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A B S T R A C T

The evolution of porous structure and mechanical properties of binary glasses under tensile loading were ex-
amined using molecular dynamics simulations. We consider vitreous systems obtained in the process of phase
separation taking place after a rapid isochoric quench of a glass-forming liquid to temperatures below the glass
transition point. The porous structure in undeformed samples varies from a connected porous network to a
random distribution of isolated pores with increasing average density. We find that the elastic modulus follows a
power-law dependence on the average glass density and the shape of pore size distribution at small strain
remains nearly the same as in quiescent samples. Upon further loading, the pores become significantly deformed
and coalesce into larger voids that leads to formation of system-spanning empty regions associated with failure
of the material.

1. Introduction

Recent progress in the development of porous structural materials
with applications ranging from biomedicine to energy conversion and
storage as well as civil infrastructure, requires a thorough under-
standing of their microstructure-property relationships [1,5,3,4,2]. An
accurate pore characterization in microporous materials, which in-
volves numerical analysis of the probe-accessible and -occupiable pore
volume, allows determination of their permeability to guest molecules
as well as internal void volume and surface area [6]. The results of
experimental and computational studies have shown that mechanical
properties of bulk metallic glasses with periodic arrays of pores are
governed by shear localization between adjacent pores in a regime of
plastic deformation [7–9]. Similar to ductile metallic alloys, it was
found that in highly strained nanoporous silica glasses, multiple cracks
are initiated at void surfaces, which leads to void coalescence and in-
tervoid ligament failure [10]. It was further shown that mechanical
properties of porous silica glasses are improved in samples with channel
pore morphology rather than isolated pore configurations [11]. Despite
extensive efforts, the precise connection between individual pore
morphologies and elastic, shear and bulk moduli has not yet been de-
termined.

During the last decade, the mechanical properties of metallic glass
nanowires subjected to uniaxial tension have been extensively

investigated using molecular dynamics simulations [12–16] and ex-
perimental measurements [17–20]. It was found that, when the size of
metallic glass samples is reduced down to the nanoscale, the de-
formation mode changes from brittle to ductile [15–20]. The difference
in the deformation behavior can be visually detected by direct ob-
servation of either shear localization along a plane, called a shear band,
or the formation of extended necking along the loading direction
[12,18]. A subsequent analysis of irradiated samples that were emu-
lated in MD simulations by randomly removing a small fraction of
atoms, has shown an enhanced tensile ductility; while this effect is
reduced if only the outer shell of a nanowire is rejuvenated [15]. In Ref.
[14], it was shown that the brittle-to-ductile transition dependence on
sample size, observed in nanoscale metallic glasses, is defined by a
fundamental characteristic size effect in the failure mode under tensile
loading. Specifically, it was argued that nanosized specimens with
surface imperfections exhibit a clear transition from shear banding to
necking instability, when the ratio of average surface imperfection size
to sample diameter exceeds some characteristic value [14]. Further-
more, it was also demonstrated that a homogeneous bulk metallic glass
under uniaxial tension exhibits only one dominant shear band, whereas
multiple shear bands are initiated at interfaces between grains in a
nanoglass [21]. Moreover, it was found that the shear-band orientation
with respect to the loading direction is different in the cases of uniaxial
compression and extension of two-dimensional athermal amorphous
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solids [22]. However, the combination of several factors including the
processing routes, system size and aspect ratio as well as surface defects
and local microstructure makes it difficult to predict accurately the
failure mode in strained glasses.

A few years ago, the phase separation kinetics of a glass-forming
system quenched rapidly from a liquid state to a temperature below the
glass transition was studied via molecular dynamics simulations
[23,24]. As a result of the coarsening process at constant volume, a
porous amorphous solid is formed, whose porous structure contains
isolated voids at higher average glass densities and complex inter-
connected void-space topologies at lower glass densities [23,24]. More
recently, the distributions of pore sizes and local glass densities were
further investigated as a function of temperature and average glass
density [25]. In particular, it was found that in systems with high
porosity, the pore size distribution functions obey a scaling relation up
to intermediate length scales, while in highly dense systems, the dis-
tribution is nearly Gaussian [25]. Furthermore, under steady shear
deformation, the pores become significantly deformed and, at large
strain, they were shown to aggregate into large voids that are com-
parable with the system size [26,27]. It was also demonstrated that the
shear modulus follows a power-law dependence as a function of the
average glass density [27]. Nevertheless, the mechanical response of
porous glasses to different types of loading conditions and the evolution
of porous structure during deformation remain not fully understood yet.

In this paper, molecular dynamics simulations are carried out to
investigate the pore size distribution and mechanical properties of a
model glass under tensile deformation. The porous glass is prepared via

a deep quench of a binary mixture in a liquid state to a very low
temperature at constant volume. It will be shown that under tension,
the distribution of pore sizes becomes highly skewed towards larger
values, and upon further increasing strain, one large dominant pore is
formed in the region where failure occurs. The analysis of local density
profiles and visualization of atomic configurations reveals that the lo-
cation of the failure zone is correlated with the extent of a lower glass
density region.

The rest of the paper is structured as follows. In the next section, we
describe the details of molecular dynamics simulations including model
parameters as well as the equilibration and deformation protocols. The
results for the stress–strain response, evolution of density profiles and
pore size distributions are presented in Section 3. A brief summary and
outlook are given in the last section.

2. Details of molecular dynamics simulations

The mechanical properties of porous glasses were investigated using
the standard Kob-Andersen (KA) binary (80:20) mixture model [28]. In
this model, the interaction between any two atoms are described via the
Lennard-Jones (LJ) potential:
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where the parameters are set to =ε 1.0AA , = = =ε ε σ1.5, 0.5, 0.8AB BB AB ,
=σ 0.88BB , and =m mA B [28]. For computational efficiency, the LJ

forces were only computed at distances smaller than the cutoff radius

Fig. 1. Atom positions in the porous binary glass after isochoric quench to the temperature =T ε k0.05 / B for the average glass densities (a) =ρσ 0.23 , (b) =ρσ 0.43 , (c)
=ρσ 0.63 , and (d) =ρσ 0.83 . The blue and red circles indicate atom types A and B. The total number of atoms is =N 300,000. Note that atoms are not drawn to scale

and the system sizes are different in all panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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=r σ2.5c αβ αβ, . In what follows, the LJ units of length, mass, energy, and
time are = = =σ σ m m ε ε, ,AA A AA, and, consequently, =τ σ m ε/ . The
equations of motion were solved numerically using the Verlet algorithm
[30], implemented in LAMMPS [29], with the time step ▵ =t τ0.005MD .

Our model porous systems were prepared by first equilibrating
=N 300,000 atoms in a cubic cell at the temperature of ε k1.5 / B during

× τ3 104 , while keeping the volume constant. Here, kB denotes the
Boltzmann constant. For reference, the computer glass transition tem-
perature of the KA model is ≈T ε k0.435 /g B [28]. Second, the tempera-
ture of the liquid phase was instantaneously set to the low value of

ε k0.05 / B, and the system was evolving during the time interval τ104 at
constant volume. During this process, the temperature of ε k0.05 / B was
maintained by simple velocity rescaling. Examples of the resulting
porous structures are presented in Fig. 1 for the average glass densities

=ρσ 0.2, 0.4, 0.63 and 0.8. The equilibration and quenching procedures
were performed for the average glass densities in the range

⩽ ⩽ρσ0.2 1.03 , and the data were averaged over five independent
samples for each value of ρσ3. For reference, the corresponding set of
volumes V σ/ 3 is: 1500000, 1000000, 750000, 600000, 500000,
428571.4, 375000, 333333.3, 300000. The dynamical evolution of the
systems thus takes place at constant average density in both high and
low (below the glass transition) temperature regimes. In the regime of
‘aging’, the systems were evolved during τ104 , as noted above. The
above procedure is consistent with preparation protocols suggested in
Refs. [23,24].

As detailed above, the atomic configurations for mechanical testing
were prepared by thorough equilibration of the specimen using NVT
simulations. In the next step, the porous samples were strained along
the ̂x direction by rescaling the length of the simulation box. The
constant strain rate = − −ε τ̇ 10xx

4 1 was used throughout the loading
procedure. The deformation takes place during the time interval of τ104

at the temperature of ε k0.05 / B, which is regulated by the Nosé-Hoover
thermostat [29]. In nonequilibrium simulations, all stress components
and system dimensions were saved every τ0.5 as well as atomic con-
figurations that were stored every τ500 . These data were analyzed in
five independent samples for each value of the average density, and
used to compute the pore size distribution, density profiles, and the
elastic modulus. The results are presented in the next section.

3. Results

It was recently demonstrated that, when a glass-forming system is
rapidly quenched at constant volume from a high-temperature liquid
state to a temperature below the glass transition point, the porous

structures are developed at sufficiently low average glass densities and
fast cooling rates [23,24]. In the previous MD studies, the distribution
of pore sizes and local densities of the solid phase [25] as well as
temporal evolution of pore sizes and mechanical properties of systems
under steady shear [27] were investigated in a wide range of the
average glass densities, ⩽ ⩽ρσ0.2 1.03 . The quiescent samples were
prepared following the preparation procedure, described in Section 2.
In Fig. 1, we show the representative snapshots of the porous samples
before deformation for the average glass densities =ρσ 0.2, 0.4, 0.63

and 0.8. It can be observed that at higher glass densities ≳ρσ 0.63 , the
porous structure involves isolated voids with various sizes up to several
molecular diameters, while at lower densities, the average size of pores
increases and they become more interconnected, with channels running
through the systems. Notice that at the lowest glass density =ρσ 0.23 in
Fig. 1 (a), there are a number of straight paths across the whole sample,
indicating that the porous network is above the percolation threshold.

The formation of porous glass occurs at a constant volume, and,
therefore, the systems undergo evolution under the condition of nega-
tive pressure [31,32]. This has a number of important implications for
the thermodynamic states of the porous glassy systems. First, the sys-
tems under consideration exist in metastable states. Also note that these
systems can be envisaged as effectively confined [31,32]. Therefore,
there exists a distribution of built-in tensile stresses in the solid domains
of each phase-separating system. Correspondingly, the effects due to
these stress distributions are expected to contribute to the dynamical
evolution of the systems under mechanical loading; i.e., when the
thermodynamic barriers are perturbed by an applied external load. As
was discussed in Ref. [25], the phase separation during the transition
from liquid phase to that of porous glass occurs such that an extended
high-density domains are formed in the systems. In the process of
elongation (tension), a further phase separation can be made possible
due to lowering of the corresponding thermodynamic barriers. Thus,
the expected behavior is a redistribution of material from the region
close to the failure zone to remote domains. In some cases, this process
can be accompanied by pore shrinkage and/or closure. That is what we
observed in the present study, as is detailed below. These strain-in-
duced changes in porous structure lead to a significant decrease in built-
in stresses.

The typical stress-strain curves are plotted in Fig. 2 for ⩽ε 1.0xx and
⩽ ⩽ρσ0.2 1.03 . The data are extracted from one sample for each value

of the average glass density ρσ3. In our study, the tensile deformation
along the ̂x direction was performed at a computationally slow strain
rate = − −ε τ̇ 10xx

4 1 while keeping the volume constant. Thus, at the end
of the deformation process, the original cell size in the ̂x direction, Lx ,
increases by a factor of two when =ε 1.0xx . As shown in Fig. 2, the
stress, σxx, at zero strain is finite, and its magnitude increases at higher
densities. This behavior is consistent with the results of previous MD
study, where the effects of temperature and average glass density on
negative pressure in porous systems at equilibrium were thoroughly
investigated [25]. In particular, it was shown that pressure is a strong
function of the average density at low temperatures, and the data for
different densities are well described by the scaling relation ∼P T ρ/ α

[25].
At the initial stage of tensile deformation, ≲ε 0.04xx , the stress in-

creases for each value of the average glass density until it acquires a
distinct maximum at the yield strain (see Fig. 2). Upon further in-
creasing strain, ≳ε 0.04xx , the stress gradually decreases down to zero in
porous systems with smaller average density, indicating material’s
failure and breaking up into separate domains (discussed below). An
enlarged view of the stress–strain curves at small strain is shown in
Fig. 3. It can be seen that the tensile stress, σxx, is a linear function of
strain for ≲ε 0.01xx , and the slope, or the elastic modulus, increases at
higher glass densities. In the inset to Fig. 3, the elastic modulus, E,
averaged over five independent samples at each ρσ3, is plotted as a
function of the average glass density. The results of our study show that
the data are well described by the power-law function, ∼E ρ2.41 (see the
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Fig. 2. The dependence of stress σxx (in units of −εσ 3) as a function of strain for
the average glass densities =ρσ 0.2, 0.3, 0.4, 0.53 , 0.6, 0.7, 0.8, 0.9 and 1.0 (from
bottom to top). The strain rate is = − −ε τ̇ 10xx

4 1 and temperature is =T ε k0.05 / B.
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dashed line in the inset to Fig. 3). It should be emphasized that the same
exponent of 2.41 was reported for the dependence of the shear modulus
versus glass density of porous samples under steady shear [27]. We also
comment that the slopes of the stress–strain curves, shown in Fig. 3
remain the same at small negative values of strain during compression
deformation (not shown).

The evolution of the porous structure during tensile deformation is
illustrated in Figs. 4–6 for samples with =ρσ 0.3, 0.53 and 0.8. In all

cases, it is evident that with increasing strain, the pore shapes become
highly distorted, resulting ultimately in the formation of a single large
void that separates solid domains. It can be observed that in the highly
strained sample with the density =ρσ 0.83 , shown in Fig. 6(d), the
pores are essentially absent in the bulk glass due to compression along
the lateral dimensions. Furthermore, the finite value of tensile stress at
large strain ≈ε 1.0xx for =ρσ 0.83 in Fig. 2 is associated with formation
of the extended neck connecting solid domains shown in Fig. 6(d).
Notice also in Fig. 4 that the sample with the density =ρσ 0.33 contains
a number of small isolated clusters of atoms in the sparse network due
to the finite cutoff radius of the LJ potential. The transformation of pore
shapes in strained glasses can be more easily detected by visual in-
spection of a sequence of atomic configurations in thin slices of σ10
presented in Figs. 7–9. A more quantitative description of the dis-
tribution of void space can be obtained by counting a number of spheres
of different sizes that can be inserted into the porous structure.

In our numerical analysis, the pore size distribution (PSD) functions
were computed using the ZEO++ software [6,33,34]. The pore sizes
were evaluated using the following computational approach. First, a
decomposition of the system volume into Voronoi cells, associated with
each individual atom, was performed. The void space geometry and
topology characterization is based on a mapping between network of
Voronoi nodes associated with each atom in the simulation systems and
void space. The Voronoi decomposition is performed such that the
space surrounding atoms is divided into polyhedral cells with their
faces located on the planes equidistant from the two atoms sharing the
face. Vertices of cells are the Voronoi nodes and they are equidistant
from neighboring atoms. The Voronoi network, built of such nodes and
edges represents the void space surrounding atoms in a periodic si-
mulation cell. Analysis of such a network using Dijkstra-type graph
algorithm makes it possible to detect subnetworks accessible to a probe

Fig. 4. Instantaneous atom positions for the average glass density =ρσ 0.33 and strain (a) =ε 0.05xx , (b) =ε 0.25xx , (c) =ε 0.45xx , and (d) =ε 0.60xx . The strain rate is
= − −ε τ̇ 10xx

4 1.

Fig. 3. The enlarged view of the stress-strain curves at strain ≲ε 0.012xx and
=ρσ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.83 , 0.9 and 1.0 (from bottom to top). The same

data as in Fig. 2. The inset shows the elastic modulus E (in units of −εσ 3) versus the
average glass density −ρσ 3. The straight dashed line denotes the slope of 2.41.
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Fig. 6. Snapshots of atom positions for the average glass density =ρσ 0.83 and strain (a) =ε 0.05xx , (b) =ε 0.25xx , (c) =ε 0.45xx , and (d) =ε 0.95xx .

Fig. 5. A sequence of atomic configurations for the average glass density =ρσ 0.53 and strain values (a) =ε 0.05xx , (b) =ε 0.25xx , (c) =ε 0.45xx , and (d) =ε 0.60xx .
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with given radius. Specifically, the algorithm is used to provide a three-
dimensional representation of the pore-associated subnetworks and
their connectivity. The implementation of the numerical method is
based on a variation of the Dijkstra’s shortest-path algorithm [35].

The pore size distribution functions, dΦ( )p , are presented in Fig. 10
for the average glass densities =ρσ 0.3, 0.53 and 0.8. In agreement with
the results of our previous study [25], the distribution of pore sizes in
quiescent samples is narrow at high glass densities and it becomes
broader as the average glass density decreases. The specifics of PSDs for
porous binary glasses at equilibrium were previously discussed by the
authors in Ref. [25]. Subsequently, the temporal evolution of PSDs in
porous glasses undergoing steady shear were thoroughly investigated in
Ref. [27]. Similar to the case of a simple shear [27], under small strain
deformation, =ε 0.05xx , the shape of PSD curves remains largely un-
affected (see Fig. 10). With increasing strain, the PSDs widen and start
to develop a double-peak shape. In the regions of smaller dp, the
magnitude of PSDs decrease drastically, while the magnitudes of peaks,
developed at larger values of dp, increase. This type of behavior was
also observed in porous glasses under shear [27]. In the case of tension,
however, this effect is significantly amplified in the case of =ρσ 0.83 .
Indeed, the small-size pores nearly disappear, when εxx exceeds ≃ 0.5.
Also, in the limit of extremely large strains ( →ε 1.0xx ), the double peak
structure disappears and a single peak of large magnitude develops
instead. Overall, these conclusions are similar to the case of shearing
and can be summarized as follows. Tensile loading induces deformation
and coalescence of compact pores into larger voids that ultimately lead

to the formation of system-spanning empty regions associated with
breaking of samples into two pieces. The process of large pores for-
mation is consistent with series of system snapshots shown in Figs. 4–9,
where the material’s failure is accompanied by pore redistribution into
larger domains and with densification of the solid parts.

The evolution of the pore-size distributions with applied strain
during mechanical loading is important for overall understanding re-
sponse properties of porous materials. However, as any average quan-
tity, they do not provide any spatially-resolved information on the
dynamic events in material systems under loading. In what follows, we
therefore augment the PSDs by the analysis of spatially-resolved density
profiles. Specifically, we consider locally averaged density, computed
along the direction of mechanical loading, 〈 〉ρ x( )s . This quantity is de-
fined as the number of atoms located in a thin slice of thickness σ along
the ̂x direction (i.e., the direction of mechanical loading), divided by
the volume of the slice: L L σy z

3, where Ly and Lz are the system sizes in
the two Cartesian directions perpendicular to the loading direction.

The temporal evolution of the average density profiles in porous
samples is illustrated in Figs. 11–13. Here, we present the results for
systems with reduced densities, ρσ3, of 0.3,0.5, and 0.8. First and fore-
most, we would like to emphasize one common feature, which is
characteristic of all the samples, we studied in this work. It regards the
location of the zone, where the material’s failure occurs. As seen in
Figs. 11–13, it appears that the location of the failure zone is correlated
with the low-density region. However, a deeper analysis suggests that

Fig. 7. Atom configurations within a slice of thickness σ10 for the average glass density =ρσ 0.33 and strain (a) =ε 0.05xx , (b) =ε 0.25xx , (c) =ε 0.45xx , and (d)
=ε 0.60xx . Each panel contains a subset of the data shown in Fig. 4.
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Fig. 8. Atom positions within the narrow slice of σ10 for the average glass density =ρσ 0.53 and strain (a) =ε 0.05xx , (b) =ε 0.25xx , (c) =ε 0.45xx , and (d) =ε 0.60xx .
The same data as in Fig. 5.

Fig. 9. Snapshots of the porous glass in a thin slice of σ10 for the average glass density =ρσ 0.83 and strain (a) =ε 0.05xx , (b) =ε 0.25xx , (c) =ε 0.45xx , and (d)
=ε 0.95xx . The same data set as in Fig. 6.

N.V. Priezjev, M.A. Makeev Computational Materials Science 150 (2018) 134–143

140



the defining factor is the spatial extent of such a region, rather than the
absolute value of local density deviation from the average value. The
failure takes place in the regions of largest spatial extent of local density
deviations from the average value. In other words, a local deviation of
density from its average in a narrow spatial region does not signify a
weak (from a structural mechanics’ perspective) region. Rather, the
failure takes place in the center of extended low-density zone.

This is evident in all three cases of the average glass density pre-
sented in Figs. 11–13. Indeed, at strains around 0.1, a dip in 〈 〉ρ x( )s starts
to develop within the regions with low average densities. The process of
local density decrease in these regions is accompanied by simultaneous
densification in the neighboring parts of the systems. Note that shapes
of the density patterns are largely preserved in the remote - from the
regions with large paucity - parts of the systems. In loose terms, one can
say that the patterns repeat themselves, the only difference being their
magnitudes and lateral shifts, taking place due to gradual increase in
the extent of the low-density region. Within each low-density region, in
the initial stages of loading, the density profile shows a rather sharp dip.
In the later stages, the profiles show the characteristic for interfacial
regions (hyperbolic-tangent like) shapes. Note also that in Figs. 11–13,
the density profiles are plotted as functions of scaled (to the evolving
system size) coordinates. This may create an illusion that the positions
of the failure regions are similar for all the samples. However, as our
analysis shows, both the shapes of the failure regions and their positions
vary from sample to sample.

We finally comment that the process of density evolution is gradual;
i.e., no abrupt transitions between density states were observed. The
cases of strains =ε 0xx and 0.05 as well as =ε 0.45xx and 0.50 in
Figs. 11–13 provide an illustration of the premise in the initial and
intermediate stages of loading, correspondingly. Upon failure, the
samples with high densities exhibit some density relaxation on both

sides of the failure region. This is because a part of the tensile energy,
supplied in the process of external loading, is stored in the dense parts
of the system. This conclusion follows from the temporal behavior of
the systems after failure. The two parts continue to densify after break-
up, as evident from the behavior of systems with =ρσ 0.33 and 0.5
shown in Figs. 11 and 12, respectively. In the case of system with high
densities (see =ρσ 0.83 ) the effects is less pronounced. Note, however,
the behavior in the region around density dip, located at ∼x L/ 0.22x , in
Fig. 13. There is clear sign of continued relaxation due to elastic energy,
accumulated during the loading. The magnitude of the effects is ex-
pected to be smaller, as structural rearrangement in a high-density
material requires more energy, as compared to its low-density coun-
terparts.

4. Conclusions

In summary, the mechanical response and evolution of porous
structure in binary glasses under tension were studied using molecular
dynamics simulations. The phase separating glassy systems were pre-
pared via rapid quench from a liquid state to a temperature well below
the glass transition. In the process of phase separation at constant vo-
lume, different pore topological structures are formed depending on the
average glass density. Visual inspection of system snapshots in the ab-
sence of deformation shows atom configurations with randomly dis-
tributed, isolated pores at higher average glass densities, while inter-
connected porous structure is formed at lower densities. These
structural changes are reflected in the shape of pore size distribution
functions computed at different average glass densities.

When the porous material is subjected to tensile loading at constant
volume, the stress–strain curves exhibit a linear regime, where the
absolute value of stress increases up to the yield point, and then

Fig. 10. The distribution of pore sizes for the average glass densities (a) =ρσ 0.33 , (b) =ρσ 0.53 , and (c) =ρσ 0.83 . The distribution functions at different strains are
indicated by solid black curves ( =ε 0.0xx ), dotted red curves ( =ε 0.05xx ), dashed green curves ( =ε 0.15xx ), dashed blue curves ( =ε 0.25xx ), dash-dotted velvet curves
( =ε 0.45xx ), dash-dotted brown curves ( =ε 0.50xx ), double-dot-dashed orange curves ( =ε 0.75xx ). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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followed by plastic deformation at large strain until failure.
Consistently with theoretical predictions, the power-law exponent of
the elastic modulus dependence on the average glass density is the same
as for the shear modulus of porous glasses reported in our previous
study [27]. Upon further loading, the pores become significantly de-
formed and redistributed spatially, thus forming a system-spanning
void associated with breaking of the amorphous material. The analysis
of the locally averaged density profiles elucidates the mechanism of the
failure mode, which originates in regions of lower glass density of
largest spatial extents.
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