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Abstract. A foliation that admits a Weyl structure arising from a pseudo-Riemannian metric
of any signature as its transverse structure is called a pseudo-Riemannian Weyl foliation or (for
short) a Weyl foliation. We investigate codimension q ≥ 2 Weyl foliations on (not necessarily
compact) manifolds. Different interpretations of their holonomy groups are given. We prove a
criterion for a Weyl foliation to be pseudo-Riemannian. We find a condition on the holonomy
groups which guarantees the existence of a transitive attractor of (M,F ). Moreover, if the Weyl
foliation is complete, this condition implies the existence of a global transitive attractor. We
describe the structure of complete Weyl foliations modelled on Riemannian manifolds.

1. Introduction
Hermann Weyl introduced a new geometry in an attempt to create a unified field theory
uniting magnetism and gravitation, which is a generalization of Riemannian geometry [17].
This geometry is named now Weyl geometry.

Weyl geometry is actively used in theoretical physics, in such areas as modern cosmology,
gravitation, quantum mechanics, physics of elementary particles, etc. The review of some
applications of Weyl geometry in physics was made by Scholz [11].

Advanced achievements in mathematical physics show the importance of pseudo-Riemannian
geometry. In this work we consider Weyl geometry arising from pseudo-Riemannian geometry.
This geometry is referred to as pseudo-Riemannian Weyl geometry, and it includes Weyl
geometry arising from Riemannian geometry.

Our purpose is to investigate the influence of the transverse geometrical structure of a foliation
on its topological and dynamical properties. In the given work the role of the transverse
geometrical structure plays a pseudo-Riemannian Weyl structure.

Everywhere in the given work we assume that M is an n-dimensional manifold and F is a
Weyl foliation on M of codimension q ≥ 2, unless otherwise specified. Compactness of M is not
assumed.

Recall that a diffeomorphism f of a pseudo-Riemannian manifold (N, g) is called a conformal
transformation if there exists a smooth positive function λ on N such that f∗g = λg. If λ is
a constant, then f is referred to as a similarity transformation or a similarity of (N, g). Two
pseudo-Riemannian metrics g1 and g2 on M are said to be conformally equivalent if there exists
a smooth positive function λ on M such that g2 = λg1.
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Let Ωm(N) be the space of external forms of degree m ≥ 0, in particular Ω0(N) is the algebra
of smooth functions on the manifold N.

Definition 1. A pseudo-Riemannian Weyl structure of signature (k, s) on a manifold N is called
a pair ([g], f), where [g] is a class of conformally equivalent a conformal equivalence class
of pseudo-Riemannian metrics of signature (k, s) on N, and f : [g]→ Ω1(N) is a map satisfying
the equality f(eλg) = f(g)− dλ ∀λ ∈ Ω0(N).

A manifold N equipped with a pseudo-Riemannian Weyl structure of signature (k, s) is said
to be a pseudo-Riemannian Weyl geometry or a pseudo-Riemannian Weyl manifold of signature
(k, s) and is denoted by (N, [g], f).

Weyl manifolds form a category (see Section 2.2).
A foliation (M,F ) is called pseudo-Riemannian Weyl or (for short) Weyl if its transverse

structure is modelled on a pseudo-Riemannian Weyl manifold (N, [g], f). (the exact definition
is given in Section 2.3).

A foliation (M,F ) is referred to as a transversally similar foliation if all holonomy
transformations are similarities of respective open subsets of the transverse pseudo-Riemannian
manifold (N, gN ). If moreover, the curvature of (N, gN ) is zero, then (M,F ) is called a
transversally similar pseudo-Euclidean foliation (for the details, see Section 2.3).

First we give the following characterization of Weyl foliations.

Theorem 1. A smooth foliation (M,F ) of codimension q ≥ 2 is a Weyl foliation modelled on a
pseudo-Riemannian Weyl geometry (N, [g], f) if and only if there exists h ∈ [g] such that (M,F )
is a transversally similar foliation modelled on (N,h).

We consider Weyl foliations as a particular case of Cartan foliations in the sense of Blumenthal
[2] or, that is equivalent in this case, in the sense of [19]. Denote by R+ the multiplicative
group of positive real numbers. Let O(k, s) be the pseudo-orthogonal matrix group and let
CO(k, s) := R+ × O(k, s) be the conformal group. Theorem 1 implies that Weyl foliations
of signature (k, s) are Cartan of the type (G,H), where G = CO(k, s) n Rq, q = k + s, is
the semi-direct product of the conformal group H := CO(k, s) and the abelian group Rq. The
consideration of Weyl foliations as Cartan foliations allows us to apply results of the previous
works of the author [19] and [22]. In particular, the foliated bundle with the lifted foliation over
a Weyl foliation is the basic tool in the given work.

The following theorem contains different interpretations of the germ holonomy groups usually
used in foliation theory which follow from [20, Theorem 4] and [22, Proposition 5].

Theorem 2. Let (M,F ) be a pseudo-Riemannian Weyl foliation, π : R → M be its foliated
bundle, x ∈ M , u ∈ π−1(x). Let L = L(u) be the leaf of the lifted foliation (R,F) through u.
Then:

I. The holonomy group Γ(L, x) of the leaf L = L(x) through x is isomorphic to each of the
following three groups:

1) the subgroup H(L, u) := {a ∈ H|Ra(L) = L} of H;
2) the group of deck transformations of the regular covering map π|L : L → L;
3) the linear holonomy group DΓ(L, x) formed by the differentials of the local holonomy

diffeomorphisms along leaf loops of a transversal q-dimensional disc at x.
II. If moreover, (M,F ) admits an Ehresmann connection M, then the holonomy group Γ(L, x)

is isomorphic to the M-holonomy group HM(L, x).

Remark 1. Let u′ be another point of the set π−1(x) and L′ = L′(u′). Then there exists a
unique a ∈ H such that u′ = ua, and H(L′, u′) = a−1H(L, u)a, i.e. H(L, u) is replaced by a
conjugated subgroup in H.
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Let Eq be the unit q × q-matrix. We identify the group R+ with the subgroup {λEq|λ > 0}
of the Lie group H = CO(k, s), where q = k + s.

According to Remark 1 the following definition is correct.

Definition 2. The holonomy group Γ(L, x) of a leaf L = L(x) of a Weyl foliation (M,F ) is
called inessential, if the group H(L, u) satisfying Theorem 2 belongs to the subgroup O(k, s) of
the group H = CO(k, s). Otherwise the holonomy group of L is called essential. The holonomy
group of L = L(x) is referred to as α-essential, if the group H(L, u) satisfying Theorem 2 has
an element λA ∈ CO(k, s) = R+ × O(k, s), where λ ∈ R+, λ 6= 1 and A belongs to a compact
subgroup of O(k, s). Otherwise the holonomy group of L is called α-inessential.

Note that any α-essential holonomy group is essential, the opposite is in general not true (see
Section 5.5). We want to emphasize that for Weyl foliations of signature (0, q) the concepts of
essential and α-essential holonomy group coincide.

We prove the following criterion for a Weyl foliation to be pseudo-Riemannian.

Theorem 3. Let (M,F ) be a Weyl foliation modelled on a transverse pseudo-Riemannian Weyl
geometry (N, [g], f). Then there exists a pseudo-Riemannian metric h ∈ [g] such that (M,F ) is
a pseudo-Riemannian foliation modelled on (N,h) if and only if every holonomy group of this
foliation is inessential.

Corollary 1. Any pseudo-Riemannian Weyl foliation is a foliation with transverse linear
connection.

In accordance with [7] the automorphism group of every pseudo-Riemannian Weyl foliation
in the foliation category admits a structure of infinite-dimensional Lie group modelled on LF -
spaces.

Recall that a subset of a foliated manifold (M,F ) is called saturated, if it is a union of some
leaves of the foliation. A minimal set of (M,F ) is a nonempty closed saturated subset of M
that does not have proper subsets possessing these properties.

The study of minimal sets is one of fundamental problems in qualitative theory of foliations,
as well as in theory of dynamical systems [1].

Let (M,F ) be a foliated manifold. A nonempty closed saturated subset M of M for which
there exists an open saturated neighbourhood U such that the closure of any leaf from U contains
M is called an attractor of the foliation. The neighborhood U is uniquely determined and called
the basin of M. We use notation U = Attr(M). An attractor M is called transitive if M is a
minimal set of (M,F ), i.e., if each leaf from M is dense in M. If Attr(M) = M the attractor
M is said to be global [19].

Attractors of foliations formed by trajectories of dynamic systems are attractors in sense of
[13].

A leaf of a foliation (M,F ) is proper [15] if it is an embedded submanifold of M . A leaf L is
referred to as closed, if L is a closed subset of M . It is known that any closed leaf is proper. A
foliation (M,F ) is called proper if all its leaves are proper.

Theorem 4. Let a pseudo-Riemannian Weyl foliation (M,F ) of signature (k, s) have a leaf
L with an α-essential holonomy group. Then the closure M := L of the leaf L is a transitive
attractor.

For a proper Weyl foliation (M,F ) the attractor M is a closed leaf.

A Weyl foliation is called complete if it is complete as a Cartan foliation or, equivalently, as
a foliation with transverse linear connection (for the exact definition, see Section 5.2).

Theorem 5. If a complete pseudo-Riemannian Weyl foliation (M,F ) has a leaf L with α-
essential holonomy group, then the closure M := L of L is a global transitive attractor of the
foliation.
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In Section 5.5, we construct an example of a complete Weyl foliation (M,F ) that admits
leaves with essential holonomy groups, but has no leaves with α-essential holonomy group and
no attractors.

A regular covering map f : L0 → L onto a leaf L of a foliation is called holonomic if the
group of deck transformations of f is isomorphic to the holonomy group of this leaf.

In Section 6.1 we recall the definitions of (G,X)-manifolds and (G,X)-foliations. As the
application of Theorem 5 we describe the structure of complete Riemannian Weyl foliations as
follows.

Theorem 6. Let (M,F ) be a complete Riemannian Weyl foliation which is not a Riemannian
foliation. Then:

(i) there exists a leaf L with an essential holonomy group, and M = L is global a transitive
attractor;

(ii) (M,F ) is a complete transversally similar Euclidean foliation, i.e. (Sim(Eq),Eq)-
foliation;

(iii) there exists a regular covering map κ : M̃ →M such that M̃ coincides with the product

of manifolds L0 × Eq, where q = k + s, and the induced foliation F̃ = κ∗F is formed by the
fibers of the canonical projection pr : L0 × Eq → Eq and the restriction κ|L0×{b}, b ∈ Eq, is a
holonomic covering map onto the corresponding leaf of (M,F );

(iv) there exists an epimorphism

χ : π1(M,x)→ Sim(Eq)

of the fundamental group π1(M,x) of M onto some subgroup Ψ = χ(π1(M,x)) of Sim(Eq);
(v) the holonomy group of any leaf L = L(x), x ∈M , is isomorphic to the isotropy subgroup

Ψz of Ψ at z ∈ pr(f−1(L)) ⊂ Eqk.
In the case when (M,F ) is a proper Weyl foliation, the global attractor M is a unique closed

leaf of (M,F ).

Definition 3. The group Ψ satisfying Theorem 6 is referred to as the global holonomy group
of (M,F ).

Other properties and examples of transversally similar Euclidean foliations can be found in
[19, Sections 9 and 10].

The structure of complete Riemannian foliations is well known due to works of Molino,
Haefliger, Carrier and others.

Weyl manifolds and W -flows on them are studied in [18]. Pseudo-Riemannian Weyl geometry
on distributions and foliations was investigated in [6]. The structure of pseudo-Riemannian
foliations of signature (1, 1) on closed 3-dimensional manifolds is described in [4]. The work
[21] is devoted to the investigation of foliations with transverse Weyl structures arising from
Riemannian geometry, i.e. Weyl structures how they were defined by Weyl ([17], see also [8] and
[12]).

Notations. Following [10] we denote a principal H-bundle p : P → N by P (N,H). The
module of vector fields on a manifold M is denoted by X(M). Let XM(M) be the set of vector
fields tangents to some distribution M on M .

2. Weyl foliations as transversally similar pseudo-Riemannian foliations
2.1. The linear connection compatible with a Weyl geometry
Definition 4. Let (N, [g], f) be a Weyl manifold. A torsion free linear connection ∇ on N is
called compatible with the Weyl structure, if

∇g + f(g)⊗ g = 0 ∀g ∈ [g]. (1)
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We want to emphasize that a Weyl structure ([g], f) on a manifold N is determined by a
pseudo-Riemannian metric g and 1-form ϕ. In fact, let [g] be the conformal class of pseudo-
Riemannian metrics on N . Define f : [g] → Ω1(M) by the following two equations: f(g) := ϕ
and f(eλg) = f(g) − dλ for all λ ∈ Ω0(N ). In accordance to Definition 1 such pair ([g], f) is a
Weyl geometry on the manifold N.

Proposition 1. For the given Weyl manifold (N, [g], f) there exists a unique torsion free linear
connection ∇ compatible with Weyl geometry.

A torsion free linear connection ∇ on a manifold N on which there exist a pseudo-Riemannian
metric g and 1-form ϕ such that ∇g + ϕ⊗ g = 0 is the linear connection compatible with Weyl
structure determined by g and ϕ.

Proof. As it is known, every torsion free linear connection is uniquely determined by the
covariant derivative of a symmetric non-degenerate bilinear form. Therefore, on the given Weyl
manifold (N, [g], f) there exists a unique torsion free linear connection ∇ compatible with Weyl
structure.

The converse, let a pseudo-Riemannian metric g and 1-form ϕ satisfy the equality∇g+ϕ⊗g =
0. It is easy to check that eλg and ϕ− dλ so satisfy this equality for all smooth function λ. This
means that ∇ is the unique torsion free linear connection ∇ compatible with this Weyl geometry
(N, [g], f) determined by g and ϕ.

The statement analogous to Proposition 1 for Weyl geometries modelled on Riemannian
manifolds was proved in [8, Theorem 2 and Corollary].

2.2. The category of Weyl manifolds
Let (N, [g], f) and (Ñ , [g̃], f̃) be two Weyl manifolds. A smooth map h : N → Ñ is called a
morphism of Weyl manifolds, if its codifferential h∗ satisfies the following equality

h∗ ◦ f̃ = f ◦ h∗

for every pseudo-Riemannian metric from [g̃].

Proposition 1 implies that h : N → Ñ is a morphism of the Weyl manifolds (N, [g], f) and

(Ñ , [g̃], f̃) if and only if h is a morphism of the manifolds of linear connections (N,∇) and

(Ñ , ∇̃), where ∇ and ∇̃ are torsion free linear connections compatible with the Weyl structures

([g], f) and ([g̃], f̃) respectively, i.e. if h∗(∇XY ) = ∇̃h∗Xh∗Y for any X,Y ∈ X(N), where h∗ is
the differential of h.

The category whose objects are Weyl manifolds, morphisms are morphisms of Weyl manifolds,
and the composition of morphisms coincides with the composition of maps is called a category
of Weyl manifolds.

2.3. Pseudo-Riemannian Weyl foliations
Let N be a q-dimensional manifold, and the topological space of N can be disconnected. Let M
be an n-dimensional manifold, and n > q, An N -cocycle η = {Ui, fi, {γij}}i,j∈J is given if there
are the following:

(i) an open covering {Ui | i ∈ J} of the manifold M and submersions fi : Ui → N to N with
connected fibers;

(ii) if Ui ∩ Uj 6= ∅, there exists a diffeomorphism γij : fj(Ui ∩ Uj)→ fi(Ui ∩ Uj) satisfying to
the equality fi = γij ◦ fj on Ui ∩ Uj ;

(iii) γik = γij ◦ γjk for all x ∈ fk(Ui ∩ Uj ∩ Uk), where i, j, k ∈ J.
The family η is supposed to be maximal, i.e. it contains all Ui, fi, γij having indicated above

properties and N =
⋃
i∈J fi(Ui). The set of fibers of submersions {f−1i (x) |x ∈ N, i ∈ J} forms
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a base of a new topology Υ in M which called the leaf topology. Connected components of the
topological space (M,Υ) form a partition F = {Lα |α ∈ A} of the manifold M which is referred
to as a foliation of codimension q determined by the N -cocycle η. The foliation is denoted by
(M,F ).

Let (N, [g], f) be a Weyl manifold of a signature (k, s) determined by the N -cocycle η. If
each element γij from the cocycle η is an isomorphism of the Weyl manifolds induced on the
open subsets fj(Ui ∩Uj) and fi(Ui ∩Uj), then (M,F ) is called a foliation with transverse Weyl
structure of the signature (k, s) or (for short) Weyl foliation of the signature (k, s). It is said
also that the Weyl foliation (M,F ) is modelled on the transverse Weyl manifold (N, [g], f).

If an N -cocycle η = {Ui, fi, {γij}}i,j∈J determines a foliation (M,F ), and on N there exists a
pseudo-Riemannian metric h such that any element γij is a similarity of the pseudo-Riemannian
manifolds induced on open subsets fj(Ui∩Uj) and fi(Ui∩Uj), then (M,F ) is called a transversally
similar foliation modelled on (N,h). If moreover, (N,h) is the pseudo-Euclidean space Eqk, then
(M,F ) is called a transversally similar pseudo-Euclidean foliation of the signature (k, n − k).
In particular, when k = 0 and Enk = En the foliation (M,F ) is called a transversally similar
Euclidean foliation.

A transversally similar foliation modelled on (N,h) is named a pseudo-Riemannian foliation
if any element γij is a local isometry of (N,h).

As similarity transformations of a pseudo-Riemannian manifold (N,h) preserve the Levi
Civita connection ∇h on N, transversally similar foliations may be considered as Weyl foliations
modelled on (N, [h], f) where f(h) is an exact 1-form. In this case the Levi-Civita connection
∇h is the unique torsion free connection compatible with this Weyl geometry which will denoted
by (N, [h],∇h).

2.4. Proof of Theorem 1
Let (M,F ) be a Weyl foliation modelled on a Weyl geometry (N, [g], f). If there exists a non
simply connected component N1 of the manifold N , then we change N1 by its universal covering
manifold N0 with the induced Weyl structure. Hence without loss a generality we assume that
each component of N is simply connected. Remark that for any manifold N having only simply
connected components the cohomology group H1(N) is trivial.

Since 1-forms ϕ := f(g) and f(g̃) for every g̃ ∈ [g] differ by an exact form, they have a common
exterior derivative. Hence they define an element of the group H1(N). As H1(N) equals to
zero, there exists h ∈ [g] such that f(h) = ϕ0 = 0. This implies ∇g = 0 by the definition of the
compatible connection. Therefore the Weyl connection ∇ = ∇h is the Levi-Civita connection of
the pseudo-Riemannian manifold (N,h).

As every γij from the N -cocycle η = {Ui, fi, {γij}}i,j∈J determining the foliation (M,F ) is
both the conformal diffeomorphism and the isomorphism of the induced Levi-Civita connections
on the corresponding open subsets of the pseudo-Riemannian manifold (N,h), then [14, Chap
1, Sec. 1], γij is a local similarity transformation of (N,h).

Thus (M,F ) is a transversally similar foliation modelled on (N,h).
The converse is proved by the obvious way. �

Remark 2. On accordance with Theorem 1, without loss a generality we assume further that
any Weyl foliation is modelled on a Weyl geometry (N, [g],∇g), where ∇g is the Levi-Civita
connection defined by some pseudo-Riemannian metric g belonging to the class of conformally
equivalent metrics [g].

3. A criterion for a Weyl foliation to be pseudo-Riemanniann
3.1. Weyl foliations as Cartan foliations
Recall the definition of a Cartan geometry. More information about Cartan geometries can be
found in [9], [12], [5].
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Let G be a Lie group with the Lie algebra g. Let H be a closed subgroup of G with the Lie
algebra h ⊂ g. Assume that p : P → N is a principal H-bundle formed by a free right action
of the group H on the manifold P . The action of an element a ∈ H on P is denoted by Ra.
A non-degenerated g-valued 1-form ω0 on P is called a Cartan connection, if the following two
conditions are satisfied:

1) ω0(A
∗) = A for A ∈ h, where A∗ is the fundamental vector field on P defined by A;

2) the 1-form ω0 is H-equivariant, i.e. (Ra)
∗ω0 = AdG(a−1)ω0 ∀a ∈ H, where AdG is the

adjoint representation of G on g.
The principal H-bundle P (N,H) with the Cartan connection ω0 is referred to as a Cartan

geometry of the type (G,H). It is denoted by ξ = (P (N,H), ω0).
A Cartan geometry of the type (G,H) is reductive, if the homogeneous spaceG/H is reductive

[12]. If the group G acts effectively at the left on G/H, then the Cartan geometry of the type
(G,H) is called effective.

Everywhere further in this work we denote by G = CO(k, s) nRq the semi-direct product of
the conformal group H = CO(k, s) and the q-dimensional abelian additive group Rq, and Rq is a
normal subgroup of G. We write any element of G as 〈λA, a〉, where λ ∈ R+, A ∈ O(q), a ∈ Rq.
The multiplication in the Lie group G is defined by the following equality

〈λA, a〉〈µB, b〉 := 〈λµAB, λAb+ a〉, 〈λA, a〉, 〈µB, b〉 ∈ G.

Note that the group G is realized as group of all similarity transformations of the pseudo-
Euclidean space Eqk, and H is realized as its stationary group at zero 0 ∈ Eqk.

Let so(k, s) be the Lie algebra of the pseudo-orthogonal group O(k, s) and R1 be the
Lie algebra of R+. The Lie algebra g of G admitted the decomposition g = h ⊕ p, where
h = co(k, s) = R1 ⊕ so(k, s) is the Lie algebra of the conformal Lie group CO(k, s) and p = Rq
is the abelian ideal in g. The vector space p is AdG(H)-invariant with respect to the adjoint
representation AdG(H) : H → GL(g) of the subgroup H of G on g.

According to Remark 2 in the investigation of Weyl foliations we consider a Weyl geometry
(N, [g],∇g) of signature (k, s), k + s = q, on q-dimensional manifold N . Such Weyl geometry
defines the Cartan connection ω0 = ω̃+ θ in H-bundle of conformal frames P (N,H), where ω̃ is
the h-valued 1-form on R and θ is the Rq-valued canonical 1-form on P which are defined by the
Levi-Civita connection ∇g on the pseudo-Riemannian manifold (N, g). We want to emphasize
that the Weyl geometry (N, [g],∇g) will be considered as the effective reductive Cartan geometry
ξ = (P (N,H), ω0) of the type (G,H).

Applying [19, Proposition 2] we get the following statement.

Proposition 2. A Weyl foliation (M,F ) codimension q modelled on a Weyl geometry ξ =
(P (N,H), ω0) of signature (k, s), q = k + s ≥ 2, is a Cartan foliation of the type (G,H), where
G = CO(k, s) n Rq and H = CO(k, s), and there exist the principal H-bundle π : R → M,
the H-invariant foliation (R,F) and the g-valued H-equivariant 1-form ω on R satisfying the
following conditions:

1) ω(A∗) = A for a fundamental vector field A∗ corresponding to A ∈ h for every A ∈ h;
2) the map ωu : TuR → g, for any u ∈ R is surjective, and ker(ω) = TF, where TF is the

distribution tangent to the foliation (R, F );
3) the Lie derivative LXω is equal to zero for each vector field X tangent to the foliation

(R,F).

The principal H-bundle π : R →M is said to be the foliated bundle and (R,F) is said to be
the lifted foliation for the Weyl foliation (M,F ).

European Conference - Workshop "Nonlinear Maps and Applications"                                             IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 990 (2018) 012014          doi:10.1088/1742-6596/990/1/012014

7



3.2. Proof of Theorem 3
Assume that all holonomy groups of a Weyl foliation (M,F ) are inessential. Let π : R →M be
the projection of the foliated H-bundle over (M,F ) satisfying Proposition 2. The smooth right
free action of the Lie group H = CO(k, s) is determined on the manifold R, and the orbit space
R/H coincides with the manifold M.

The smooth right free action of the normal subgroup R+ of H on R is defined, and the
orbit space is a smooth manifold R̂ = R/R+. A smooth right free action of the factor group

H/R+ = O(k, s) is induced on R̂, and the orbit space R̂/O(k, s) coincides with M . Thus, the

canonical projections onto the orbit spaces α : R → R̂ and π̂ : R̂ → M satisfy the equality
π = π̂ ◦ α. Since the lifted foliation (R,F) is H-invariant, it is invariant with respect to the

subgroup R+. Hence O(k, s)-invariant foliation (R̂, F̂ ) is induced, and its leaves are images of
leaves of the foliation (R,F) with respect to the map α.

By the condition of Theorem 3, any leaf of (M,F ) has an inessential holonomy group.
Hence the restriction α on each leaf L of the lifted foliation (R,F) is a diffeimorphism onto

the corresponding leaf L̂ of the foliation (R̂, F̂).
AdG(H)-invariance of the subspace p of the vector space of the Lie algebra g = co(q)⊕p implies

the existence of a smooth H-invariant distribution N on R, where Nu = {X ∈ Tu(R)|ω(X) ∈ p}
for any u ∈ R. Hence, N is a projectable connection on the H-bundle R(M,H) with respect

to the foliation (R,F). Therefore the distribution N̂ := α∗N is a projectable connection on the

O(k, s)-bundle R̂(M,O(k, s)) with respect to (R̂, F̂).

The bundle R(R̂,R1) has the contractible fiber, and for each leaf L of the foliation (R,F) the

restriction α|L is a diffeomorphism of L onto the corresponding leaf of (R̂, F̂). According to [22,

Proposition 4] in this case there exists a foliated section σ : R̂ → R. Thus, σ(R̂) is a reduction

of the bundle R(M,H) to the closed subgroup O(k, s), and σ(R̂) is a foliated O(k, s)-bundle

for (M,F ) such that σ(F̂ ) = F|
σ(R̂)

. It is not difficult to show that σ satisfies the equation

Ra ◦ σ = σ ◦ Ra for every a ∈ O(k, s) and σ∗Ñ = N|
σ(R̂)

. This means that the original Weyl

foliation (M,F ) with the transverse Weyl geometry (N, [g],∇g) is a pseudo-Riemannian foliation
modelled on a pseudo Riemannian manifold (N,h) where h ∈ [g].

The converse is fulfilled by obvious a way. �

4. A Riemannian metric and a connection adapted to the lifted foliation
Let (M,F ) be a Weyl foliation of codimension q. Let R(M,H) be its foliated bundle with the
lifted foliation (R,F) satisfying Proposition 2.

Consider a smooth q-dimensional distribution M transverse to leaves of (M,F ), i.e. TxM =

Mx ⊕ TxF for any point x ∈ M. Let M̃ := π∗M, i.e. M̃u := {X ∈ TuR|π∗uX ∈Mx, x = π(u)}
for all u ∈ R. Denote by P the smooth q-dimensional distribution on R which is equal to the

intersection N and M̃, i.e. Pu = {X ∈ M̃u | ω(X) ∈ p} for all u ∈ R. H-invariance of the

distributions N and M̃ implies H-invariance of the distribution P.

Definition 5. A smooth vector field X ∈ X
M̃

(R), for which ω(X) = c = const is said to be a
g-field. If moreover c ∈ p, then X is said to be a p-field,

A piecewise smooth curve in R is called a g-curve (accordingly a p-curve), if each its smooth
piece is an integral curve of some vector g-field (accordingly a p-field).

Remark, that locally anyone smooth g-curve σ can be represented as σ(t) = ϕXt (v), t ∈ (−ε, ε),
where ε > 0, ϕXt is the 1-parametric group of local diffeomorphisms of the manifold R generated
by the g-field X for which σ(t) is an integral curve, and v = σ(0) = ϕX0 (v).

Lemma 1. Let gR be an arbitrary Riemannian metric on the space of the foliated bundle R.
Let d0 be the Euclidean metric on the vector space of g invariant with respect to the action of

European Conference - Workshop "Nonlinear Maps and Applications"                                             IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 990 (2018) 012014          doi:10.1088/1742-6596/990/1/012014

8



the compact group AdG(O(k)×O(s)). Let Z = ZF ⊕ZM̃
be the decomposition of any vector field

Z ∈ X(R) corresponding to the decomposition of the tangent vector space to R in the direct sum

of the vector subspaces TuR = TuF ⊕ M̃u, u ∈ R.
Then the equality

d(X,Y ) := gR(XF , YF ) + d0(ω(X), ω(Y )) ∀X,Y ∈ X(R),

defines a Riemannian metric d on R transversally projectable with respect to the foliation (R,F)
satisfying the following properties:

1) the length l(σ) of any smooth g-curve σ, σ(t) = ϕXt (v), where t ∈ [0, t1], v = σ(0), is equal
to ‖ ω(X) ‖d0 ·t1, where ‖ ω(X) ‖2d0= d0(ω(X), ω(X));

2) l(ϕXt (v)) = l(ϕXt (v′)), where X is a g-field, t ∈ [0, t1], for all v, v′ ∈ R, if ϕXt (v) and
ϕXt (v′) are defined at t ∈ [0, t1];

3) for any element a = λ−1 ·A ∈ R+ ×O(k)×O(s), where λ > 0, and for any p-curve σ the
curve σ̃ := Ra ◦ σ is a p-curve, with l(σ̃) = λ · l(σ).

Proof. As g-valued 1-form ω is projectable, so the Riemannian metric d is also projectable with
respect to the foliation (R,F). As σ(t) = ϕXt (v), where t ∈ [0, t1], is an integral curve of some p-
field X, that d(X,X) =‖ ω(X) ‖2d0 and d(σ)/dt = Xσ(t). Therefore the length l(σ) is calculated
by the formula specified in 1).

The relation 2) is followed from 1).
Let us verify 3). First we assume that σ(t) = ϕXt (v), t ∈ [0, t1], is a p-curve, where σ(0) = v,

and σ̃ := Ra ◦ σ. As σ̃(t) = ϕYt (v · a), where Y = Ra∗(X), the AdG(O(k)× O(s))-invariance of
p implies that Y is a p-field. Hence σ̃ is a p-curve.

According to 1), its length is calculated by the formula l(σ̃) =‖ ω(X) ‖d0 ·t1. H-equivariance
of the form ω implies the equality ω(Y ) = AdG(a−1)ω(X). Therefore l(σ̃) =‖ AdG(a−1)ω(X) ‖d0
·t1. Direct calculations show that for any element a = λ−1 · A ∈ R+ × O(k) × O(s) the
following equality ‖ AdG(a−1)ω(X) ‖d0= λ· ‖ ω(X) ‖d0 is valid, hence l(σ̃) = λ · l(σ).
Let now σ be a piecewise smooth p-curve. Then it is devised into finite number of smooth
pieces σ |Ii , i = 1, ...,m, for each of which, as it was proved above, there is the equality
l(σ̃ |Ii) = λ · l(σ|Ii), hence l(σ̃) = λ · l(σ).

The following easily proved lemma takes place.

Lemma 2. Let Ei, i = 1, dimg be a basis of the Lie algebra g. Let Xi be such g-field, that
ω(Xi) = Ei. We shall denote by ∇̃ the Levi-Civita connection of the Riemannian manifold
(R, d). Then the equality

∇0
Y Z := Y (Zi)Xi + ∇̃Y ZF , (∗)

where Z = ZF ⊕ Z
M̃

, Z
M̃

= ZiXi ∈ X
M̃

(R), ZF ∈ XTF (R), Y ∈ X(R), defines a linear

connection ∇0 in R, generally speaking with torsion, with respect to which all g-fields are parallel.
Besides the parallel transfer keeps the scalar product of g-fields inducted by d, and integrated
curves g-fields are geodesic lines of the connection ∇0.

5. The existence of attractors
5.1. Proof the of Theorem 4
We use notations from Section 4. Let (M,F ) be a Weyl foliation modelled on a Weyl geometry
(N, [g],∇g).

Let (R,F) be the foliation formed by connected components of submanifolds π−1(Lα) of R,
where Lα are leaves of (M,F ).

Suppose that the foliation (M,F ) has a leaf L = L(x), x ∈M with an α-essential holonomy
group. Pick v ∈ π−1(x). Let L = L(v) be the leaf of the lifted foliation (R,F).
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We emphasize that geodesics of the linear connection ∇0 with a torsion having the Christoffel
symbols Γkij in some coordinate neighborhood coincide with the geodesics of the torsion free

linear connection ∇̂ having the Christoffel symbols Γ̂kij = 1
2(Γkij + Γkji). Hence geodesics of a

linear connection ∇0 with a torsion has the same properties as geodesics of torsion free linear
connections.

Therefore for the point v there exist ε > 0 and an embedded submanifold V := D
M̃

(v, ε)
formed by g-curves of the length < ε with the origin at v. Similarly, there exists V1 := DP(v, ε) ⊂
V formed by p-curves of length less than ε with the origin at v.

Since the leaf L has α-essential holonomy group, the group H(L, v) contains the element
a = λ−1 · A, where λ ∈ (0, 1) and A belongs to a compact subgroup of O(k, s). Since
O(k)×O(s) is the maximal compact subgroup of O(k, s), another maximal subgroup of O(k, s)
is conjugated with O(k)×O(s). According to Remark 1 we can take such point v ∈ π−1(x) that
A ∈ O(k)×O(s).

As points v and u := v ·a belong to the same leaf L, we can connect them by a smooth curve
h : [0, 1]→ L, where v = h(0), u = h(1). Without loss a generality we believe that the holonomy
diffeomorphism Φh along the path h ([15]) with respect to (R,F) is defined on V .

We emphasize that the normal neighborhoods respectively to∇0 form a base of neighborhoods
at each point of R. Therefore for some ε > 0 there is a neighborhood W =W(ε) of the point v
satisfying the following conditions: 1)W is adapted to the foliation (R,F) and 2) the submanifold
V1 := DP(v, ε) is transversal to leaves of (W,FW), and V1 intersects each its leaf exactly once.

Therefore any two leaves of (W,FW) can be connected by some smooth p-curve of length
< ε. Note that U := π(W) is an adapted neighborhood with respect to (M,F ) and D := π(V1)
is a transversal q-dimensional manifold in U .

Show that for the closure Lα of any leaf Lα of a foliation (M,F ) intersecting U we have the
inclusion Lα ⊃ L.

Let Lα ∩ U 6= ∅, then there exist points x0 ∈ Lα ∩D and v0 ∈ π−1(x0) ∩ V1. Therefore there
is a p-curve ϕXt (v), t ∈ [0, t1] in V1 connecting v = ϕX0 (v) with v0 = ϕXt1 (v). This means that
v0 ∈ L ∩W for the leaf L ⊂ π−1(Lα) of the foliation (R,F).

Introduce the notations σ(t) := ϕXt (v), t ∈ [0, t1], σ̃ := Ra ◦ σ, where a = λ−1 · A, λ ∈ (0, 1),
A ∈ O(k)×O(s). Then σ̃(t) = ϕYt (v · a) where Y = Ra∗(X). In accordance with the statement
3) of Lemma 1 σ̃(t) is a p-curve, and l(σ̃) = λ · l(σ) < λ · ε.

According to the statement 2) of Lemma 1, if there exists a p-curve σ1(t) := ϕYt (v), t ∈ [0, t1],
then it has the length equal to the length of the curve σ̃, and l(σ1) = λ · l(σ) < λ · ε < ε. Hence,
such p-curve exists in the neighborhood of V1, i.e. σ1(t) ∈ V1 for all t ∈ [0, t1]. Therefore the
holonomy diffeomorphism Φh is defined at all points of this curve.

Since p-curves are transversally projectable, by the definition of the holonomy diffeomorphism
Φh, the curve ϕYt1(h(τ)), τ ∈ [0, 1], lies in the leaf L′ = L′(v0) of the foliation (R,F). This implies
that points v1 := σ1(t1) and ṽ1 := σ̃(t1) of this curve are projected to the same leaf Lα = π(L′)
of (M,F ). The point v is connected to the point of v1 by the curve σ1 of length l(σ1) < λ · ε,
where λ ∈ (0, 1).

Repeating the above argument with (m−1) times we get a point vm which is connected with
v by the p-curve σm of length l(σm) = λm · l(σ) < λm · ε, and points vm and v0 are projected
to the same leaf Lα. Since vm → v as m → ∞, xm := π(vm) → x = π(v) as m → ∞. Since
xm ∈ Lα ∀m and L = L(x), this means what L ⊂ Lα. This implies thatM := L ⊂ Lα for each
Lα intersecting U .

The union U := ∪Lα of leaves Lα ∈ F such that Lα∩U 6= ∅ is an open saturated neighborhood
of M in M . Thus, M is an attractor of (M,F ), and U = AttrM.

Consider an arbitrary leaf L′ ⊂ M, then L
′ ⊂ M = L. According to the definition of the

closure L, we have L′∩U 6= ∅. By the definition of U we have L′ ⊂ U , therefore the shown above
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inclusion L ⊂ L
′

implies M = L ⊂ L
′
. Thus L

′
= M and M is a minimal set of the foliation

(M,F ). Therefore M is a transitive global attractor of (U , FU ). �

5.2. Completeness of Weyl foliations
Recall that a smooth vector field X on R is complete, if X generates a global 1-parametric group
of diffeomorphisms of R.

Definition 6. Weyl foliation (M,F ) is called complete, if every g-field X ∈ X
M̃

(R) is complete.

Thus, by the definition, the completeness of a Weyl foliation (M,F ) is equivalent to the
completeness of (M,F ) considered as a Cartan foliation.

By Corollary 1 a Weyl foliation (M,F ) can be considered as a foliation with transverse linear
connection. Therefore in accordance with [7, Theorem 4.1] on M there exists a transversally
projectable with respect to (M,F ) linear connection ∇ and a geodesic invariant transverse q-
dimensional distribution M. It is not difficult to show that a Weyl foliation (M,F ) is complete if
and only if the canonical parameter on every maximal geodesic tangent to M of the connection
∇ is defined on (−∞,+∞).

5.3. Lemma
The following lemma will be used in the proof of the existence of a global attractor.

Lemma 3. Let L and L′ be any two leaves of a complete Weyl foliation (M,F ). Then subsets
π−1(L) and π−1(L′) of R may be connected by some piecewise smooth p-curve.

Proof. Let f : M → M/F be a quotient map onto the leaf space. We denote [L] the leaf L
of (M,F ) considered as a point of M/F . We say that [L] is equivalent to [L′] if there exists a
piecewise smooth p-curve σ : [0, 1]→ R connected π−1(L) with π−1(L′), i.e., σ(0) ∈ π−1(L) and
σ(1) ∈ π−1(L′).

Let us show that this relation is indeed an equivalence relation in M/F . The reflexivity and
symmetry are obvious. Let us check transitivity of the introduced relation. Let [L0] ∼ [L1] and
[L1] ∼ [L2], and a p-curve σ connects π−1(L0) with π−1(L1), a p-curve σ1 connects π−1(L1)
with π−1(L2). Let v0 = σ(0) ∈ π−1(L0), v1 = σ(1) ∈ π−1(L1), v2 = σ1(0) ∈ π−1(L1),
v3 = σ1(1) ∈ π−1(L2). Let xi = π(vi), i = 0, ..., 3. Then x1 ∪ x2 ⊂ L2, hence there exists a
point u0 ∈ L(v2) ∩ π−1(x1), where L(v2) is the leaf of the lifted foliation containing v2.

Case I: the curve σ1 is smooth. In this case σ1(t) = ϕXt (v2), t ∈ [0, 1], where X is a p-field.
The completeness of the Weyl foliation (M,F ) implies that p-field X is complete. Therefore for
any point v ∈ R the integral curve ϕXt (v) is defined for all t ∈ (−∞,+∞). Then the p-curve
σ̂1(t) := ϕXt (u0) is defined. Since for each fixed t the diffeomorphism ϕXt is an automorphism of
the foliation (R,F), it is necessary σ̂1(1) = ϕX1 (u0) ∈ L(v3) ⊂ π−1(L2).

Case II: the p-curve σ1 is piecewise smooth. In this case we consistently apply the previous
reasoning to each smooth piece in order to obtain p-curve σ̂1 with the starting at u0 and the
end at σ̂1(1) ∈ π−1(L2).

As points v1 and u0 belong to the same fiber π−1(x1), there exists an element a ∈ H such
that v1 = u0 · a. According to Lemma 1 σ∗ := Ra ◦ σ̂1 is a p-curve with the origin at v1. Note
that σ∗(0) = v1 = σ(1) and σ∗(1) ∈ π−1(L2). Therefore the product of paths δ = σ · σ∗ is
defined. Thus, δ is a p-curve connecting π−1(L0) with π−1(L2). This means that [L0] ∼ [L2],
i.e. the relation ∼ is transitive, hence the introduced relation is an equivalence relation.

We now show that each equivalence class is an open subset of M/F. Consider a point
[L] ∈ M/F. Let A([L]) be the equivalence class containing [L]. In the proof of Lemma 1 for
any x ∈ L and v ∈ π−1(x) we constructed the neighborhood W at the point v which is adapted
with respect to (R,F). The point v can be connected with any local leaf of (W,F|W) by a certain
p-curve. This implies that any two leaves of (M,F ) intersected the neighborhood U = π(W)
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are equivalent. Since the projection f : M → M/F onto the leaf space is open mapping, f(U)
is an open subset of M/F contains [L] and f(U) ⊂ A([L]). Thus, the equivalence class A([L]) is
an open subset of M/F.

Since the complement of A([L]) is formed by the union of the remaining equivalence classes
each of which is open, then A([L]) is a closed subset of M/F. Due to the connectivity of the
topological space of M , the leaf space M/F is also connected. Hence a non-empty open-closed
subset A([L]) coincides with M/F.

5.4. Proof of Theorem 5
Let (M,F ) be a complete Weyl foliation of a signature (k, s) and codimension q = k + s ≥ 2.
Assume that (M,F ) admits a leaf L = L(x) with an α-essential holonomy group. Let L′ be
any other leaf of this foliation. By Lemma 3 there exists a p-curve σ connecting π−1(L) and
π−1(L′). Let v = σ(0) ∈ π−1(x), x ∈ L, v0 := σ(1) ∈ π−1(x0), x0 ∈ L′.

According to Theorem 4M = L is a transitive attractor. Let U := Attr(M) and V = π−1(U).
Since the leaf L = L(x) has an α-essential holonomy group, without loss a generality we assume
that there exist a point v ∈ π−1(x) and an element b = λ−1A ∈ H(L, v), where λ ∈ (0, 1). Then
there is the ball B of the radius ε with the center in v of the Riemannian manifold (R, d) such
that B ⊂ V. Therefore there is a natural number k, for which λk · l(σ) < ε. According to the
statement 3) of Lemma 1 the length of the curve σ̃ := Ra ◦ σ, where a = bk ∈ H(L, v) ⊂ H,
satisfies to the relations l(σ̃) = λk · l(σ) < ε. Connect the points u = Ra(v) and v by a smooth
path h in the leaf L = L(v), h(0) = u, h(1) = v.

As it is known [19, Proposition 3], M-completeness of the Cartan foliation (M,F ) implies
that M is an Ehresmann connection in sense of Blumenthal and Hebda [3] for this foliation. Here
M is a q-dimensional distribution on M which is transversal to (M,F ). Therefore the induced

distribution M̃ = π∗M is an Ehresmann connection for the foliation (R,F). Hence there exists
the transfer of the p-curve σ̃ along the leaf path h with respect to the Ehresmann connection

M̃. Let σ̂ be the result of this transfer. We observe that σ̂ is a p-curve. Then σ̂(0) = v and
l(σ̂) = l(σ̃) < ε in (R, d) (see Lemma 1), therefore σ̂(1) = v1 ∈ B and π(v1) ∈ U .

By the property of an Ehresmann connection M̃, the points v1 = σ̂(1) and σ̃(1) belong
to the same leaf L′ of (R,F). Since σ̃ = Ra ◦ σ, the points v0 = σ(1) and σ̃(1) belong to
π−1(x0). Therefore the points π(v1) and π(v0) = x0 belong to the leaf π(L′) = L′ = L′(x0) and
π(v1) ∈ L′ ∩ U . Hence the closure L′ of the leaf L′ satisfies to the inclusion L′ ⊃ L and M = L
is a global transitive attractor of (M,F ).

It is necessary to note, that for a proper foliation any minimal set is a closed leaf. Therefore
for a proper foliation (M,F ) the global attractor M is a unique closed leaf. �

5.5. Example
Take any pair of natural numbers (k, s). Let Eqk be the pseudo-Euclidean space of the signature
(k, s), where q = k+s, where g0 is its pseudo-Euclidean metric. Then g0(x, x) = −x21− . . .−x2k+
x2k+1 + . . .+ x2q for x = (x1, . . . , xq) ∈ Eqk. The linear transformation ψ defined by the following
block matrix

1

e
A =

1

e

 Ek−1 0 0
0 Ae 0
0 0 Es−1

 , Ae =

(
ch1 sh1
sh1 ch1

)
,

where Ek−1 and Es−1 are the unit matrices (k − 1)× (k − 1) and (s− 1)× (s− 1) accordingly,

and ψ is a similarity with the coefficient
1

e
of the pseudo-Euclidean space Eqk. The equality

n(t, z) := (t− n, ψn(z)), n ∈ Z, (t, z) ∈ R1 × Eqk,
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defines the free proper discontinues action of the group Z on the product of manifolds R1 × Eqk.
One-dimensional foliation F = {f(R1 × {z})|z ∈ Eqk} is induced on the factor-manifold
M := R1 ×Z Eqk. It is a complete Weyl foliation of the signature (k, s), and (M,F ) is
(Sim(Eqk),E

q
k)-foliation.

According to Theorem 3 this foliation is not a pseudo-Riemannian for any metric conformally
equivalent to g0.

The foliation (M,F ) has the family of compact leaves continuously depending on q − 1
parameters, and each compact leaf is diffeomorphic to the circle. Other leaves are diffeomorphic
to the real line R1 and have an essential holonomy groups.

We want to emphasize that there are no leaves with an α-essential holonomy group. It is not
difficult to see that (M,F ) has not an attractor. �

6. Riemannian Weyl foliations
6.1. (G,X)-manifolds and (G,X)-foliations
Let X be a connected manifold and G be a group of diffeomorphisms of X. The group G is
referred to as act quasi-analytically on X if, for any open subset U in X and an element g ∈ G,
the condition g|U = idU implies g is the identity transformation of X. We assume that the
group G of diffeomorphisms of a manifold X acts on X quasi-analytically.

Definition 7. A foliation (M,F ) determined by an X-cocycle {Ui, fi, {γij}}i,j∈J is called a
(G,X)-foliation if for any Ui ∩ Uj 6= ∅, i, j ∈ J , there exists an element g ∈ G such that
γij = g|fj(Ui∩Uj).

Definition 8. A manifold B is called a (G,X)-manifold if its zero-dimensional foliation is a
(G,X)-foliation.

6.2. Proof of Theorem 6
(i). Let (M,F ) be a complete Riemannian Weyl foliation of codimension q, q ≥ 2, which is not
Riemannian. According to [21, Corolarry 5.1] there exists a leaf L with an essential holonomy
group. In this case the holonomy group of L is α-essential. Therefore Theorem 5 implies that
(M,F ) is a transverse similar foliation of the signature (0, q) having a global attractor M.

(ii), (iv). Assume, that (M,F ) is modelled on a transverse Riemannian Weyl geometry
(N, [g],∇g), where (N, g) is a Riemannian manifold.

Let q ≥ 4 and W be the Weyl tensor of the type (1, 3) of the conformal curvature for
Riemannian manifold (N, g). Considering W as a polylinear map W : XN × XN × XN → XN,
we define a norm ‖ W ‖ (x), x ∈ N by the following a way. Let ‖ X ‖ (x) :=

√
gx(X,X) for

any vector field X ∈ X(N). We put ‖ W ‖ (x) := sup
‖Xi‖(x)≤1

‖ W (X1, X2, X3) ‖ (x) ∀x ∈ N,

i = 1, 2, 3.
As any Weyl foliation is a conformal foliation, then the holonomy pseudogroup of (M,F )

consists from local conformal diffeomorphisms of the Riemannian manifold (N, g). It is well
known that the Weyl tensor W is a conformal invariant. Let M be a q-dimensional distribution
on M transversal to (M,F ), i.e. TxM = Mx ⊕ TxF for every x ∈ M . Therefore, on the

distribution M the transversally projectable Weyl tensor W̃ is induced. Thus f̃(x) :=‖ W̃ ‖ (x),
x ∈ M, is the base function with respect to (M,F ), i.e. a function which is constant on leaves
of this foliation. The existence of a global attractor and the continuity of this function imply

‖ W̃ ‖= const, i.e. the constancy of the function f(z) :=‖W ‖ (z), z ∈ N. Let c =‖W ‖.
Assume, that c 6= 0. As all transformations from the holonomy pseudogroup H of the

foliation (M,F ) are local conformal diffeomorphisms, it is not difficult to check up that each
transformation from H preserves the Riemannian metric cg on N, i.e. H is a pseudogroup of
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local isometries of the Riemannian manifold (N, cg). Hence (M,F ) is a Riemannian foliation.
This contradicts the condition of Theorem 6.

Therefore it is necessary that W ≡ 0.
If q = 3, then W ≡ 0 and the replacing W by the Schouten tensor V of the type (1, 2) [16],

similarly to the previous case we show the invariance of the Riemannian metric ‖ V ‖
2
3 ·g with

respect to the holonomy pseudogroup H of (M,F ) and get the contradiction. Hence V ≡ 0.
According to the Weyl-Schouten theorem [16], a q-dimension, q ≥ 3, the Riemannian manifold

(N, g) is conformally flat, i.e. it is locally conformally equivalent to the Euclidean space Eq and
the standard sphere Sq, if and only if, for q = 3 the Schouten tensor V is equal to zero and for
q ≥ 4 that the Weyl tensor of conformal curvature W is equal to zero.

It is known that any two-dimensional Riemannian manifold is locally conformally flat.
Thus for q ≥ 2 the Riemannian manifold (N, g) is conformally flat.
Therefore (N, g) is locally conformal to Sq. Denote by Conf(Sq) the Lie group of all conformal

transformations of Sq. According to the Liouville theorem, for any connected open subsets U ,
V of Sq and for each conformal transformation f : U → V there exists a unique element
f̃ ∈ Conf(Sq) such that f = f̃ |U . Therefore we can consider (M,F ) as a conformal foliation
modelled on the conformal geometry of the sphere Sq. This means that (M,F ) is a transversally
homogenious (Conf(Sq),Sq)-foliation.

The completeness of the Weyl foliation (M,F ) implies the completeness of (M,F ) considered
as (Conf(Sq),Sq)-foliation. Therefore, by [19, Proposition 3] there exists an Ehresmann
connection for (M,F ) and we may apply [22, Theorem 2]. According to this theorem there

exists a regular covering map κ : M̃ → M and a simply connected (Conf(Sq),Sq)-manifold B

such that the induced foliation F̃ := κ∗F is formed by fibers of a submersion r : M̃ → M.
Moreover, a group homomorphism

χ : π1(M,x)→ Sim(B)

is defined, and the global holonomy group Ψ := χ(π1(M,x)) is isomorphic to the group of

covering transformations of the map κ : M̃ →M.

Since (M,F ) is a complete conformal foliation, the induced conformal foliation (M̃, F̃ ) is also
complete. This implies completeness of the conformally flat Riemannian manifold B. Therefore
B is conformal to the standard sphere Sq or the Euclidean space Eq.

Observe that the global holonomy group group Ψ has an essential transformation ψ with the
fixed point b = r(κ−1)(x). We emphasize that ψ is the similarity of B with the fixed point b.
According to [10, Lemma 2, Chap VI] this is only possible when B is the Euclidean space Eq.

Thus, (M,F ) is a a (Sim(Eq),Eq)-foliation and the statements (ii) and (iv) are proved.
(v). Since the holonomy pseudogroup H(M,F ) is generated by the group Ψ, then H(M,F )

is quasi-analytical. Therefore Theorem 2 implies that the holonomy group of the leaf L is
isomorphic to the isotropy subgroup Ψz of Ψ at point z ∈ pr(κ−1(L)). Hence (v) is proved.

(iii). Since Eq is contractible, the locally trivial bundle r : M̃ → Eq is trivial, hence

M̃ = L0 × Eq and r = pr : L0 × Eq → Eq is the canonical projection.
It is easy to see the restriction κ|L0×{b}, b ∈ Eq is the regular covering map onto the

corresponding leaf L of (M,F ), and the deck transformation group is isomorphic to the isotropy
subgroup Ψb of Ψ at point b. According to the proved above statement (v) the group Ψb is
isomorphic to the holonomy group of L. This completes the proof of (iii). �
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