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Abstract It is known that by dualizing the Bochner–Lichnerowicz–Weitzenböck for-
mula, one obtains Poincaré-type inequalities on Riemannian manifolds equipped with
a density, which satisfy the Bakry–Émery Curvature-Dimension condition (combining
a lower bound on its generalized Ricci curvature and an upper bound on its generalized
dimension). When the manifold has a boundary, an appropriate generalization of the
Reilly formula may be used instead. By systematically dualizing this formula for var-
ious combinations of boundary conditions of the domain (convex, mean-convex) and
the function (Neumann, Dirichlet), we obtain new Brascamp–Lieb-type inequalities
on the manifold. All previously known inequalities of Lichnerowicz, Brascamp–Lieb,
Bobkov–Ledoux, and Veysseire are recovered, extended to the Riemannian setting
and generalized into a single unified formulation, and their appropriate versions in the
presence of a boundary are obtained. Our framework allows to encompass the entire
class of Borell’s convex measures, including heavy-tailed measures, and extends the
latter class to weighted-manifolds having negative generalized dimension.
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A. V. Kolesnikov, E. Milman

1 Introduction

Throughout the paper, we consider a compact weighted-manifold (M, g, μ), namely a
compact smooth connected and oriented n-dimensional Riemannian manifold (M, g)

with boundary ∂ M , equipped with a measure:

μ = exp(−V )dVolM ,

where VolM is the Riemannian volume form on M and V ∈ C2(M) is twice contin-
uously differentiable. The boundary ∂ M is assumed to be a C2 manifold with outer
unit-normal ν = ν∂ M . The corresponding symmetric diffusion operator with invariant
measure μ, which is called the weighted-Laplacian, is given by

L = L(M,g,μ) := exp(V )div(exp(−V )∇) = � − 〈∇V,∇〉 ,

where 〈·, ·〉 denotes the Riemannian metric g, ∇ = ∇g denotes the Levi–Civita con-
nection, div = divg = tr(∇·) denotes the Riemannian divergence operator, and
� = div∇ is the Laplace-Beltrami operator. Indeed, note that with these generalized
notions, the usual integration by parts formula is satisfied for f, g ∈ C2(M):

∫
M

L( f )gdμ =
∫

∂ M
fνgdμ∂ M −

∫
M

〈∇ f,∇g〉 dμ

=
∫

∂ M
( fνg − gν f )dμ∂ M +

∫
M

L(g) f dμ,

where uν = ν · u and μ∂ M := exp(−V )dVol∂ M .
The second fundamental form II = II∂ M of ∂ M ⊂ M at x ∈ ∂ M is as usual (up to

sign) defined by IIx (X, Y ) = 〈∇Xν, Y 〉, X, Y ∈ T ∂ M . The quantities

Hg(x) := tr(IIx ), Hμ(x) := Hg(x) − 〈∇V (x), ν(x)〉

are called the Riemannian mean-curvature and generalized mean-curvature of ∂ M at
x ∈ ∂ M , respectively. It is well known that Hg governs the first variation of Vol∂ M

under the normal-map t �→ exp(tν), and similarly Hμ governs the first variation of
exp(−V )dVol∂ M in the weighted-manifold setting, see e.g. [30].

In the purely Riemannian setting, it is classical that positive lower bounds on the
Ricci curvature tensor Ricg and upper bounds on the topological dimension n play
a fundamental role in governing various Sobolev-type inequalities on (M, g), see
e.g. [7,9,10,22,52] and the references therein. In the weighted-manifold setting, the
pertinent information on generalized curvature and generalized dimension may be
incorporated into a single tensor, which was put forth by Bakry and Émery [1,2]
following Lichnerowicz [24,25]. The N -dimensional Bakry–Émery Curvature tensor
(N ∈ (−∞,∞]) is defined as (setting � = exp(−V )):

Ricμ,N := Ricg + ∇2V − 1

N − n
dV ⊗ dV = Ricg − (N − n)

∇2�
1

N−n

�
1

N−n

, (1.1)
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Brascamp–Lieb-Type Inequalities with Boundary

and the Bakry–Émery Curvature-Dimension condition CD(ρ, N ), ρ ∈ R, is the
requirement that as 2 tensors on M :

Ricμ,N ≥ ρg.

Here ∇2V denotes the Riemannian Hessian of V . Note that the case N = n is only
defined when V is constant, i.e. in the classical non-weighted Riemannian setting
where μ is proportional to VolM , in which case Ricμ,n boils down to Ricg . When
N = ∞ we set

Ricμ := Ricμ,∞ = Ricg + ∇2V .

It is customary to only treat the case when N ∈ [n,∞], with the interpretation
that N is an upper bound on the “generalized dimension” of the weighted-manifold
(M, g, μ); however, our method also applies with no extra effort to the case when
N ∈ (−∞, 0], and so our results are treated in this greater generality, which in the
Euclidean setting encompasses the entire class of Borell’s convex (or “1/N -concave”)
measures [5] (cf. [4,6]). It will be apparent that the more natural parameter is actually
1/N , with N = ∞, 0 interpreted as 1/N = 0,−∞, respectively, and so our results
hold in the range 1/N ∈ [−∞, 1/n]. As dV ⊗ dV appearing in (1.1) is a positive
semi-definite tensor, the CD(ρ, N ) condition is clearly monotone in 1

N−n and hence

in 1
N in the latter range, so for all N+ ∈ [n,∞], N− ∈ (−∞, 0]:

CD(ρ, n) ⇒ CD(ρ, N+) ⇒ CD(ρ,∞) ⇒ CD(ρ, N−) ⇒ CD(ρ, 0);

note that CD(ρ, 0) is the weakest condition in this hierarchy. It seems that outside
the Euclidean setting, this extension of the Curvature–Dimension condition to the
range N ≤ 0 has not attracted much attention in the weighted-Riemannian and more
general metric-measure space setting (cf. [27,44]); an exception is the work of Ohta
and Takatsu [40,41]. We expect this gap in the literature to be quickly filled (in fact,
concurrently to posting our work on the arXiv, Ohta [39] has posted a first attempt of
a systematic treatise of the range N ≤ 0, and subsequently other authors have also
begun treating this extended range [14,17,31,32,50]).

A convenient equivalent form of the CD(ρ, N ) condition may be formulated as
follows. Let �2 denote the iterated carré-du-champ operator of Bakry–Émery:

�2(u) :=
∥∥∥∇2u

∥∥∥2 + 〈
Ricμ ∇u,∇u

〉
,

where
∥∥∇2u

∥∥ denotes theHilbert-Schmidt normof∇2u. Then theCD(ρ, N ) condition
is equivalent when 1/N ∈ (−∞, 1/n] (see [1, Sect. 6] for the case N ∈ [n,∞] or
Lemma 2.3 in the general case) to the requirement that

�2(u) ≥ ρ |∇u|2 + 1

N
(Lu)2 ∀u ∈ C2(M). (1.2)
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Denote by S0(M) the class of functions u on M which are C2 smooth in the
interior of M and C1 smooth on the entire compact M . Denote by SN (M) the subclass
of functions which in addition satisfy that uν is C1 smooth on ∂ M . The main tool we
employ in this work is the following:

Theorem 1.1 [Generalized Reilly Formula] For any function u ∈ SN (M):

∫
M

(Lu)2dμ =
∫

M

∥∥∥∇2u
∥∥∥2 dμ +

∫
M

〈
Ricμ ∇u,∇u

〉
dμ +

∫
∂ M

Hμ(uν)
2dμ∂ M

+
∫

∂ M
〈II∂ M ∇∂ M u,∇∂ M u〉 dμ∂ M − 2

∫
∂ M

〈∇∂ M uν,∇∂ M u〉 dμ∂ M .

(1.3)

Here ∇∂ M denotes the Levi-Civita connection on ∂ M with its induced Riemannian
metric.

This natural generalizationof the (integrated)Bochner–Lichnerowicz–Weitzenböck
formula for manifolds with boundary was first obtained by Reilly [43] in the classical
Riemannian setting (μ = VolM ). The version above is a modification (obtained by
integrating by parts on ∂ M) of a previous version due to Ma and Du [28]. For com-
pleteness, we sketch in Sect. 2 the proof of the version (1.3) which we require for
deriving our results.

It is known that by dualizing the Bochner–Lichnerowicz–Weitzenböck formula,
various Poincaré-type inequalities such as the Lichnerowicz [23], Brascamp–Lieb
[6,20] and Veysseire [47] inequalities may be obtained under appropriate bounds
on curvature and dimension. Recently, heavy-tailed versions of the Brascamp–Lieb
inequalities have been obtained in the Euclidean setting by Bobkov–Ledoux [4] and
sharpened by Nguyen [37]. By employing the generalized Reilly formula, we unify,
extend and generalize many of these previously known results to various new com-
binations of boundary conditions on the domain (locally convex, mean-convex) and
the function (Neumann, Dirichlet) in the weighted-Riemannian setting. We mention
in passing another celebrated application of the latter duality argument in the Com-
plex setting, namely Hörmander’s L2 estimate [13], but we refrain from attempting to
generalize it here; further more recent applications may be found in [3,12,15,16,20].

Given a finite measure ν on a measurable space �, and a ν-integrable function f
on �, we denote

−
∫

�

f dν := 1

ν(�)

∫
�

f dν, Varν( f ) :=
∫

�

(
f − −

∫
�

f dν

)2

dν.

The following theorem, obtained in Sect. 3, is the main result of this work:

Theorem 1.2 (Generalized dimensional Brascamp–Liebwith boundary) Assume that
Ricμ,N > 0 on M with 1/N ∈ (−∞, 1/n]. Then for any f ∈ C1(M):
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(1) (Neumann Dimensional Brascamp–Lieb inequality on locally convex domain)
Assume that II∂ M ≥ 0 (M is locally convex). Then,

N

N − 1
Varμ( f ) ≤

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ.

(2) (Dirichlet Dimensional Brascamp–Lieb inequality on generalized mean-convex
domain)
Assume that Hμ ≥ 0 (M is generalized mean-convex), f ≡ 0 on ∂ M �= ∅. Then,

N

N − 1

∫
M

f 2dμ ≤
∫

M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ.

(3) (Neumann Dimensional Brascamp–Lieb inequality on strictly generalized mean-
convex domain)
Assume that Hμ > 0 (M is strictly generalized mean-convex). Then for any
C ∈ R:

N

N − 1
Varμ( f ) ≤

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ +

∫
∂ M

1

Hμ

(
f − C

)2
dμ∂ M .

In other words,

N

N − 1
Varμ( f ) ≤

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ + Varμ∂M /Hμ( f |∂ M ).

Restricting to Euclidean space (Rn, |·|) and setting N = ∞ in Case (1), the tensor
Ricμ,∞ boils down to the (Euclidean) Hessian ∇2V , and we recover the celebrated
Poincaré-type inequality obtained by H. J. Brascamp and E. H. Lieb [6] as an infinites-
imal version of the Prekopá–Leindler inequality. When Ricμ,N ≥ ρg with ρ > 0 (i.e.
(M, g, μ) satisfies the CD(ρ, N ) condition), by replacing the

∫
M 〈Ric−1

μ,N ∇ f,∇ f 〉dμ
term with the looser 1

ρ

∫
M |∇ f |2 dμ in all occurrences above, we obtain various gen-

eralizations of the classical Lichnerowicz estimate [23] on the spectral-gap of the
weighted-Laplacian−L under different boundary conditions; in particular, in the non-
weighted classical case N = n, this recovers the spectral-gap estimate of Escobar [8]
and Xia [51] under Neumann boundary conditions, and the one by Reilly [43] under
Dirichlet conditions. When N ≤ −1, Case (1) was obtained in the Euclidean setting
(and under the stronger assumption that Ricμ,∞ = ∇2V > 0) with a constant better
than N

N−1 on the left-hand-side above by V. H. Nguyen [37], improving a previous
estimate of S. Bobkov and M. Ledoux [4] valid when N ≤ 0. However, on a general
weighted Riemannian manifold, our constant N

N−1 is best possible in Case (1) for the
entire range N ∈ (−∞,−1] ∪ [n,∞], see Sect. 3.2.

We refer to Sect. 3.1 for a longer exposition on the previously knowngeneralizations
in these directions; with few exceptions, Cases (2) and (3) and also Case (1) when
N �= ∞ seem new. We note that while the heat semi-group approach of Bakry–
Émery is a very powerful tool in Case (1), namely under Neumann convex boundary
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conditions, we are not aware of an analogous semi-group approach under the Case (2)
Dirichlet mean-convex boundary conditions, let alone the mixed boundary conditions
of Case (3), and thus confine our analysis to the L2-duality approach.

To conclude this work, we extend in Sect. 4 a result of L. Veysseire [47], who
obtained a spectral-gap estimate of 1/−

∫
M (1/ρ)dμ assuming that Ricμ ≥ ρg for a

function ρ : M → R+ which is not necessarily bounded away from zero, to the case
of Neumann boundary conditions when M is locally convex.

Remark 1.3 Although all of our results are formulated for compact weighted-
manifolds with boundary, the results easily extend to the non-compact case, if
the manifold M can be exhausted by compact submanifolds {Mk} so that each
(Mk, g|Mk , μ|Mk ) has an appropriate boundary (locally convex or generalized mean-
convex, in accordance with the desired result). In the Dirichlet case, the asserted
inequalities then extend to all functions in C1

0(M) having compact support and van-
ishing on the boundary ∂ M . In the Neumann cases, the asserted inequalities extend
to all functions f ∈ C1

loc(M) ∩ L2(M, μ) when μ is a finite measure. When such an
exhaustion is not available but the manifold is complete, one may alternatively apply a
functional-analytic argument to obtain analogous results on non-compact manifolds—
more details may be found in [18, Appendix].

2 Generalized Reilly Formula and Other Preliminaries

2.1 Notation

We denote by int (M) the interior of M . Given a compact differentiable manifold 	

(which is at least Ck smooth), we denote by Ck(	) the space of real-valued functions
on 	 with continuous (and bounded) derivatives

(
∂
∂x

)a
f , for every multi-index a of

order |a| ≤ k in a given coordinate system. Similarly, the space Ck,α(	) denotes the
subspace of functions whose k-th order derivatives are uniformly Hölder continuous
of order α on the Ck,α smooth manifold 	. When 	 is non-compact, we may use
Ck,α

loc (	) to denote the class of functions u on M so that u|	0 ∈ Ck,α(	0) for all
compact subsets 	0 ⊂ 	. These spaces are equipped with their usual corresponding
topologies.

Throughout this work, we employ Einstein summation convention. By abuse of
notation, we denote different covariant and contravariant versions of a tensor in the
same manner. So for instance, Ricμ may denote the 2-covariant tensor (Ricμ)α,β , but
also may denote its 1-covariant 1-contravariant version (Ricμ)αβ , as in

〈
Ricμ∇ f,∇ f

〉 = gi, j (Ricμ)i
k∇k f ∇ j f = (Ricμ)i, j∇ i f ∇ j f = Ricμ(∇ f,∇ f ).

Similarly, inverse tensors are interpreted according to the appropriate context. For
instance, the 2-contravariant tensor (II−1)α,β is defined by

(II−1)i, j II j,k = δi
k .

123

Author's personal copy



Brascamp–Lieb-Type Inequalities with Boundary

We freely raise and lower indices by contracting with the metric. Since we only deal
with 2-tensors, the only possible contraction is often denoted byusing the trace notation
tr .

Finally, when studying consequences of the CD(ρ, N ) condition, the various
expressions in which N appears are interpreted in the limiting sense when 1/N = 0.
For instance, N/(N − 1) is interpreted as 1, and N f 1/N is interpreted as log f (since
lim1/N→0 N (x1/N −1) = log(x); the constant−1 in the latter limit does not influence
our application of this convention).

2.2 Proof of the Generalized Reilly Formula

For completeness, we sketch the proof of our main tool, Theorem 1.1 from the Intro-
duction, following the proof given in [28].

Proof of Theorem 1.1 The generalizedBochner–Lichnerowicz–Weitzenböck formula
[2,24] states that for any u ∈ C3

loc(int (M)), we have

1

2
L |∇u|2 =

∥∥∥∇2u
∥∥∥2 + 〈∇Lu,∇u〉 + 〈

Ricμ ∇u,∇u
〉
. (2.1)

We introduce an orthonormal frame of vector fields e1, . . . , en so that en = ν on ∂ M ,
and denote ui = du(ei ), ui, j = ∇2u(ei , e j ). Assuming in addition that u ∈ C2(M),
we may integrate by parts:

∫
M

1

2
L |∇u|2 dμ =

∫
∂ M

n∑
i=1

ui ui,ndμ∂ M ,

∫
M

〈∇Lu,∇u〉 dμ =
∫

∂ M
un(Lu)dμ∂ M −

∫
M

(Lu)2dμ.

Consequently, integrating (2.1) over M , we obtain

∫
M

(
(Lu)2 −

∥∥∥∇2u
∥∥∥2 − 〈

Ricμ∇u,∇u
〉)

dμ =
∫

∂ M

(
un(Lu) −

n∑
i=1

ui ui,n

)
dμ∂ M .

Now,

un(Lu) −
n∑

i=1

ui ui,n =
n−1∑
i=1

(
unui,i − ui ui,n

) − un 〈∇u,∇V 〉 .

Computing the different terms,

n−1∑
i=1

ui,i =
n−1∑
i=1

(
ei (ei u) − (∇ei ei )u

)
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=
n−1∑
i=1

(
ei (ei u) − ((∇∂ M )ei ei )u

) +
(

n−1∑
i=1

(∇∂ M )ei ei − ∇ei ei

)
u

= �∂ M u +
(

n−1∑
i=1

IIi,i

)
enu = �∂ M u + tr(II)un;

n−1∑
i=1

ui ui,n =
n−1∑
i=1

ui
(
ei (enu) − (∇ei en)u

) = 〈∇∂ M u,∇∂ M un〉 − 〈II ∇∂ M u,∇∂ M u〉 .

Putting everything together,

∫
M

(
(Lu)2 −

∥∥∥∇2u
∥∥∥2 − 〈

Ricμ∇u,∇u
〉)

dμ

=
∫

∂ M

(
un(�∂ M u − 〈∇u,∇V 〉) + tr(II)(un)2

)
dμ∂ M

−
∫

∂ M
〈∇∂ M u,∇∂ M un〉 dμ∂ M +

∫
∂ M

〈II ∇∂ M u,∇∂ M u〉 dμ∂ M .

This is the formula obtained in [28] for smooth functions. To conclude the proof,
simply note that

〈∇u,∇V 〉 = 〈∇∂ M u,∇∂ M V 〉 + un Vn,

L∂ M = �∂ M − 〈∇∂ M V,∇∂ M 〉 ,

Hμ = tr(II) − Vn,

and thus,
∫

∂ M

(
un(�∂ M u − 〈∇u,∇V 〉) + tr(II)(un)2

)
dμ∂ M

=
∫

∂ M

(
un L∂ M u + Hμu2

n

)
dμ∂ M .

Integrating by parts one last time, this time on ∂ M , we obtain

∫
∂ M

un L∂ M u dμ∂ M = −
∫

∂ M
〈∇∂ M un,∇∂ M u〉 dμ∂ M .

Finally, plugging everything back, we obtain the asserted formula for u:

∫
M

(
(Lu)2 −

∥∥∥∇2u
∥∥∥2 − 〈

Ricμ ∇u,∇u
〉)

dμ

=
∫

∂ M
Hμu2

ndμ∂ M − 2
∫

∂ M
〈∇∂ M un,∇∂ M u〉 dμ∂ M

+
∫

∂ M
〈II ∇∂ M u,∇∂ M u〉 dμ∂ M .
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To conclude that the assertion in fact holds for u ∈ SN (M), we employ a standard
approximation argument using a partition of unity and mollification. Since the metric
is assumed at least C3 and ∂ M is C2, we may approximate any u ∈ SN (M) by
functions uk ∈ C3

loc(int (M)) ∩ C2(M), so that uk → u in C2
loc(int (M)) and C1(M),

and (uk)ν → uν in C1(∂ M). The assertion then follows by passing to the limit. ��
Remark 2.1 For minor technical reasons, it will be useful to record the following vari-
ants of the generalizedReilly formula,which are obtained by analogous approximation
arguments to the one given above:

• If uν or u are constant on ∂ M and u ∈ S0(M) (recall S0(M) := C2
loc(int (M)) ∩

C1(M)), then

∫
M

(Lu)2dμ =
∫

M

∥∥∥∇2u
∥∥∥2 dμ +

∫
M

〈
Ricμ ∇u,∇u

〉
dμ

+
∫

∂ M
Hμ(uν)

2dμ∂ M +
∫

∂ M
〈II∂ M ∇∂ M u,∇∂ M u〉 dμ∂ M .

(2.2)

• If u ∈ SD(M) := S0(M) ∩ C2(∂ M), then integration by parts yields

∫
M

(Lu)2dμ =
∫

M

∥∥∥∇2u
∥∥∥2 dμ +

∫
M

〈
Ricμ ∇u,∇u

〉
dμ

+
∫

∂ M
Hμ(uν)

2dμ∂ M +
∫

∂ M
〈II∂ M ∇∂ M u,∇∂ M u〉 dμ∂ M

+ 2
∫

∂ M
uν L∂ M u dμ∂ M . (2.3)

Remark 2.2 Throughout this work, when integrating by parts, we employ a slightly
more general version of the textbook Stokes Theorem

∫
M dω = ∫

∂ M ω, in which
one only assumes that ω is a continuous differential (n − 1)-form on M which is
differentiable on int (M) (and so that dω is integrable there); a justification may
be found in [29]. This permits us to work with the classes Ck

loc(int (M)) occurring
throughout this work.

2.3 The CD(ρ, N) Condition for 1/N ∈ [−∞, 1/n]

The results in this subsection for 1/N ∈ [0, 1/n] are due to Bakry (e.g. [1, Sect. 6]).

Lemma 2.3 For any u ∈ C2
loc(M) and 1/N ∈ [−∞, 1/n],

�2(u) = 〈
Ricμ ∇u,∇u

〉 +
∥∥∥∇2u

∥∥∥2 ≥ 〈
Ricμ,N ∇u,∇u

〉 + 1

N
(Lu)2. (2.4)

Our convention throughout this work is that −∞ · 0 = 0, and so if Lu = 0 at a point
p ∈ M, the assertion when 1

N = −∞ is that
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�2(u) ≥ 〈
Ricμ,0 ∇u,∇u

〉
,

at that point.

Proof Recalling the definitions, this is equivalent to showing that

∥∥∥∇2u
∥∥∥2 + 1

N − n
〈∇u,∇V 〉2 ≥ 1

N
(Lu)2.

Clearly the case that 1/N = 0 (N = ∞) follows. But by Cauchy–Schwarz,

∥∥∥∇2u
∥∥∥2 ≥ 1

n
(�u)2,

and so the case N = n, which corresponds to a constant function V so that Ricμ =
Ricμ,n = Ricg and L = �, also follows. It remains to show that

1

n
(�u)2 + 1

N − n
〈∇u,∇V 〉2 ≥ 1

N
(Lu)2.

The case 1/N = −∞ (N = 0) follows since when 0 = Lu = �u − 〈∇u,∇V 〉 then
1

n
(�u)2 − 1

n
〈∇u,∇V 〉2 = 1

n
(�u + 〈∇u,∇V 〉)(�u − 〈∇u,∇V 〉) = 0.

In all other cases, the assertion follows from another application of Cauchy–Schwarz:

1

α
A2 + 1

β
B2 ≥ 1

α + β
(A + B)2 ∀A, B ∈ R,

valid as soon as (α, β) lay in either the set {α, β > 0}or the set {α + β < 0 and αβ < 0}.
��

Remark 2.4 It is immediate to deduce from Lemma 2.3 that for 1/N ∈ (−∞, 1/n],
Ricμ,N ≥ ρg on M , ρ ∈ R, if and only if:

�2(u) ≥ ρ |∇u|2 + 1

N
(Lu)2, ∀u ∈ C2

loc(M).

Indeed, the necessity follows from Lemma 2.3. The sufficiency follows by locally
constructing given p ∈ M and X ∈ Tp M a function u so that∇u = X at p and equality
holds in both applications of the Cauchy–Schwarz inequality in the proof above, as this
implies that Ricμ,N (X, X) ≥ ρ |X |2. Indeed, equality in the first application implies
that ∇2u is a multiple of g at p, whereas the equality in the second implies when
1/N /∈ {0, 1/n} that 〈∇u,∇V 〉 and �u are appropriately proportional at p; clearly
all three requirements can be simultaneously met. The cases 1/N ∈ {0, 1/n} follow
by approximation.
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2.4 Solution to Poisson Equation on Weighted Riemannian Manifolds

As ourmanifold is smooth, connected, compact, withC2 smooth boundary and strictly
positiveC2-density all theway up to the boundary, all of the classical elliptic existence,
uniqueness and regularity results (e.g. [11, Chap. 8], [26, Chap. 5], [19, Chap. 3])
immediately extend from the Euclidean setting to our weighted-manifold one (see e.g.
[36,45]); for more general situations (weaker regularity of metric, Lipschitz domains,
etc.) see e.g. [35] and the references therein. We summarize the results we require in
the following:

Theorem 2.5 Given a weighted-manifold (M, g, μ), μ = exp(−V )dVolM , we
assume that ∂ M is C2 smooth. Let α ∈ (0, 1), and assume that g is C2,α smooth
and V ∈ C1,α(M). Let f ∈ C0,α(M), ϕD ∈ C2(∂ M) and ϕN ∈ C1(∂ M). Then there
exists a function u ∈ C2,α

loc (int (M)) ∩ C1,β(M) for all β ∈ (0, 1), which solves

Lu = f on M,

with either of the following boundary conditions on ∂ M:

(1) Dirichlet: u|∂ M = ϕD, assuming ∂ M �= ∅.
(2) Neumann: uν |∂ M = ϕN , assuming the following compatibility condition is sat-

isfied:

∫
M

f dμ =
∫

∂ M
ϕNdμ∂ M .

In particular, u ∈ S0(M) in either case. Moreover, u ∈ SN (M) in the Neumann case
and u ∈ SD(M) in the Dirichlet case.

Remark 2.6 For future reference, we remark that it is enough to only assume in the
proof of the generalized Reilly formula (including the final approximation argument)
that the metric g is C3 smooth, so in particular the above regularity results apply.

We will not require the uniqueness of u above, but for completeness we mention
that this is indeed the case for Dirichlet boundary conditions, and up to an additive
constant in the Neumann case.

2.5 Spectral-gap on Weighted Riemannian Manifolds

Let λN
1 denote the best constant in the Neumann Poincaré inequality:

λN
1 Varμ( f ) ≤

∫
M

|∇ f |2 dμ, ∀ f ∈ H1(μ),

and let λD
1 denote the best constant in the Dirichlet Poincaré inequality:

λD
1

∫
M

f 2dμ ≤
∫

M
|∇ f |2 dμ, ∀ f ∈ H1

0 (μ).
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Here H1(μ) and H1
0 (μ) denote the Sobolev spaces obtained by completing C∞(M)

and C∞
0 (M) in the H1(μ)-norm

√∫
M f 2dμ + ∫

M |∇ f |2 dμ. It is well known (e.g.

[46]) that the symmetric operator −L on L2(μ) with domain C∞(M) or C∞
0 (M)

admits a (unique) self-adjoint positive semi-definite extension, called the Neumann
and Dirichlet (negative) Laplacian, respectively. Both instances have discrete non-
negative spectra with corresponding complete orthonormal bases of eigenfunctions. In
the first case, λN

1 is the first positive eigenvalue of the (negative) Neumann Laplacian:

−Lu = λN
1 u on M, uν ≡ 0 on ∂ M;

the zero eigenvalue corresponds to the eigenspace of constant functions, and so only
functions u orthogonal to constants are considered. In the second case, λD

1 is the first
(positive) eigenvalue of the (negative) Dirichlet Laplacian:

−Lu = λD
1 u on M, u ≡ 0 on ∂ M.

Our assumptions on the smoothness of M , its boundary, and the density exp(−V ),
guarantee by elliptic regularity theory that in either case, all eigenfunctions are in
S0(M) (in fact, in SN (M) in the Neumann case and in SD(M) in the Dirichlet case).

3 Generalized Brascamp–Lieb-Type Inequalities on M

In this section, we provide a proof of Theorem 1.2 from the Introduction, which we
repeat here for convenience:

Theorem 3.1 (Generalized dimensional Brascamp–Liebwith boundary) Assume that
Ricμ,N > 0 on M with 1/N ∈ (−∞, 1/n]. Then for any f ∈ C1(M):

(1) (Neumann Dimensional Brascamp–Lieb inequality on locally convex domain)
Assume that II∂ M ≥ 0 (M is locally convex). Then

N

N − 1
Varμ( f ) ≤

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ.

(2) (Dirichlet Dimensional Brascamp–Lieb inequality on generalized mean-convex
domain)
Assume that Hμ ≥ 0 (M is generalized mean-convex), f ≡ 0 on ∂ M �= ∅. Then

N

N − 1

∫
M

f 2dμ ≤
∫

M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ.

(3) (Neumann Dimensional Brascamp–Lieb inequality on strictly generalized mean-
convex domain)
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Assume that Hμ > 0 (M is strictly generalized mean-convex). Then for any
C ∈ R:

N

N − 1
Varμ( f ) ≤

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ +

∫
∂ M

1

Hμ

(
f − C

)2
dμ∂ M .

In other words,

N

N − 1
Varμ( f ) ≤

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ + Varμ∂M /Hμ( f |∂ M ).

3.1 Previously Known Particular Cases

3.1.1 1/N = 0: Generalized Brascamp–Lieb Inequalities

Recall that when 1/N = 0, Ricμ,N = Ricμ, and N
N−1 = 1. When (M, g) is Euclidean

space Rn and μ = exp(−V )dx is a finite measure, the Brascamp–Lieb inequality [6]
asserts that

Varμ( f ) ≤
∫
Rn

〈
(∇2V )−1 ∇ f,∇ f

〉
dμ, ∀ f ∈ C1(Rn).

Observe that in this case, Ricμ = ∇2V , and so taking into account Remark 1.3, we
see that the Brascamp–Lieb inequality follows from Case (1). The latter is easily seen
to be sharp, as witnessed by testing the Gaussian measure in Euclidean space.

The extension to the weighted-Riemannian setting for 1/N = 0, at least when
(M, g) has no boundary, is well known to experts, although we do not know who
to accredit this to (see e.g. the Witten Laplacian method of Helffer–Sjöstrand [12]
as exposed by Ledoux [20]). The case of a locally convex boundary with Neumann
boundary conditions (Case 1 above) can easily be justified in Euclidean space by a
standard approximation argument, but this is less clear in the Riemannian setting;
probably this can be achieved by employing the Bakry–Émery semi-group formalism
(see Qian [42] and Wang [48,49]). To the best of our knowledge, the other Cases (2)
and (3) are new even for 1/N = 0.

3.1.2 Ricμ,N ≥ ρg with ρ > 0: Generalized Lichnerowicz Inequalities

Assume that Ricμ,N ≥ ρg with ρ > 0, so that (M, g, μ) satisfies the CD(ρ, N )

condition. It follows that

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ ≤ 1

ρ

∫
M

|∇ f |2 dμ, (3.1)
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and so we may replace in all three cases of Theorem 3.1 every occurrence of the
left-hand term in (3.1) by the right-hand one. So for instance, Case (1) implies that

N

N − 1
Varμ( f ) ≤ 1

ρ

∫
M

|∇ f |2 dμ, (3.2)

and similarly for the other two cases; we refer to the resulting inequalities as Cases
(1′), (2′), and (3′). Clearly, Cases (1′) and (2’) are spectral-gap estimates for −L with
Neumann and Dirichlet boundary conditions, respectively.

Recall that in the non-weighted Riemannian setting (μ = VolM and N = n),
Ricμ,N = Ricg . In this classical setting, the above spectral-gap estimates are due
to the following authors: when ∂ M = ∅, Cases (1′) and (3′) degenerate to a single
statement, due to Lichnerowicz [23], and by Obata’s theorem [38] equality is attained
if and only if M is the n-sphere. When ∂ M �= ∅, Case (1′) is due to Escobar [8]
and independently Xia [51] ; Case (2′) is due to Reilly [43] ; in both cases, one has
equality if and only if M is the n-hemisphere ; Case (3′) seems new even in the classical
case.

Onweighted-manifoldswith N ∈ [n,∞], Case (1′) is certainly known, see e.g. [21]
(in fact, a stronger log-Sobolev inequality goes back to Bakry and Émery [2]); Case
(2′) was recently obtained under a slightly stronger assumption by Ma and Du [28,
Theorem 2]; for an adaptation to the CD(ρ, N ) condition see Li andWei [21, Theorem
3],who also showed that in both cases onehas equality if andonly if N = n and M is the
n-sphere or n-hemisphere endowed with its Riemannian volume form, corresponding
to whether ∂ M is empty or non-empty, respectively. As already mentioned, Case (3′)
seems new.

To the best of our knowledge, the case of N < 0 has not been previously treated
in the Riemannian setting. Concurrently to posting our work on the arXiv, Ohta [39]
has also obtained Case (1′) for N < 0 when ∂ M = ∅.

3.1.3 Generalized Bobkov–Ledoux–Nguyen Inequalities

In the Euclidean settingwith N ≤ −1 (and under the stronger assumption that Ricμ =
∇2V > 0), Case (1) with a better constant of n−N−1

n−N instead of our N
N−1 = −N

−N+1 is
due toNguyen [37, Proposition 10], who generalized and sharpened a previous version
valid for N ≤ 0 by Bobkov–Ledoux [4]. However, on a general weighted Riemannian
manifold, our constant N

N−1 is best possible in the range N ∈ (−∞,−1] ∪ [n,∞],
see Subsection 3.2 below.

Note that in the Euclidean case, the CD(0, N ) condition with N ∈ R corresponds
to Borell’s class of convex measures [5], also known as “1/N -concave measures” (cf.
[34]). When N < 0, these measures are heavy-tailed, having tails decaying to zero
only polynomially fast, and consequently the corresponding generator −L may not
have a strictly positive spectral-gap. This is compensated by the weight Ric−1

μ,N in the
resulting Poincaré-type inequality. A prime example is given by the Cauchy measure
in Rn , which satisfies CD(0, 0) (it is −∞-concave). See [4,37] for more information.

Still in the Euclidean setting with N ≥ n (in fact N > n − 1), a dimensional ver-
sion of the Brascamp–Lieb inequality which is reminiscent of Case (1) was obtained
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by Nguyen [37, Theorem 9]. The Bobkov–Ledoux results were obtained as an infin-
itesimal version of the Borell–Brascamp–Lieb inequality [5,6]—a generalization of
the Brunn-Minkowski inequality, which is strictly confined to the Euclidean setting.
Nguyen’s approach is already more similar to our own, dualizing an ad hoc Bochner
formula obtained for a non-stationary diffusion operator.

In any case, our unified formulation (and treatment) of both regimes N ≤ 0 and
N ∈ [n,∞], the weaker assumption that Ricμ,N > 0, the extension to the Riemannian
setting with sharp constant N

N−1 and the treatment of the different boundary conditions
in Cases (1), (2), and (3) seem new.

3.2 Sharpness of the N
N−1 Constant in the Riemannian Setting

We briefly comment on the sharpness of the constant N
N−1 for the range N ∈

(−∞,−1] ∪ [n,∞] in the more traditional setting of Case (1); the sharpness of Case
(2) is also shown for N ≥ n. This constant is no longer sharp in Case (1) for N < 0
with |N | � 1, since under the CD(ρ, N ) condition with ρ > 0, the spectral-gap
remains bounded below as N < 0 increases to 0, see [31].

As described in Sect. 3.1.2, it is classical that equality in the Lichnerowicz estimate
(3.2) is attained by the n-sphere and n-hemisphere in Cases (1) (and (3)) and by the
n-hemisphere in Case (2), both endowed with the usual Riemannian volume. This
demonstrates the sharpness of the constant N

N−1 when N = n.
For general N ∈ (−∞,−1] ∪ (n,∞], the sharpness may be shown as follows.

Given ρ > 0, set δ = ρ
N−1 and

β :=
{

π

2
√

δ
δ > 0

∞ δ < 0
, α :=

{
−β Case (1)

0 Case (2)
.

Define the following functions of t ∈ [α, β]:

R(t) :=
{
cos(

√
δt) δ > 0

cosh(
√−δt) δ < 0

, �N−1(t) := RN−1(t).

If we extend our setup to include the case of one-dimensional (n = 1) weighted
manifolds, namely the case of the real line endowedwith a density, then it is immediate
to check that ([α, β], |·| , μ = �N−1(t)dt) satisfies the CD(ρ, N ) condition, since

Ricμ,N = −(N − 1)

(
�

1
N−1
N−1

)′′

�
1

N−1
N−1

= −(N − 1)
R′′

R
= (N − 1)δ = ρ.

Note that when n = 1, our constant N
N−1 and Nguyen’s one n−N−1

n−N coincide. As we
have learned fromNguyen, his constant is sharp in the Euclidean setting for any n ≥ 1.
One consequently verifies the sharpness for n = 1 by using the same test function
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used by Nguyen in [37], namely f (t) = d
dt R(t). Indeed, when N < −1 or N > 1 (to

ensure convergence of the integrals below) we have

∫
f (t)dμ =

∫ β

−β

R′(t)RN−1(t)dt = 1

N

∫ β

−β

(RN (t))′dt = 0,

since limt→β RN (t) = 0, and since also f (0) = R′(0) = 0 (so that the Dirichlet
boundary condition at t = 0 is satisfied in Case (2)), we may integrate by parts:

∫
f 2(t)dμ = 1

N

∫ β

α

R′(t)(RN (t))′dt = − 1

N

∫ β

α

R′′(t)RN (t)dt

= ρ

N (N − 1)

∫ β

α

RN+1(t)dt.

On the other hand,

∫
Ric−1

μ,N f ′(t)2dμ = 1

ρ

∫ β

α

(R′′(t))2RN−1(t)dt = ρ

(N − 1)2

∫ β

α

RN+1(t)dt.

Comparing the last two expressions, we conclude the sharpness of the constant N
N−1

for n = 1 in Case (1) when |N | > 1 and in Case (2) when N > 1 (the function f (t)
does not vanish at infinity when N < 0 so this range is excluded in Case (2)). When
N = −1, one uses an appropriately truncated version of the above test function. In
any case, to assert sharpness for a compact weighted manifold with strictly positive
density, we truncate the above construction at a finite βε ∈ (0, β), and let βε tend to
β.

To see the sharpness for n ≥ 2, we proceed by repeating the construction from
[33], which emulates the above 1-dimensional model space on a thin weighted n-
dimensional manifold of revolution. For n ≥ 3, define

�N−n(t) := RN−n(t),

and given ε > 0, consider the n-dimensional manifold M := [α, β] × Sn−1 endowed
with the metric gε and measure με given by

gε := dt2 + ε2R(t)2gSn−1;
με := �(t, θ)dvolgε (t, θ), �(t, θ) = �N−n(t), (t, θ) ∈ [α, β] × Sn−1.

The intuition behind this construction is that when ε > 0 is small enough, the geometry
of (M, gε) will contribute (at least) (n − 1)δ to the generalized Ricci curvature tensor
Ricg,μ,N , and a factor of Rn−1(t) to the density dμε

(
(−∞, t] × Sn−1

)
/dt , whereas

the measure με will contribute (N − n)δgε to the former and a factor of �N−n(t) =
RN−n(t) to the latter, totaling (N − 1)δ = ρ and RN−1(t) = �N−1(t), respectively.
Consequently (M, gε, με) satisfies the CD(ρ, N ) condition for small enough ε > 0,
and its measure projection onto the axis of revolution is cε�N−1(t); the sharpness of

123

Author's personal copy



Brascamp–Lieb-Type Inequalities with Boundary

the constant then follows from our previous one-dimensional analysis. Note that in
Case (2), the boundary component {0} × Sn−1 is totally geodesic and hence satisfies
our boundary curvature assumptions. In practice, when N ≥ n (and thus β < ∞), we
need to ensure that the resulting compact weighted manifold is smooth at its vertices
(at t ∈ {−β, β} in Case (1) and t = β in Case (2)), and this is achieved as in [33]
by gluing appropriate caps. When N ≤ −1 (and thus β = ∞), in order to obtain
a compact manifold as in the formulation of Theorem 3.1, we also need to truncate
the above construction at a finite βε > 0; the resulting boundary {−βε, βε} × Sn−1

turns out to indeed be locally convex since R′(βε) = −R′(−βε) > 0, according to
the calculation in [33]. The construction is even more complicated for the case n = 2;
we refer to [33] for further precise details and rigorous justifications.

3.3 Proof of Theorem 3.1

Proof of Theorem 3.1 Plugging (2.4) into the generalized Reilly formula, we obtain
for any u ∈ SN (M):

N − 1

N

∫
M

(Lu)2dμ ≥
∫

M

〈
Ricμ,N ∇u,∇u

〉
dμ

+
∫

∂ M
Hμ(uν)

2dμ∂ M +
∫

∂ M
〈II∂ M ∇∂ M u,∇∂ M u〉 dμ∂ M

− 2
∫

∂ M
〈∇∂ M uν,∇∂ M u〉 dμ∂ M . (3.3)

Recall that this remains valid for u ∈ S0(M) if u or uν are constant on ∂ M . Lastly,
note that if Lu = f in M with f ∈ C1(M) and u ∈ S0(M), then

∫
M

f 2dμ =
∫

M
(Lu)2dμ =

∫
M

f Lu dμ = −
∫

M
〈∇ f,∇u〉 dμ +

∫
∂ M

f uνdμ∂ M .

(3.4)

Consequently, by Cauchy–Schwarz

∫
M

f 2dμ ≤
(∫

M

〈
Ricμ,N ∇u,∇u

〉
dμ

)1/2 (∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ

)1/2

+
∫

∂ M
f uνdμ∂ M . (3.5)

We now proceed to treat the individual three cases.

(1) Assume that
∫

M f dμ = 0 and solve the Neumann Poisson problem for u ∈
S0(M):

Lu = f on M, uν ≡ 0 on ∂ M;
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note that the compatibility condition
∫
∂ M uνdμ∂ M = ∫

M f dμ = 0 is indeed
satisfied, so a solution exists. Since uν |∂ M ≡ 0 and II∂ M ≥ 0, we obtain from
(3.3):

N

N − 1

∫
M

〈
Ricμ,N ∇u,∇u

〉
dμ ≤

∫
M

(Lu)2dμ =
∫

M
f 2dμ. (3.6)

Plugging this back into (3.5) and using that uν ≡ 0 yields the assertion of Case
(1).

(2) Assume that f |∂ M ≡ 0 and solve the Dirichlet Poisson problem for u ∈ S0(M):

Lu = f on M, u ≡ 0 on ∂ M.

Observe that (3.6) still holds since u|∂ M ≡ 0 and Hμ ≥ 0. Plugging (3.6) back
into (3.5) and using that f |∂ M ≡ 0 yields the assertion of Case (2).

(3) Assume that
∫

M f dμ = 0 and solve the Dirichlet Poisson problem:

Lu = f on M, u ≡ 0 on ∂ M.

The difference with the previous case is that the
∫

f uνdμ∂ M term in (3.4) does
not vanish since we do not assume that f |∂ M ≡ 0. Consequently, we cannot
afford to omit the positive contribution of

∫
∂ M Hμ(uν)

2dμ∂ M in (3.3):

N − 1

N

∫
M

f 2dμ ≥
∫

M

〈
Ricμ,N ∇u,∇u

〉
dμ +

∫
∂ M

Hμu2
νdμ∂ M .

Applying the duality argument, this time in additive form, we obtain for any
λ > 0:

∫
M

f 2dμ = −
∫

M
〈∇ f,∇u〉 dμ +

∫
∂ M

f uνdμ∂ M

≤ 1

2λ

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ + λ

2

∫
M

〈
Ricμ,N ∇u,∇u

〉
dμ

+
∫

∂ M
f uνdμ∂ M .

Since
∫
∂ M uνdμ∂ M = ∫

M f dμ = 0, we may as well replace the last term
by

∫
∂ M ( f − C)uνdμ∂ M . Plugging in the previous estimate and applying the

Cauchy–Schwarz inequality again to eliminate uν , we obtain
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(
1 − λ

2

N − 1

N

)∫
M

f 2dμ

≤ 1

2λ

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ +

∫
∂ M

( f − C)uνdμ∂ M − λ

2

∫
∂ M

Hμu2
νdμ∂ M

≤ 1

2λ

∫
M

〈
Ric−1

μ,N ∇ f,∇ f
〉
dμ + 1

2λ

∫
∂ M

1

Hμ

( f − C)2dμ∂ M .

Multiplying by 2λ and using the optimal λ = N
N−1 , we obtain the assertion of

Case (3).

4 Generalized Veysseire Spectral-Gap Inequality on Convex M

The next result was recently obtained by L. Veysseire [47] for compact weighted-
manifolds without boundary. It may be thought of as a spectral-gap version of the
Generalized Brascamp–Lieb inequality. We provide an extension in the case that M
is locally convex.

Theorem 4.1 (Veysseire spectral-gap inequality with locally convex boundary)
Assume that as 2-tensors on M:

Ricμ ≥ ρg,

for some measurable function ρ : M → R+. Then for any f ∈ C1(M):

(1) (Neumann Veysseire inequality on locally convex domain)
Assume that II∂ M ≥ 0 (M is locally convex). Then

Varμ( f ) ≤ −
∫

M

1

ρ
dμ

∫
M

|∇ f |2 dμ.

Remark 4.2 We do not know whether the analogous results for Dirichlet or Neumann
boundary conditions (Cases (2) and (3) in the previous section) hold on a generalized
mean-convex domain, as the proof given below breaks down in those cases.

Remark 4.3 As in Veysseire’s work [47], further refinements are possible. For
instance, if in addition the CD(ρ0, N ) condition is satisfied for ρ0 > 0 and 1/N ∈
[−∞, 1/n], then one may obtain an estimate on the corresponding spectral-gap λN

1
of the form:

λN
1 ≥ N

N − 1
ρ0 + 1

−
∫

M
1

ρ−ρ0
dμ

.

As explained in [47], thismay be obtained by using an appropriate convex combination
of the Lichnerowicz estimate (Case (1) of Theorem 1.2 after replacing Ric−1

μ,N with
1/ρ0) and the estimates obtained in this section, with a final application of the Cauchy–
Schwarz inequality. Similarly, it is possible to interpolate between the Lichnerowicz

123

Author's personal copy



A. V. Kolesnikov, E. Milman

estimates and the Dimensional Brascamp–Lieb ones of Theorem 1.2. We leave this to
the interested reader.

Veysseire’s proof in [47] is based on the Bochner formula and the following obser-
vation, valid for any u ∈ C2(M) at any point so that ∇u �= 0:

∥∥∥D2u
∥∥∥ ≥ |∇ |∇u|| . (4.1)

At a point where ∇u = 0, we define |∇ |∇u|| := 0.

Proof of Theorem 4.1 Plugging (4.1) into the generalized Reilly formula and integrat-
ing the

∫
M (Lu)2dμ term by parts, we obtain for any u ∈ SN (M) so that Lu ∈ C1(M):

∫
∂ M

uν Ludμ −
∫

M
〈∇u,∇Lu〉 dμ ≥

∫
M

|∇ |∇u||2 dμ +
∫

M

〈
Ricμ ∇u,∇u

〉
dμ

+
∫

∂ M
Hμ(uν)

2dμ∂ M +
∫

∂ M
〈II∂ M ∇∂ M u,∇∂ M u〉 dμ∂ M

− 2
∫

∂ M
〈∇∂ M uν,∇∂ M u〉 dμ∂ M . (4.2)

Let u ∈ SN (M) denote an eigenfunction of −L with zero Neumann boundary
conditions corresponding to λN

1 , so that in particular Lu = −λN
1 u ∈ C1(M), and

denote h = |∇u| ∈ H1(μ). Applying (4.2) to u, using that II∂ M ≥ 0, and that∫
{h=0} |∇h|2 dμ = 0 for any h ∈ H1(μ), we obtain

λN
1

∫
M

h2dμ ≥
∫

M
|∇h|2 dμ +

∫
M

ρh2dμ.

Applying the Neumann Poincaré inequality to the function h, we obtain

λN
1

∫
M

h2dμ ≥ λN
1

(∫
M

h2dμ − 1

μ(M)

(∫
M

hdμ

)2
)

+
∫

M
ρh2dμ.

It follows by Cauchy–Schwarz that

λN
1 ≥ μ(M)

∫
M ρh2dμ

(
∫

M hdμ)2
≥ μ(M)∫

M
1
ρ
dμ

,

concluding the proof. ��
Remark 4.4 The proof above actually yields ameaningful estimate on the spectral-gap
λN
1 evenwhen II∂ M is negatively bounded from below. However, this estimate depends

on upper bounds on |∇u|, where u is the first non-trivial Neumann eigenfunction, both
in M and on its boundary.
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