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Abstract. Structurally stable (rough) flows on surfaces have only finitely
many singularities and finitely many closed orbits, all of which are hyperbolic,

and they have no trajectories joining saddle points. The violation of the last
property leads to Ω-stable flows on surfaces, which are not structurally stable.

However, in the present paper we prove that a topological classification of such

flows is also reduced to a combinatorial problem. Our complete topological
invariant is a multigraph, and we present a polynomial-time algorithm for the

distinction of such graphs up to an isomorphism. We also present a graph cri-

terion for orientability of the ambient manifold and a graph-associated formula
for its Euler characteristic. Additionally, we give polynomial-time algorithms

for checking the orientability and calculating the characteristic.

1. Introduction. A traditional method of qualitative studying of a flows dynamics
with a finite number of special trajectories on surfaces consists of a splitting the
ambient manifold by regions with a predictable trajectories behavior known as cells.
Such a view on continuous dynamical systems rises to the classical work by A.
Andronov and L. Pontryagin [2] published in 1937. In that paper, they considered
a system of differential equations

ẋ = v(x), (1)

where v(x) is a C1-vector field given on a disc bounded by a curve without a contact
in the plane and found a roughness criterion for the system (1).

A more general class of flows on the 2-sphere was considered in works by E.
Leontovich-Andronova and A. Mayer [12, 13], where a topological classification of
such flows was also based on splitting by cells, whose types and relative positions
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(the Leontovich-Mayer scheme) completely define a qualitative decomposition of
the phase space of the dynamical system into trajectories. The main difficulty in
generalisations of this result to flows on arbitrary orientable surfaces is the possibil-
ity of new types of trajectories, namely unclosed recurrent trajectories. The absence
of non-trivial recurrent trajectories for rough flows on the plane and on the sphere is
an immediate corollary from the Poincaré-Bendixson theory for these surfaces, but
this is not so trivial for orientable surfaces of genus g > 0. At first, it was proved
by A. Mayer [14] in 1939 for rough flows with no singularities on the 2-torus1 and
later by M. Peixoto [20, 21] for structurally stable2 flows on surfaces of any genus
(see also [19]).

In 1971, M. Peixoto obtained a topological classification of structurally stable
flows on arbitrary surfaces [22]. As before, he did it by studying all admissible cells
and he introduced a combinatorial invariant called a directed graph generalizing the
Leontovich-Mayer scheme. In 1976, D. Neumann and T. O’Brien [16] considered the
so-called regular flows on arbitrary surfaces, such flows have no non-trivial periodic
trajectories (i.e. periodic trajectories other than limit cycles) and include the flows
above as a particular case. They introduced a complete topological invariant for
the regular flows named an orbit complex, which is a space of flow orbits equipped
with some additional information.

In 1998, A. Oshemkov and V. Sharko [17] introduced a new invariant for Morse-
Smale flows on surfaces, namely a three-colour graph, and described an algorithm
to distinct such graphs, which was not, however, polynomial, i.e. its working time
is not limited by some polynomial on the length of input information. In the same
work they obtained a complete topological classification of Morse-Smale flows on
surfaces in terms of atoms and molecules introduced in the work of A. Fomenko [3].

Structurally stable (rough) flows on surfaces have only finitely many singularities
and finitely many closed orbits, all of which are hyperbolic, they also have no
trajectories joining saddle points. The violation of the last property leads to Ω-
stable flows on surfaces, which are not structural stable. However, in the present
paper we prove that a topological classification of such flows is also reduced to a
combinatorial problem. The complete topological invariant is an equipped graph
and we give a polynomial-time algorithm for the distinction of such graphs up to
isomorphism. We also present a graph criterion for orientability of the ambient
manifold and a graph-associated formula for its Euler characteristic. Additionally,
we give polynomial-time algorithms for checking the orientability and calculating
the euler characteristic.

2. The dynamics of an Ω-stable flow.

2.1. Global properties. Let φt be some Ω-stable flow on a closed surface S. Due
to [18], the non-wandering set Ωφt of the flow φt consists of a finite number of
hyperbolic fixed points and hyperbolic closed trajectories (limit cycles), which are
called basic sets, denote them Ω1, . . . ,Ωk.

1Actually in [14] A. Mayer found the conditions of roughness for cascades (discrete dynamical

systems) on the circle and he also got the topological classification for these cascades.
2The term “rough system” introduced by A. Andronov and L. Pontryagin in [2] is slightly

different from its English counter part “structurally stable system” introduced by M. Peixoto in
[20, 21], but the sets of rough and structural stable systems coincide.
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Proposition 1 (Corollary 5.3, [25]). Every basic set Ωi of the flow φt possesses
the stable manifold W s

Ωi
= {x ∈ S | φt(x) → Ωi for t → +∞} and the unstable

manifold Wu
Ωi

= {x ∈ S | φt(x)→ Ωi for t→ −∞} and

S =

k⋃
i=1

W s
Ωi =

k⋃
i=1

Wu
Ωi .

2.2. Fixed points. The hyperbolicity of the fixed points of the flow φt is expressed
by the following fact.

Proposition 2 ([19], Theorem 5.1 in Chapter 2 and [24], Theorem 7.1 in Chapter
4). The flow φt in some neighbourhood of a fixed point q ∈ Ωφt is topologically
equivalent to one of the following linear flows

at(x, y) =
(
2−tx, 2−ty

)
,

bt(x, y) =
(
2−tx, 2ty

)
,

ct(x, y) =
(
2tx, 2ty

)
.

In the cases at, bt, ct the fixed point q is called sink, saddle, source with 0,1,2-
dimensional unstable manifold Wu

q accordingly. We will denote by Ω0
φt , Ω1

φt , Ω2
φt

the set of all sinks, saddles, sources of φt accordingly.
It follows from the criterion of the Ω-stability in [23] that the saddle points do

not organize cycles, i.e. collections of points

q1, . . . , qk, qk+1 = q1

with a property

W s
qi ∩W

u
qi+1
6= ∅, i = 1, . . . , k.

2.3. Closed trajectories. Let c be a closed trajectory of φt and p ∈ c. Let Σp be
a smooth cross-section passing through the point p transversal to trajectories of φt

near p. Let Vp ⊂ Σp be a neighbourhood of p such that for every point x ∈ Vp there
is a value τx ∈ R+ with properties φτx(x) ∈ Vp and φt(x) /∈ Vp for any 0 < t < τx.
Then Σp is called a Poincaré cross-section and the map Fp : Vp → Σp given by the
formula Fp(x) = φτx(x), x ∈ Vp is called a Poincaré map.

The hyperbolicity of the closed trajectory c is expressed by the following fact.

Proposition 3 ([19], Proposition 1.2 in Chapter 3 and Theorem 5.5 in Chapter
2). Poincaré map Fp : Vp → Fp(Vp) is a diffeomorphism with the fixed point p in a
neighbourhood of which Fp is topologically conjugate to one of the following linear
diffeomorphisms

a+(x) =
x

2
, a−(x) = −x

2
,

c+(x) = 2x, c−(x) = −2x.

In the cases a±, c± the closed trajectory c is called an attractive, repelling limit
cycle accordingly. Denote by Ωcφt the set of all limit cycles of φt.

In any case a limit cycle c has a neighbourhood Uc, which is disjoint with other
limit cycles and fixed points of φt and whose boundary Rc is transverse to the
trajectories of φt. The neighbourhood Uc is homeomorphic to an annulus or a
Möbius band (see Fig. 1) in the cases a+, c+ or a−, c− accordingly and can be
constructed in the following way.
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Figure 1. The case when Uc is homeomorphic to a Möbius band

For every points a, b ∈ Vp let us denote by ma,b the segment of Vp bounded by
the points a, b and by µa,b the length of this segment. In the cases a+, c+ let us
choose two points x∗1, x

∗
2 ∈ (Vp \{p}) on different connected components of Vp \{p}.

Then Rc is the union of two circles{
φ

µx,Fp(x∗1)

µx∗1 ,Fp(x∗1)
τx

(x) : x ∈ mx∗1 ,Fp(x∗1)

}
and

{
φ

µx,Fp(x∗2)

µx∗2 ,Fp(x∗2)
τx

(x) : x ∈ mx∗2 ,Fp(x∗2)

}
.

In the cases a−, c− let us choose a point x∗ ∈ (Vp \ {p}). Then

Rc =

φ
µ
x,F2

p (x∗)
µ
x∗,F2

p (x∗)
2τx

(x) : x ∈ mx∗,F 2
p (x∗)

 .

A moving of Σp along the trajectories in the positive time gives a consistent with
c orientation on Rc. Thus, in further we will assume that Rc is oriented consistently
with c.

3. The directed graph for a flow φt ∈ G. Denote by G a class of Ω-stable flows
φt with at least one fixed saddle point or at least one limit cycle3 on a surface S.
That is the flow class we consider in our work.

Recall that a graph Γ is an ordered pair (B,E) such that B is a finite non-empty
set of vertices, E is a set of pairs of the vertices called edges. Besides, if E is
a multiset then Γ is called a multigraph. Recall that a multiset is a set with the
opportunity of multiple inclusion of its elements. For simplicity, we call a multigraph
a graph everywhere below.

If a graph includes an edge e = (a, b), then both vertices a and b are called
incident to the edge e. The vertices a and b are connected by e. A graph is called
directed if every its edge is an ordered pair of vertices. A finite sequence

τ = (b0, (b0, b1), b1, . . . , bi−1, (bi−1, bi), bi, . . . , bk−1, (bk−1, bk), bk)

of vertices and edges of a graph is called a path, the number k is called the length
of the path and it is equal to the number of edges of the path. The path τ is called
simple if it contains only pairwise disjoint edges. The simple path τ is called a cycle
if b0 = bk. A graph is called connected if every two vertices can be connected by a
path.

3If flow φt has neither fixed saddle points nor closed trajectories, then its non-wandering set
consists of exactly two fixed points: a source and a sink, all such flows are topologically equivalent,

that is the reason why we exclude such flows from the class G.
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Let R =
⋃

c∈Ωc
φt

Rc. We call R a cutting set and the connected components of R

cutting circles.
Let Ŝ = S\R. We call an elementary region a connected component of the set Ŝ.

We have already showed the way of constructing some cutting circle in the previous
paragraph. Notice, that from the way of designing there follows, that such circles
or circle always exist near each limit cycle, because we may construct it as small
as we want. As well we showed that each neighbourhood of limit cycle bounded
by two or one cutting circle is homeomorphic to an annulus or a Möbius band
respectively. So we may present all types of elementary regions. Due to Proposition
1, the elementary region can be one of the following four types:

1) a region of the type L contains exactly one limit cycle;

2) a region of the type A contains exactly one source or exactly one sink;

3) a region of the type M contains at least one saddle point;

4) a region of the type E does not contain elements of basic sets.

Definition 3.1. A directed graph Υφt is said to be a graph of the flow φt ∈ G (see
Fig. 2) if

(1) the vertices of Υφt bijectively correspond to the elementary regions of φt;
(2) every directed edge of Υφt , which connects a vertex a with a vertex b, corre-

sponds to the cutting circle R, which is a common boundary of the regions A and
B corresponding to a and b, such that any trajectory of φt passes R starting at A
and ending in B by increasing the time.

Figure 2. φt and Υφt

We will call an L-, A-, E- or M-vertex a vertex of Υφt , which corresponds to a
L-, A-, E- or M-region accordingly.

The following Proposition immediately follows from the dynamics of the flow φt

and the structure of the cutting set.
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Proposition 4. Let Υφt be the directed graph of a flow φt ∈ G, then:
1) everyM-vertex can be connected only with L-vertices, furthermore, with every

vertex by a single edge;
2) every E-vertex can be incident only to two edges which connect this vertex with

two different L-vertices, and one of these edges enters to the E-vertex, the other one
exits;

3) every A-vertex can be connected only with a L-vertex, furthermore, by a single
edge;

4) every L-vertex has degree (the number of incident edges) 1 or 2, and if its
degree is 2, then both edges either enter or exit the vertex.

Isomorphisity of the directed graphs is necessary condition for flows from G to be
topological equivalent. To make the directed graph a complete topological invariant
for the class G, below we equip the graph Υφt with additional information.

4. Equipment of the directed graph. In this section, we describe how to assign
some additional information to vertices and edges of the directed graph of a flow
from G.

4.1. A-vertex. The flows in A-regions can belong to only the two equivalence
classes: a source pool and a sink pool, which we can distinguish by directions of
edges incident to A-vertices.

4.2. L-vertex. The flows in L-regions can belong to only the four equivalence
classes: an annulus with a stable limit cycle, an annulus with an unstable one, a
Möbius band with a stable one, a Möbius band with an unstable one, which we can
distinguish by directions of edges and by quantities of edges incident to L-vertices.

4.3. E-vertex. The flows in E-regions can belong to only the two equivalence classes
corresponding to the consistent and the inconsistent orientation of connecting com-
ponents of E ’s boundary (see Fig. 3). However, the structure of an E-region cannot
be determined by the directed graph, therefore, we will attribute the weight to the
vertex corresponding to an E-region. The weight is “+” in the consistent case and
“−” in the inconsistent one.

4.4. M-vertex. The flows in M-regions cannot be determined by the directed
graph. Then we will equip vertices corresponding to them by four-colour graphs for
a description of the dynamics of the flow in the regions. In more details.

Let us consider someM-region which is either a 2-manifold with a boundary or a
closed surface. In the first case let us attach the union D of some disjoint 2-disks to
the boundary to get a closed surface M , in the second case we also denote the closed
surface by M and will suppose that D = ∅. Let us extend φt|M to an Ω-stable flow
f t : M →M such that f t coincides with φt out of D and Ωft has exactly one fixed
point (a sink or a source) in each connected component of D.

Let Ω0
ft , Ω1

ft , Ω2
ft be the sets of all sources, saddle points and sinks of f t accord-

ingly. By the definition of the region M the flow f t has at least one saddle point.
Let

M̃ = M \ (Ω0
ft ∪W s

Ω1
ft
∪Wu

Ω1
ft
∪ Ω2

ft).

A connected component of M̃ is called a cell.
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Figure 3. The cases of the consistent (leftward) and the inconsis-
tent (rightward) orientation of boundary’s connecting component
of some E-region.

Lemma 4.1 ([11], the main Theorem). Every cell J of the flow f t contains a
single sink ω and a single source α in its boundary, and the whole cell is the union
of trajectories going from α to ω.

Let us choose a trajectory θJ in the cell J , we will call it a t-curve. Let

T =
⋃
J⊂S̃

θJ , M̄ = M̃\T .

Figure 4. A polygonal region

Let us call a c-curve a separatrix connecting saddle points (from the word “con-
nection”), a u-curve an unstable saddle separatrix with a sink in its closure, a s-
curve a stable saddle separatrix with a source in its closure. We will call a polygonal
region ∆ a connecting component of M̄ .

Lemma 4.2 ([10], Lemma 3.4). Every polygonal region ∆ is homeomorphic to an
open disk and its boundary consists of a unique t-curve, a unique u-curve, a unique
s-curve, and a finite (may be empty) set of c-curves (see Fig. 4).

Denote by ∆ft the set of all polygonal regions of f t (see Fig. 5, where a flow f t

and all its polygonal regions are presented).
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Figure 5. An example of the flow f t together with the polygonal regions

Definition 4.3. A multigraph is called an n-colour graph if the set of its edges is
the disjoint union of n subsets, each of which consists of edges of the same colour.

We say that a four-colour graph ΓM with edges of colours u, s, c, t bijectively
corresponds to f t if:

1) the vertices of ΓM bijectively correspond to the polygonal regions of ∆ft ;
2) two vertices of ΓM are incident to an edge of colour s, t, u or c if the polygonal

regions corresponding to these vertices has a common s-, t-, u- or c-curve; that
establishes an one-to-one correspondence between the edges of ΓM and the colour
curves;

3) if some vertex b of ΓM is incident to more than one c-edge (the number nb of
c-edges is more than 1), then we order the c-edges by

cb1, . . . , c
b
nb

by a moving (according to the direction from the source to the sink on t-curve)
along the boundary of the corresponding polygonal region (see, for example, Figure
6).

Definition 4.4. We say that the graph ΓM is the four-colour graph of the flow f t

corresponding to φt|M.

Definition 4.5. Two four-colour graphs ΓM and ΓM′ corresponding to φt|M and
φ′t|M′ respectively are said to be isomorphic if there is an one-to-one correspondence
ψ of the vertices and the edges of the first graph to the vertices and the edges of
the second graph preserving the colours of all edges and the numbers of c-edges.

4.5. (M,L)- and (L,M)-edge. Let us denote by πft the one-to-one correspon-
dence described above between the polygonal regions and the vertices, also between
the colour curves of f t and the colour edges of ΓM respectively.
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Figure 6. An example of f t and its four-colour graph

Let us call a st-cycle (tu-cycle) a cycle of ΓM consisting only of s- and t-edges (t-
and u-edges). Let us call u- and s-edges exiting out a vertex b as nominal c-edges
and assign the numbers 0 and nb + 1 to them respectively. Let us call a c∗-cycle a
simple cycle

b1, (b1, b2), b2, . . . , b2k, b2k+1, b2k+1 = b1,

if
(b2i−1, b2i) = cb2im , (b2i, b2i+1) = cb2im+1 = c

b2i+1

l , (b2i+1, b2i+2) = c
b2i+1

l−1 .

Proposition 5 ([10], Proposition 3). The projection πft gives an one-to-one cor-
respondence between the sets Ω0

ft , Ω1
ft , Ω2

ft and the sets of tu-, c∗-, and st-cycles
respectively.

By our construction M =M∪D, where D is either empty or each its connected
component contains exactly one sink ω (source α) of the flow f t, uniquely corre-
sponding to a cutting circle Rc for a limit cycle c of the flow φt, which uniquely
corresponds to an (M,L)-edge ((L,M)-edge) of the graph Υφt . Due to Proposition
5 the node ω (α) uniquely corresponds to a tu-cycle (an st-cycle), denote it by τM,L

(τL,M). Moreover, due to Proposition 5, we can embed the graph ΓM such that the
cycle τM,L (τL,M) coincides with Rc. Thus we induce an orientation from Rc to the
cycle and call the cycle τM,L (τL,M) oriented one.

5. The formulation of the results.

Definition 5.1. Let Υφt be the directed graph of a flow φt ∈ G. We will say that
Υφt is the equipped graph of φt and denote it by Υ∗φt if:

(1) every E-vertex is equipped with the weight “+” or “−” in consistent and
inconsistent case respectively;

(2) every M-vertex is equipped with a four-colour graph ΓM corresponding to
the flow f t constructed in Subsection 4.4;

(3) every edge (M,L) ((L,M)) is equipped with an oriented tu-cycle (st-cycle)
τM,L (τL,M) of ΓM corresponding to the limit cycle c of L and oriented consistently
with Rc (see Fig. 7).
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Figure 7. Two flows from G and their equipped graphs

On Fig. 8 you can see the two examples of flows from G whose difference might
be recognized only by oriented cycles of four-colour graphs, and on Fig. 9 there are
examples of flows on a torus whose difference might be recognized only by weight
of E-vertices.

Let us denote by π∗φt the one-to-one correspondence described above between
the elementary regions and the vertices, the cutting circles and the edges, the di-
rections of the trajectories and the directions of the edges, the consistencies of the
orientations of the boundary’s connecting components of E-regions and the weights
of the E-vertices, the M-regions and the four-colour graphs, the stable limit cycles
and the tu-cycles, the unstable limit cycles and the st-cycles, the orientations of the
stable limit cycles and the orientations of the cycles τM,L , the orientations of the
unstable limit cycles and the orientations of the cycles τL,M accordingly.

5.1. The classification result.

Definition 5.2. Two equipped graphs Υ∗φt and Υ∗φ′t are said to be isomorphic if
there is a one-to one correspondence ξ between all edges and vertices of Υ∗φt and all
edges and vertices of Υ∗φ′t preserving their equipments in the following way:

(1) the weights of vertices E and ξ(E) are equal;
(2) for vertices M and ξ(M), there is an isomorphism ψM of the four-colour

graphs ΓM, Γξ(M) such that ψM(τM,L) = τ
ξ(M),ξ(L)

and the orientations of ψM
(τM,L) and τ

ξ(M),ξ(L)
coincide (similarly for τL,M).

Theorem 5.3. Flows φt, φ′t ∈ G are topologically equivalent if and only if the
equipped graphs Υ∗φt and Υ∗φ′t are isomorphic.

5.2. The realisation results. To solve the realization problem, we introduce the
notions of an admissible four-colour graph and an equipped graph.
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Figure 8. Two examples of flows from G differing only by ori-
entation of the limit cycle between M and A and their equipped
graphs

Figure 9. Two examples of flow from G without A- and M-
regions differing only by orientation of the limit cycle and their
equipped graphs

Let Γ be a four-colour graph with the properties:
(1) every edge of the four-colour graph is coloured in one of the four colours:

s, u, t, c;
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(2) every vertex of the four-colour graph is incident to exactly one edge of the
colours s, u, t. Besides, the number nb of c-edges incident to a vertex b can be any
(may be null) and these edges cb1, . . . , c

b
nb

are ordered if nb ≥ 1.

Definition 5.4. We say a four-colour graph Γ is admissible if it contains a c∗-cycle
and every cycle has four vertices.

Lemma 5.5 ([10], Lemma 2.1). The graph ΓM is admissible.

Lemma 5.6 ([10], Theorem 3). Every admissible four-colour graph Γ corresponds
to a closed surface M and an Ω-stable flow f t : M →M from G without limit cycles,
besides:

(1) The Euler characteristic of M can be obtained by the formula

χ(M) = ν0 − ν1 + ν2, (2)

where ν0, ν1, ν2 are the numbers of all tu-, c∗- and st-cycles of Γ respectively;
(2) M is non-orientable if and only if Γ has at least one cycle with an odd length.

Definition 5.7. We call Υ∗ an admissible equipped graph if it is a connected directed
graph Υ with A-, L-, E- andM-vertices satisfying the items (1)–(4) of Proposition
4, so that

– every M-vertex is equipped with an admissible four-colour graph ΓM,
– every edge entering into (exiting out of) any M-vertex is equipped with an

oriented st-cycle (ut-cycle) of the four-colour graph,
– every E-vertex is assigned with a weight “+” or “−”.

Lemma 5.8. The graph Υ∗φt is admissible.

For every M-vertex of an admissible equipped graph Υ∗, let us denote by XM
the result of applying the formula (2) to the corresponding admissible four-colour
graph ΓM. Denote by YM the quantity of edges, which are incident to M and
denote by NA the quantity of A-vertices of Υ∗.

Theorem 5.9. Every admissible equipped graph Υ∗ corresponds to an Ω-stable flow
φt : S → S from G on a closed surface S, besides:

(1) The Euler characteristic of S can be calculated by the formula

χ(S) =
∑
M

(XM − YM) +NA; (3)

(2) S is orientable if and only if every four-colour graph equipping Υ∗ has not
cycles of an odd length and every L-vertex is incident to exactly two edges.

5.3. The algorithm results. An algorithm for solving the isomorphism problem
is considered to be efficient if its working time is bounded by a polynomial on the
length of the input data, in this case the input data is the number of the vertices and
the edges of the graph. Algorithms of such kind are also called polynomial-time or
simply polynomial. This commonly recognized definition of efficient solvability rises
to A. Cobham [5]. A common standard of intractability is NP-completeness [6].
The complexity status of the isomorphism problem is still open, for the class of all
graphs, neither its polynomial-time solvability nor its NP-completeness is proved.
Fortunately, four-colour graphs and directed graphs of flows on ambient surfaces can
be embedded into the carrying surfaces. Indeed, we have the following theorems.

Theorem 5.10. Isomorphism of the equipped graphs Υ∗φt , Υ∗φ′t of flows φt, φ′t ∈ G
can be recognized in polynomial time.
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Theorem 5.11. The orientability of the ambient surface S for an Ω-stable flow φt

can be tested in a linear time and the Euler characteristic of S can be determined
in quadratic time by means of the equipped graph Υ∗φt .

6. The proof of the classification Theorem 5.3. In this section we consider
Ω-stable flow φt ∈ G on closed surface S and prove that the isomorphic class of its
equipped graph Υ∗φt is a complete topological invariant.

6.1. The necessary condition of Theorem 5.3. Let two Ω-stable flows φt, φ′t ∈
G given on a closed surface S be topological equivalent, i.e. there is a homeomor-
phism h : S → S mapping trajectories of φt to trajectories of φ′t. Without loss of
generality we assume that the cutting set R′ of φ′t is created so that R′ = h(R),
where R is the cutting set of φt. Also we can assume that the restriction T ′ of the
set of t-curves of φ′t to theM-regions of φ′t is created so that T ′ = h(T ), where T
is the restriction of the set of t-curves of φt to the M-regions of φt. Then h maps
the elementary and the polygonal regions of φt to the elementary and the polygonal
regions of φ′t respectively.

Recall that π∗φt is the one-to-one correspondence between the elementary regions
and the vertices, the cutting circles and the edges, the directions of the trajectories
and the directions of the edges, the consistencies of the orientations of the limit
circles for the E-regions and the weights of the E-vertices, the M-regions and the
four-colour graphs, the stable limit cycles and the tu-cycles, the unstable limit cycles
and the st-cycles respectively. Let us define the isomorphism ξ : Υ∗φt → Υ∗φ′t by the
formula

ξ = π∗φ′th(π∗φt)
−1.

Notice that h carries out the topological equivalence of φt and φ′t, then it preserves
the types of elementary regions and, hence, ξ preserves the types of the vertices.
Also notice that h preserves the orientations on the trajectories, then the weights
of vertices E and ξ(E) are equal.

Let ΓM be the four-colour graph for some vertex M, Γξ(M) be the four-colour
graph for the vertex M′ = ξ(M). Recall that φt|M = f t|M (φ′t|M′ = f ′t|M′)
and πft (πf ′t) is the one-to-one correspondence between the polygonal regions and
the vertices, also between the colour curves of f t (f ′t) and the colour edges of the
four-colour graph ΓM (ΓM′) respectively.

As ΓM is the four-colour graph of the region M, then ΓM = π∗φt(M). Let

ΓM′ = Γξ(M) = π∗φ′t(h(M)). As h maps the polygonal regions of f t to the polygonal

regions of f ′t, then there exists an isomorphism ψ : ΓM → ΓM′ defined by the
formula

ψM = πf ′thπ
−1
ft .

As R′ = h(R), then ψ(τM,L) = τ
ξ(M),ξ(L)

and the orientations of ψM(τM,L) and

τ
ξ(M),ξ(L)

coincide (similarly for τL,M). Thus ξ is the required isomorphism.
So, one topological equivalence class of flows defines one isomorphisity class of

graphs.

6.2. The sufficient condition of Theorem 5.3. Assume that two graphs Υ∗φt
and Υ∗φ′t are isomorphic by ξ. To prove the topological equivalence of the flows
we need to construct homeomorphisms between elementary regions mapping the
trajectories of φt to the trajectories of φ′t so that for two elementary regions the
homeomorphisms on their common boundaries coincide.
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I.M-region. Let us consider someM-region of the flow φt. Consider the region

M′ = (π∗φ′t)
−1ξπ∗φt(M)

of the flow φ′t. Their four-colour graphs ΓM and ΓM′ are isomorphic by means
of ψ. Let f t : M → M (f ′t : M ′ → M ′) be the flow corresponding to ΓM (ΓM′).
Recall that in Subsection 4.4 we defined the flow f t (f ′t) on surface M (M ′) such
that M ∩ S =M (M ′ ∩ S =M′) and φt|M = f t|M (φ′t|M′ = f ′t|M′).

The fact that f t and f ′t are topologically equivalent if and only if ΓM and ΓM′

are isomorphic is proved in [10], Theorem 1. So there exists the homeomorphism
hM : M → M ′ mapping trajectories of f t to trajectories of f ′t. Suppose without
loss of generality that cutting circles of M and M′ are homeomorphic by means
of hM (in [10] we really constructed the homeomorphism so that these circles be-
come homeomorphic). As M ∩ S = M and M ′ ∩ S = M′, then we define the
homeomorphism hM : cl(M)→ cl(M′) by the formula

hM = hM |cl(M).

Thus we have the homeomorphism

hM : cl(M)→ cl(M′)

for every M-region of the flow φt.
II. E-region. Let us consider some E-region of the flow φt. Consider the E ′-

region of the flow φ′t such that

E ′ = (π∗φ′t)
−1ξπ∗φt(E).

These two regions are of the same type because of the weight of the vertices corre-
sponding to them.

Let E1 and E2 be the connected components of ∂E . Then they are cutting
circles and, hence, E′i = (π∗φ′t)

−1ξπ∗φt(Ei), i = 1, 2 are cutting circles which are the

connected components of ∂E ′.
Let hE1

: E1 → E′1 be an arbitrary homeomorphism preserving orientations of
E1 and E′1. Let x0 ∈ E1 and {x1} = Ox0

∩E2. Let x′0 = hE1
(x0) and {x′1} = Ox′0 ∩

E′2. Let us construct the homeomorphism hE : cl(E) → cl(E ′) so that hE |lx0,x1
=

hlx0,x1
: lx0,x1

→ lx′0,x′1 .
Thus we have the homeomorphism

hE : cl(E)→ cl(E ′)

for every E-region of the flow φt.
III. A-region. Let us consider some A-region of the flow φt with a source α.

Consider the region

(π∗φ′t)
−1ξπ∗φt(A)

of the flow φ′t. We perfectly know that it is the A′-region with a source because of
the directions the of edges.
A (A′) is surely surrounded by some L, (L′ = (π∗φ′t)

−1ξπ∗φt(L)).
Recall that

u = {(x, y) ∈ R2 | x2 + y2 < 1}.
Due to Proposition 2 the source α (α′) has a neighbourhood uα (uα′) and the
homeomorphism hα : uα → u (hα′ : uα′ → u) such that φt|uα (φ′t|uα′ ) is conjugate
to ct|u. Also recall that Sr = {(x, y) ∈ R2 : x2 + y2 = r} for r ∈ (0, 1] and

Sαr = h−1
α (Sr) (Sα

′

r = h−1
α′ (Sr)). Notice that Sα1 = ∂uα (Sα

′

1 = ∂uα′)
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We know that ∂A (∂A′) is oriented. Then now we orient ∂uα = Sα1 (∂uα′ = Sα
′

1 )

consistently with ∂A (∂A′). Let hSα1 : Sα1 → Sα
′

1 be the arbitrary homeomorphism

preserving orientations of Sα1 and Sα
′

1 . Let x ∈ Sα1 (x′ ∈ Sα
′

1 ) and Ox (Ox′) be
the trajectory of x (x′). Let xα ∈ (cl(uα) \ {ω}), then xα = Sαr ∩ Ox for some
r ∈ (0, 1] and x ∈ Sα1 . Let us define the homeomorphism huα : cl(uα) → cl(uα′) so

that huα(α) = α′ and huα(xα) = x′α
′
, where x′α

′
= Sα

′

r ∩ OhSα1 (x).

Let x0 ∈ ∂uα, x′0 ∈ ∂uα′ and x′0 = huα(x0). Let Ox0 (Ox′0) be the trajectory of
x0 (x′0) and {x1} = Ox0

∩∂A ({x′1} = Ox′0∩∂A
′). Let us define the homeomorphism

hcl(A)\uα : cl(A)\uα → cl(A′)\uα′ so that hcl(A)\uα |lx0,x1
= hlx0,x1

: lx0,x1
→ lx′0,x′1

for any x0 ∈ ∂uα.
So we define the homeomorphism hA : cl(A)→ cl(A′) by the formula

hA(x) =

{
huα(x) if x ∈ uα,

hcl(A)\uα(x) if x ∈ cl(A)\uα.

The homeomorphism for A-region with a sink can be constructed similarly. Thus
we have a homeomorphism

hA : cl(A)→ cl(A′)
for every A-region of the flow φt.

IV. L-region. Here we will follow the construction in [8]. Let us consider
some L-region of the flow φt with an unstable (for definiteness) limit cycle c inside.
Consider a region

(π∗φ′t)
−1ξπ∗φt(L)

of the flow φ′t. We perfectly know that it is an L′-region of the flow φ′t with an
unstable limit cycle c′ which is the same type to L because of directions of edges
and their numbers. We also know that the orientations of limit cycles and cutting
circles of L and L′ are oriented consistently because the orientations of ψ(τL,M)
and τξ(L),ξ(M) are equivalent.

1. Consider the case of the annulus.

Step 1. Let L∗ and L∗∗ be the two connecting components of ∂L and let L′∗ =
(π∗φ′t)

−1ξπ∗φt(L
∗), L′∗∗ = (π∗φ′t)

−1ξπ∗φt(L
∗∗). Let h∗ : L∗ → L′∗ and h∗∗ : L∗∗ → L′∗∗

be the contractions of the homeomorphisms constructed before on the closures of the
elementary regions adjoined to L (L′) with L∗ and L∗∗ as their common boundary
accordingly.

Step 2. Recall that Σp (Σp′) is the Poincaré cross-section of c (c′), Fp (Fp′) is the
Poincaré map and {p} = Σp∩c ({p′} = Σp′∩c′). By Proposition 3 Fp ∈ Diff1(Σp).
The point p is a source of Fp. Let ma,b, a, b ∈ Σp (ma′,b′ , a

′, b′ ∈ Σp′) be the segment
in Σp (Σp′) with boundary {a, b} ({a′, b′}) and µa,b (µa′,b′) be its length.

Let {x∗} = Σp ∩ L∗ and {x∗∗} = Σp ∩ L∗∗. Let x′∗ ∈ L′∗ and x′∗∗ ∈ L′∗ be such
that x′∗ = h∗(x∗) and x′∗∗ = h∗∗(x∗∗). Let {x′∗} = Σp′∩L′∗ and {x′∗∗} = Σp′∩L′∗∗.
Let t∗ ≥ 0 and t∗∗ ≥ 0 be the least non negative numbers such that x′∗ = φ′t

∗
(x′∗)

and x′∗∗ = φ′t
∗∗

(x′∗∗). Let

p′∗ = φ
′(
µ
x′∗∗,p

′
µ
x′∗∗,x

′
∗

(t∗−t∗∗)+t∗∗)
(p′),

Σp′∗ =

{
φ
′(
µ
x′∗∗,x

′
µ
x′∗∗,x

′
∗

(t∗−t∗∗)+t∗∗)
(x′) : x′ ∈ Σp′

}
.
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Step 3. Let us construct a homeomorphism hΣ : Σp → Σp′∗ by the next way.

For x ∈ mx∗,F−1
p (x∗) let t∗x ≥ 0 be such that φt

∗
x(x) ∈ L∗ and t∗x′ ≥ 0 such that

φ′(−t
∗
x′ )(h∗(φt

∗
x(x))) ∈ mx′∗,F−1

p′∗ (x′∗). Then

hΣ(x) = φ′(−t
∗
x′ )(h∗(φt

∗
x(x)));

Similarly for x ∈ mx∗∗,F−1
p (x∗∗) let t∗∗x ≥ 0 be such that φt

∗∗
x (x) ∈ L∗∗ and t∗∗x′ ≥ 0

such that φ′(−t
∗∗
x′ )(h∗∗(φt

∗∗
x (x))) ∈ mx′∗∗,F−1

p′∗ (x′∗∗). Then

hΣ(x) = φ′(−t
∗∗
x′ )(h∗∗(φt

∗∗
x (x)));

For x ∈ mF−kp (x∗),F−k+1
p (x∗), where k ∈ N let

hΣ(x) = F−kp′∗ (x) ◦ hΣ ◦ F kp (x);

For x ∈ mF−lp (x∗∗),F−l+1
p (x∗∗), where l ∈ N let

hΣ(x) = F−lp′∗(x) ◦ hΣ ◦ F lp(x).

Step 4. Let us define a homeomorphism hL : cl(L)→ cl(L′) by the next formulas.

For x ∈ Σp \ (mF−1
p (x∗),x∗ ∪mF−1

p (x∗∗),x∗∗)

let hL|lx,Fp(x)
= hlx,Fp(x)

: lx,Fp(x) → lhΣ(x),hΣ(Fp(x)).

For x ∈ mF−1
p (x∗),x∗

let hL|l
x,φ

t∗x (x)
= hl

x,φ
t∗x (x)

: lx,φt∗x (x) → lhΣ(x),h∗(φt
∗
x (x)).

For x ∈ mF−1
p (x∗∗),x∗∗

let hL|l
x,φ

t∗∗x (x)
= hl

x,φ
t∗∗x (x)

: lx,φt∗∗x (x) → lhΣ(x),h∗∗(φt
∗∗
x (x)).

2. Consider the case of the Möbius band. In general the construction is similar
to the case of the annulus but it has the few important differences.

Step 1. The boundary ∂L has only one connected component, and Σp crosses it
in two points x∗ and x∗∗. Denote h∗ : ∂L → ∂L the homeomorphism constructed
before on ∂L. Let x′∗ be one of the two points in which Σp′ crosses ∂L′. Let

x′∗ = h∗(x∗). Let t∗ ≥ 0 be the least non negative number such that x′∗ = φ′t
∗
(x′∗).

Let

p′∗ = φ′t
∗
(p′) and Σp′∗ =

{
φ′t
∗
(x′) : x′ ∈ Σp′

}
.

Denote by x′∗∗ the second point in which Σp′∗ crosses ∂L′ (i.e. x′∗∗ 6= x′∗).

Step 2. Let us construct a homeomorphism

hΣ : (Σp \mx∗∗,F−1
p (x∗))→ (Σp′∗ \mx′∗∗,F−1

p′∗ (x′∗))

by the next way: For x ∈ mx∗,F−2
p (x∗) let t∗x ≥ 0 be such that φt

∗
x(x) ∈ ∂L and

t∗x′ ≥ 0 such that φ′(−t
∗
x′ )(h∗(φt

∗
x(x))) ∈ mx′∗,F−2

p′∗ (x′∗). Then

hΣ(x) = φ′(−t
∗
x′ )(h∗(φt

∗
x(x)));

For x ∈ mF−kp (x∗),F−k−2
p (x∗), where k ∈ N, let

hΣ(x) = F−kp′∗ (x) ◦ hΣ ◦ F kp (x);
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Step 3. Let us define the homeomorphism hL : cl(L)→ cl(L′) by the next formulas

For x ∈ Σp \ (mF−2
p (x∗),x∗ ∪mx∗∗,Fp(x∗))

let hL|lx,Fp(x)
= hlx,Fp(x)

: lx,Fp(x) → lhΣ(x),hΣ(Fp(x)).

For x ∈ mF−2
p (x∗),x∗

let hL|l
x,φ

t∗x (x)
= hl

x,φ
t∗x (x)

: lx,φt∗x (x) → lhΣ(x),h∗(φt
∗
x (x)).

The homeomorphism for L-region with a stable limit cycle can be constructed
similarly. Thus we have a homeomorphism

hL : cl(L)→ cl(L′)

for every L-region of the flow φt.
The final homeomorphism. We have built the homeomorphism for each el-

ementary region. Thus, the final homeomorphism h : S → S we defined by the
formula

h(x) =


hA(x) if x ∈ cl(A),

hE(x) if x ∈ cl(E),

hM(x) if x ∈ cl(M),

hL(x) if x ∈ cl(L).

So, Theorem 5.3 is proved.

7. Realisation of an admissible equipped graph Υ∗ by the Ω-stable flow
φt on a surface S. Let Υ∗ be some admissible equipped graph.

I. Let us construct an Ω-stable flow φt corresponding to Υ∗’s isomorphic class
by creation the surface S and the continuous vector field.

Step 1. Let B be the set of Υ∗’s vertices and E be the set of its edges. Let us

construct for every b ∈ B a surface Sb with a boundary and a vector field
−→
Vb on it,

transversal to the boundary. The required Ω-stable flow on S will be glued from
these pieces of dynamics by means annuli which correspond to the edges from E
according to incidence.
A-vertex. Let b be an A-vertex. Then Sb = {(x, y) ∈ R2 | x2 + y2 < 1} and

the vector field on the disk Sb we define by the vector-function
−→
Vb(x, y) = {−x,−y}

(
−→
Vb(x, y) = {x, y}), if the edges incident to b are directed to b (out of b).
E-vertex. Let b be an E-vertex. Let W = [0, 1] × [0, 1]. Define the minimal

equivalence relation ∼E on W such that (x, 0) ∼E (x, 1) for x ∈ [0, 1]. Let Sb =
W/ ∼E and qb : W → Sb be the natural projection. Define on the annulus Sb

the vector field by the formula
−→
Vb(x, y) = qb({ 1

2 , 1}) (
−→
Vb(x, y) = qb({sin 2π

3

(
x +

1
4

)
, cos 2π

3

(
x+ 1

4

)
})), if the weight of E is “+” (“−”).

L-vertex. Let b be an L-vertex. Let

W = {(x, y) ∈ R2 : |x| ≤ 3− cosπy

2
, 0 ≤ y ≤ 1}.

Then W is a curvilinear trapezium with the vertices A(−1; 0), B(−2; 1),
C(2; 1), D(1; 0). Define on W the minimal equivalence relation ∼L such that (x, 0)
∼L (2x, 1) ((x, 0) ∼L (−2x, 1)) for x ∈ AD, if the vertex b is incident to two edges
(one edge). Let Sb = W/ ∼L and let qb : W → Sb be its natural projection. Then
Sb is the annulus (the Möbius band). Define on Sb the vector field by the formula
−→
Vb(x, y) = qb({0, 1}) (

−→
Vb(x, y) = qb({0,−1})) and orient the boundary of Sb in the
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direction of motion along the coordinate y from 0 to 1 (from 1 to 0), if the edges
incident to b are directed to b (out of b).
M-vertex. Let b be aM-vertex. Then b is equipped with the four colour graph

ΓM, corresponding to the surface M with the vector field
−→
VM , constructed in the

proof of Lemma 5.6 in [10]. Let ω (α) be a sink (source) of
−→
VM such that ω =

π−1
VM

(τb,L) (α = π−1
VM

(τL,b)), where πVM is the one-to-one correspondence between

the elements of the field
−→
VM and the elements of the four colour graph ΓM. Let

uω (uα) is some neighbourhood of ω (of α) without other elements of the basic

set inside and with the boundary transversal to the trajectories of
−→
VM . Let us

orient ∂uω (∂uα) consistently with the orientation of the cycle τb,L (τL,b). Then

Sb = M \
⋃

ω=π−1
VM

(τb,L)

int uω ∪
⋃

α=π−1
VM

(τL,b)

int uα with the field
−→
Vb =

−→
VM |Sb . We

will suppose that each connected component of ∂Sb has an orientation due to the
oriented cycle the orientation.

Step 2. Let A = S1 × [−1, 1] and we have two vector fields
−→
V − = {

−→
v−(s), s ∈ S1},

−→
V + = {

−→
v+(s), s ∈ S1} on S1 × {−1}, S1 × {1}, accordingly, such that they are

transversal to ∂A,
−→
V − has a direction to A,

−→
V + has a direction out of A. Let

−→
VA = {−→v (s, t) =

1

2

(
(1− t)

−→
v−(s) + (1 + t)

−→
v+(s)

)
, s ∈ S1, t ∈ [−1, 1]}.

We will called the vector field
−→
VA by an average of the boundaries.

For every edge e ∈ E denote by Ae a copy of the annulus A. Let us notice

that the sets ∂

( ⊔
b∈B

Sb

)
and ∂

( ⊔
e∈E

Ae

)
consist of the same number of circles.

Let hΥ∗ : ∂

( ⊔
b∈B

Sb

)
→ ∂

( ⊔
e∈E

Ae

)
be a diffeomorphism such that if hΥ∗(x) = y

for x ∈ Sb, y ∈ Ae then b, e are incident, moreover, hΥ∗ induces a concordant
orientation on the connected components of ∂Ae for the edge e which is incident to
M-vertex and L-vertex.

Let S =
⊔
b∈B

Sb t
⊔
e∈E
Ae. Let us introduce on S the minimal equivalent relation

∼Υ∗ such that x ∼Υ∗ hΥ∗(x). Then S/ ∼Υ∗ is a closed surface, denote it by S

and by qS : S → S the natural projection. Then the required vector field
−→
VS on

S coincides with qS(
−→
VSb) for every b ∈ B and is the average of the boundaries on

qS(Ae) for every e ∈ E.
II. Let us prove that the Euler characteristic of S can be calculated by the

formula (3) χ(S) =
∑
M

(XM − YM) + NA, where XM is the result of applying the

formula (2) to the four-colour graph ΓM corresponding to the vertexM, YM is the
quantity of the edges which are incident to M, NA is the quantity of A-vertex of
Υ∗.

It is well-known (see, for example, [4]) that χ(Πp) = χ(Π) − p, where Πp is the
surface Π with p holes and if Π is a result of an identifying of the boundaries of
Π1
p and Π2

p then χ(Π) = χ(Π1
p) + χ(Π2

p). As S is a result of the identifying of the
boundaries of

⊔
b∈B

Sb and
⊔
e∈E

Ae and χ(Ae) = 0 then to calculate χ(S) we need

to calculate the characteristic of its elementary regions and to summarize them.
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As χ(Sb) = 1 for b being A-vertex, χ(Sb) = 0 for b being E- or L-vertex and
χ(Sb) = XM − YM for b being M-vertex then we get the result.

III. Let us prove that S is orientable if and only if every four-colour graph
equipping Υ∗ has not odd length cycles and each L-vertex is incident to exactly two
edges.

Notice that S is orientable if and only if all its parts are orientable, i.e. all its
elementary regions are orientable, that equivalently the condition that all L-regions
are the annuli and all four colour graphs equipping Υ∗ do not have odd length cycles
(see item (2) of Lemma 5.6).

8. Efficient algorithms to solve the isomorphism problem in the classes
of four-colour and equipped graphs, to calculate the Euler characteristic
and to determine orientability of the ambient surface. In this section, we
consider the distinction (isomorphism) problem for four-colour and equipped graphs
and the problems of calculation of the Euler characteristic of the ambient surface
and determining its orientability. We present polynomial-time algorithms for their
solution.

8.1. The isomorphism problem, a proof of Theorem 5.10. For two given
four-colour (or equipped) graphs, the problem is to decide whether these graphs
are isomorphic or not. Recall that four-colour graphs and directed graphs of flows
can be embedded into the ambient surface. In other words, these graphs can be
depicted on the ambient surface such that their vertices are points and their edges
are Jordan curves on the surface, and no two edges are crossing in an internal
point. This observation is useful for our purposes, as there exists a polynomial-time
algorithm for the isomorphism problem of simple graphs embeddable into a fixed
surface.

Definition 8.1. An unlabeled graph without loops, directed and multiple edges is
called simple.

Proposition 6. [15] The isomorphism problem for n-vertex simple graphs each
embeddable into a surface of genus g can be solved in O(nO(g)) time.

First, let us consider only the case of four-colour graphs. We cannot directly
apply Proposition 6 for distinction of four-colour graphs, as they are not simple.
Nevertheless, it is possible to reduce the problem for four-colour graphs to the same
problem for simple graphs with a small complexity of the reduction. To this end,
we need the following operations with graphs.

Definition 8.2. The operation of k-subdivision of an edge (a, b) is to delete the
edge from a graph, add vertices c1, . . . , ck and edges (a, c1), (c1, c2), . . . , (ck, b).

Definition 8.3. The operation of (k1, k2)-subdivision of an edge (a, b) is to delete
it from a graph, add vertices c1, c2, . . . , ck1 , v, u, w, d1, d2, . . . , dk2 and edges (a, c1),
(c1, c2), . . . , (ck1

, v), (v, u), (u,w), (v, w), (v, d1), (d1, d2), . . . , (dk2
, b).

For the four-colour graph ΓM of a given flow, we construct a simple graph Γ∗M
as follows. In the graph ΓM we perform 1-subdivision of each s-edge, 2-subdivision
of each t-edge, 3-subdivision of each u-edge. Let e = (a, b) be an arbitrary c-edge
of ΓM, numa(e) and numb(e) be the numbers of e in the sets of c-edges incident
to a and b, correspondingly. We perform (numa(e) + 5, numb(e) + 5)-subdivision of
e. A similar operation is performed for all c-edges of the graph ΓM. The resultant
graph Γ∗M is simple (see Fig 10).
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Figure 10. f t, ΓM and Γ∗M

Lemma 8.4. Graphs ΓM and ΓM′ are isomorphic iff graphs Γ∗M and Γ∗M′ are
isomorphic.

Proof. Obviously, the graphs Γ∗M and Γ∗M′ can be uniquely constructed with the
graphs ΓM and ΓM′ . Let us show that the opposite fact is also true. It will follow
the lemma.

Each polygonal region of ∆ft has at least three sides and, therefore, every vertex
of ΓM has at least three neighbours in this graph. Clearly, in the graph Γ∗M none of
the vertices of the graph ΓM belongs to a triangle. Hence, the set of vertices of ΓM
consists of those and only those vertices of Γ∗M that have at least three neighbours
and do not belong to triangles. Deleted all vertices of ΓM from Γ∗M, we obtain the
disjunctive union of connected subgraphs, each of which is a path or a path with
a triangle joined to an internal vertex of the path. These connected subgraphs are
indicators of the existence of edges between the corresponding vertices of ΓM. If
a subgraph is a path, then its length determines a colour in the set {s, t, u} of the
corresponding edge of ΓM. If a subgraph is a path with a joined triangle, then it
corresponds to some c-edge e = (a, b) of ΓM. Deleted all vertices of the triangle in
the subgraph, we obtain two paths, whose lengths show the numbers of e in the sets
of c-edges incident to the vertices a and b, respectively. Thus, knowing the graph
Γ∗M, one can uniquely restore the graph ΓM.

Let us estimate the number of vertices of Γ∗M, assuming that ΓM has n vertices
andm edges. Clearly, any ofm edges of the graph ΓM corresponds to some subgraph
of the graph Γ∗M that has at most 2n + 18 vertices. Therefore, the graph Γ∗M has
at most (2n + 18) · m vertices and it can computed in polynomial time with the
graph ΓM. Notice that Γ∗M can be embedded into the ambient surface. By this fact
and Lemma 8.4, the isomorphism problem for four-colour graphs can be reduced
in polynomial time to the same problem for simple graphs, embedded into a fixed
surface. Hence, the following result is true.

Lemma 8.5. Isomorphism of four-colour graphs can be recognized in polynomial
time.

Next, we consider the isomorphism problem for the class of equipped graphs. Let
Υ∗φt be an equipped graph. We will modify it as follows. We delete all (M,L)-edges

and all (L,M)-edges (also forget about their associated tu-cycles and st-cycles) and
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replace each M-vertex by the corresponding graph ΓM. We also connect every L-
vertex with all vertices of the associated tu-cycle (st-cycle) in the corresponding
graph ΓM by edges oriented as (M,L) (resp. (L,M)), arrange orientation of the
cycle in ΓM (preserving colors of its edges) as it was in (M,L) (resp. (L,M)). The
resultant graph Γt can be embedded into the ambient surface, as this is true for Υ∗φt
and ΓM, for anyM-vertex, and by the fact that polygonal regions corresponding to
L-vertices and to their neighbours in tu-cycles and st-cycles have a common border.

We add two degree one neighbours to each A-vertex, three degree one neighbours
to each L-vertex, four degree one neighbours to each E-vertex with the “-” weight,
and five degree one neighbours to each E-vertex with the “+” weight. Additionally,
in the graph Γt, we perform (2,1)-subdivision of any non-coloured oriented edge,
(3,1)-subdivision of any oriented s-edge, (4,1)-subdivision of any oriented t-edge,
(5,1)-subdivision of any oriented u-edge. Finally, for anyM, we apply subdivisions
of all non-oriented edges in ΓM as it was described earlier in the definition of Γ∗M.
Clearly, the resultant graph Γ∗t is simple, embeddable into the ambient surface, and
it can be computed in polynomial time.

Lemma 8.6. Equipped graphs Υ∗φt and Υ∗
φt′

are isomorphic if and only if Γ∗t and

Γ∗t′ are isomorphic.

Proof. Obviously, the graphs Γ∗t and Γ∗t′ can be uniquely constructed by the graphs
Υ∗φt and Υ∗

φt′
. Let us show that the opposite fact is also true. It will follow the

Lemma.
Notice that any vertex of Γ∗t not belonging to A∪L ∪ E has at most one degree

one neighbour. Hence, a vertex of Γ∗t is an A-vertex of Υ∗φt iff it has exactly two
degree one neighbours; a vertex of Γ∗t is a L-vertex of Υ∗φt iff it has exactly three
degree one neighbours; a vertex of Γ∗t is an E-vertex of the weight “-” of Υ∗φt iff it
has exactly four degree one neighbours; a vertex of Γ∗t is an E-vertex of the weight
“+” of Υ∗φt iff it has exactly five degree one neighbours.

Therefore, one can determine all A-, L-, E-vertices of Υ∗φt in the graph Γ∗t .

Hence, one can determine all (A,L)-, (L,A)-, (L, E)-, and (E ,L)-edges of Υ∗φt ,
knowing their ends and subgraphs of Γ∗t between them. Considering a ball of radius
five centering at a L-vertex, one can determine orientation of the corresponding
(L,M)-edge or (M,L)-edge, all vertices of its associated tu-cycle or st-cycle in the
graph Υ∗φt . Deleted all radius four balls centering at vertices in A∪L∪E , we obtain
the disjunctive union of subgraphs, which are analogues of the graphs of the form
Γ∗M. By any such a subgraph, one can determine the corresponding graph ΓM,
associated tu-cycles and st-cycles and their orientation. Thus, knowing the graph
Γ∗t , it is possible to uniquely restore the graph Υ∗φt .

Recall that the graph Γ∗t is simple, and it can be computed in polynomial time.
By this fact and Lemma 8.6, the isomorphism problem for equipped graphs can be
reduced in polynomial time to the same problem for simple graphs embedded into
a fixed surface. Hence, Theorem 5.10 is true.

8.2. The Euler characteristic and the surface orientability, a proof of
Theorem 5.11. Now, we consider the problems of calculation of the Euler charac-
teristic of the ambient surface and determining its orientability. For this purpose,
we need the notion of bipartite graph.
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Definition 8.7. A simple graph is called bipartite if the set of its vertices can be
partitioned into two parts such that there is not an edge incident to two vertices in
the same part.

By König theorem, a simple graph is bipartite if and only if it does not contain any
odd cycles [9]. For any simple graph with n vertices and m edges, its bipartiteness
can be recognized in O(n+m) time by breath-first search [1]. Hence, by the second
part of Theorem 5.9, to check orientability of the ambient surface, we forget about
colours of edges of four-colour graphs and apply 2-subdivision to each their edge,
to make them simple. Clearly, all of the new graphs are bipartite if and only if
the ambient surface is orientable. Thus, orientability of the ambient surface can be
tested in linear time on the length of a description of equipped graphs.

By Lemma 5.6, the Euler characteristic of a surface M is equal to ν0 − ν1 + ν2,
where ν0, ν1, ν2 are the numbers of all tu-, c∗-, and st-cycles of the four-colour graph
ΓM of a flow without limit cycles on M , respectively. Deleted all c-edges and all
s-edges from ΓM, we obtain the disjunctive sum of tu-cycles. Similarly, deleting all
c-edges and all u-edges, we obtain the disjunctive sum of st-cycles. Therefore, ν0

and ν2 can be computed in time proportional to the sum of the numbers of vertices
and edges of ΓM. If an edge e = (a, b) of ΓM belongs to some its c∗-cycle C, then
the vertex a has an odd or even number in C. Hence, assuming that this number of
a is odd (or even) in C, by the number of e in the set of edges incident to b, one can
determine an edge in C following the edge e. Hence, each edge of ΓM is contained
in at most two c∗-cycles and they can be found in time proportional to the number
of edges of ΓM. Found all these cycles, one can remove e from ΓM and similarly
proceed our search of c∗-cycles in the resultant graph. Clearly, the found cycles will
not be met one more time in the future searches of c∗-cycles. Therefore, ν1 can be
computed in time proportional to the square of the number of edges of ΓM. Thus,
by the first part of Theorem 5.9, the statement of Theorem 5.11 holds.
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