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FLAG VARIETIES
AS EQUIVARIANT COMPACTIFICATIONS OF G}

IVAN V. ARZHANTSEV

(Communicated by Harm Derksen)

ABSTRACT. Let G be a semisimple affine algebraic group and P a parabolic
subgroup of G. We classify all flag varieties G/P which admit an action of the
commutative unipotent group G} with an open orbit.

INTRODUCTION

Let G be a connected semisimple affine algebraic group of adjoint type over an
algebraically closed field of characteristic zero and let P be a parabolic subgroup
of G. The homogeneous space G/P is called a (generalized) flag variety. Recall
that G/P is complete and the action of the unipotent radical P, of the opposite
parabolic subgroup P~ on G/P by left multiplication is generically transitive. The
open orbit O of this action is called the big Schubert cell on G/P. Since O is
isomorphic to the affine space A", where n = dim G/P, every flag variety may be
regarded as a compactification of an affine space.

Notice that the affine space A™ has a structure of a vector group or, equivalently,
of the commutative unipotent affine algebraic group GJ. We say that a complete
variety X of dimension n is an equivariant compactification of the group G}, if there
exists a regular action G x X — X with a dense open orbit. A systematic study
of equivariant compactifications of the group G was initiated by B. Hassett and
Yu. Tschinkel in [4]; see also [I0] and [IJ.

In this note we address the question whether a flag variety G/P may be realized
as an equivariant compactification of Gf/. Clearly, this is the case when the group
P, or, equivalently, the group P, is commutative. It is a classical result that
the connected component G of the automorphism group of the variety G/P is a
semisimple group of adjoint type, and G/P = G /Q for some parabolic subgroup
Q C G. In most cases the group G coincides with G, and all exceptions are well
known; see [6], [7, Theorem 7.1], [12, page 118], [3, Section 2. If G # @, we say that
(é, Q) is the covering pair of the exceptional pair (G, P). For a simple group G, the
exceptional pairs are (PSp(2r), P1), (SO(2r+1), P.) and (G2, P;) with the covering
pairs (PSL(2r), P1), (PSO(2r + 2), P,11) and (SO(7), Py) respectively, where PH
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denotes the quotient of the group H by its center and P; is the maximal parabolic
subgroup associated with the ¢th simple root. It turns out that for a simple group
G the condition G # @ implies that the unipotent radical @, is commutative and
P, is not. In particular, in this case G/P is an equivariant compactification of G7.
Our main result states that these are the only possible cases.

Theorem 1. Let G be a connected semisimple group of adjoint type and P a par-
abolic subgroup of G. Then the flag variety G/P is an equivariant compactification
of G™ if and only if for every pair (GW, PM) where G is a simple component of
G and P = GW N P, one of the following conditions holds:

(1) The unipotent radical P is commutative.
(2) The pair (GW, PY) is exceptional.

For the convenience of the reader, we list all pairs (G, P), where G is a simple
group (up to local isomorphism) and P is a parabolic subgroup with a commutative
unipotent radical:

(SL(r+1), P), i =1,...,r; (SO(2r+1), P1); (Sp(2r), P.);
(SO2r), ), i=1,r—1,r; (Eg, B;), i=1,6; (FE7, Py);

see [9, Section 2]. The simple roots {aq,...,a,} are indexed as in [2, Planches
I-IX]. Note that the unipotent radical of P; is commutative if and only if the simple
root ay; occurs in the highest root p with coefficient 1; see [0, Lemma 2.2]. Another
equivalent condition is that the fundamental weight w; of the dual group GV is
minuscule; i.e., the weight system of the simple GY-module V (w;) with the highest
weight w; coincides with the orbit Ww; of the Weyl group W.

1. PROOF OF THEOREM 1

If the unipotent radical P, is commutative, then the action of P, on G/P by
left multiplication is the desired generically transitive G'-action; see, for example,
[5) pp. 22-24]. The same arguments work when for the connected component G of
the automorphism group Aut(G/P) one has G/P = G/Q and the unipotent radical
Q,, is commutative. Since

G/P = GW/PW x . x g8 pH),

where GV, .., G*) are the simple components of the group G, the group G is
isomorphic to the direct product G x ... x G¥); cf. [8, Chapter 4]. Moreover,
Q. = S}) X ... X ng) with Q) = (% N @, Thus the group @, is commutative
if and only if for every pair (G, P(®)) either P&i) is commutative or the pair
(G®, PW) is exceptional.

Conversely, assume that G/P admits a generically transitive G7-action. One
may identify G with a commutative unipotent subgroup H of (~¥, and the flag
variety G/P with G /Q, where @ is a parabolic subgroup of G.

Let T C B be a maximal torus and a Borel subgroup of the group G such that
B C @Q. Consider the root system ® of the tangent algebra g = Lie(é) defined
by the torus T, its decomposition ® = ®+ U ®~ into positive and negative roots
associated with B, the set of simple roots A C T, A = {ay,..., .}, and the root
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decomposition
o= Duwoaote Do
BeD— ped+

where t = Lie(T) is a Cartan subalgebra in g and

gg={r€g:[y,z] =B(y)x for all y € t}

is the root subspace. Set q = Lie(Q) and Ag = {a € A:g_, € q}. For every root
B =aa1 + ...+ ara, define deg(8) = ZaieAQ a;. This gives a Z-grading on the
Lie algebra g :

g= @gk, where tC gy and gg Cgr with k= deg(p).
keZ

In particular,

9= and q, = Po
k>0 k<0
Assume that the unipotent radical @), is not commutative, and consider gz C
[9., 9, ]- For every = € gg \ {0} there exist 2’ € ggr C q,, and 2z’ € gg» C q,, such
that x = [/, 2’]. In this case deg(2’) > deg(z) and deg(z") > deg(z).

Since the subgroup H acts on G /@ with an open orbit, one may conjugate H
and assume that the H-orbit of the point e@ is open in G /Q. This implies that
g =q @b, where h = Lie(H). On the other hand, g = q® q,,. So every element
y € bh may be (uniquely) written as y = y1 + y2, where y1 € ¢, y2 € q,, and
the linear map h — q., y + o, is bijective. Take the elements y,y',y" € b
with yo = x, y4 = 2/, y§ = z”. Since the subgroup H is commutative, one has
[v',y"] = 0. Thus

Wi+ o0 el = [y i)+ e, wi] + [, 2] + [va. w2l = 0.
But
o, v5] == and [y5, 0]+ (w1, v5) + Wb sl € €D ok
k>deg(x)
This contradiction shows that the group @7, is commutative. As we have seen, the
latter condition means that for every pair (G(i), P(i)) either the unipotent radical

qui) is commutative or the pair (G, P(®)) is exceptional. The proof of Theorem 1
is completed.

2. CONCLUDING REMARKS

If a flag variety G/ P is an equivariant compactification of G, then it is natural

to ask for a classification of all generically transitive G?-actions on G/ P up to equi-
variant isomorphism. Consider the projective space P* = SL(n + 1)/P;. In [, a
correspondence between equivalence classes of generically transitive GJ'-actions on
P™ and isomorphism classes of local (associative, commutative) algebras of dimen-
sion n + 1 was established. This correspondence together with classification results
from [I1] yields that for n > 6 the number of equivalence classes of generically tran-
sitive G"-actions on P" is infinite; see [4, Section 3]. On the contrary, a generically
transitive G”-action on the nondegenerate projective quadric @, = SO(n+2)/P;
is unique [10, Theorem 4]. It would be interesting to study the same problem for
the Grassmannians Gr(k,r + 1) = SL(r + 1)/ Py, where 2 < k <r — 1.
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