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A multicolour graph as a complete topological invariant
for Ω-stable flows without periodic trajectories on surfaces

V. E. Kruglov, D. S. Malyshev and O.V. Pochinka

Abstract. Studying the dynamics of a flow on surfaces by partitioning
the phase space into cells with the same limit behaviour of trajectories
within a cell goes back to the classical papers of Andronov, Pontryagin,
Leontovich and Maier. The types of cells (the number of which is finite)
and how the cells adjoin one another completely determine the topological
equivalence class of a flow with finitely many special trajectories. If one tra-
jectory is chosen in every cell of a rough flow without periodic orbits, then
the cells are partitioned into so-called triangular regions of the same type.
A combinatorial description of such a partition gives rise to the three-colour
Oshemkov-Sharko graph, the vertices of which correspond to the triangu-
lar regions, and the edges to separatrices connecting them. Oshemkov and
Sharko proved that such flows are topologically equivalent if and only if
the three-colour graphs of the flows are isomorphic, and described an algo-
rithm of distinguishing three-colour graphs. But their algorithm is not
efficient with respect to graph theory. In the present paper, we describe
the dynamics of Ω-stable flows without periodic trajectories on surfaces
in the language of four-colour graphs, present an efficient algorithm for
distinguishing such graphs, and develop a realization of a flow from some
abstract graph.
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§ 1. Introduction

A traditional approach to the qualitative study of the dynamics of flows with
finitely many special trajectories on surfaces consists in isolating regions on the
supporting manifold with predictable behaviour of trajectories— cells. This view
of continuous dynamical systems goes back to the classical paper of Andronov and
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Pontryagin [2] of 1937, in which they considered a system of differential equations

ẋ = v(x), (∗)

where v(x) is a C1-vector field defined in a disc on the plane whose boundary is
a curve without contact, and found a criterion for the roughness of the system (∗).

In the papers of Leontovich and Maier [8], [9], a more general class of dynamical
systems was considered, and their classification was also based on ideas of isola-
tion of a set of special trajectories whose relative disposition (the Leontovich-Maier
scheme) completely determines the qualitative structure of the partition of the
phase space of the dynamical system into trajectories. The main difficulty in gen-
eralizing this result to the case of arbitrary orientable surfaces of positive genus
is the possibility of a new type of motion —a nonclosed recurrent trajectory. The
absence of such trajectories for rough flows without singularities on a 2-torus was
proved by Maier [10] in 1939. In 1971 Peixoto [15] generalized the Leontovich-Maier
scheme for structurally stable flows on arbitrary surfaces and obtained a topolog-
ical classification of such flows, again by analysing all admissible cells for them
and by introducing a combinatorial invariant— a directed graph generalizing the
Leontovich-Maier scheme.

In 1976 Neumann and O’Brien [12] considered so-called regular flows on arbitrary
surfaces —flows without nontrivial periodic trajectories, which include the flows
described above as a special case. They introduced a complete topological invariant
for regular flows — the orbit complex, which is the space of orbits of the flow endowed
with certain additional information. In 1998 Oshemkov and Sharko [13] introduced
a new invariant for structurally stable systems on surfaces — a three-colour graph,
and described an algorithm for recognizing isomorphism of such graphs, which,
however, is not efficient, that is, its working time is not bounded by some polynomial
of the length of definition of the input information. In 2014 Grines, Kapkaeva and
Pochinka [4] used three-colour Oshemkov-Sharko graphs to obtain a topological
classification of gradient-like diffeomorphisms on surfaces.

In the present paper we consider the class G consisting of Ω-stable flows f t

without periodic trajectories on surfaces S that have at least one saddle point. With
every flow of the class under consideration, we associate a four-colour graph, present
an efficient algorithm for distinguishing such graphs, and construct a standard
representative in every topological equivalence class.

§ 2. Statement of the results

Let f t be a flow that belongs to the class G consisting of Ω-stable flows f t

without periodic trajectories on surfaces S each of which has at least one saddle
point1. Recall that a flow f t is said to be Ω-stable if there exists a neighbourhood
of it U(f t) in C1(S × R, S) such that if f ′t ∈ U(f t), then the flows f t and f ′t are
topologically equivalent on the nonwandering sets Ωft and Ωf ′t , that is, there exists
a homeomorphism h : S → S taking the nonwandering trajectories of the flow f t

to the nonwandering trajectories of the flow f ′t preserving the direction of motion
1If the flow f t has no saddle points, then it has exactly two fixed points: a source and a sink,

and all such flows are topologically equivalent; therefore we exclude them from the class under
consideration.
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along the trajectories. It follows from the criterion of Ω-stability (see [16]) that f t

has nonwandering set consisting of finitely many hyperbolic fixed points, and does
not have cycles, that is, sets of fixed points

x1, . . . , xk, xk+1 = x1

with the property
W s

xi
∩Wu

xi+1
̸= ∅, i = 1, . . . , k.

Here, the flow f t can be either structurally stable or not, and this is determined
by the absence or presence of connections — separatrices going from a saddle to
a saddle. The condition of Ω-stability implies that the connections of the flow f t

do not form closed curves.
Let Ω0

ft , Ω1
ft , Ω2

ft denote the sets of all sinks, saddles and sources of the flow f t,
respectively. We set

S̃ = S \
(
Wu

Ω0
ft∪Ω1

ft
∪W s

Ω1
ft∪Ω2

ft

)
.

A connected component of the set S̃ is called a cell. Let Jft denote the set of all
cells of the flow f t. By Lemma 4 (see § 3), the boundary of every cell J ∈ Jft

contains a unique source α and a unique sink ω, while the whole cell is the union
of trajectories going from α to ω. We choose one trajectory θJ in each cell J and
call it a t-curve. We set

T =
⋃

J∈Jft

θJ , S = S̃ \T .

A connected component of the set S is called a polygonal region. Let ∆ft denote
the set of all polygonal regions of the flow f t. Recall that a stable (respectively,
unstable) separatrix of a saddle point σ is defined as a connected component of
the set W s

σ \ {σ} (respectively, Wu
σ \ {σ}). We define c-curves to be separatrices

connecting saddles (connections), u-curves to be unstable saddle separatrices that
are not connections, and s-curves to be stable saddle separatrices that are not
connections. By Lemma 5 (see § 3) the closure of any polygonal region looks as
depicted in Figure 1. Any trajectory in ∆ goes from α to ω, and the boundary
of a polygonal region consists of the closures of saddle separatrices and a t-curve.
We consider the boundary of every polygonal region to be oriented correspondingly
to the motion along the t-curve from the source to the sink.

We associate with a flow f t ∈ G a multicolour graph Γft as follows (Figure 2):
1) the vertices of the graph Γft are in a one-to-one correspondence with the

polygonal regions of the set ∆ft ;
2) two vertices of the graph are incident to an edge of colour s, t, u, or c if the

polygonal regions corresponding to these vertices contain in their closures a common
s-, t-, u-, or c-curve, respectively;

3) if there is more than one c-edge going out of some vertex of the graph Γft ,
then the c-edges are considered to be ordered in accordance with passing the corres-
ponding separatrices when going around the boundary of the corresponding region.

Two multicolour graphs Γft and Γf ′t for flows f t and f ′t in the class G, respec-
tively, are said to be isomorphic if there exists a one-to-one map of the vertices
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Figure 1. Polygonal region.

and edges of one graph to the vertices and edges of the other graph, respectively,
preserving the colours of all edges and the numbering of c-edges.

Theorem 1. Flows in the class G are topologically equivalent if and only if their
multicolour graphs are isomorphic.

An algorithm for solving the problem of recognition of isomorphism of graphs
(in some class of graphs) is customarily considered to be efficient if its working
time is bounded by some polynomial of the length of definition of the input infor-
mation. This definition of efficient solubility goes back to Cobham [3]. A standard
of intractability is NP-completeness of a problem (see [6]). The complexity status
of the problem of recognition of isomorphism of graphs is still unknown, that is,
in the class of all graphs, for this problem neither polynomial solubility has been
proved, nor NP-completeness. At the same time, the multicolour graphs of flows of
class G are not graphs of general form, since they are embeddable in the supporting
surface on which the corresponding flows of class G are defined. This fact makes it
possible to prove the following theorem.

Theorem 2. The problem of recognition of isomorphism of the multicolour graphs
corresponding to flows in the class G can be solved in polynomial time.

To solve the realization problem, we consider a simple connected four-colour
graph Γ (see the precise definitions in § 4) the edges of which are coloured in
the four colours s, u, t, c, and every vertex of which is incident to exactly one
edge of each colour s, u, t. There can be any finite (in particular, zero) num-
ber nb of c-edges incident to one vertex b, and they are ordered: cb1, . . . , c

b
nb

in
the case nb > 1. We call the u-edge and s-edge going out of a vertex b nominal
c-edges and assign to them the numbers cb0 and cbnb+1, respectively. A simple cycle
b1, (b1, b2), b2, . . . , b2k, (b2k, b2k+1), b2k+1 = b1 for k ∈ N is called a c∗-cycle if

(b2i−1, b2i) = cb2i
m , (b2i, b2i+1) = cb2i

m+1 = c
b2i+1
l , (b2i+1, b2i+2) = c

b2i+1
l−1 .

A graph Γ is said to be admissible if it contains c∗-cycles and every such cycle has
length 4. A simple cycle of a graph Γ is called a tu-cycle (respectively, st-cycle) if
all its edges have colour t or u (respectively, t or s).
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Figure 2. The phase portrait of some flow in the class G (above) and its
four-colour graph (below).
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Lemma 1. Let f t ∈ G. Then the graph Γft is admissible.

Theorem 3. For any admissible graph Γ there exists a flow f t ∈ G defined on
a closed surface S whose graph is isomorphic to the given graph. Furthermore,

(i) the Euler characteristic of the surface S is calculated by the formula χ(S) =
ν0 − ν1 + ν2 , where ν0 , ν1 and ν2 are the numbers of all tu-, c∗-, and st-cycles of
the graph Γ, respectively;

(ii) the surface S is non-orientable if and only if the graph Γ contains at least
one cycle of odd length.

§ 3. Dynamics of a flow f t ∈ G
and the structure of its polygonal regions

Let f t be a flow in the class G defined on a closed surface S. In this section we
study the dynamics of the flow f t, which enables us to determine the structure of
its polygonal regions. We present the propositions requisite for understanding the
dynamics.

Proposition 1 (see [14], Ch. 2, Theorem 5.1, and [17], Ch. 4, Theorem 7.1). A flow
f t in the class G, in some neighbourhood of a fixed point p ∈ Ωi

ft , is topologically
equivalent to the linear flow

at(x, y) = (2−tx, 2−ty) for i = 0,

bt(x, y) = (2−tx, 2ty) for i = 1,

ct(x, y) = (2tx, 2ty) for i = 2.

Proposition 2 (see [5], Theorem 2.1.1). Let f t ∈ G. Then
1) S =

⋃
p∈Ωft

Wu
p =

⋃
p∈Ωft

W s
p ;

2) Wu
p (respectively, W s

p ) is a smooth submanifold of the manifold S diffeomor-
phic to Ri (respectively, R2−i) for any fixed point p ∈ Ωi

ft .

Let p be a fixed point of the flow f t. Let lup (respectively, lsp) denote the unstable
(respectively, stable) separatrix of the point p.

Lemma 2. For any sink ω (respectively, source α) of a flow f t ∈ G there exists
at least one saddle point σ with unstable (respectively, stable) separatrix luσ (respec-
tively, lsσ ) such that cl(luσ) \ (luσ) = {σ, ω} (respectively, cl(lsσ) \ (lsσ) = {σ, α}).

Proof. Assuming the opposite for some sink point ω, we obtain by part 1) of Propo-
sition 2 that cl(W s

ω) = W s
ω ∪

⋃k
i=1 αi, where αi, i = 1, . . . , k, is a source such that

Wu
αi
∩W s

ω ̸= ∅. We claim that Wu
αi
⊂ cl(W s

ω).
Suppose the opposite. Then by part 1) of Proposition 2 there exists a point

p ∈ Ωft different from ω such that W s
p ∩ Wu

αi
̸= ∅. Let xω and xp be points

belonging to Wu
αi
∩W s

ω and Wu
αi
∩W s

p , respectively. Since the manifold Wu
αi
\ {αi}

is homeomorphic to R2 \ {O} (see part 2) of Proposition 2), there exists a path
c : [0, 1] → (Wu

αi
\ {αi}) without self-intersections connecting the point xω = c(0)

with the point xp = c(1). Then there exists a value τ ∈ (0, 1) such that c(τ) /∈W s
ω

and c(t) ∈ W s
ω for t < τ . Consequently, there exists a point r ∈ Ωft such that

r ̸= ω and c(τ) ∈ W s
r . Furthermore, the point c(τ) belongs to cl(W s

ω). But if
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c(τ) ∈ cl(W s
ω), then c(τ) = αi0 for some i0 = 1, . . . , k; this means that αi0 ∈ Wu

αi
,

a contradiction to the definition of the unstable manifold of a fixed point.
We have obtained that Wu

αi
⊂ W s

ω for any i = 1, . . . , k, and, consequently,
the set cl(W s

ω) is open, since it contains each of its points together with some
open neighbourhood. Since cl(W s

ω) is simultaneously open and closed, we have
cl(W s

ω) = S. Then Ωft does not contain saddle points, which fact contradicts the
definition of the class G.

By passing from f t to f−t, we can prove the assertion for sources.
The lemma is proved.

Lemma 3. Let p be a fixed point of a flow f t ∈ G. Then the following hold.
(i) If p ∈ Ω1

ft , then

cl(lup ) \ (lup ∪ {p}) =

{
{σ} ⊂ Ω1

ft and lup = lsσ,

{ω} ⊂ Ω0
ft and lup ⊂W s

ω.

(ii) If p ∈ Ω2
ft , then cl(lup ) \ (lup ∪ {p}) =

⋃
σ∈Ωp

cl(luσ), where Ωp is a non-empty
subset of the set Ω1

ft .

Proof. Consider case (i): p is a saddle point. Let x ∈ cl(lup ). By part 1) of Propo-
sition 2, any point lup is a point of W s

r for some fixed point r. For r there are three
possibilities: a) r is a sink; b) r is a saddle; c) r is a source.

a) Consider a sink r = ω such that x ∈ W s
ω. Since ω is a sink and lup = Ox,

we have lup ⊂W s
ω. Thus, cl(lup ) \ (lup ∪ {p}) = {ω}.

b) Consider a saddle point r = σ such that x ∈W s
σ . In this case, lup = lsσ. Thus,

cl(lup ) \ (lup ∪ {p}) = {σ}.
c) Suppose that there exists a source r = α such that x ∈W s

α. Since W s
α = {α},

we obtain α ∈ lup , which is impossible, since lup consists of wandering points. Con-
sequently, case c) is impossible.

Now consider case (ii): p = α is a source.
It follows from part 1) of Proposition 2 that the set A = cl(luα) \ (luα ∪ {α}) is an

f t-invariant subset of the set Wu
Ω1

ft
∪Ω0

ft . Then to prove the assertion it is sufficient

to show that
a) if σ ∈ A for some σ ∈ Ω1

ft , then luσ ⊂ A;
b) if ω ∈ A for some ω ∈ Ω0

ft , then there exists σ ∈ Ω1
ft such that ω ∈ cl(luσ)

and luσ ⊂ A.
In case a), since σ ∈ A, there exists a sequence xn ∈ luα such that xn → σ

as n→ +∞. Then Oxn ⊂ luα, and by the equivalence of the flow in a neighbourhood
of a hyperbolic saddle point to its linear part (see, for example, [14]), the closure
of the set

⋃
n∈N Oxn

contains luσ.
In case b), if ω ∈ A, then there exists a sequence xn ∈ luα such that xn → ω

as n→ +∞. By Lemma 2 there exist finitely many saddle points σ1, . . . , σk ∈ Ω1
ft

such that ω ∈ cl(luσi
) for i = 1, . . . , k. Then among them there exist saddle points

σi1 , σi2 (possibly coinciding) such that the sequence xn is contained in a connected
component D of the set W s

ω \ (ω ∪
⋃k

i=1 l
u
σi

). Hence, D ⊂ luα. Thus, luσi1
⊂ A

and luσi2
⊂ A.

The lemma is proved.
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An assertion similar to Lemma 3 can be proved for stable separatrices of fixed
points of the flow f t.

Recall that a cell J of the flow f t was defined to be a connected component of
the set S̃ = S \ (Wu

Ω0
ft∪Ω1

ft
∪W s

Ω1
ft∪Ω2

ft
).

Lemma 4. Any cell J of the flow f t contains a unique sink ω and a unique source α
in its closure, while the whole cell is the union of trajectories going from α to ω .

Proof. By Proposition 2,

S̃ =
( ⋃

α∈Ω2
ft

luα

)
\

( ⋃
σ∈Ω1

ft

lsσ

)
.

Then any connected component J of the set S̃ is a subset of luα for a unique source α.
In similar fashion,

S̃ =
( ⋃

ω∈Ω0
ft

lsω

)
\

( ⋃
σ∈Ω1

ft

luσ

)
.

Then any connected component J of the set S̃ is a subset of lsω for a unique sink ω.
Thus,

J ⊂ (Wu
α ∩W s

ω),

and, consequently, the whole cell is the union of trajectories going from α to ω.
The lemma is proved.

Recall that we denoted by Jft the set of all cells of the flow f t and chose one
trajectory θJ (a t-curve) in every cell J ∈ Jft . We also set T =

⋃
J⊂S̃ θJ and

S = S̃ \ T and defined a polygonal region to be a connected component ∆ of
the set S. We denoted by ∆ft the set of all polygonal regions of the flow f t and
defined c-curves to be separatrices connecting saddles (connections), u-curves to
be unstable saddle separatrices that are not connections, and s-curves to be stable
saddle separatrices that are not connections.

Lemma 5. Any polygonal region ∆ of the flow f t is homeomorphic to an open disc,
and its boundary consists of the closures of one t-curve, one u-curve, one s-curve,
and a finite (possibly empty) set of c-curves.

Proof. By Lemma 4, any cell J ∈ Jft is contained in the basin of some source α
between two (possibly coinciding) s-curves (see Figure 1). A polygonal region ∆
is obtained by removing the t-curve from J . Since Wu

α is homeomorphic to R2

by Proposition 2, the region ∆ is homeomorphic to the sector bounded by two
rays going out of the origin in R2, that is, is homeomorphic to an open disc. By
construction, the boundary of the region ∆ contains a unique s-curve and a unique
t-curve. Since ∆ is situated also in the basin of some sink ω, it follows that it is
bounded by one u-curve. By part (ii) of Lemma 3 the region ∆ is bounded by
finitely many c-curves. We obtain that the only possible structure of the boundary
of a polygonal region can be the structure depicted in Figure 1, up to the number
of c-curves. The lemma is proved.

Figure 3 depicts the phase portrait of some flow in the class G and all its poly-
gonal regions.
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Figure 3. The phase portrait of some flow in the class G (above) and all
its polygonal regions (below).
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§ 4. Properties of the four-colour graph Γft

In this section, with every flow f t ∈ G we associate a four-colour graph Γft and
establish the properties of this graph requisite for isolating the set of admissible
graphs that are realizable by a flow in the class G.

Recall that a finite multigraph Γ is defined to be an ordered pair (B,E) satisfying
the following conditions: B is a non-empty set of vertices; E is a multiset of pairs
of vertices called edges, while a multiset here means a generalization of the notion
of set that allows inclusion of the same element several times.

Henceforth a multigraph is called simply a graph for brevity.
If a graph Γ contains an edge e = (a, b), then each of the vertices a, b is said to

be incident to the edge e, and the vertices a and b are said to be connected by the
edge e.

A path in a graph is defined to be a finite sequence of its vertices and edges
of the form b0, (b0, b1), b1, . . . , bi−1, (bi−1, bi), bi, . . . , bk−1, (bk−1, bk), bk, k > 1. The
number k is called the length of the path, it is equal to the number of edges occurring
in the path.

A graph is said to be connected if any two of its vertices can be connected by
a path.

A cycle of length k ∈ N in a graph is defined to be a finite subset of its vertices
and edges of the form {b0, (b0, b1), b1, . . . , bi−1, (bi−1, bi), bi, . . . , bk−1, (bk−1, b0), b0}.
A simple cycle is defined to be a cycle all of whose vertices and edges are pairwise
different.

A graph Γ is said to be multicolour if its set of edges is a union of finitely many
subsets each of which consists of edges of the same colour.

Let Γ be a simple connected four-colour graph whose edges are coloured in the
four colours s, u, t, c, and every vertex of which is incident to exactly one edge of
each of the colours s, u, t. Furthermore, there can be any finite (in particular, zero)
number nb of c-edges incident to one vertex b, and they are ordered: cb1, . . . , cbnb

in
the case nb > 1. We call the u-edge and s-edge going out of the vertex b nominal
c-edges and assign to them the numbers cb0 and cbnb+1, respectively. A simple cycle
b1, (b1, b2), b2, . . . , b2k, (b2k, b2k+1), b2k+1 = b1 for k ∈ N is called a c∗-cycle if

(b2i−1, b2i) = cb2i
m , (b2i, b2i+1) = cb2i

m+1 = c
b2i+1
l , (b2i+1, b2i+2) = c

b2i+1
l−1 .

Definition. The graph Γ is said to be admissible if it contains c∗-cycles and every
such cycle has length 4.

A simple cycle of the graph Γ is called a tu-cycle (respectively, st-cycle) if all of
its edges have colour t or u (respectively, t or s).

In § 3 we proved that the closure of the set of s-, t-, u- and c-curves partitions the
surface S into polygonal regions ∆, and denoted by ∆ft the set of all such regions.
The boundary of every polygonal region is considered to be oriented correspondingly
to going over the t-curve from the source to the sink.

The multicolour graph Γft corresponding to a flow f t ∈ G is constructed as
follows (see Figure 2):

1) the vertices of the graph Γft are in a one-to-one correspondence with the
polygonal regions of the flow;
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2) two vertices of the graph are incident to an edge of colour s, t, u, or c if
the polygonal regions corresponding to these vertices have a common s-, t-, u-, or
c-curve, and a one-to-one correspondence is established between this edge and the
s-, t-, u-, or c-curve;

3) if there is more than one c-edge going out of some vertex of the graph, the
c-edges are numbered in such a way that the numbering corresponds to the order
of separatrices when going around the boundary of the corresponding polygonal
region.

By construction, the multicolour graphs obtained from different partitions into
polygonal regions (depending on the choice of t-curves) are isomorphic.

Let πft denote the one-to-one correspondence between the polygonal regions and
vertices, as well as between the s-, t-, u-, c-curves and the s-, t-, u-, c-edges of the
flow f t and the graph Γft , respectively.

Proof of Lemma 1. Let us prove that the four-colour graph Γft of the flow f t is
admissible.

Since the flow f t lies on the closed surface S, and every vertex of the graph
corresponds to its polygonal region, it follows that we can construct a graph iso-
morphic to the given one by simply placing its vertices within the polygonal regions
and defining edges to be curves embedded in the surface that connect these vertices
and that intersect the corresponding side once (Figure 4). As a graph constructed
from the flow f t, it is obviously isomorphic to the graph Γft . Therefore we can
assume without loss of generality that the graph Γft is embedded in the surface S
in the manner described above. Since the surface S is connected, the graph Γft is
also connected. Since every side of a polygonal region adjoins exactly two different
polygonal regions, the graph Γft does not have cycles of length 1, that is, is simple.

Since every point p ∈ Ωft is adjoined by finitely many polygonal regions sepa-
rated by coloured curves, the projection πft uniquely associates with the point p the
cycle of the vertices corresponding to the regions adjoining p and of the coloured
edges intersecting the coloured curves going out of p. For example, a saddle is
adjoined by exactly four polygonal regions separated by u-, s-, or c-curves. Regard-
ing u- and s-edges as nominal c-edges, we obtain that to every saddle of the flow f t

there corresponds a c∗-cycle of the graph Γft . The converse correspondence also
holds: every c∗-cycle can be placed in a neighbourhood of a unique saddle point such
that for different c∗-cycles these neighbourhoods are disjoint. Thus, the graph Γft

contains c∗-cycles and every such cycle has length 4. Consequently, the graph Γft

is admissible.
The lemma is proved.

Proposition 3. Let f t ∈ G and let Γft be the graph of the flow f t . Then the
map πft establishes a one-to-one correspondence between the sets Ω0

ft , Ω1
ft and Ω2

ft

and the sets of tu-, c∗- and st-cycles, respectively.

Proof. 1. The correspondence by the map πft between the set Ω1
ft and the set of

c∗-cycles follows from the proof of Lemma 1.
2. Every sink point ω of the flow f t is adjoined by regions that are separated

in turns by u- and t-curves contained in the basin W s
ω. Therefore, the map πft

associates with the point ω a unique tu-cycle of the graph Γft . The converse
correspondence also holds: since the basins of different sinks are separated by c-
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Figure 4. The phase portrait of some flow in the class G and its four-colour
graph embedded in the surface S on which this flow is defined.

and s-curves, it follows that every tu-cycle can be placed in the basin of a unique
sink. Thus, the map πft establishes a one-to-one correspondence between the set
Ω0

ft and the set of tu-cycles.
3. The correspondence between the set Ω2

ft and the set of ts-cycles is established
similarly to part 2.

The proposition is proved.

§ 5. Proof of the classification Theorem 1

Let us prove that flows in the class G are topologically equivalent if and only if
their multicolour graphs are isomorphic.

Let f t ∈ G (respectively, f ′t ∈ G) and let Γft (respectively, Γf ′t) be the multi-
colour graph constructed from the flow f t (respectively, f ′t).
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Necessity. Suppose that the flows f t and f ′t are topologically equivalent, that
is, there exists a homeomorphism h : S → S taking the trajectories of f t to the
trajectories of f ′t. We assume without loss of generality that the set of polygonal
regions of the flow f ′t is constructed by using the t-curves T ′ = h(T ). Then
the homeomorphism h takes the polygonal regions of the flow f t to the polygonal
regions of the flow f ′t, and a sought-for isomorphism ξ : Γft → Γf ′t is defined by
the formula

ξ = πf ′thπ
−1
ft .

Sufficiency. Suppose that the graphs Γft and Γf ′t of the flows f t and f ′t are isomor-
phic under an isomorphism ξ. Consider a polygonal region ∆ ∈ ∆ft . Its boundary
contains a unique source α, a unique sink ω, and n saddle points σ1, σ2, . . . , σn,
n ∈ N, which we assume to be situated on the boundary in the order of increas-
ing indices in the chosen direction of going around the boundary ∆. Consider
a region ∆′ for the flow f ′t for which

∆′ = π−1
f ′t ξπft(∆).

The isomorphism ξ ensures the same number of same-colour edges going out of the
vertices of the graphs corresponding to the regions ∆ and ∆′, which fact implies the
existence in the boundary of ∆′ of exactly one sink ω′, one source α′, and n saddles
σ′1, σ

′
2, . . . , σ

′
n situated in the order of increasing indices in the chosen direction of

going around the boundary of ∆′. Since the isomorphism ξ preserves the colours
of the edges and the numbering of the c-edges, construction of a homeomorphism
h : S → S realizing the topological equivalence of the flows f t and f ′t reduces to
construction of a homeomorphism h∆ : cl(∆) → cl(∆′) taking the trajectories of
the flow f t contained in cl(∆) to the trajectories of the flow f ′t contained in cl(∆′)
such that

h∆|∆∩∆̃ = h∆̃|∆∩∆̃

for any polygonal regions ∆, ∆̃ of the flow f t. We construct the homeomorphism
h∆ step-by-step.
Step 1. First we construct the homeomorphism h∆ in neighbourhoods of node
points. Let

u = {(x, y) ∈ R2 : x2 + y2 < 1}.

Recall that at : R2 → R2 and ct : R2 → R2 are the flows on the plane defined
by the formulae at(x, y) = (2−tx, 2−ty) and ct(x, y) = (2tx, 2ty) with the point
O(0, 0) as a sink and a source, respectively. By Proposition 1 there exist neigh-
bourhoods uω, uα (uω′ , uα′) of the points ω, α (ω′, α′), respectively, such that
f t|uω , f t|uα (f ′t|uω , f ′t|uα) are topologically conjugate with at(x, y)|u, ct(x, y)|u by
some homeomorphisms hω : uω → u, hα : uα → u (hω′ : uω′ → u, hα′ : uα′ → u),
respectively. We assume without loss of generality that these neighbourhoods are
pairwise disjoint.

For r ∈ (0, 1] we set Sr = {(x, y) ∈ R2 : x2 + y2 = r} and Sω
r = h−1

ω (Sr), Sα
r =

h−1
α (Sr) (Sω′

r = h−1
ω′ (Sr), Sα′

r = h−1
α′ (Sr)). Let {A} = Sω

1 ∩ lα,ω, {A0} = Sω
1 ∩ lω,σ1

({A′} = Sω′

1 ∩ lα′,ω′ , {A′0} = Sω′

1 ∩ lω′,σ′1) and {C} = Sα
1 ∩ lα,ω, {C0} = Sα

1 ∩ lα,σn

({C ′} = Sα′

1 ∩ lα′,ω′ , {C ′0} = Sα′

1 ∩ lα′,σ′n).
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Figure 5. Construction of the map h∆ in neighbourhoods of node points
and the choice of the secants ζi.

Throughout what follows we denote by ma,b the closure of a segment of some
secant of the trajectories of the flow f t (f ′t) bounded by points a (a′) and b (b′).
Note that ma,b = mb,a. In particular, let mA,A0 (mA′,A′0

) denote the segment
that is the intersection Sω

1 ∩ ∆ (Sω′

1 ∩ ∆′) (Figure 5). Let x ∈ mA,A0 . Let
µA,A0 : mA,A0 → [0, 1] (µA′,A′0

: mA′,A′0
→ [0, 1]) be an arbitrary homeomorphism

such that µA,A0(A) = 0 (µA′,A′0
(A′) = 0). Let

hmA,A0
= µ−1

A′A′0
µA,A0 : mA,A0 → mA′,A′0

.

Let x ∈ mA,A0 (x′ ∈ mA′,A′0
) and let Ox (Ox′) be the trajectory of the

point x (x′). Let xω ∈ (cl(uω)∩∆\{ω}); then xω = Sω
r ∩Ox for some r ∈ (0, 1] and

x ∈ mA,A0 . We construct a homeomorphism huω
: cl(uω) ∩∆ → cl(uω′) ∩∆′ such

that huω
(ω) = ω′ and huω

(xω) = x′ω
′
, where x′ω

′
= Sω′

r ∩ OhmA,A0
(x). Similarly,

for points xα ∈ (cl(uα) ∩∆ \ {α}) such that xα = Sα
r ∩ Ox for some r ∈ (0, 1] and

x ∈ mA,A0 , we define a homeomorphism huα
: cl(uα) ∩∆ → cl(uα′) ∩∆′ such that

huα
(α) = α′ and huα

(xα) = x′α
′
, where x′α

′
= Sα′

r ∩ OhmA,A0
(x).

Step 2. We construct the homeomorphism h∆ on the boundary of ∆.
Throughout what follows we denote by la,b the closure of a segment of a trajectory

or a saddle separatrix bounded by points a and b, and by λa,b the length of this
segment. Note that la,b = lb,a and λa,b = λb,a. For smooth segments la,b, la′,b′ of
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trajectories of the flows f t, f ′t, we define a homeomorphism with respect to the arc
length to be the homeomorphism hla,b

: la,b → la′,b′ defined by the following rule for
a point x ∈ la,b:

λa′,hla,b
(x) =

λa,x · λa′,b′

λa,b
.

We use this method to construct the following homeomorphisms: hlA,C
: lA,C →

lA′,C′ , hlA0,σ1
: lA0,σ1 → lA′0,σ′1

, hlC0,σn
: lC0,σn

→ lC′0,σ′n
and hlσi,σi+1

: lσi,σi+1 →
lσ′i,σ′i+1

.
A similar construction on the boundaries of all polygonal regions ensures the

validity of the condition h∆|cl(∆)∩cl(∆̃) = h∆̃|cl(∆)∩cl(∆̃) for any polygonal regions

∆, ∆̃ of the flow f t.
Step 3. We construct secants connecting saddle points with some interior point of
the t-curve.

Let Q ∈ int(lA,C) and Q′ = hlA,C
(Q). We define mQ,σ1 , . . . ,mQ,σn

(respectively,
mQ′,σ′1

, . . . ,mQ′,σ′n
) as follows.

Recall that for i = 1, . . . , n there exists a neighbourhood uσi
(uσ′i

) of the saddle
point σi (σ′i) such that f t|uσi

(f ′t|uσi
) is topologically conjugate with bt|u by some

homeomorphism hσi : uσi → u (hσ′i
: uσ′i

→ u), where bt : R2 → R2 and bt(x, y) =
(2−tx, 2ty). Let

Z = {(x, y) ∈ R2 | |x| = |y|} ∩ u.

The set Z consists of two intervals intersecting at the origin and transversal to the
trajectories of the flow bt. Let ζi = h−1

σi
(Z) ∩∆ (respectively, ζ ′i = h−1

σ′i
(Z) ∩∆′);

see Figure 5. We choose some point B ∈ mA,A0 such that OB ∩ ζi ̸= ∅ and
OB′ ∩ ζ ′i ̸= ∅ for i = 1, . . . , n, where B′ = hmA,A0

(B) (Figure 6).

Figure 6. Construction of secants.

Let {Bi} = OB ∩ ζi ({B′i} = OB′ ∩ ζ ′i). Let mBi,σi
(mB′i,σ

′
i
) denote the subset of

ζi (ζ ′i) bounded by Bi (B′i) and σi (σ′i). Let t0 ∈ R (t′0 ∈ R) and ti ∈ R (t′i ∈ R) be
such that A = f t0(Q) (A′ = f ′t

′
0(Q′)) and B = f ti(Bi) (B′ = f ′t

′
i(B′i)). Let

mBi,Q =
{
f

(−ti)·µA,A0
(x)+(−t0)(µA,A0

(B)−µA,A0
(x))

µA,A0
(B) (x), x ∈ mA,A0

}
.
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Then mQ,σi
= mQ,Bi

∪mBi,σi
(see Figure 6). The secants mB′i,Q

′ and mQ′,σ′i
are

defined in similar fashion.
Thus we have obtained the number of secants equal to the number of saddle

points of our polygonal regions. They are pairwise disjoint and all have as their
endpoints a saddle point and the point Q— an interior point of the t-curve of this
region.

Step 4. We now extend the homeomorphism h∆ to the interior of the region ∆.
Let x0 ∈ mA,A0 and x′0 = hmA,A0

(x0), let Ox0 be the trajectory of x0, and Ox′0
the

trajectory of x′0. We set {xi} = Ox0 ∩mQ,σi , {x′i} = Ox′0
∩mQ′,σ′i

for i = 1, . . . , n,
{xn+1} = Ox0 ∩mC,C0 , {x′n+1} = Ox′0

∩mC′,C′0
(Figure 7).

Figure 7. Extension of the homeomorphism to the interior of the region ∆.

We extend the homeomorphism h∆ to the trajectory Ox0 in such a way that

h∆|lxi,xi+1
= hlxi,xi+1

: lxi,xi+1 → lx′i,x′i+1
.

Thus, we have mapped by h∆ the closure of the polygonal region ∆ onto the
closure of the polygonal region ∆′, which is what finishes the proof of Theorem 1.

§ 6. Proof of Theorem 3

Suppose that Γ is some admissible graph.
I. We construct step-by-step a flow f t ∈ G corresponding to the isomorphism

class of the graph Γ.

Step 1. Consider some vertex b of the graph Γ. This vertex is incident to n edges,
one of which is a t-edge, another is a u-edge, a third one is an s-edge, while the others
are cbj-edges, j = 1, . . . , n− 3. We construct on the plane R2 a regular 2(n− 1)-gon
A1A2 . . . A2(n−1) with centre at the point O(0, 0) and with the vertices A1(1, 0)
and An(−1, 0) (Figure 8). Let ϕ and a denote the central angle and the side of the
constructed polygon, respectively. Then

ϕ =
π

n− 1
, a =

1
sinϕ

.
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Figure 8. Construction of the vector field vb.

We obtain that the vertex Ak, k = 1, . . . , 2(n − 1), has coordinates (cos(k − 1)ϕ,
sin(k − 1)ϕ).

The closure of the half of this polygon situated above the Ox axis is denoted
by Mb. By construction, Mb is already an n-gon with the vertices A1, A2, . . . , An,
that is, has number of sides equal to the number of edges to which the vertex b is
incident. We call the side A1An a t-side, An−1An a u-side or a c0-side, A1A2 an
s-side or a cn−2-side, and AkAk+1, where k = 2, . . . , n− 2, is called a cn−k−1-side.
Step 2. We construct a vector field vb on Mb as follows.

First we define a vector field vA1An on the side A1An by the system of differential
equations ẏ = 0,

ẋ = sin
1
2
π(x− 1).

By construction, A1, An are fixed points, and the flow generated by this vector
field is moving from A1 to An. We define the vector field on the other sides of the
polygon Mb.

Consider the side AkAk+1, k = 1, . . . , n − 1. The straight line passing through
the points Ak, Ak+1 is defined by the equation

AkAk+1 :
x− cos(k − 1)ϕ

cos kϕ− cos(k − 1)ϕ
=

y − sin(k − 1)ϕ
sin kϕ− sin(k − 1)ϕ

,

from which the slope angle βk of the straight line AkAk+1 with respect to the
positive direction of the Ox axis is expressed as follows:

βk = arctg
sin kϕ− sin(k − 1)ϕ
cos kϕ− cos(k − 1)ϕ

.
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We now reduce the situation under consideration to the case of the side A1An. For
that we establish a one-to-one correspondence tk between the points of the segments
[cos kϕ, cos(k − 1)ϕ] and [−1, 1] by the formula

tk = 2
x− cos kϕ

cos(k − 1)ϕ− cos kϕ
− 1.

We set γk = sin 1
2π(tk − 1) and define a vector field vAkAk+1 by the set of systems

of differential equations 


βk ̸= 0,
ẋ = −γk · cosβk · signx,
ẏ = −γk · sinβk · signx,
βk = 0,
ẋ = γk,

ẏ = 0.

Step 3. We construct the vector field vint inside the polygon Mb. We choose an
arbitrary point B with coordinates (x, y) inside the polygon Mb. Then B belongs
to the vertical segment BkH, where Bk ∈ AkAk+1 for some k = 1, . . . , n − 1, and
H is the projection of Bk onto Ox (see Figure 8). We define the vector field vint

by the set of systems of differential equations


βk ̸= 0,

ẋ =
BkB

BkH
sin

1
2
π(x− 1)− BH

BkH
γk · cosβk · signx,

ẏ = − BH

BkH
γk · sinβk · signx,

βk = 0,

ẋ =
BkB

BkH
sin

1
2
π(x− 1) +

BH

BkH
γk,

ẏ = 0.

We define the vector field vb by the system

v(x, y) =


vA1An(x, y), (x, y) ∈ A1An,

vAkAk+1(x, y), (x, y) ∈ AkAk+1, k = 1, . . . , n− 1,
vint(x, y), (x, y) ∈ intMb.

Step 4. Let B denote the set of vertices, N the number of vertices, and E the
set of edges of the graph Γ. Let ηb be the map associating with a t-, u-, s-, or
ci-edge incident to a vertex b a t-, u-, s-, or ci-side of the polygon Mb, respec-
tively. Let M be the disjunct union of the polygons Mb, b ∈ B. We intro-
duce on the set M the minimal equivalence relation ∼ satisfying the following
rule: if vertices b1, b2 in the set B are incident to an edge e in the set E, then
the segments P1Q1 = ηb1(e) and P2Q2 = ηb2(e) are identified in such a way
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that a point (x1, y1) ∈ P1Q1 = [(xP1 , yP1), (xQ1 , yQ1)] is equivalent to the point
(x2, y2) ∈ P2Q2 = [(xP2 , yP2), (xQ2 , yQ2)], where

x2 = xP2 +
(x1 − xP1)(xQ2 − xP2)

xQ1 − xP1

,

y2 = yP2 +
(y1 − yP1)(yQ2 − yP2)

yQ1 − yP1

.

It follows from the properties of an admissible graph that the quotient space
S = M /∼ is a closed topological 2-manifold. Let q : M → S denote the natural
projection. Note that the vector field has the same length at equivalent points;
therefore the projection q induces a continuous vector field on the manifold S,
which is denoted by V .
Step 5. We define on S a smooth structure with respect to which the field V is
smooth.

We cover the manifold S with finitely many charts (Uz, ψz), z ∈ S, where Uz ⊂ S
is an open neighbourhood of a point z, and ψz : Uz → R2 is a homeomorphism onto
the images of the following types.

1. Consider on the graph Γ the c∗-cycle

{b1, cb1j1
=cb2j2

, b2, c
b2
j2−1 =cb3j3−1, b3, c

b3
j3

=cb4j4
, b4, c

b4
j4−1 =cb1j1−1, b1},

where the ni-gon Mbi
corresponds to the vertex bi ∈ B, i = 1, . . . , 4, and ηbi

(cbi
ji

) =
Aki

Aki+1 for ki = ni − ji − 1 (Figure 9).

Figure 9. An example of a chart of the first type.

We denote the length of the side AkiAki+1, the central angle of the polygon Mbi ,
and the angle between the vectors

−−−−−−→
AkiAki+1 (

−−−−−−→
AkiAki−1) and the positive direction

of the Ox axis by ai, ϕi, and β+
ki

(β−ki
), respectively. Here, the angles β+

ki
, β−ki

are
chosen in such a way that |β+

ki
− β−ki

| < π. We set

Uz = int
( 4⋃

i=1

q(Mbi
)
)
,

ψz(ϱ) = µi(p1,i((q|Mbi
)−1(ϱ))) for ϱ ∈ q(Mbi), i = 1, . . . , 4,
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where

p1,i(x, y) =
(
x− cos(ki − 1)ϕi

ai
,
y − cos(ki − 1)ϕi

ai

)
,

µi(x, y) = µi(r cos θ, r sin θ) = (r cos θ1,i, r sin θ1,i),

(r, θ) are polar coordinates, and the function θ1,i(θ) is defined by the formula

θ1,i(θ) =
(
i− 2

(
i

2
(mod 1)

))
· π

2
+ (−1)i−1π

2
·
θ − β+

ki

β+
ki
− β−ki

.

The function p1,i(x, y) translates the polygon Mbi
, placing the vertex Aki

at the
origin, and increases the length of the sides AkiAki+1 and Aki−1Aki to 1. The
function µi(x, y) superposes the angle at the vertex Aki with the ith coordinate
angle.

2. Consider on the graph Γ the st-cycle

{b1, (b1, b2), b2, (b2, b3), b3, . . . , b2m−1, (b2m−1, b2m), b2m, (b2m, b1), b1},

where the ni-gon Mbi
corresponds to the vertex bi ∈ B, i = 1, . . . , 2m,

ηb2j−1((b2j−1, b2j)) is the side A1A2 in the polygon Mb2j−1 ,
ηb2j

((b2j−1, b2j)) is the side A1A2 in the polygon Mb2j
,

ηb2j
((b2j , b2j+1)) is the side A1An2j

in the polygon Mb2j
,

ηb2j+1((b2j , b2j+1)) is the side A1An2j+1 in the polygon Mb2j+1 for j = 1, . . . ,m,
n2j+1 = n1.

Recall that in the polygon Mbi
the length of the side A1A2 is equal to ai and

the length of the side A1Ani
is equal to 2. We denote the angle between the vector

−−−→
A1A2 and the positive direction of the Ox axis by β+

1,i. We set

Uz = int
(2m⋃

i=1

q(Mbi
)
)
,

ψz(ϱ) = νi(p2,i(q|Mbi
)−1(ϱ))) for ϱ ∈ q(Mbi), i = 1, . . . , 2m,

where
p2,i(x, y) = (x− 1, y)

and the function

νi(x, y) = νi(r cos θ, r sin θ) = (r2,i(r, θ) · cos(θ2,i(θ)), r2,i(r, θ) · sin(θ2,i(θ)))

is defined by the formulae

r2,i(r, θ) =
r

2
·
θ − β+

1,i

π − β+
1,i

+
r

ai
· π − θ

π − β+
1,i

,

θ2,i(θ) =
(
i− 2

(
i

2
(mod 1)

))
· π
m

+ (−1)i−1
θ − β+

1,i

π − β+
1,i

· π
m
.
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The function p2,i(x, y) translates the polygon Mbi in such a way that the vertex
A1 is placed at the origin. The functions νi(x, y), i = 1, . . . , 2m, diminish the
length of the sides A1A2 and A1Ani

to 1, diminish the magnitude of the angle at
the vertex A1 to π/m, and place the polygonsMbi

in such a way that the vertices A1

are placed at the origin and the angles of these polygons at the vertex A1 adjoin one
another and fill the complete angle, each being situated in the ith place under going
around the origin counterclockwise over some circle of radius < 1 starting from the
positive half-axis Ox, and the sides of the same colour of polygons adjoining each
other coincide.

3. Consider on the graph Γ the ut-cycle

{b1, (b1, b2), b2, (b2, b3), b3, . . . , b2m−1, (b2m−1, b2m), b2m, (b2m, b1), b1},

where the ni-gon Mbi
corresponds to the vertex bi ∈ B, i = 1, . . . , 2m,

ηb2j−1((b2j−1, b2j)) is the side An2j−1−1An2j−1 in the polygon Mb2j−1 ,
ηb2j ((b2j−1, b2j)) is the side An2j−1An2j in the polygon Mb2j ,
ηb2j

((b2j , b2j+1)) is the side A1An2j
in the polygon Mb2j

,
ηb2j+1((b2j , b2j+1)) is the side A1An2j+1 in the polygon Mb2j+1 for j = 1, . . . ,m,

n2j+1 = n1.
Recall that in the polygon Mbi the length of the side Ani−1Ani is equal to ai, the

length of the side A1Ani
is equal to 2, and the angle between the vector

−−−−−−→
Ani

Ani−1

and the positive direction of the Ox axis is equal to β−ni,i
. We set

Uz = int
(2m⋃

i=1

q(Mbi)
)
,

ψz(ϱ) = κi(p3,i((q|Mbi
)−1(ϱ))) for ϱ ∈ q(Mbi

), i = 1, . . . , 2m,

where
p3,i(x, y) = (x+ 1, y)

and the function

κi(x, y) = κi(r cos θ, r sin θ) = (r3,i(r, θ) · cos(θ3,i(θ)), r3,i(r, θ) · sin(θ3,i(θ)))

is defined by the formulae

r3,i(r, θ) =
r

2
·
β−ni

− θ

β−ni

+
r

ai
· θ

β−ni

,

θ3,i(θ) =
(
i− 2

(
i

2
(mod 1)

))
· π
m

+ (−1)i−1 θ

β−ni

· π
m
.

The function p3,i(x, y) translates the polygon Mbi
is such a way that the vertex

Ani is placed at the origin. The functions νi(x, y), i = 1, . . . , 2m, change the length
of the sides Ani−1Ani and A1Ani to 1 preserving the continuity of the field, change
the magnitude of the angle at the vertex Ani

to π/m, and place the polygons Mbi

in such a way that the vertices Ani
are placed at the origin, the angles of these

polygons at the vertices Ani
adjoin one another and fill the complete angle being

each situated in the ith place under going around the origin counterclockwise over
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some circle of radius < 1 starting from the positive half-axis Ox, and sides of the
same colour of polygons adjoining each other coincide.

For the charts introduced above, the transition maps are compositions of the
smooth maps constructed in parts 1–3 and their inverses, which implies that these
charts define a smooth structure on the surface S.

II. We now prove parts (i), (ii) of Theorem 3.

(i) We claim that the Euler characteristic of the surface S is calculated by the
formula χ(S) = ν0 − ν1 + ν2, where ν0, ν1 and ν2 are the numbers of all tu-, c∗-
and st-cycles of the graph Γ, respectively. It follows from Proposition 3 that the
numbers of all sinks, saddles, and sources are equal to ν0, ν1 and ν2, respectively.
This implies the assertion that we are proving, since the aforementioned formula is
the formula for the sum of indices of singular points of the flow f t.

(ii) We claim that the surface S is non-orientable if and only if the graph Γ
contains at least one cycle of odd length.

The surface S on which we constructed the flow f t is orientable if and only if
all polygonal regions of the flow f t can be compatibly oriented. An orientation of
every polygonal region can be defined by choosing one of the two possible cyclic
orders of its fixed points: α, σn, . . . , σ1, ω or ω, σ1, . . . , σn, α, where α is a source,
σj is a saddle, j = 1, . . . , n, and ω is a sink. Suppose that the sign plus is assigned
to a polygonal region in the first case, and minus in the second. Clearly, the
orientations of two such regions having a common side are compatible if and only
if different signs are assigned to them. Since a one-to-one correspondence was
established by the map πft between the polygonal regions of the flow f t and the
vertices of the graph Γ, the condition of orientability of the surface S can be stated
as follows: the surface S is orientable if and only if the signs plus and minus are
assigned to the vertices of the graph Γ in such a way that any two of its vertices
connected by an edge have different signs. We say that such an arrangement of
signs of the vertices of the graph is regular.

It is now sufficient to prove that the graph Γ does not have cycles of odd length
if and only if there exists a regular arrangement of the signs plus and minus at the
vertices of Γ.

The validity of the assertion from right to left is obvious, since it is impossible
to regularly arrange the signs plus and minus in a cycle of odd length. We now
prove in the other direction: suppose that the graph Γ does not have cycles of odd
length. Then it is possible to assign signs regularly to its vertices as follows: we
consider some vertex b0 of the graph Γ and assign the sign plus to it; for any other
vertex bi we consider a path connecting it with the vertex b0, and if this path has
even length, then we assign the sign plus to this vertex, while if it has odd length,
then the sign minus. Since by assumption the graph does not have cycles of odd
length, this arrangement is independent of the choice of the path and, consequently,
the definition is correct.

Theorem 3 is proved.
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§ 7. Efficient algorithm for recognition
of isomorphism of graphs of flows of the class G

In this section we present a proof of Theorem 2 produced by way of constructing
an efficient algorithm for recognition (up to isomorphism) of multicolour graphs of
flows in the class G. For this we can assume that the numbers of vertices and edges
of these graphs are the same; otherwise they are automatically non-isomorphic. By
construction the multicolour graphs of flows in G are not graphs of the general form,
since they are embeddable in the supporting surface, on which the corresponding
flows of class G are defined. In other words, these graphs can be depicted in
such a way that their vertices are points on the surface, and edges are Jordan
curves that do not intersect at their interior points. This observation is interesting
because of the existence of an efficient algorithm for distinguishing ordinary graphs
(that is, unlabelled graphs without loops, orientation, or multiple edges) that are
embeddable in a given surface; namely, the following fact holds.

Proposition 4 (see [11]). The problem of recognition of isomorphism of two
n-vertex ordinary graphs each of which is embeddable in a surface of genus g can be
solved in time O(nO(g)).

Unfortunately, this result cannot be directly applied to recognition of isomor-
phism of graphs Γft and Γf ′t , since these are not ordinary graphs. Nevertheless, the
problem of isomorphism of multicolour graphs can be reduced (with a low working
time of reduction) to the problem of isomorphism of ordinary graphs embeddable
in a surface. For that we need two operations with graphs— k-subpartition of an
edge, and (k1, k2)-subpartition of an edge.

The operation of k-subpartition of an edge (a, b) of a graph consists in deleting
this edge from the graph and adding vertices c1, . . . , ck and edges (a, c1), (c1, c2), . . . ,
(ck, b).

The operation of (k1, k2)-subpartition of an edge (a, b) of a graph consists in
deleting this edge from the graph and adding vertices c1, c2, . . . , ck1 , v, u, w,
d1, d2, . . . , dk2 and edges (a, c1), (c1, c2), . . . , (ck1 , v), (v, u), (u,w), (v, w), (v, d1),
(d1, d2), . . . , (dk2 , b).

For a given graph Γft , we construct the corresponding ordinary graph Γ(f t) as
follows. In the graph Γft we perform a 1-subpartition of every s-edge, a 2-sub-
partition of every t-edge, and a 3-subpartition of every u-edge. Let e = (a, b) be
an arbitrary c-edge of the graph Γft , and let numa(e) and numb(e) be the numbers
of the edge e in the sets of c-edges incident to the vertices a and b, respectively.
We perform a (numa(e),numb(e))-subpartition of the edge e. We perform a similar
operation for every c-edge of the graph Γft (Figure 10).

Lemma 6. The graphs Γft and Γf ′t are isomorphic if and only if the graphs Γ(f t)
and Γ(f ′t) are isomorphic.

Proof. Obviously, the graph Γft uniquely defines the graph Γ(f t). We now show
that the converse assertion also holds, which will imply the validity of the lemma.
Every polygonal region of the set ∆ft has at least three sides, and therefore every
vertex Γft has at least three neighbours in this graph. Obviously, in the graph Γ(f t),
none of the vertices of the graph Γft belong to any triangle. Therefore the set
of vertices of the graph Γft is formed by those and only those vertices of the



Complete topological invariant for flows 119

Figure 10. The phase portrait of some flow f t in the class G (above), its
four-colour graph Γft (below on the left), and the corresponding ordinary
graph Γ(f t) (below on the right).
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graph Γ(f t) that have at least three neighbours and do not belong to triangles. By
removing all vertices of the graph Γft from the graph Γ(f t) we obtain a disjunct
union of connected subgraphs each of which is either a path, or a path with a triangle
‘attached’ to some interior vertex. These connected subgraphs are indicators of
the presence of edges between the corresponding vertices of the graph Γft . If
a subgraph is a path, then its length determines the colour from the set {s, t, u} of
the corresponding edge of the graph Γft . If a subgraph is a path with an ‘attached’
triangle, then it corresponds to some c-edge e = (a, b) of the graph Γft . In this
subgraph we remove the vertices of the triangle, and obtain two paths, the lengths
of which determine the numbers of e in the sets of c-edges incident to the vertices
a and b, respectively. Thus, the graph Γft is uniquely reconstructed from the
graph Γ(f t).

The lemma is proved.

Let us estimate the number of vertices of the graph Γ(f t) under the assumption
that the graph Γft has n vertices and m edges. Obviously, each of the m edges
of the graph Γft corresponds to some subgraph of the graph Γ(f t) containing at
most 2n + 5 vertices. Therefore the graph Γ(f t) has at most (2n + 5)m vertices
and can be efficiently calculated from the graph Γft . We point out that the graph
Γ(f t) is embeddable in the same surface as the graph Γft . Therefore by Lemma 6
we have a polynomial reduction of the problem of recognition of isomorphism of
the multicolour graphs of flows in the class G to the problem of recognition of
isomorphism of ordinary graphs embedded in a fixed surface.

Recall that by Theorem 3 the surface S is non-orientable if and only if the graph Γ
contains a cycle of odd length. By König’s theorem [7], an ordinary graph does not
contain odd cycles if and only if it is bipartite, that is, when the set of its vertices
can be partitioned into at most two parts such that there are no edges incident to
vertices in the same part. For an ordinary graph with n′ vertices and m′ edges,
being bipartite can be recognized in time O(n′ +m′) by using breadth-first search
(see [1]). Therefore, in order to recognize the orientability of the surface S, we
forget about the colours of the edges of the graph Γ and perform a 2-subpartition
of each of its edges. Clearly, the resulting graph Γ′ is bipartite if and only if the
graph Γ does not contain cycles of odd length. The numbers of vertices and edges of
the graph Γ′ do not exceed the tripled numbers of vertices and edges of the graph Γ,
respectively. Therefore the orientability of the surface S can be recognized in linear
time in terms of the sum of the numbers of vertices and edges of the graph Γ.

All that has been said above implies the validity of Theorem 2.
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