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• Direct derivation of Painlevé-II equation near a cusp point of a slow manifold.

Abstract

In the first part of the paper we introduce some geometric tools needed to describe slow–fast Hamiltonian
systems on smooth manifolds. We start with a smooth bundle p : M → B where (M, ω) is a C∞-smooth
presymplectic manifold with a closed constant rank 2-form ω and (B, λ) is a smooth symplectic manifold.
The 2-form ω is supposed to be compatible with the structure of the bundle, that is the bundle fibers are
symplectic manifolds with respect to the 2-form ω and the distribution on M generated by kernels of ω
is transverse to the tangent spaces of the leaves and the dimensions of the kernels and of the leaves are
supplementary. This allows one to define a symplectic structure Ωε = ω + ε−1 p∗λ on M for any positive
small ε, where p∗λ is the lift of the 2-form λ to M . Given a smooth Hamiltonian H on M one gets a
slow–fast Hamiltonian system with respect to Ωε . We define a slow manifold SM for this system. Assuming
SM is a smooth submanifold, we define a slow Hamiltonian flow on SM . The second part of the paper
deals with singularities of the restriction of p to SM . We show that if dim M = 4, dim B = 2 and Hamilton
function H is generic, then the behavior of the system near a singularity of fold type is described, to the main
order, by the equation Painlevé-I, and if this singularity is a cusp, then the related equation is Painlevé-II.
c⃝ 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Slow–fast; Hamiltonian; Presymplectic manifold; Singular symplectic; Bundle; Disruption point; Blow-up;
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1. Introduction

Slow–fast Hamiltonian systems are ubiquitous in the applications in different fields of
science. These applications range from astrophysics, plasma physics and ocean hydrodynamics
to molecular dynamics. Usually these problems are given in coordinate form, moreover, in the
form where a symplectic structure in the phase space is standard (in Darboux coordinates). But
there are cases when either the symplectic form is nonstandard or the system under study is of a
kind where the corresponding symplectic form has to be found, in particular, when we deal with
the system on a manifold.

It is our aim in this paper to present basic geometric tools to describe slow–fast Hamiltonian
systems on manifolds, that is in a coordinate-free way. For the non Hamiltonian case this was
done by V.I. Arnold [1]. Recall that a customary slow–fast dynamical system is defined by a
system of differential equations

εẋ = f (x, y, ε), ẏ = g(x, y, ε), (x, y) ∈ Rm
× Rn, (1)

depending on a small positive parameter ε (its positivity is needed to fix the direction of
increasing time t). It is evident that x-variables in the region of the phase space where f ≠ 0
change with the speed ∼ 1/ε that is fast. In comparison with them the change of y-variables is
slow. Therefore variables x are called fast and y are called slow.

Such system generates two limiting systems whose properties influence the dynamics of the
slow–fast system for a small ε. One of the limiting system is called fast or layer system and is
derived in the following way. Let us introduce the so-called fast time τ = t/ε. Then the system
acquires the parameter ε in the right hand side of the second equation (due to the differentiation
in τ ) but looses it in the first equation. Thus, the right hand sides depend on ε in a regular way

dx

dτ
= f (x, y, ε),

dy

dτ
= εg(x, y, ε), (x, y) ∈ Rm

× Rn . (2)

Setting then ε = 0 we get the system, where y-variables are constants y = y0 and they can
be considered as parameters in the equations for x . Sometimes these equations are called layer
equations. Because the fast system depends on parameters, it may pass through many bifurcations
as parameters y change and this can be useful to find some special motions in the full system for
small ε > 0.

The slow equations are derived as follows. Let us formally set ε = 0 in the system (1) and
solve the equations f = 0 with respect to x (where it is possible). The most natural case when
this can be done, is when the matrix fx is invertible in some domain where solutions for equations
f = 0 exist. Then by the implicit function theorem one can solve the system f = 0. Denote the
related branch of solutions as x = h(y) and insert it into the second equation instead of x . Then
one gets a system of differential equations for y variables

ẏ = g(h(y), y, 0),

which is called the slow system and the graph of h is called the slow manifold. The idea behind
this construction is as follows: for small ε solutions of the system (2) can approach fast to the
slow manifold and stay there for a long time, during this time the motions of the full system are
described in the first approximation by the slow system.

Now one of the primary problem for slow–fast systems is formulated as follows. Suppose we
know something about the dynamics of both (slow and fast) systems, for instance, about some
structure in the phase space made up of pieces of fast and slow motions. Can we say anything
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about the dynamics of the full system for a small positive ε near this structure? There is a vast
literature devoted to the study of these systems, see, for instance, some of the references in [7].

This set-up can be generalized to the case of manifolds in a coordinate-free way [1]. Consider
a smooth bundle p : M → B with a fiber F being a smooth manifold and assume a vertical
vector field v is given on M . The latter means that any vector v(x) is tangent to the fiber Fb for
any x ∈ M and b = p(x) ∈ B. In other words, each fiber Fb of M is an invariant submanifold
for this vector field. Let vε be a smooth unfolding of v = v0. Vectors of vε need not be tangent
to the leaves Fb anymore for ε > 0. Consider the set of zeros for vector field v, that is, one
fixes a fiber Fb, then v generates a vector field vb on this smooth manifold and we consider its
zeros (equilibria for this vector field). Let the linearization operator of vb (along the fiber) at
some of the zeros x be a linear operator Dvb

x : Tx Fb → Tx Fb acting in invariant linear subspace
Vx = Tx Fb of Tx M . Suppose the operator has not zero eigenvalues, then the set of zeros is
smoothly continued in b for b close to b = p(x). It is a consequence of the implicit function
theorem. For this case one gets a local section z : B → M, p ◦ z(b) = b, which gives a smooth
submanifold Z of dimension dim B. One can define a vector field on Z in the following way.
Let us represent vector vε(x) in the unique way as vε(x) = v1

ε (x)⊕ v2
ε (x), a sum of two vectors

of which v1
ε (x) belongs to Vx and v2

ε (x) is in Tx Z . Then vector v2
ε (x) is of order ε, since vε

smoothly depends on ε, and it is zero vector as ε = 0. Due to Arnold [1] the vector field on Z
given as (d/dε)(v2

ε ) at ε = 0 is called slow vector field, in coordinate form it gives just what was
written above.

It is worth remarking that the set in M consisting of zeros for all vertical vector fields (at
ε = 0) can be called slow manifold. Generically, this set is a smooth submanifold in M but it can
be tangent to fibers Fb at some of its points. Genericity here means that it is fulfilled for a residual
set of slow–fast vector fields in an appropriate topology. In a neighborhood of the tangency point
it is also possible sometimes to define a vector field on Z that can be called a slow vector field,
but it is a more complicated problem intimately related with degeneracies of the projection of p
at this point (ranks of Dp at these points, etc.) [1].

1.1. Hamiltonian slow–fast systems

Now we turn to Hamiltonian vector fields. It is well known that, in order to define a
Hamiltonian vector field in an invariant way, the phase manifold M has to be smooth symplectic:
a smooth nondegenerate closed 2-form Ω has to be given on M [3]. For example, the standard
way to write a slow–fast Hamiltonian system with a smooth Hamiltonian H(x, y, u, v, ε) in
coordinates is as follows: (x, y, u, v) = (x1, . . . , xn, y1, . . . , yn, u1, . . . , um, v1, . . . , vm) has
the form

εẋi =
∂H

∂yi
, ε ẏi = −

∂H

∂xi
, i = 1, . . . , n,

u̇ j =
∂H

∂v j
, v̇ j = −

∂H

∂u j
, j = 1, . . . ,m.

(3)

Here the 2-form ω for this system is given by 2-form εdx ∧dy +du ∧dv. It regularly depends on
ε and degenerates into 2-form du ∧ dv at ε = 0. Instead, if we introduce the fast time t/ε = τ ,
then the transformed system depends on ε regularly but the corresponding symplectic 2-form
dx ∧ dy + ε−1du ∧ dv is singular as ε → +0.

Let us note that the fast system here is Hamiltonian (evidently). The same is true for the
slow system as well. Indeed, if x = p(u, v), y = q(u, v) represent solutions of the system
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Hx = 0, Hy = 0 (the set of zeros for the fast systems), then the slow system

u̇ = Hv, v̇ = −Hu,

where the functions p, q are inserted into the right hand sides, is Hamiltonian with the Hamilton
function h(u, v) = H(p(u, v), q(u, v), u, v, 0). For a Hamiltonian slow–fast system its slow
manifold (if it exists) can be normally hyperbolic giving thus some mechanism for scattering
nearby orbits. Also it can be neutrally stable if the slow manifold consists of the elliptic equilibria
of the fast systems. Due to the fact that the fast systems depend on parameters (u, v) the types of
the equilibria on the slow manifold can vary in parameters.

In order to extend this set-up of slow–fast Hamiltonian systems to vector fields on smooth
manifolds one needs to require that a smooth phase manifold M of the system carries a
symplectic structure. Moreover this manifold must also have a foliation at ε = 0 into symplectic
leaves on which fast Hamiltonian systems are defined.

From this it follows that such Hamiltonian systems can be defined on a manifold with a
presymplectic structure, that is on a manifold M with a closed 2-form ω of constant rank at
each point u ∈ M . Such manifold carries a distribution of linear subspaces Nu ⊂ Tu M for
u ∈ M of the kernels of ω in Tu M . In order to have at ε = 0 the foliation with symplectic leaves
we consider a smooth bundle p : M → B with a C∞-smooth connected presymplectic manifold
(M, ω) over a C∞-smooth manifold B. Even in this case the presymplectic structure and the
bundle structure can be incompatible, for instance, leaves of the bundle could be not symplectic
with respect to the restriction of 2-form ω on a leaf, or the rank of ω could be greater than the
dimension of the leaves.

Therefore we shall call the presymplectic form ω compatible with the bundle structure, if
for any u ∈ M the restriction of ω on the tangent space Tu Fu to the fiber Fu of the bundle is
nondegenerate and kernel Nu of ω at u is transverse to Tu Fu . Then fibers Fu are symplectic
manifolds with respect to the restriction of ω on Fu . In this case we get a symplectic foliation on
M . The dimension of its leaves, due to regularity and connectivity of M , is the integer 2n that is
the same for all points in M and it is just the rank of the 2-form ω. It turns out that it is possible
to define canonically the symplectic structure on the presymplectic total space M of the bundle,
if one requires the base B to be a symplectic manifold. In more details this will be explained
below, as well as how to define a slow manifold SM of a slow–fast Hamiltonian system, the slow
and the fast subsystems on M .

In the second part of the paper we consider the local behavior of a slow–fast Hamiltonian
system near a point of the tangency of SM with a leaf of the bundle p. When dim M = 4 and
dim B = 2 then there are generically only two types of such points of tangency, a fold and a
cusp, that follows from the theory of singularities of smooth mappings (see, [28,4]). We derive
using the blow-up method the Painlevé-I equation for the description in the main approximation
of the orbit behavior near a fold point and the Painlevé-II equation for the description in the
main approximation of the orbit behavior near a cusp. The scalings for the blow-up procedure
are different for the fold and for the cusp. As is known, for a 2-dim slow–fast (dissipative) system
the passage near a disruption point is described by the Riccati equation [20,19]. Here we get the
Painlevé-I, II equation. Since there is a vast information concerning the behavior of solutions of
the Painlevé-I and Painlevé-II equations (see, for instance, [17,6]), the reductions obtained can
help in understanding the orbit behavior near the disruption points.

In fact, it is not all the story. If one wants to study the behavior near the fold point, one needs
to investigate in detail the blown-up system. As is known, geometrically the blow-up procedure
means that we blow up the singular point of the suspended 4-dimensional vector field (i.e. with
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ε̇ = 0 added) up to the 3-dimensional sphere S3 and a neighborhood of the singular point
becomes a neighborhood of the order r for this sphere. Here r ≥ 0 is the coordinate in the
transverse direction to the sphere which is supposed small. Then one needs to understand the
whole picture of the passage of the orbits through a neighborhood of the disruption point. This
will be done in a different paper.

2. Presymplectic manifolds and smooth bundles

Let M be a smooth manifold of dimension 2n + k and ω be a smooth closed 2-form on M of
constant rank 2n (here and below we assume C∞-smoothness). Then the pair (M, ω) is called a
presymplectic manifold (see, for instance, [14]). Suppose in addition the following assumptions
hold

• there is a 2m-dimensional smooth connected manifold B, 2m = k, and submersion p : M →

B such that 2-form ω is nondegenerate on fibers of p. In this case we shall call ω compatible
with p. Recall that for submersion p its differential Dp|u has constant rank equal to the
dimension of B at any point u ∈ M ;

• there is a smooth symplectic 2-form λ on B, i.e. B is a smooth symplectic manifold.

In accordance with the first condition, for each fiber Q of the bundle ξ = (M, p, B) the pair
(Q, ω|Q) is a symplectic manifold of dimension 2n.

Consider a point u ∈ M and let b = p(u). Vectors X ∈ Tu M that are tangent to the fiber
Q = p−1(b) are usually called vertical with respect to the bundle ξ . They form 2n-dimensional
subspace Vu ⊂ Tu M . Denote Nu = (Tu M)⊥ the skew-orthogonal complement to Tu M with
respect to the form ω, that is, the space of such Y ∈ Tu M for which one has ω(X, Y ) = 0 for
all X ∈ Tu M . Then one has dim Nu = dim Tu M − rankω = 2m = dim B and dim Tu M =

dim Vu + dim B due to regularity of p : M → B. Hence one gets dim Tu M = dim Vu + dim Nu .
On the other hand, since ω is nondegenerate on Vu , we have Vu ∩ Nu = 0. The two last equalities
mean that Tu M = Vu ⊕ Nu .

The maps u → Vu and u → Nu define two smooth distributions V and N on M . Here the
distribution N can be interpreted as a connection on the total space M of bundle ξ , therefore
vectors Y ∈ Nu will be called horizontal.

Since rank of ω is constant, each point u ∈ M possesses a Darboux chart (U, ϕ), u ∈ U ,
in which one has ω = dϕ1

∧ dϕn+1
+ · · · + dϕn

∧ dϕ2n [27]. Submanifolds in U given by
equations ϕi

= ci , i = 1, . . . , 2n, for ci
∈ R, are integral manifolds for the distribution N . Thus,

the connection N is integrable and defines a foliation F N on M .
Let F V denote the foliation on M formed by the fibers of ξ . Then F V and F N give a

pair of foliations of complementary dimensions 2n and 2m, their leaves intersect transversely.
Sometimes such pairs are called bi-foliations.

For any nonzero ε ∈ R we set

Ωε = ω + ε−1 p∗λ. (4)

This defines a 2-form Ωε on M .

Lemma 1. For all ε ≠ 0 the 2-form Ωε is symplectic.

Proof. The 2-forms ω and λ are closed. Hence one has

dΩε = dω + d(ε−1 p∗λ) = dω + ε−1 p∗dλ = 0.
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Consider a Darboux chart (U, ϕ) for ω on M . Then for any point u ∈ U the determinant of the
matrix

A = (ω(∂
ϕ
i (u), ∂

ϕ
j (u))), i, j = 1, . . . , 2n,

is equal to 1 but

ω(∂
ϕ
2n+r (u), ∂

ϕ
β (u)) = ω(∂ϕα (u), ∂

ϕ
2n+s(u)) = 0

for all r, s = 1, . . . , 2m and α, β = 1, . . . , 2n+2m. Since N is the connection on ξ = (M, p, B),
the restriction Dp|Nu : Nu → Tb B is an isomorphism, here b = p(u). Therefore vectors

X2n+1 = Dp(∂ϕ2n+1(u)), . . . , X2n+2m = Dp(∂ϕ2n+2m(u))

compose a basis of Tb B. Thus, matrix

C = (λ(X2n+r , X2n+s)), r, s = 1, . . . , 2m,

is non-degenerate.
At last, we remark that with respect to the holonomic (coordinate) basis ∂ϕ1 (u), . . . , ∂

ϕ
2n+2m(u)

on the space Tu M the matrix G of the 2-form Ωε is

G =


A 0
0 ε−1C


, (5)

thus det G = det Aε−2m det C = ε−2m det C ≠ 0. �

Let U be an open set of M . Denote Q ∈ F V , L ∈ F N leaves of the foliations F V ,F N .
Then components of linear connectivity of sets Q ∩ U for Q ∈ F V and L ∩ U for L ∈ F N

generate on U foliations F V
U and F N

U , respectively. Let us choose some point u0 ∈ M and denote
b0 = p(u0). Due to lemma from [18] (v.1, chap.IV, par. 5), there is a chart (U, ψ̂) containing u0
such that ψ̂(U ) = J 2n+2m , J ⊂ R, and ψ̂ : U → J 2n+2m is an isomorphism of the bi-foliation
(F V

U ,F N
U ) onto the natural bi-foliation of the direct product J 2n+2m

= J 2n
× J 2m . Without loss

of generality one can assume that ψ̂(u0) = 0 and J = (−1, 1). This implies, in particular, that
any leaves Q ∈ F V

U and L ∈ F N
U intersect each other at one point only.

If q̂0 : J 2n
× J 2m

→ J 2n is the natural projection, then for each Q ∈ F V
U the composition

ψQ = q̂0 ◦ ψ̂ |Q is a homeomorphism of Q on J 2n and the pair (Q, ψQ) is a chart on Q. Denote
Q0 the leaf of the vertical foliation F V

U containing the initial point u0. We also denote as Lv for
v ∈ U that leaf of the horizontal foliation F N

U for which v ∈ Lv . Then setting q(v) = Q0 ∩ Lv
we construct the map q : U → Q0 for which one has q̂0 ◦ ψ̂ = ψQ0 ◦ q. From this formula it
follows immediately that q : U → Q0 is a submersion.

Let now W = p(U ), then W is an open set in the base B. For each v ∈ U we set

ψ(v) = (q × pU )(v) = (q(v), p(v)) (6)

defining a smooth map ψ : U → Q0 × W . Since q : U → Q0 and pU : U → W are
both submersions and their leaves are transversal then ψ is a regular map of the manifolds of
the same dimension 2n + 2m. For the map ψ there is the inverse map ψ−1

: Q0 × W → U
defined by the formula ψ−1(v0, b) = p−1

U (b) ∩ Lv0 . By the implicit function theorem, this map
is differentiable. Thus ψ : U → Q0 × W is a diffeomorphism. Moreover, if q0 : Q0 × W → Q0
and p0 : Q0 × W → W are the natural projections and ψ(v) = (v0, b) then due to (6) we have
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q(v) = v0 = q0(v0, b) = q ◦ψ(v) and pU (v) = p(v) = b = p0(v0, b) = p0 ◦ψ(v). Hence the
equalities q = q0 ◦ ψ and pU = p0 ◦ ψ hold.

Consider a Darboux chart (Q′

0, η) of the symplectic manifold (Q0, ω|Q0) and a Darboux chart
(W ′, θ) of (B, λ) such that u0 ∈ Q′

0 ⊂ Q0 and b0 ∈ W ′
⊂ W .

To simplify the notations let us regard that Q′

0 = Q0 and W ′
= W . For a point v ∈ U we set

ϕ(v) = (η ◦ q(v), θ ◦ p(v)). (7)

Lemma 2. For any ε ≠ 0 the pair (U, ϕ) is a Darboux chart for the symplectic manifold (M,Ωε)
and the presymplectic manifold (M, ω).

Proof. By the construction, ϕ(U ) = η(Q0)× θ(W ) is an open subset of R2n
× R2m

= R2n+2m

and ϕ = (η×θ)◦ψ , where η×θ : Q0 ×W → η(Q0)×θ(W ) is the homeomorphism defined by
the formula (η× θ)(v0, b) = (η(v0), θ(b)). Thus ϕ : U → η(Q0)× θ(W ) is a homeomorphism.

Take any point v ∈ U and two leaves Q ∈ F V
U and L ∈ F N

U through it. Then the restrictions
q|Q : Q → Q0 and p|L : L → W are diffeomorphisms, and what is more, q|Q0 = idQ0 . Let
q(v) = v0 and b = p(v).

The holonomic basis of the tangent space TvM in the chart (U, ϕ)will be denoted {∂
ϕ
α (v)|α =

1, . . . , 2n + 2m}, and let {∂
η
i (v0)|i = 1, . . . , 2n} and {∂θr (b)|r = 1, . . . , 2m} be the similar bases

of Tv0 Q0 and Tb B in charts (Q0, η) and (W, θ), respectively. Due to (7) we have relations

∂
ϕ
i (v) ∈ Vv, dq(∂ϕi (v)) = ∂

ϕ
i (v0) = ∂

η
i (v0), ∂

ϕ
2n+r (v) ∈ Nv,

dp(∂ϕ2n+r (v)) = ∂θr (b). (8)

In virtue of (8) we have

q∗Ωε(∂
ϕ
i (v), ∂

ϕ
j (v)) = Ωε(∂

ϕ
i (v0), ∂

ϕ
j (v0)) = ω(∂

η
i (v0), ∂

η
j (v0)), (9)

Ωε(∂
ϕ
i (v), ∂

ϕ
2n+s(v)) = 0, Ωε(∂

ϕ
2n+r (v), ∂

ϕ
2n+s(v)) = ε−1λ(∂θr (b), ∂

θ
s (b)) (10)

for all i, j = 1, . . . , 2n and r, s = 1, . . . , 2m.
It follows from (9) and (10) that values of Ωε take the needed form at all basic vectors from

Tv0 M and on those basic vectors from TvM when at least one of its argument is horizontal.
Moreover, the form (q|Q)

∗(Ωε|Q0) takes the canonical form at basic vectors of the space TvQ. To
complete the proof it is necessary and sufficient to make sure that the equality (q|Q)

∗(Ωε|Q0) =

Ωε|Q is valid.
To this purpose take a smooth function h : W → R and denote Xh its Hamiltonian vector

field on the symplectic manifold (W, λ) and let gτh be its Hamiltonian flow on W . We set
H = ε−1h ◦ p|U and define the vector field X H on U by the formula Ωε(Y, X H ) = d H(Y ).
Denote X∗

h the horizontal lift of Xh on U with respect to the connection N . Then for any v ∈ U
and Y ∈ TvU we have the identities

Ωε(Y, X H ) = d H(Y ) = ε−1d(h ◦ p)(Y ) = ε−1dh(dp(Y )) = ε−1λ(dp(Y ), Xh)

= ε−1λ(dp(Y ), dp(X∗

h)) = ω(Y, X∗

h)+ ε−1 p∗λ(Y, X∗

h) = Ωε(Y, X∗

h). (11)

This implies Ωε(Y, X H − X∗

h) = 0 for arbitrary Y and hence X H = X∗

h , since the form Ωε is
nondegenerate.

Now if g∗τ
h is the horizontal lift of the flow gτh , then its orbits are also orbits of the vector field

X∗

h . If gτH is the Hamiltonian flow generated by the field X H , then we get gτH = g∗(τ )
h as was said

above.
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Now let θ = (θ1, . . . , θ2m) be the coordinate functions on W . Without loss of generality we
may assume that θ(b0) = 0 and θ(W ) is an open cube in R2m . Then Hamiltonian vector fields
Xθ i corresponding to functions θ i generate a local action Φ of group R2m on W defined by the

formula Φ(a; t1, . . . , t2m) = gt2m

θ2m ◦· · ·◦gt1

θ1(a). Due to the choice of W any two its points can be
connected by a path composed from coordinate lines. Therefore, a Φ-orbit of any point coincides
with W . In particular, if θ(b) = x = (x1, . . . , x2m), then setting tr

0 = −xm+r and tm+s
0 = x s for

r, s = 1, . . . ,m we get Φ(b; t1
0 , . . . , t2m

0 ) = b0 = θ−1(0, . . . , 0).
Now let g∗tr

θr be horizontal lifts of the flows gtr

θr , r = 1, . . . , 2m, to the total space U of the
bundle p : U → W . The formula

Φ̂(u; t1, . . . , t2m) = g∗t2m

θ2m ◦ · · · ◦ g∗t1

θ1 (u)

defines the local action Φ̂ of the group R2m on U . By the construction one gets p ◦ Φ̂(u, t1, . . . ,

t2m) = Φ(p(u), t1, . . . , t2m) that gives Φ̂(Q, t1
0 , . . . , t2m

0 ) = Q0. Since Φ̂ shifts points along the

leaves of F N
U , then Φ̂(u, t1

0 , . . . , t2m
0 ) = q(u) for all u ∈ Q. At last, as was shown above, g∗tr

θr

are Hamiltonian flows in the symplectic manifold (U,Ωε) corresponding to the Hamiltonians
Θr

= ε−1θr
◦ p. Thus, the map q|Q is the symplectic map between manifolds (Q,Ωε|Q) and

(Q0,Ωε|Q0).
The second assertion follows immediately from the first, since ω(X, Y ) = Ωε(X, Y ) for ver-

tical tangent vectors X, Y ∈ TvM and ω(X, Y ) = 0 holds, if at least one of the vectors X and Y
is horizontal. �

The chart (U, ϕ) possesses one important feature. In this chart, fibers of the bundle ξ =

(M, p, B) are given by equations ϕ2n+r
= c2n+r , c2n+r

∈ R, r = 1, . . . , 2m, and local leaves
of the horizontal foliation F N are given by the equation ϕi

= ci , ci
∈ R, i = 1, . . . , 2n. Hence,

the pair (U, ϕ) can be called a foliated Darboux chart for (M,Ωε) and (M, ω).
The separate existence of either a Darboux chart on the symplectic manifold or a Darboux

chart on the presymplectic manifold compatible with the bi-foliation structure is obvious. The
meaning of Lemma 2 is the fact that for our case in a neighborhood of any point u0 ∈ M there
exists a chart which possesses both these properties simultaneously.

A vector field X on M is called vertical or horizontal, if the vectors X (u) are such for all
points u ∈ M . In the first case X is tangent at each point to leaves of vertical foliation F V and
in the second case it is tangent to the leaves of the horizontal foliation F N . Any vector field X
on M is decomposed uniquely into a vertical vector field V X and a horizontal vector field N X
which satisfy X = V X + N X at every point. The smoothness of X implies the smoothness of
both components V X and N X .

Let now H : M → R be a smooth function. Then the formula

Ωε(·, X H ) = d H(·), (12)

defines the corresponding Hamiltonian vector field X H on M . At points u of the foliated Darboux
chart (U, ϕ) constructed above (before Lemma 2), this vector field takes the form

X H (u) = ai j ∂(H ◦ ϕ−1)

∂x j (ϕ(u))∂ϕi (u)+ εcrs ∂(H ◦ ϕ−1)

∂x2n+s
(ϕ(u))∂ϕ2n+r (u), (13)

where ai j and crs are entries of the constant matrices A−1 and C−1.
If in (12) one changes Ωε to the presymplectic form ω, then the equation for X H has infinitely

many solutions. But the situation is changed, if one requires that vector fields under consideration
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are vertical. Namely, the formula

ω(Z , X V
H ) = d H(Z), (14)

where Z runs all vertical vector fields on M , defines correctly a vertical vector field X V
H . It has

the following form in the foliated Darboux chart (U, ϕ)

X V
H (u) = ai j ∂(H ◦ ϕ−1)

∂x j (ϕ(u))∂ϕi (u). (15)

It is natural to call the field X V
H the Hamiltonian vector field corresponding to the function H on

the presymplectic manifold (M, ω). In accordance to (13) and (15) one has X V
H = V X H , i.e. X V

H
is simply the vertical part of X H .

There is one more treatment of this construction. For any u ∈ M and b = p(u) let us consider
the fiber Q = p−1(b) of the bundle ξ . In accordance to our conditions, the restriction ω|Q
is a symplectic form on Q ⊂ M . Denote as h = H |Q the restriction of H on Q and let
Xh be the corresponding Hamiltonian vector field to h on (Q, ω|Q). Then we conclude that
X V

H (u) = d(ıQ)(Xh(u)), here ıQ : Q → M is the immersion.
For any two smooth functions F , H on M we define

{H, F} = d F(X H ), {H, F}
V

= d F(X V
H ).

This defines Poisson brackets of functions H , F on the symplectic manifold (M,Ωε) and the
presymplectic manifold (M, ω). On each fiber Q of bundle ξ the equality {H, F}

V
= {h, f }Q

holds where {h, f }Q is the Poisson bracket for restrictions h = H |Q and f = F |Q onto the
symplectic manifold (Q, ω|Q).

Suppose in addition that h0, f0 : B → R are smooth functions and {h0, f0} is their Poisson
bracket with respect to the symplectic form λ. Then the equality {h0 ◦ p, f0 ◦ p} = ε{h0, f0} ◦ p
holds. Thus, at ε = 0 submersion p : M → B is a Poisson map. Therefore, the bundle
ξ = (M, p, B) can be called a Poisson bundle.

3. Symplectic submanifolds transverse to the vertical foliation

Consider now a 2m-dimensional smooth submanifold S ⊂ M .

Lemma 3. If S possesses the properties

• at each point v ∈ S the submanifold S ⊂ M intersects transversely the leaf of the foliation
F V through v,

• S is compact,

then there is ε0 > 0 such that for all ε ∈ (0, ε0) the restriction of the 2-form Ωε on S is non-
degenerate and hence it generates a symplectic form.

Proof. Consider first an arbitrary point u ∈ M and let b = p(u) be its projection on B. Let
(U, ϕ) be the foliated Darboux chart for a point u of the symplectic manifold (M,Ωε) which
was constructed before in Lemma 2. When constructing this chart we used a Darboux chart
(W, θ) of the manifold (B, λ), a neighborhood Q0 of the point u in the fiber p−1(b) and the
diffeomorphism ψ : U → Q0 × W .

On W , the holonomic vector fields Yr = ∂θr , r = 1, . . . , 2m are given. At any point of W
matrix (λ(Yr , Ys)), r, s = 1, . . . , 2m, has canonical form. Therefore one has

det(λ(Yr , Ys)) ≡ 1. (16)
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In accordance with the first condition of the lemma, for any point v ∈ S ∩ U one has
TvM = Vv ⊕ TvS. Consequently, the restriction Dp|TvS : TvS → Tp(v)B is an isomorphism.
Setting Y ∗

r (v) = (Dp|TvS)
−1(Yr (p(v))) for all v ∈ S ∩ U and r = 1, . . . , 2m, we get smooth

vector fields Y ∗

1 , . . . , Y ∗

2m on S ∩ Uu . At any point v ∈ S ∩ U the vectors Y ∗

1 (v), . . . , Y ∗

2m(v)

make up a basis of the tangent space TvS.
Let us denote Ωε

= εΩε. Then, due to (4) one has

Ωε(Y ∗
r , Y ∗

s ) = εω(Y ∗
r , Y ∗

s )+ λ(Yr , Ys)

for all r, s = 1, . . . , 2m. Thus for the matrix D = (Ωε(Y ∗
r , Y ∗

s )) we have

det D = f2mε
2m

+ · · · + f1ε + f0, (17)

where for any t = 0, 1, . . . , 2m the coefficient ft is the sum of all determinants for which t rows
coincide with the corresponding rows of the matrix (ω(Y ∗

r , Y ∗
s )), but other rows belong to the

matrix (λ(Yr , Ys)). It follows from here that ft : S ∩ U → R are smooth functions and, due to
identity (16), one has

f0 = det(λ(Yr , Ys)) ≡ 1. (18)

Since B, p−1(b) are manifolds then for points b and u there are neighborhoods W 0 and
Q0

0 whose closures are compact and belong to W and Q0, respectively. Moreover, the set
U 0

u = ψ−1(W 0
× Q0

0) is a neighborhood of the point u and its closure is also compact and
belongs to U . In this case functions ft are bounded on S ∩ U 0

u . Hence, there is εu > 0 such that

| f2mε
2m

+ · · · + f1ε| < 1 (19)

on S ∩ U 0
u for any ε ∈ (0, εu).

A collection U = {U 0
u |u ∈ S} is a covering for the manifold S by open sets. Since S is

compact we conclude that S ⊂ U 0
u1

∪ · · · ∪ U 0
ul

for some finite set of points u1, . . . , ul ∈ S. Let
us set ε0 = min{εu1 , . . . , εul }. Then for any ε ∈ (0, ε0) inequality (19) is valid on every set from
S ∩ U 0

u1
, . . . , S ∩ U 0

ul
.

If now v is any point of S, there exists an i ∈ {1, . . . , l} such that v ∈ S ∩ U 0
ui

. Here for
any ε ∈ (0, ε0) it follows from (17), (18) and (19) that det D ≠ 0. This implies that the 2-form
Ωε is non-degenerate on the tangent space TvS. Thus, on TvS the 2-form Ωε = ε−1Ωε is also
nondegenerate. �

4. Slow manifold and nearby orbit behavior

Henceforth we assume a bundle p : M → B is given where M is a C∞-smooth presymplectic
manifold with a constant-rank 2-form ω, B is a smooth symplectic manifold with a symplectic 2-
form λ. The ω is supposed to be compatible with p, hence its fibers define a symplectic foliation
of M . Suppose a smooth function H on M is given. Thus H generates at ε = 0 for any b ∈ B
a vertical (fast) Hamiltonian vector field Xb

H . The union in b of all zeros for such vertical vector
fields for a given function H forms a subset in M which is generically a smooth submanifold SM
of dimension 2m = dim B (the genericity here means that it is true for a residual set of functions
H ). We assume that is the case and shall call SM the slow manifold of the vector field X H . When
restricted on SM the corresponding map pr : SM → B may be regular or singular at the points
of SM. A point s ∈ SM is called regular if rank Dpr (s) = 2m = dim B. This implies pr be a dif-
feomorphism near s. On the contrary, a point s ∈ SM is singular, if rank Dpr at s is less than 2m.
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Another characterization of regular and singular points is related to the type of the
corresponding equilibria for the fast Hamiltonian system on the symplectic leaf through s. The
point s is regular, if the fast vector field has a simple equilibrium for the fast Hamiltonian
vector field, i.e. on the corresponding leaf of the symplectic foliation the equilibrium has no
zero eigenvalues. For a singular point s ∈ SM the equilibrium on the symplectic leaf through s
is degenerate for the fast Hamiltonian vector field, that is it does have a zero eigenvalue. All this
will be seen below in local coordinates, though it is possible to show it in a coordinate-free way.

4.1. A neighborhood of a regular point of SM

The manifold SM near a regular point s can be represented by the implicit function theorem as
the graph of a smooth section z : U → M , p(s) ∈ U ⊂ B, p ◦ z = idU . Due to Lemma 3, such
compact piece of SM is a symplectic submanifold with respect to the restriction of the 2-form Ωε
to SM. Hence one can define a slow Hamiltonian vector field on SM generated by the function
H . Let X H be the Hamiltonian vector field on M with respect to the 2-form Ωε generated by H .

Denote by H S the restriction of H to SM and consider a Hamiltonian vector field on SM with
the Hamiltonian H S with respect to the restriction of 2-form Ωε to SM. This vector field X S is
of the order ε, hence there is the limit X S/ε as ε → 0. This limit vector field is what we call the
slow Hamiltonian vector field on SM. In the same way one can consider the case when function
H on M depends smoothly on a parameter ε.

It is an interesting problem to understand the orbit behavior of the full system (for small
ε > 0) within a small neighborhood of a compact piece of regular points in SM. This question
is very hard in the general set-up. Nevertheless, there is a rather simple important case to
examine, if one assumes the hyperbolicity of this piece of SM. Suppose for a piece of SM each
corresponding equilibrium (for ε = 0) is without zero real parts (hyperbolic equilibria in the
common terminology, see, for instance, [26,21]). Then this smooth submanifold of the vector
field X H on M is a normally hyperbolic invariant manifold and results of [10,16] are applicable.
Namely, for ε > 0 small enough there is a smooth invariant manifold in an O(ε)-neighborhood of
that piece of SM. For the full system this invariant manifold is normally hyperbolic and possesses
stable and unstable local smooth invariant manifolds. The restriction of X Hε to this slow manifold
can be an arbitrary Hamiltonian system with m degrees of freedom.

One can add to this local picture the structure of the global stable/unstable manifolds of fast
systems along with their bifurcations w.r.t. slow variables (parameters of the fast system), then
one can say a lot on the behavior of the full system for positive small ε. This behavior is the
topics of the averaging theory, theory of adiabatic invariants, etc., see, for instance, [25,22,13].

A much more subtle problem is to understand the local dynamics of the full system near
SM when the fast dynamics possesses center equilibria at the points of SM. Nonetheless, one
can present some details of this picture when we deal with a real analytic case (manifolds and
Hamiltonian). Then results of [11] can be applied. For this case SM was called in [11] an almost
invariant elliptic slow manifold. At ε = 0 near a piece of the almost elliptic slow manifold one
can introduce a coordinate frame where this slow manifold corresponds to the zero section of the
bundle M → B. Then the main result of [11] is applicable for the case when the fast system is
two dimensional but the slow system can be of any finite dimension and Hamiltonian is analytic
in a neighborhood of SM. The result says that the Hamiltonian near SM can be transformed by an
analytic transformation to the sum of two functions. One of them contains fast variables (x, y)
only in the combination I = (x2

+y2)/2. The second function is exponentially small with respect
to the small parameter ε. Thus, up to an exponentially small error, the system has an additional
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integral I . In particular, if the slow system is also two dimensional, this gives an integrable system
up to exponentially small error within a small neighborhood of SM. All this helps a lot when one
is interested in the dynamics within this neighborhood, see, for instance, [12]. The case, when
fast system has more degrees of freedom and the related equilibria are multi-dimensional elliptic
ones, is harder and no results are known to this date. The case of fast equilibria with eigenvalues
in the complex plane lying both on the imaginary axis and out of it is even less explored.

4.2. Neighborhood of a singular point of SM

At a singular point s ∈ SM submanifold SM is tangent to a leaf of the symplectic foliation.
More precisely, the rank of Dpr on the tangent plane TsSM is smaller than 2m. This means
KerDp|SM ≠ ∅. Let us choose some Darboux coordinate chart (x, y, u, v) near s, then the
presymplectic 2-form is written as ω = dx ∧ dy and the symplectic leaves of the foliation are
given as (u, v) = (u0, v0). Hamiltonian H(x, y, u, v) is a smooth function of these coordinates,
we assume d H ≠ 0 at s. The Hamiltonian vector field near s with respect to the 2-form ω is
written as

ẋ = Hy, ẏ = −Hx , u̇ = 0, v̇ = 0.

The condition for the point s to be on SM (a singular point for the fast vector field) is
Hy(s) = Hx (s) = 0 and if this point is a singular point for the projection p, then

det


∂2 H

∂(x, y)2


s

= 0,

otherwise the point s in SM would be regular and the system Hy = 0, Hx = 0 could be
resolved with respect to x, y. Thus, the fast vector field at s has a zero eigenvalue. Its eigenspace
is invariant w.r.t. the linearization of the fast vector field at s. This is equivalent to the condition
that Dp restricted on TsSM has nonzero kernel and hence its rank is less than 2m.

The types of degeneracies for the mappings of one smooth manifold to another (for our case it
is pr : SM → B) are studied by the singularity theory of smooth manifolds [28,4,24]. When the
dimensions of B and M are large, these degenerations can be very complicated. Keeping this in
mind, we consider below only the simplest case of one fast and one slow degree of freedom. For
this case both SM and B have dimension two and we have the mapping from one two dimensional
smooth manifold to another smooth two dimensional manifold. We need to distinguish singular
points of the general type that are possible for such smooth maps. Here the degeneracies can be
generically of two types only: folds and cusps, this was done by Whitney [28].

Recall that according to [28], a singular point q of a C2-smooth map F : U → V of two open
domains in smooth 2-dimensional manifolds is good, if the function J = det DF vanishes at q
but its differential d J is nondegenerate at this point. In a neighborhood of a good singular point
q there is a smooth curve of other singular points for F continuing q . Let ϕ(τ) be a smoothly
parameterized curve of singular points through a good singular point q and τ = 0 corresponds
to q. We shall use below the notation A⊤ for the transpose matrix of any matrix A.

A good singular point q is called the fold point [28], if d F(ϕ′(0)) ≠ (0, 0)⊤, and it is called
the cusp point if at q one has d F(ϕ′(0)) = (0, 0)⊤ but d2(F ◦ ϕ)/dτ 2

|q ≠ (0, 0)⊤. It is worth
remarking that if q is a fold, then for any nearby point on the singular curve ϕ(τ) there is a
unique (up to a constant) nonzero vector ξ in the tangent space of the corresponding point such
that DF(ξ) = 0 (ξ belongs to the kernel of DF). The direction spanned by ξ is transverse to
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Fig. 1. Slow manifold near fold points.

the tangent direction to the singular curve at the fold point, since DF(ϕ′(0)) ≠ (0, 0)⊤. These
transverse directions form a smooth transverse direction field on the curve.

We shall show below that near a fold point at small ε > 0 the system can be reduced to
the case of a family of slowly varying Hamiltonian systems. In such system the Hamiltonians
H(x, y, εt, c) depend on scalar variables x, y and positive small parameter ε; c is the value of
the former autonomous Hamiltonian and also a small parameter. For a fixed c the slow manifold
of this system is a slow curve and the fold point corresponds to the point of quadratic tangency
of the slow curve with the corresponding two-dimensional symplectic leaf. Here the fast (frozen)
Hamiltonian system with one degree of freedom has the equilibrium, corresponding to the tan-
gency point, which is generically a parabolic equilibrium point with the double non-semisimple
zero eigenvalue. The local orbit behavior for such fast system does not change as c varies.

The shape of the slow manifold near a fold point in the subspace y = 0 when H is written in
the form H = h(x, u, v)+y2 H1(x, y, u, v) (see Lemma 5) is presented in Fig. 1. The intersection
with a level H = c is the slow curve. Small circles on the slow manifold correspond to the elliptic
equilibria of the fast systems, small crosses denote the saddle equilibria. The parabolic equilibria
lie on the slow curve. The projection of the slow curve on the plane (sometimes it is called the
discriminant curve) of slow variables (u, v) is a smooth segment here.

For the case of a cusp we get again a slow–fast Hamiltonian system with two dimensional
slow manifold. The fast Hamiltonian system has on the related symplectic leaf an equilibrium of
the type of degenerate saddle or degenerate elliptic point (both are of codimension 2). In this case
it is also possible to reduce the system to the case of a family of slowly varying nonautonomous
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Fig. 2. Slow manifold near a cusp point.

Hamiltonian systems on the corresponding levels H = c. But in contrast to the case of a fold,
the behavior of these systems near the cusp point s essentially depends on the parameter c.

The shape of the slow manifold near a cusp point in the space y = 0 when H is written
in the form H = h(x, u, v) + y2 H1(x, y, u, v) (see again Lemma 5) is presented in Fig. 2.
The intersection with a level H = c is the slow curve. Again small circles on the slow manifold
correspond to the elliptic equilibria of the fast systems, small crosses denote the saddle equilibria.
The parabolic equilibria lie on the slow curve. The projection of the slow curve on the plane of
slow variables (u, v) (the discriminant curve) is a curve like the semi-cubic parabola with a plane
cusp at the projection of the cusp point on SM.

Henceforth, we consider only the case of one slow and one fast degree of freedom Hamiltonian
systems, that is M will be a smooth 4-dimensional presymplectic manifold with a 2-form ω of
rank 2 and B will be a smooth symplectic 2-dimensional manifold with a symplectic 2-form λ,
the form ω is compatible with the smooth bundle p : M → B whose leaves Fb generate the
symplectic foliation with respect to ω. The symplectic structure on M is given by the 2-form
Ωε = ω + ε−1 p∗λ.

5. Folds for the slow manifold projection

Let a smooth Hamilton function H on M be given. We suppose H is non-degenerate in
a neighborhood of a point s where we are working: d H ≠ 0. Then levels H = c are
smooth 3-dimensional disks within this neighborhood. Since the consideration is local, we can
work in Darboux coordinates, hence it is supposed that the 2-form Ωε is written as Ωε =

dx ∧ dy + ε−1du ∧ dv with fast variables x, y and slow variables u, v. The corresponding
presymplectic manifold is endowed locally with 2-form ω = dx ∧ dy, its symplectic leaves with
respect to the bundle map p : (x, y, u, v) → (u, v) are given by (u, v) = (u0, v0) ∈ U , U ⊂ B
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is a disk with coordinates (u, v). Without loss of generality we assume that the origin of the
coordinate frame (0, 0, 0, 0) is an equilibrium of the fast system on the leaf (0, 0): Hy = Hx = 0.
The restriction of H to a symplectic leaf is the function H(x, y, u0, v0) and the orbit foliation
for the fast vector field on this leaf is given by the fast Hamiltonian vector field

ẋ =
∂H

∂y
, ẏ = −

∂H

∂x
, u0, v0 are parameters,

depends on parameters (u0, v0) and its unfolding, as (u0, v0) vary, gives a local piece of the slow
manifold SM near the point s = (0, 0, 0, 0) in the space (x, y, u, v). Locally near s the slow
manifold is indeed a smooth 2-dimensional disk, if rank of the matrix

Hxy Hyy Huy Hvy
Hxx Hyx Hux Hvx


(20)

is 2 at s. We suppose it is the case. Now one can consider the restriction of the projection map p
to SM: pr : SM → B. If the inequality ∆ = H2

xy − Hyy Hxx ≠ 0 holds at s, then by the implicit
function theorem the set of solutions for the system Hy = 0, Hx = 0 near s is expressed as
x = f (u, v), y = g(u, v). Hence locally it is a section of the bundle p : M → B and Dpr
does not degenerate on this set in some neighborhood of s, i.e. pr is a diffeomorphism. Thus, the
degeneracy happens only if ∆(s) = 0. This equality is equivalent to the condition that the fast
Hamiltonian vector field on the corresponding symplectic leaf Fb, b = p(s), has at the point s a
degenerate equilibrium: it possesses zero eigenvalue (by the Hamiltonian structure, it is double)
for the linearization at s. Another characterization of such point is that it is a singular point of
the mapping pr : the rank of this mapping at s is less than 2.

Now let us return to the set of points in SM near s where pr degenerates. To be precise, we
assume

Hyy Hux − Hxy Huy ≠ 0 (21)

at s. We can always assume this is the case otherwise one can achieve this by re-ordering slow
or fast variables. The unique case when it is impossible and the rank of matrix (20) equals 2
corresponds to Hyu Hvx − Hxu Hyv is the only nonzero minor, while the other five are zero. This
would indicate a too degenerate case and we do not consider it below. Indeed, the following
lemma is valid.

Lemma 4. Suppose matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24


possesses the properties:

•

det


a13 a14
a23 a24


≠ 0,

• all the other minors of the second order for the matrix A vanish.

Then the following equalities hold a11 = a12 = a21 = a22 = 0.

Proof. Suppose the assertion of the lemma is false. Then up to re-enumeration of the rows and
the first two columns one may regard a11 ≠ 0. By assumption, all minors of the second order for
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the matrix
a11 a12 a13
a21 a22 a23


vanish. This means that its rows are linear dependent. But by assumption the first row is nonzero
vector of R3. Hence, there is κ1 ∈ R such that (a21, a22, a23) = κ1(a11, a12, a13).

Analogously, if all second order minors of the matrix
a11 a12 a14
a21 a22 a24


vanish, then from a11 ≠ 0 follows the existence of a number κ2 ∈ R which satisfies the equality
(a21, a22, a24) = κ2(a11, a12, a14). Then one has κ1a11 = a21 = κ2a11, from here equalities
a11(κ1 −κ2) = 0 and κ1 = κ2 follow. Thus, the rows of the matrix A are linear dependent, which
contradicts to the first condition of the lemma. �

It follows from the inequality (21) that SM near s is represented as a graph of the mapping y =

f (x, v), u = g(x, v) (recall that we assume s = (0, 0, 0, 0), then f (0, 0) = g(0, 0) = 0). The
coordinate representation for the mapping pr is the following pr : (x, v) → (u = g(x, v), v).
The derivative of this mapping is the matrix

P = Dpr =


gx gv
0 1


, (22)

whose rank at (0, 0) is 2, if gx (0, 0) ≠ 0 (the point is regular), and it is 1, if gx (0, 0) = 0
(the point is singular). The singular point (0, 0) is good, if gx (0, 0) = 0 and gxx (0, 0) ≠ 0
or gxv(0, 0) ≠ 0. The point is a fold if, in addition, one has P(ξ) ≠ (0, 0)⊤, where ξ
is the tangent vector to the singular curve through (0, 0). When gxx (0, 0) ≠ 0, then the
equation gx (x, v) = 0 for the singular points is solved by the implicit function theorem and
the singular curve has a representation (l(v), v), l(0) = 0, so ξ is (l ′(0), 1)⊤. Thus one has
P(ξ) = (gv(0, 0), 1)⊤ ≠ (0, 0)⊤ and the singular point (0, 0) is indeed the fold.

Now suppose gx (0, 0) = gxx (0, 0) = 0 but gxv(0, 0) ≠ 0. Then the singular curve has a
representation (x, r(x)), r(0) = 0, and the vector ξ is (1, r ′(0))⊤. Because r(x) again solves the
equation gx (x, v) = 0, we have the equality

r ′(0) = −
gxx (0, 0)
gxv(0, 0)

= 0.

It follows from here that P(ξ) = (0, 0)⊤. Hence if gxx (0, 0) = 0 then singular point (0, 0)
is not a fold. In order to verify it is the cusp, one needs to calculate d2(g(x, r(x)), r(x))/dx2

at the point (0, 0). The calculation gives the vector (gv(0, 0)r ′′(0), r ′′(0)), due to the equalities
gxx (0, 0) = 0, r ′(0) = 0. Thus, if r ′′(0) ≠ 0, the second derivative is not zero vector, and the
point is the cusp. For the derivative r ′′(0) we have

r ′′(0) = −
gxxx (0, 0)
gxv(0, 0)

. (23)

Thus, the conditions for a singular point to be a cusp consist in two equalities and two inequalities

gx (0, 0) = gxx (0, 0) = 0, gxv(0, 0) ≠ 0 gxxx (0, 0) ≠ 0. (24)
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The mutual position of the singular curve and levels H = c is important. In particular, we need
to know when the intersection at s of this curve and the submanifold H = H(s) is transverse and
when they are tangent. In the transverse case for all c close enough to H(s) the intersection of this
curve with the level H = c will be also transversal and hence, will consist of one point. For the
nontransverse case we need to know what will happen for the close levels. In a sense, the transver-
sality condition can be considered as some genericity condition for the chosen function H .

If the point s is the fold point for the map pr : SM → B, the singular curve on SM near s is
expressed in the form x = l(v), l(0) = 0. To determine, if this curve intersects transversely the
level H = H(s), let us calculate the derivative

d

dv
H(l(v), f (l(v), v), g(l(v), v), v)|v=0 = Hu(0, 0, 0, 0)gv(0, 0)+ Hv(0, 0, 0, 0). (25)

Taking into account that f (x, v), g(x, v) are solutions of the system Hy = 0, Hx = 0 near point
s, we can calculate gv(0, 0). This gives that the derivative (25) at the point s does not vanish if

Hxy[Hu Hyv − HvHyu] − Hyy[Hu Hxv − HvHxu] ≠ 0. (26)

It is hard to calculate this quantity when H is taken in a general form. Therefore we transform H
near s to a more tractable form. In order not to care about the smoothness, we assume henceforth
all functions are C∞.

The following assertion is valid.

Lemma 5. Suppose a smooth function H(x, y, u, v) is given such that the Hamiltonian system

ẋ = Hy, ẏ = −Hx

depending on two parameters (u, v) has at (u, v) = (0, 0) a degenerate equilibrium (x, y) =

(0, 0) with double zero non-semisimple eigenvalue (the related Jordan form is two dimensional).
Then there exists a C∞-smooth transformation Φ : (x, y) → (X, Y ) smoothly depending on
parameters (u, v) and respecting the 2-form dx ∧dy such that the Hamiltonian H ◦Φ in the new
variables (X, Y ) takes the form

H(X, Y, u, v) = h(X, u, v)+ H1(X, Y, u, v)Y 2, (27)

where H1(0, 0, 0, 0) ≠ 0.

Proof. We act as follows. Consider first the Hessian matrix (ai j ) of H in variables (x, y) at the
point (x, y) = (0, 0) on the leaf (u, v) = (0, 0). Its determinant vanishes but not all its entries are
zeros and its rank is 1, since the case is non-semisimple. Then one has either a11 ≠ 0 or a22 ≠ 0
due to symmetry of the Hessian. We assume a22 ≠ 0, this is compatible with the assumption
that just the minor Hyy Hxu − Hxy Hyu is nonzero. Let us first solve the equation Hy = 0 in a
neighborhood of the point (0, 0, 0, 0). Due to the implicit function theorem and the assumption
a22 = Hyy(0, 0, 0, 0) ≠ 0, the equation has a solution y = f (x, u, v), f (0, 0, 0) = 0. After
the shift transformation x = X , y = Y + f (x, u, v) we get the transformed Hamiltonian
Ĥ(X, Y, u, v) of the form

Ĥ(X, Y, u, v) = h(X, u, v)+ Y H̃(X, Y, u, v),

where h(X, u, v) = H(x, f (x, u, v), u, v), and

H̃(X, 0, u, v) = Hy(x, f (x, u, v), u, v) ≡ 0.
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Thus the function H̃ can be also represented as H̃ = Y H̄ , H̄(0, 0, 0, 0) = Hyy(0, 0, 0, 0)/2 ≠

0. It is worth noticing that (u, v) are considered here as parameters, therefore the transformation
(x, y) → (X, Y ) respects the 2-form: dx ∧ dy = d X ∧ dY . �

We now restore the notations (x, y) and assume that H is in the form (27). Then the condition
for (0, 0, 0, 0) to be the equilibrium of the fast system leads to the equality hx (0, 0, 0) = 0. The
requirement that the equilibrium is degenerate and non-semisimple is hxx (0, 0, 0) = 0, due to
the inequality H1(0, 0, 0, 0) ≠ 0. In this case the requirement that the slow manifold is a smooth
solution of the equation hx (x, u, v) = 0 near the point (0, 0, 0, 0) will be assured by one of
the inequalities hxu(0, 0, 0) ≠ 0 or hxv(0, 0, 0) ≠ 0. One can suppose that the former holds
renaming, if necessary, slow variables. This implies that the slow manifold has a representation
y = 0, u = g(x, v), where g(0, 0) = 0, gx (0, 0) = 0. At last, the point (0, 0, 0, 0) on the slow
manifold will be a fold, if gxx (0, 0) ≠ 0, that is equivalent to the inequality hxxx (0, 0, 0) ≠ 0.

Now we expand h(x, u, v) in x up to the third order terms

H(x, y, u, v) = h(x, u, v)+ H1(x, y, u, v)y2

= h0(u, v)+ a1(u, v)x + a2(u, v)x
2
+ a3(u, v)x

3
+ O(x4)+ H1 y2.

Here one has a1(0, 0) = 0, ∂ua1(0, 0) ≠ 0, a2(0, 0) = 0, a3(0, 0) ≠ 0. We have some freedom
to change parameters (u, v). Using inequality au(0, 0) ≠ 0, we introduce a new parameter
u1 = a1(u, v). In order to preserve the 2-form du∧dv we need to introduce also a new parameter
v1. To that end, we express u = â1(u1, v) = Rv via a generating function R(u1, v), where for
|u1|, |v| small enough

R(u1, v) =

 v

0
â1(u1, z)dz,

∂2 R

∂u1∂v
=
∂ â1

∂u1
≠ 0.

Then one has v1 = Ru1 and du ∧ dv = du1 ∧ dv1. After this transformation which does not
touch variables x, y we come to the following form of H

H(x, y, u1, v1) = h0(u1, v1)+ u1x + b̂(u1, v1)x
2
+ ĉ(u1, v1)x

3
+ O(x4)+ Ĥ1 y2. (28)

In this form we can check the transversality of the singular curve on SM and the submanifold
H = h0(0, 0) = c0 at the point (0, 0, 0, 0). Since we have H0

xy = 0, H0
yy ≠ 0 (zeroth upper

index means the functions are computed at the point (0, 0, 0, 0)), then the inequality (26) casts
(we restored the notation u, v again) as

H0
u H0

xv − H0
v H0

xu ≠ 0,

that is expressed as follows

∂h0

∂v
(0, 0) ≠ 0. (29)

Thus, we come to the conclusion:
if a function H is generic and the singular point s on SM is a fold for the mapping pr , this

is equivalent to the condition that this point on the related symplectic leaf is parabolic and the
unfolding of H in parameters (u, v) is generic.

At the next step we want to reduce the dimension of the system near the fold point s ∈ SM
and get a smooth family of nonautonomous Hamiltonian systems in one degree of freedom. This
will allow us to describe the principal part of the system near singularity using some rescaling
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for the system near s. We intend to work in coordinates where H takes the form (27). This form
of H was obtained above by the coordinate change respecting the form ω but in order to use it
for ε > 0 we need to perform a symplectic transformation with respect to the form Ωε such that
the transformation reduces to the previous form at ε = 0. This is done in the following lemma.

Lemma 6. Suppose a smooth function H(x, y, u, v) is given such that the point (x, y, u, v) =

(0, 0, 0, 0) is a solution of the system Hy = 0, Hx = 0 and at this point one has

∆ = Hxx Hyy − H2
xy = 0, ∆1 = Hyy Hxu − Hxy Hyu ≠ 0.

Then there exists a C∞-smooth transformation Φ : (x, y, u, v) → (X, Y,U, V ) smoothly
depending on the parameter ε and respecting the 2-form Ωε = dx ∧ dy + ε−1du ∧ dv such
that in the new variables (X, Y,U, V ) for all ε small enough the Hamiltonian H ◦ Φ takes the
form

H(X, Y,U, V, ε) = h(X,U, V, ε)+ h1(X,U, V, ε)Y + H1(X, Y,U, V, ε)Y 2, (30)

where h(X,U, V, 0) = h0(X,U, V ), h1(X,U, V, 0) ≡ 0 and H1(0, 0, 0, 0, 0) ≠ 0.

Proof. We need to extend the transformation X = x, Y = y − f (x, u, v) till the symplectic
transformation which coincides with that in Lemma 5. This is achieved through a symplectic
transformation generated by a generating function S(x, Y, u, V, ε) = xY +uV/ε+S1(x, u, V, ε)
like in [11]

X = x, y = Y +
∂S1

∂x
, U = u + ε

∂S1

∂V
, v = V + ε

∂S1

∂u
.

We take S1 in the form S1(x, u, V ) =
 x

0 f (ξ, u, V ). Then, despite the singular nature of the
generation function, the transformation is regular and at the limit ε = 0 we get the previous
transformation, since V = v in this case.

After the transformation the Hamiltonian casts in the form (30) after the expansion in Y up to
the second order terms using the Hadamard lemma

H(X, Y,U, V, ε) = h(X,U, V, ε)+ h1(X,U, V, ε)Y + H1(X, Y,U, V, ε)Y 2,

where h(X,U, V, 0) = h0(X,U, V ) and h1(X,U, V, 0) ≡ 0. �

Now we use the old notations (x, y, u, v). In Darboux coordinates (x, y, u, v) near s the
slow–fast Hamiltonian system with Hamiltonian H is written as follows

ẋ = Hy, ẏ = −Hx , u̇ = εHv, v̇ = −εHu . (31)

Without loss of generality, one can assume H(s) = 0. Since Hv(s) ≠ 0 (see (29)), then near s the
levels H = c for c close to zero are given as the graphs of the function v = S(x, y, u, c), where
S(0, 0, 0, 0) = 0, Sc = 1/Hv ≠ 0. These graphs intersect transversely the singular curve near
s, thus the intersection happens at the only point on the corresponding graph. The intersection of
SM with a level H = c is a smooth curve (the slow curve on this level) with a unique tangency
point with the related leaf (u, v) = (uc, vc).

Let us perform the isoenergetic reduction of the system (31) on the level H = c, then S is a
new (nonautonomous) Hamiltonian and u is the new “time” [1]. After the reduction the system
transforms to the system in variables (x, y, u) that reads as follows

ε
dx

du
= Hy/Hv = −Sy, ε

dy

du
= −Hx/Hv = Sx . (32)
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If we introduce the fast time setting du/dτ = ε, we come to the autonomous 3-dimensional
system which can be also considered as nonautonomous Hamiltonian one depending on the slow
time through u = ετ + u0.

The slow curve for this system is composed by the solutions of the system Sy = 0, Sx = 0,
this system is equivalent to the system Hy = 0, Hx = 0 where one needs to plug S into
H instead of v. Thus we obtain the intersection of SM with the level H = c. Because of
form (27) for the function H at ε = 0, this curve has a representation in coordinates (x, y, u):
y = 0, u−uc = a(c)(x−xc)

2
+o((x−xc)

2), a(0) ≠ 0, here (xc, 0, uc, vc), vc = S(xc, 0, uc, c),
are coordinates of the trace of the singular curve in the level H = c for c close to c = 0. This
representation follows from the system u = g(x, v), v = S(x, 0, u, c), and by the implicit
function theorem, u is expressed via x , since 1 − gvSu = (Hu gv + Hv)/Hv ≠ 0 at the point
(x, y, u, c) = (0, 0, 0, 0) (and any point on the singular curve close to it).

The fast system for the reduced system obtained is given by setting ε = 0 in the autonomous
3-dimensional system. Then variable u becomes a parameter u = u0 and u0 is varied near uc.
On the leaf u0 = uc we get a one degree of freedom Hamiltonian system with the equilibrium at
(xc, 0) that has the double zero non-semisimple eigenvalue. Using the form (30) of Hamiltonian,
we come to the one-degree-of-freedom system

dx

dτ
=

h1 + 2y H1 + y2 H1y

hv + yh1v + y2 H1v
,

dy

dτ
= −

hx + yh1x + y2 H1x

hv + yh1v + y2 H1v
.

(33)

As follows from Lemma 6, the difference of Hamiltonians H(x, y, u, v, ε)− H(x, y, u, v) is of
the order O(ε). This implies the relations due to (28):

h1 = O(ε), hx = u + 2b̂x + 3ĉx2
+ O(x3), yh1 = yO(ε).

Returning to the system in the whole phase space M , we can also construct the local phase
portrait of the slow system near the singular curve. In this case it is nothing else as the foliation
of slow manifold SM near point s into level lines of Hamiltonian H restricted to this manifold.
This is given by levels of the function ĥ = H(x, 0, g(x, v), v) = h0(g(x, v), v) + g(x, v)x +

b(g(x, v), v)x + c(g(x, v), v)x3. The manifold SM has the line of folds (= the singular curve).
This line is projected by the map p on the base B near s as a smooth curve (this curve can be
called a discriminant curve similar to the theory of implicit differential equations, see [2]). It is
clear that the image of SM lies on one side of this curve. Then the curves of the foliation are
projected in such a way that they have cusps at the points of the discriminant curve. This picture
is the same as for a non Hamiltonian slow–fast system with one fast and two slow variables
(see [1]).

5.1. Rescaling near a fold

Here we want to find a principal approximation for the system (33) near a fold point. We use
a blow-up method like in [9,19]. It is not surprising that we meet the Painlevé-I equation here,
like in [15,8], however the derivation is different and more direct.

Let us start with the observation that the one-degree-of-freedom nonautonomous Hamiltonian
S(x, y, u, c) can be written in the form (28), if we expand it in (x, y) near the (xc, 0) where on
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the related leaf u = uc the fast system for the reduced system has a parabolic equilibrium

S(x, y, u, c) = s0(u, c)+ α(u, c)(x − xc)+ β(u, c)(x − xc)
2
+ γ (u, c)(x − xc)

3

+ O((x − xc)
4)+ y2S1(x, y, u, c),

where α(uc, c) = β(uc, c) = 0, αu(uc, c) ≠ 0, γ (uc, c) ≠ 0, S1(xc, 0, uc, c) ≠ 0. Denote
x − xc = ξ . This gives the following form of the reduced system for ε > 0 small enough where
the Hamiltonian S(x, y, u, c, ε) is the solution of the equation H = c with H given by (30)

ε
dξ

du
= −

∂S

∂y
= −2yS1 − y2 ∂S1

∂y
+ O(ε),

ε
dy

du
=
∂S

∂ξ
= α(u, c)+ 2β(u, c)ξ + 3γ (u, c)ξ2

+ O(ξ3)+ y2 ∂S1

∂ξ
+ yO(ε).

(34)

Now we use the variable τ = (u − uc)/ε and add two more equations u′
= du/dτ = ε and

ε′ = 0 to the system. Then the suspended autonomous system will have an equilibrium at the
point (ξ, y, u, ε) = (0, 0, uc, 0). The linearization of the system at this equilibrium has a matrix
that is nothing else as the 4-dimensional Jordan box. To study the solutions to this system near
the equilibrium, we, following the idea in [9,19] (see also a close situation in [5]), blow up a
neighborhood of this point by means of the coordinate change

ξ = r2 X, y = r3Y, u = r4 Z , ε = r5, r ≥ 0. (35)

Since ε̇ = 0 we consider r = ε1/5 as a small parameter. The system in these variables takes the
form

X ′
= −r(2Y S1(xc, 0, uc, c)+ · · ·], Ẏ = r [αu(uc, c)Z + 3γ (uc, c)X2

+ · · ·],

Ż = r.

After re-scaling the time rτ = T , denoting ′
= d/dT , setting r = 0 we get

X ′
= −2Y, Y ′

= αc Z + 3γc X2, Z ′
= 1

where αc = αu(uc, c), γc = γ (uc, c). The system obtained is equivalent to the well known
Painlevé-I equation [23,15,17]

d2 X

d Z2 + 2α0 Z + 6γ0 X2
= 0.

By scaling variables this equation can be transformed to the standard form

d2W

d Z2 = 6W 2
− Z .

It is known [15,8,5] that this equation appears when the fast system passes through a parabolic
equilibrium. We come to this equation directly using blow-up procedure.

6. Cusp for the slow manifold projection

For the case when s is a cusp for pr , the related singular curve on SM is tangent to the
bundle leaf through s (see above the definition of a cusp and the equality P(ξ) = 0 in (22)).
Due to the last inequality in (24), this tangency takes place at the only point s, other points
on the singular curve near s are folds. Below, without loss of generality, we assume that s



1240 L.M. Lerman, E.I. Yakovlev / Indagationes Mathematicae 27 (2016) 1219–1244

is the origin (0, 0, 0, 0). Recall the coordinate representation of the singular curve is given as
(x, 0, g(x, r(x)), r(x)), r(0) = r ′(0) = 0.

The singular curve is also tangent at s to the level H = H(s) (recall that we assume d H(s)
≠ 0). Indeed, from equalities Hx (0, 0, 0, 0) = Hy(0, 0, 0, 0) = 0, gx (0, 0) = 0, r ′(0) = 0 the
tangency follows

d

dx
H(x, f (x, r(x)), g(x, r(x)), r(x))|x=0 = 0.

As ε = 0 consider the leaf Fb, b = p(s), of the symplectic foliation and the fast Hamiltonian
system on this leaf. The system has an equilibrium at s. This equilibrium is degenerate: it has
double zero eigenvalue as for a fold, but this equilibrium is even more degenerate than a parabolic
one. We want to show that the equilibrium is of co-dimension 2. Indeed, its nonlinear terms
satisfy two additional equalities. The partial normal form (27) for such equilibrium in coordinates
on the leaf depends on parameters (u, v) and looks as follows

H(x, y, u, v) = h0(u, v)+ a1(u, v)x +
a2(u, v)

2
x2

+
a3(u, v)

3
x3

+
a4(u, v)

4
x4

+ O(x5)+ y2 H1(x, y, u, v) (36)

with dh0(0, 0) ≠ 0, H1(0, 0, 0, 0) ≠ 0, a4(0, 0) ≠ 0, a1(0, 0) = 0. The equalities
a2(0, 0) = a3(0, 0) = 0 are the first condition for the co-dimension 2 here. They follow from
the assumption for s to be a cusp of the map pr : SM → B. Then equality gx (0, 0) = 0 implies
a2(0, 0) = 0 and gxx (0, 0) = 0 implies a3(0, 0) = 0. The inequality gxxx (0, 0) ≠ 0 leads to
a4(0, 0) ≠ 0. It turns out that the sign of a4(0, 0) plays the essential role, different signs lead to
different structures of the fast systems on the neighboring leaves (see Figs. 3–4). In these figures
we assume H1(0, 0, 0, 0) > 0.

Remark 6.1. Some additional comments to Figs. 3–4 are necessary. In fact, on these figures
the parameter plane and the related phase portraits are plotted for the systems in a generic two
parameter unfolding of a Hamiltonian system with a singular point of the type of the degenerate
center (Fig. 3) or the degenerate saddle (Fig. 4). The points on the bifurcation curve in the
parameter plane which are marked with the small circles correspond to the phase portraits marked
with the same letters (C+,C−), the points marked with numbers 1, 2, 3 stand for the phase
portraits in the corresponding bifurcation-free parts of the parameter plane. One more circle
marked with the letter k in Fig. 4 corresponds to the one more bifurcation of the formation of a
heteroclinic connection between two saddles. The fast Hamiltonian systems on the leaves close
to that corresponding to the cusp point depend on the parameters (u, v). Near the equilibrium
they have the same phase portraits in dependence on two possible signs of a4(0, 0).

In order the unfolding in “parameters” (u, v) would be generic, the inequality det(D(a1, a2)/

D(u, v)) ≠ 0 has to be met at (u, v) = (0, 0). The projection of the singular curve on the base
B ((u, v)-coordinates) is the cusp-shaped curve which is given up to higher order terms in the
parameterized form as follows

a1(u, v)+ a2(u, v)x + a3(u, v)x
2
+ a4(u, v)x

3
+ O(x4) = 0,

a2(u, v)+ 2a3(u, v)x + 3a4(u, v)x
2
+ O(x3) = 0.

To ease again the further calculations we take functions a1, a2 as new parameters instead of
u, v using the inequality det(D(a1, a2)/D(u, v)) ≠ 0. Keeping in mind that (u, v) are symplectic
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Fig. 3. Unfolding of fast systems near a degenerate center: α = −sign a4(0, 0) = −1, I1 ∼ u, I2 ∼ a2.

coordinates on B with respect to the 2-form du ∧ dv we make the parameter change via a
symplectic transformation. To this end, we assume first this determinant be positive, otherwise
we make the redesignation (a1, a2) → (−a1, a2). One of partial derivatives of a1 in u, v at (0, 0)
does not vanish, so one can take a1 as a new parameter u1 = a1(u, v). Adding to that some v1 in
order to get a symplectic transformation (u, v) → (u1, v1) we come to the same form of H with
respect to the new variables (u1, v1) and new coefficients a1(u1, v1) = u1, a2(u1, v1) which we
again denote as (u, v) and u, a2(u, v). Then we get ∂a2/∂v ≠ 0, since det D(a1, a2)/D(u, v) ≠

0. After that we have the Hamiltonian H in the form

H(x, y, u, v) = h0(u, v)+ ux +
a2(u, v)

2
x2

+
a3(u, v)

3
x3

+
a4(u, v)

4
x4

+ O(x5)+ y2 H1(x, y, u, v). (37)

At the next step, as in Lemma 6, we transform the initial Hamiltonian near the cusp point to the
form ε-close to (37) by a symplectic transformation with respect to the 2-form Ωε. The Hamil-
tonian takes the form (30) but the term h has the form as in (37) with the additional term yh1,
and coefficients in the expansion of h in x differ from those as ε = 0 by terms of the order O(ε).
Recall that the identity h1(x, u, v, 0) ≡ 0 holds.

Now we want to use again the isoenergetic reduction in a neighborhood of the point
s = (0, 0, 0, 0) and get a family of nonautonomous Hamiltonian systems in one degree of
freedom depending on a parameter c—the value of H . We assume without loss of generality
that H(s) = 0. Due to the assumption d H ≠ 0 at s we know that one of the derivatives (or both)
∂h0/∂u, ∂h0/∂v does not vanish.To be definite, we assume that the first derivative is nonzero at
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s. One can show that this is not a restriction. This implies that the equation H = c near s can be
solved as u = S(x, y, v, c), S(0, 0, 0, 0) = 0. The derivative S0

c does not vanish, since it is equal
to (∂h0/∂u)−1

≠ 0 at s. Hence, one can represent S as follows S(x, y, v, c) = S0(x, y, v) +

cS1(x, y, v, c), S1(0, 0, 0, 0) ≠ 0.

Thus the system with Hamiltonian H(x, y, u, v) can be written on the level H = c as a
nonautonomous Hamiltonian system with one degree of freedom with the new “time” v and
the Hamiltonian S. Instead of v we introduce a fast time via dv/dτ = ε and add the equation
dε/dτ = 0. The we get again an equilibrium at (0, 0, 0, 0) for the following system

dx

dτ
= −

h1 + 2y H1 + y2 H1y

h0u + x + a2u x2/2 + a3u x3/3 + a4u x4/4 + O(x5)+ yh1u + y2 H1u
= Sy,

dy

dτ
=

u + a2x + a3x2
+ a4x3

+ O(x4)+ yh1x + y2 H1x

h0u + x + a2u x2/2 + a3u x3/3 + a4u x4/4 + O(x5)+ yh1u + y2 H1u
= −Sx ,

dv

dτ
= ε,

dε

dτ
= 0.

(38)

To study the system near the equilibrium we perform the blow-up transformation

x = r X, y = r2Y, v = r2 Z , u = r3C, ε = r3.

After writing the system in the new coordinates, scaling the time rτ = s, setting r = 0,
and denoting the constants σ = 2H1(0, 0, 0, 0)/(∂h0(0, 0)/∂u), A = C/(∂h0(0, 0)/∂u),
α = a4(0, 0)/(∂h0(0, 0)/∂u), β = (∂a2(0, 0)/∂v)/(∂h0(0, 0)/∂u), we come to the system

Ẋ = −σY, Ẏ = A + βZ X + αX3, Ż = 1, (39)

which is just the Painlevé-II equation. More precisely, the Painlevé-II equation has the following
standard form [6]

d2w

dz2 = 2w3
+ zw + α.

Scaling variables and parameters of Eq. (39) reduces it to this standard form.

Thus, we have proved a theorem that gives a connection between an orbit behavior of a
slow–fast Hamiltonian system near its disruption point and solutions to the related Painlevé
equations. We formulate these results as follows. Let a smooth slow–fast Hamiltonian vector field
with a Hamiltonian H be given on a smooth bundle p : M → B where M is a 4-dimensional
presymplectic manifold with rank two 2-form ω compatible with the bundle structure and B is
a smooth 2-dimensional symplectic manifold with a symplectic 2-form λ. We endow M by the
symplectic structure Ωε = ω + ε−1 p∗λ. Suppose for ε = 0 the set SM of all zeros of the fast
vector fields generated by H on the symplectic leaves Fb, b ∈ B, is a smooth submanifold in
M . A point of tangency of SM with the corresponding symplectic leaf not being a critical point
of H is called a disruption point. A disruption point s here is either a fold or a cusp.

Theorem 1. The slow–fast system near a disruption point s after the isoenergetical reduction
can be reduced by some blow-up transformation in the principal approximation to either the
Painlevé-I equation, if s is a fold, or to the Painlevé-II equation, if s is a cusp.
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Fig. 4. Unfolding of fast systems near a degenerate saddle: α = −sign a4(0, 0) = 1, I1 ∼ u, I2 ∼ a2.
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[23] P. Painlevé, Mémoire sur les équationes differentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. 28

(1900) 201–261;
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