, L).
A natural source of pairs (V, L) is algebraic number theory, in which

they arise in the form (K,OK), whereK is a number field, and OK is its
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ring of integers. In this case, three subgroups are naturally distingui-
shed in the group GLQ(K) of nondegenerate linear transformations of
the linear space K over Q. The first one is the automorphism group
Aut(K) of the field K. The second is the image of the group monomor-
phism

mult : K∗ →֒ GLQ(K), (1)

where mult(a) is the operator of multiplication by a ∈ K∗:

mult(a) : K → K, x 7→ ax. (2)

The third one is the subgroup L(K) in GLQ(K) generated by Aut(K)
and mult(K∗).

Definition 1. We say that the type R of (not necessarily reduced ) root
systems admits a realization in the number field K if

(a) [K : Q] = rk(R);
(b) there is a subset R of rank rk(R) in OK , which is a root system

of type R;
(c) W (R) is a subgroup of the group L(K).

In this case, the set R is called a realization of the type R in the field K.

It is worth noting that if we replace OK byK in (b), we do not obtain
a broader concept. Indeed, if R is a subset of rank rk(R) inK, which is a
root systen of type R such that (a) and (c) hold, then there is a positive
integer m such that m ·R := {mα | α ∈ R} ⊂ OK . Clearly the set m ·R
has rank rk(R), it is a root system of type R, and W (m · R) = W (R).
In view of Definition 1, if a type R of root systems admits a realization

in a number field K, then the group L(K) contains a subgroup isomor-
phic to the Weyl group of a root system of type R. Our first main result
is the classification of all the cases when the latter property holds:

Theorem 1. The following properties of the Weyl group W (R) of a

reduced root system R of type R and rank n are equivalent:

(i) W (R) is isomorphic to a subgroup G of the group L(K), where
K is a number field of degree n over Q;

(ii) R is contained in the following list:

A1, A2, B2, G2, 2A1, 2A1

.
+ A2, A2

.
+ B2. (3)

The fact that a subgroup G of the group L(K) is isomorphic to the
Weyl group of a root system of rank n = [K : Q] and of type R is not
equivalent to the fact that G = W (R), where R is a root system of
type R in OK . This is seen from comparing Theorem 1 with our second
main result. The latter answers the question of which of the types of
root systems in list (3) are realized in number fields:



ROOT SYSTEMS IN NUMBER FIELDS 3

Theorem 2. For every type R of root systems, the following properties

are equivalent:

(i) there is a number field, in which R admits a relization;

(ii) rk(R) = 1 or 2.

For rk(R) = 1 or 2, the specific realizations of R in number fields see
in Section 2.

Terminology and notation

If R is the type of a root system R, then the type of the direct sum
of m copies of R is denoted by mR. We say that R is irreducible if R is.
All root systems of type R have the same rank denoted by rk(R).
A′

1 is the unique type of nonreduced root systems of rank 1.
By a number field K we mean an extension of a finite degree of the

field Q.
µK is the multiplicative group of all roots of unity in K; it is a finite

cyclic group.
OK is the ring of all integers in K.
OK(d) is the set of all elements of OK , whose norm is d.
ord(g) is the order of an element g of a group
〈g〉 is a cyclic group with the generating element g.
[G,G] is the commutator subgroup of a group G.
For a prime number p and a non-zero integer n, the p-adic valuation

of n is denoted by νp(n) (i.e., νp(n) is the highest exponent e such that
pe divides n).
ϕ is Euler’s totient function, i.e., for every integer d > 0, the value

ϕ(d) is the number of positive integers 6 d that are relatively prime
to d.

2. Ranks 1 and 2

The following examples show that every type R of root systems of
rank 1 or 2 admits a realization in an number field K.

Root systems of types A1 and A′

1

In this case, K = Q, OK = Z and L(K) = mult(Q∗). If α ∈ Z, α 6= 0,
then R := {±α} (respectively, R := {±α,±2α}) is a realization of type
A1 (respectively, A′

1) in the field K, because W (R) = 〈mult(−1)〉 ⊂
L(K).

Root systems of types A2 and G2

Let K be the third cyclotomic field: K = Q(
√
−3). Then OK =

Z + Zω, where ω = (1 + i
√
3)/2, and Aut(K) = 〈c〉, where c is the
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complex conjugation a 7→ a. The bilinear form

K ×K → Q, (a, b) 7→ traceK/Q(ab) = 2Re(ab), (4)

defines on K a structure of Euclidean space over Q. Any element of
L(K), whose order is finite (in particular, any reflection), is an ortho-
gonal (with respect to this structure) transformation.
Since r1 := mult(−1)c ∈ L(K) is a reflection with respect to 1, the

transformation ρr1ρ
−1 for every ρ ∈ GLQ(K) is a reflection with respect

to ρ(1). For ρ = mult(a), where a ∈ K∗, this yields the element

ra := mult(−aa−1)c (5)

of L(K), which is a reflection with respect to a.
The multiplicative group {±1,±ω,±ω2} of all 6th roots of 1 coin-

cides with OK(1). Hence

OK(1) = {±α1,±α2,±(α1 + α2)}, where α1 = 1, α2 = ω2.

Therefore, OK(1) is the root system of type A2 with the base α1, α2. If
a ∈ OK(1), then ra(OK(1)) = OK(1). Therefore, ra ∈ W (OK(1)). Hen-
ceW (OK(1)) ⊂ L(K). This means that OK(1) is the realization of type
A2 in the field K.
Since we have

OK(3) = (1 + ω)OK(1),

the set OK(3) is the root system of type A2 with the base

β1 = (1 + ω)α1, β2 = (1 + ω)α2.

If a∈OK(3), then ra(OK(3))=OK(3). Therefore, W (OK(3)) ⊂ L(K).
Hence OK(3) is yet another realization of type A2 in the field K.

Firure 1. Elements of OK , OK(1), and OK(3) are depicted

respectively by •, •⊚, and •⊡
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Since we have

OK(1)
⋃

OK(3)

= {±α1,±β2,±(α1+β2),±(2α1+β2),±(3α1+β2),±(3α1+2β2)},

the set OK(1)
⋃

OK(3) is the root system of type G2 with the base α1, β2
(this is noted in [3, V, 16]). If a ∈ OK(3), b ∈ OK(1), then ra(OK(1)) =
OK(1), rb(OK(3)) = OK(3). Therefore, W

(

OK(1)
⋃

OK(3)
)

⊂ L(K).
Hence OK(1)

⋃

OK(3) is the realization of type G2 in the field K.

Root systems B2, 2A1, BC2, 2A
′, and A

.
+ A′

Let K be the fourth cyclotomic field: K = Q(
√
−1). Then OK =

Z+ Zi and Aut(K) = 〈c〉, where c is the complex conjugation a 7→ a.
As above, (4) defines on K a structure of Euclidean space over Q, and
any element of L(K) of finite order (in particular, any reflection) is an
orthogonal (with respect to this structure) transformation.
As above, for every a ∈ K∗, the element ra ∈ L(K), given by formula

(5), is a reflection with respect to a.
The multiplicative group {±1,±i} of all 4th roots of 1 coincides with

OK(1). Therefore,

OK(1) = {±α1,±α2}
is the root system of type 2A1 with the base α1=1, α2= i. If a∈OK(1),
then ra(OK(1))=OK(1). Hence ra∈W (OK(1)); therefore, W (OK(1))⊂
L(K). So, OK(1) is the realization of type 2A1 in K.
Since we have

OK(2) = (1 + i)OK(1),

the set OK(2) is the root system of type 2A1 with the base

β1 = (1 + i)α1, β2 = (1 + i)α2.

If a∈OK(2), then ra(OK(2)) =OK(2). Therefore, W
(

OK(2)
)

⊂L(K).
Hence OK(2) is yet another realization of type 2A1 in K.
Since we have

OK(1)
⋃

OK(2) = {±α1,±β2,±(α1 + β2),±(2α1 + β2)},

the set OK(1)
⋃

OK(2) is the root system of type B2 with the base
α1, β2. If a ∈ OK(2), b ∈ OK(1), then ra(OK(1)) = OK(1), rb(OK(2)) =
OK(2). Therefore, W

(

OK(1)
⋃

OK(2)
)

⊂ L(K), hence OK(1)
⋃

OK(2)
is the realization of type B2 in the field K.
Since we have

OK(4) = 2OK(1),
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the group W (OK(4)) coincides with the group W (OK(1)). Therefore,
OK(4) is yet another realization of type 2A1 in K. Since

OK(1)
⋃

OK(2)
⋃

OK(4)

= {±α1,±2α1,±β2,±(α1 + β2),±2(α1 + β2),±(2α1 + β2)},

the set OK(1)
⋃

OK(2)
⋃

OK(4) is the root system of type BC2 with
the base α1, β2. In view of W

(

OK(1)
⋃

OK(2)
⋃

OK(4)
)

⊂ L(K), it is
the realization of type BC2 in K.

Firure 2. Elements of OK , OK(1), OK(2), and OK(4) are

depicted respectively by •, •⊚, •⊡, and •⊚⊚

Finally, the realizations of types 2A′

1 and A1

.
+ A′

1 in K are respec-
tively

OK(1)
⋃

OK(4) and OK(1)
⋃

{±2}.
Summing up, we have the following

Proposition 1. Every type of root systems of rank 6 2 admits a real-

ization in a number field.

3. Group L(K) and its finite subgroups

Below K is a number field of degree n over Q.

Theorem 3. The group L(K) is a semidirect product of its normal

subgroup mult(K∗) and the subgroup Aut(K). Therewith,

gmult(a) g−1 = mult(g(a)) for any a ∈ K∗, g ∈ Aut(K). (6)
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Proof. First, check that the set of all products mult(a)g, where a ∈ K∗,
g ∈ Aut(K), is a subgroup of GLQ(K). Let a1, a2 ∈ K∗ and g1, g2 ∈
Aut (K). Then, for each v ∈ K,

mult(a1)g1mult(a2)g2(v) = a1(g1(a2g2(v))) = a1(g1(a2))(g1(g2(v))).

This yields

mult(a1)g1mult(a2)g2 = mult(a1(g1(a2)))g1g2. (7)

From (7) we infer that the inverse of mult(α)g is mult(g−1(a−1))g−1.
Thus the set of all products mult(α)g is a subgroup of GLQ(K).
On the other hand,

mult(a)g(1) = a(g(1)) = a1 = a,

hence the linear operator mult(a)g uniquely determines α, and there-
fore, g as well. This implies that the map

ψ : L(K) → Aut (K), mult(α)g 7→ g, (8)

is well defined. By (7), the map (8) is a group epimomorphism and

ker(ψ) = mult(K∗). (9)

Finally, (6) straightforwardly follows from (7). �

Lemma 1. For any finite subgroup G of L(K), there is a (cyclic )
subgroup H of µK such that mult(H) ⊆ G and

(i) the sequence 1 → H
mult−−→ G

ψ−→ ψ(G) → 1 is exact;

(ii) |G| = |H|·|ψ(G)|;
(iii) |H| divides |µK |;
(iv) ϕ(|H|) divides n;
(v) |ψ(G)| divides |Aut (K)|, which divides n;
(vi) if p > 2 is a prime integer, then νp(|G|) 6 2νp(n) + 1.

Proof. Since µK is the set of all elements of finite order in K∗, and (1)
is a group monomorphism, the existence of H and (i) follow from (9).
Since µK is cyclic, H is cyclic as well.
Statements (ii), (iii), (v) are clear.
Let θ be a generator of the cyclic group H . Then [Q(θ) : Q] =

ϕ(ord(θ)) = ϕ(|H|). Whence (iv), because Q(θ) is a subfield of K.
Let νp(|µK|) = d and let ζ ∈ µK be a primitive pdth root of unity.

From Q(ζ) ⊆ K and [Q(ζ) : Q] = ϕ(pd) = pd−1(p − 1) we infer that
pd−1(p − 1) divides n. Hence νp(n) > d − 1 = νp(|µK |) − 1. This and
(ii), (iii), (v) then imply νp(|G|) 6 νp(|µK |)+νp(n) 6 2νp(n)+1, which
proves (vi). �
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Lemma 2. Let W (R) be the Weyl group of a root system R. Then

ν2(|W (R)|) > [(rk(R) + 1)/2] . (10)

Proof. First, note that, given an integer m > 0, then

ν2(m!) > [(m+ 1)/2] if m 6= 1, 3. (11)

Indeed, let s = [m/2]. Then the product of all even integers between
1 and m is 2ss!, hence ν2(m!) > s. Therefore, (11) holds for m even,
because then [(m+ 1)/2] = s. If m is odd, then we have [(m+ 1)/2] =
s + 1. If, moreover, m > 5, then s! is even, hence 2ss! is divisible by
2s+1. Therefore, (11) holds in this case as well.
Next, suppose that R is irreducible of type R. By [1] we have

Tables 1

R Aℓ, ℓ>1 Bℓ, ℓ>2 Cℓ, ℓ>2 Dℓ, ℓ>4

|W (R)| (ℓ + 1)! 2ℓ ·ℓ! 2ℓ ·ℓ! 2ℓ−1 ·ℓ!

R E6 E7 E8 F4 G2

|W (R)| 27 ·34 ·5 210 ·34 ·5·7 214 ·35 ·52 ·7 27 ·32 24 ·3

Then (10) directly follows from Tables 1 and (11).
In the case of an arbitrary root system

R = R1

.
+ · · ·

.
+ Rd, (12)

where Ri is an irreducible root system for every i, we have

rk(R) = rk(R1) + · · ·+ rk(Rd) (13)

and W (R) splits into the product

W (R) =W (R1)× · · · ×W (Rd) (14)

where W (Ri) is the Weyl group of Ri. It follows from (14) that, for
every prime integer p > 2,

νp(|W (R)|) =
d

∑

i=1

νp(|W (Ri)|). (15)

Given that for every W (Ri) the desired inequality is proved, we then
deduce from (15) that

ν2(|W (R)|) >
d

∑

i=1

[(rk(Ri) + 1)/2] . (16)

Now (10) follows from (16) because of the inequality

[(a+ b+ 1)/2] 6 [(a+ 1)/2] + [(b+ 1)/2], (17)
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which holds for all integers a and b. To prove (17), note that if we
replace a by a + 2 then the both sides of (17) would increase by 1. So
it suffices to verify the cases a = 0 and a = 1. If a = 0, then the first
summand of the right-hand side of (17) is zero and we get the equality.
If a = 1, then, for the left-hand side of (17), we have

[(1 + b+ 1)/2] = 1 + [b/2] 6 [(1 + 1)/2] + [(b+ 1)/2] ,

which proves (17). �

Below some of the arguments are based on the information that
readily follows from Tables 1. It is convenient to collect it in Tables 2,
where we use the same notation as in Tables 1 and, for every prime
integer p > 2, put νp(R) := νp(|W (R)|).

Tables 2

R = Aℓ

ℓ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ν2(R) 1 1 3 3 4 4 7 7 8 8 10 10 11 11 15 15

ν3(R) 0 1 1 1 2 2 2 4 4 4 5 5 5 6 6 6

R = Bℓ and Cℓ

ℓ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ν2(R) 3 3 7 8 10 11 15 16 18 19 22 23 25 26 31

ν3(R) 0 1 1 1 2 2 2 4 4 4 5 5 5 6 6

R = Dℓ

ℓ 4 5 6 7 8 9 10 11 12 13 14 15 16

ν2(R) 6 7 9 10 14 15 17 18 21 22 24 25 30

ν3(R) 1 1 2 2 2 4 4 4 5 5 5 6 6

R E6 E7 E8 F4 G2

ν2(R) 7 10 14 7 4

ν3(R) 4 4 5 2 1

Below, for every type R of root systems, we put ∅
.
+ R := R.

Proposition 2. Let R be a root system of type R.

(i) If R = S1

.
+ S2, then

ν2(S1) 6 ν2(R)− [(rk(S2) + 1)/2].

In particular, if Ri is the type of Ri in (12), then

ν2(Ri) 6 ν2(R)− [(n− rk(Ri) + 1)/2] < ν2(R).
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(ii) If ν2(R) 6 3, then

R = a1A1

.
+ a2A2

.
+ a3A3

.
+ a4A4

.
+ b2B2

.
+ b3B3

.
+ c3C3,

a1 + 2a2 + 3a3 + 4a4 + 2b2 + 3b3 + 3c3 = rk(R),

a1 + a2 + 3a3 + 3a4 + 3b2 + 3b3 + 3c3 = ν2(R),

a2 + a3 + a4 + b3 + c3 = ν3(R).

(iii) If ν3(R) 6 1, then

R = X
.
+ aA1

.
+ bB2, where (18)

X ∈ {A2,A3,A4,B3,B4,B5,C3,C4,C5,D4,D5,G2,∅}, (19)

rk(X) + a+ 2b = rk(R),

ν2(X) + a+ 3b = ν2(R),

and, by definition, rk(∅) = νp(∅) = 0 for any p.

Proof. This follows from Lemma 2, (13), (15), and Tables 2. �

Proposition 3. LetK be a number field of degree n over Q and letm be

a positive integer. If the group L(K) contains a subgroup G isomorphic

to the Weyl group a root system of type mA1, then 2m−1 divides n. In
particular, if m = n, then n = 1 or 2.

Proof. In view of (14) and Tables 1, the group G is an elementary
Abelian 2-group of order 2m. From this, Lemma 1(i)(ii), and the cyclic-
ity of H , we infer that |H| = 1 or 2, hence, respectively, |ψ(G)| = 2m

or 2m−1. The claim then follows from Lemma 1(v). �

Proposition 4. Let K be a number field of degree n over Q. If the

group L(K) contains a finite subgroup G isomorphic to the Weyl group

W (R) of a root system R of type R and rank n, then n ∈ {1, 2, 4}.
Proof. First, in Step 1, we shall show that n ∈ {1, 2, 4, 6, 8, 16}. Then,
in Steps 2, 3, and 4, we shall consider respectively the cases n = 6, 8,
and 16, and eliminate each of them.

Step 1
Lemma 1(vi) yields ν2(|G|) 6 2ν2(n) + 1. By Lemma 2 we have

ν2(|G|) > [(n + 1)/2]. Therefore,

[(n + 1)/2] 6 2ν2(n) + 1. (20)

Let n > 3. Then 2 6 [(n + 1)/2]. In view of (20), this implies that
ν2(n) > 1, i.e., n is even. Since n/2 6 [(n + 1)/2], from (20) we infer

2n/2 6 2[(n+1)/2]
6 22ν2(n)+1

6 2n2. (21)
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In addition, if n is not a power of 2, then 2ν2(n) · 3 6 n, so (21) yields

2n/2 6 22ν2(n)+1 6 2 (n/3)2 . (22)

If in (22) we replace n by n + 2 then the left-hand side will be
multiplied by 2 while the right-hand side will be multiplied by (1 +
2/n)2 < 2, because n > 4. Taking into account that (22) becomes
equality if n = 6, we conclude that n = 6 if n > 3 is not a power of 2.
Now suppose that n = 2s, where s > 2. Then (20) yields

2s−1 6 2s+ 1

and therefore s = 2, 3 or 4, i.e., n = 4, 8 or 16 respectively.
Taking into account all n < 3, we conclude that n ∈ {1, 2, 4, 6, 8, 16}.
In Steps 2, 3, and 4, we use the notation of (12), (14) introduced in

the proof of Lemma 2. The type of Ri is denoted by Ri.
Step 2
Arguing on the contrary, assume that n = 6. Since ν2(n) = 1, Lem-

ma 1(vi) yields ν2(R) 6 3. From Proposition 2(ii) we then infer that

R = aA1

.
+ bA2, where x = a, y = b is a solution of the system

x+ 2y = 6,

x+ y 6 3.

}

(23)

It is easily seen that (23) has only one solution in non-negative in-
tegers, namely, x = 0, y = 3. Thus R = 3A2. Hence, from Tables 1 and
(14) we obtain

|G| = 23 · 33. (24)

Lemma 1(v) implies that |ψ(G)| = 1, 2, 3 or 6. From Lemma 1(ii) and
(24) we then infer that |H| is one of the integers 23 · 33, 22 · 33, 23 · 32 or
22 ·32. Hence, respectively, ϕ(|H|) = 23 ·32, 22 ·32, 23 ·31 or 22 ·31. Since
neither of these integers divides 6, this contradicts Lemma 1(iv). So we
proved that n 6= 6.

Step 3
Arguing on the contrary, assume that n = 8. We have ν2(n) = 3,

ν3(n) = 0. Therefore, Lemma 1(vi) yields ν2(R) 6 7 and ν3(R) 6 1.
From Proposition 2(iii) we then deduce that (18), (19) hold, where

rk(X) + a+ 2b = 8, (25)

ν2(X) + a+ 3b 6 7. (26)

In turn, (25), (26) yield: a+ 3b > a+2b
(25)
== 8− rk(X)

(19)

> 8− 5 = 3,

hence ν2(X)
(26)

6 7− (a+ 3b) 6 7− 3 = 4. This, (19), and Table 2 show
that

X ∈ {A2,A3,A4,B3,C3,G2,∅}. (27)
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Next, from (25), (26) we obtain b 6 rk(X) − ν2(X) − 1. Tables 2
imply that the right-hand side of the latter inequality is negative if
X ∈ {A3,B3,C3,G2,∅}. Since this is impossible, from (27) we conclude
that X = A2 or A4. In each of these cases, there is a unique pair (a, b)
of non-negative integers satisfying (25), (26), namely, (a, b) = (6, 0) for

X = A2, and (a, b) = (4, 0) for X = A4. So, R = 6A1

.
+ A2 or 4A1

.
+ A4.

We now consider these possibilities.
Assume that R = 6A1

.
+ A2. Then G contains a subgroup isomorphic

to the Weyl group of a root system of type 6A1. Hence 26−1 divides
n = 8 by Proposition 3. This contradiction proves that, in fact, R 6=
6A1

.
+ A2.

Next, assume that R = 4A1

.
+ A4. Then Tables 1 and (14) yield

|G| = 27 · 3 · 5. (28)

Hence, if |ψ(G)| = 1, 2, 4 or 8, then, respectively, |H| = 27 · 3 · 5, 26 · 3 ·
5, 25 ·3·5 or 24 ·3·5, and, accordingly, ϕ(|H|) = 29, 28, 27 or 26. Contrary
to Lemma 1(iv), neither of the latter integers divides 8. This refutes
our assumption thereby completing the proof that n 6= 8.
Step 4
Arguing on the contrary, assume that n = 16. We have ν2(n) = 4,

ν3(n) = 0. Therefore, Lemma 1(vi) yields ν2(R) 6 9 and ν3(R) 6 1. By
Proposition 2(iii) we then conclude that (18), (19) hold, where

rk(X) + a + 2b = 16,

ν2(X) + a + 3b 6 9.

}

(29)

But (29) implies b 6 rk(X)−ν2(X)−7, and, in view of (19) and Tables
2, the right-hand side of this inequality is negative. This refutes our
assumption and proves that n 6= 16. �

4. Proofs of Theorems 1 and 2

Proof of Theorem 1.
(i)⇒(ii) Assume that (i) holds. In view of Proposition 4, we have to

show that if n = 4, then R is either A2

.
+ B2 or 2A1

.
+ A2.

So, let n = 4. Then Lemma 1(v) (whose notation we use) yields

|ψ(G)|=1, 2, or 4. (30)

Next, we have ν2(n) = 2, ν3(n) = 0. Therefore, Lemma 1(vi) yields
ν2(R) 6 5, ν3(R) 6 1. From Proposition 2(iii) and Tables 2 we then
deduce that

R ∈ {A4,A1

.
+ A3,A1

.
+ B3,A1

.
+ C3, 2A1

.
+ A2, 2A1

.
+ B2, 4A1,A2

.
+ B2}.
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Assume that R = A4. Then from Tables 1 we obtain

|G| = 23 · 3 · 5. (31)

From Lemma 1(ii) and (31) we infer that, respectively to (30), we have
|H| = 23 · 3 · 5, 22 · 3 · 5, or 2 · 3 · 5, and, accordingly, ϕ(|H|) = 25, 24,
or 23. Contrary to Lemma 1(iv), neither of the latter integers divides
4. This contradiction show that, in fact, R 6= A4.
Assume that R = A1

.
+ B3 or A1

.
+ C3. Then Tables 1 and (14) yield

|G| = 25 · 3. (32)

From Lemma 1(ii) and (32) we infer that, respectively to (30), we have
|H| = 25 · 3, 24 · 3, or 23 · 3, and, accordingly, ϕ(|H|) = 25, 24, or 23. So,

as above we conclude that, in fact, R 6= A1

.
+ B3 or A1

.
+ C3.

Assume that R = A1

.
+ A3. Then Tables 1 and (14) yield

|G| = 24 · 3. (33)

Lemma 1(ii) and (33) imply that, respectively to (30), we have |H| =
24 ·3, 23 ·3, or 22 ·3, and, accordingly, ϕ(|H|) = 24, 23, or 22. Since only
the last integer divides 4, by Lemma 1(iv) we conclude that |ψ(G)| = 4.
The latter equality implies that the group ψ(G) is Abelian. From

this and Lemma 1(i) we infer that [G,G] ⊆ ker(ψ) = H . Since the
group H is Abelian, we conclude that the group [G,G] is Abelian as
well. But G is isomorpic to W (R) = W (R1)×W (R2), where the types
of R1 and R2 are respectively A1 and A3. Therefore, [G,G] contains a
subgroup isomorphic to [W (R2),W (R2)]. The latter is the alternating
group on 4 letters, hence non-Abelian. This contradiction shows that,
in fact, R 6= A1

.
+ A3.

Assume that R = 2A1

.
+ B2. ThenW (R) = W (R1)×W (R2)×W (R3),

where R1 and R2 are of type A1, and R3 is of type B2. Tables 1 yield
|W (R1)| = |W (R2)| = 2, |W (R3)| = 8. Since W (R3) is non-Abelian,
this implies that G does not contain an element of order > 8. On the
other hand, as |G| = 25, Lemma 1(ii),(v) yields |H| > 25/22 = 8. As
H is cyclic, this implies that G contains an element of order > 8. This
contradiction means that, in fact, R 6= 2A1

.
+ B2.

If R = 4A1, then 24−1 divides n = 4 by Proposition 3. This contra-
diction means that R 6= 4A1.
The proof of (i)⇒(ii) is now completed.

(ii)⇒(i) If R ∈ {A2,B2,G2, 2A1}, then (i) follows from Proposition 1
and Definition 1.
Consider the case R = A2

.
+ B2.
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Let K be the biquadratic field Q(
√
−3,

√
−1). Then

K = Q(
√
−3)⊗Q Q(

√
−1).

This equality determines the natural homomorphism

L(Q(
√
−3))×L(Q(

√
−1)) → L(K), (34)

whose restriction to Aut(Q(
√
−3))×Aut(Q(

√
−1)) is an isomorphism

with Aut(K) (see [2, Chap. VIII, §1, Thm. 5]). Homomorphism (34) is
surjective and its kernel is {(mult(a),mult(a−1)) | a ∈ Q∗}.
Let R1 and R2 be respectively the realizations of type A2 in Q(

√
−3)

and of type B2 in Q(
√
−1) constructed in the proof of Proposition 1.

Since −1 /∈ W (R1), the restriction of homomorphism (34) to the group
W (R1)×W (R2) is an embedding. Therefore, its image is the subgroup

of L(K) isomorphic to the Weyl group of a root system of type A2

.
+ B2.

This proves that (i) holds if R = A2

.
+ B2.

Now consider the case R = A2

.
+ 2A1.

If R3 is a subset of R2, which is a realization of type 2A1 in K,
then the restriction of homomorphism (34) to W (R1) ×W (R3) is the
subgroup of L(K) isomorphic to the Weyl group of a root system of

type A2

.
+ 2A1. Thus (i) holds if R is of this type.

This completes the proof of (ii)⇒(i) and that of Theorem 1. �

Proof of Theorem 2. (i)⇒(ii) In view of Theorem 1 and Definition 1,

we have to show that if R = A2

.
+ B2 or A2

.
+ 2A1, then R admits no

realizations in the number fields. Arguing on the contrary, assume that
this is not the case, so R admits a realization in a number field K.
The linear space K over Q is then a direct sum of two 2-dimensional

linear subspaces L1 and L2 such that

(a) Li is the linear span of Ri := R
⋂

Li over Q for every i;
(b) R1 is a root system in L1 of type A2;
(c) R2 is a root system in L2 of type B2 or 2A1;
(d) R = R1

⊔

R2.

Let ι : GLQ(L1)×GLQ(L2) →֒GLQ(K) be the natural embedding. Then

W (R) = ι(W (R1))× ι(W (R2)). (35)

In view of (b), the group ι(W (R1)) is isomorphic to the symmetric
group on three letters, hence contains an element z of order 3. By (35),
the fixed points set Kz of z has the property

L2 ⊆ Kz. (36)

According to Theorem 3, there are uniquely defined elements a ∈
K∗ and g ∈ Aut(K) such that z = mult(a)g. From (6) we infer that
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ord(g) divides ord(z)=3. Since ord(g) divides |Aut(K)|, which, in turn,
divides dimQ(K)=4, we conclude that

z = mult(a). (37)

As ord(z) 6= 1, we have a 6= 1. From this, (37), and (2) we infer that
Kz = 0 contrary to (36). This completes the proof of (i)⇒(ii).

(ii)⇒(i) This follows from Proposition 1. �
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