BRIEF COMMUNICATIONS

FINITE-DIMENSIONAL SUBALGEBRAS IN POLYNOMIAL LIE ALGEBRAS OF RANK ONE

I. V. Arzhantsev. E. A. Makedonskii. and A. P. Petravchuk²

UDC 512.554

Let $W_n(\mathbb{K})$ be the Lie algebra of derivations of the polynomial algebra $\mathbb{K}[X] := \mathbb{K}[x_1, \dots, x_n]$ over an algebraically closed field \mathbb{K} of characteristic zero. A subalgebra $L \subseteq W_n(\mathbb{K})$ is called polynomial if it is a submodule of the $\mathbb{K}[X]$ -module $W_n(\mathbb{K})$. We prove that the centralizer of every nonzero element in L is abelian, provided that L is of rank one. This fact allows one to classify finite-dimensional subalgebras in polynomial Lie algebras of rank one.

Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero and let $\mathbb{K}[X] := \mathbb{K}[x_1, \dots, x_n]$ be the polynomial algebra over \mathbb{K} . Recall that a *derivation* of $\mathbb{K}[X]$ is a linear operator $D: \mathbb{K}[X] \to \mathbb{K}[X]$ such that

$$D(fg) = D(f)g + fD(g)$$
 for all $f, g \in \mathbb{K}[X]$.

Every derivation of the algebra $\mathbb{K}[X]$ has the form

$$P_1 \frac{\partial}{\partial x_1} + \ldots + P_n \frac{\partial}{\partial x_n}$$
 for some $P_1, \ldots, P_n \in \mathbb{K}[X]$.

A derivation D can be extended to the derivation \overline{D} of the field of rational functions $\mathbb{K}(X) := \mathbb{K}(x_1, \dots, x_n)$ as follows:

$$\overline{D}\left(\frac{f}{g}\right) := \frac{D(f)g - fD(g)}{g^2}.$$

The kernel S of \overline{D} is an algebraically closed subfield of $\mathbb{K}(X)$ (see Lemma 2.1 in [6]).

Denote the Lie algebra of all derivations of $\mathbb{K}[X]$ with respect to the standard commutator by $W_n(\mathbb{K})$. The study of the structure of the Lie algebra $W_n(\mathbb{K})$ and of its subalgebras is an important problem arising in various contexts (note that, in the case where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, we have the Lie algebra $W_n(\mathbb{K})$ of all vector fields with polynomial coefficients on \mathbb{R}^n or \mathbb{C}^n). Since $W_n(\mathbb{K})$ is a free $\mathbb{K}[X]$ -module, with basis $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$, it

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 63, No. 5, pp. 708-712, May, 2011. Original article submitted May 18, 2010.

¹ Moscow State University, Moscow, Russia.

² Shevchenko Kyiv National University, Kyiv, Ukraine.

is natural to consider the subalgebras $L \subseteq W_n(\mathbb{K})$ that are $\mathbb{K}[X]$ -submodules. Following the work of Buchstaber and Leykin [1], we call such subalgebras *polynomial Lie algebras*. In [1], the polynomial Lie algebras of maximal rank were considered. Earlier, Jordan studied the subalgebras of the Lie algebra $\operatorname{Der}(R)$ for a commutative ring R that are R-submodules in the R-module $\operatorname{Der}(R)$ (see [4]).

In this note, we study polynomial Lie algebras L of rank one. In Sec. 2, we prove that the centralizer of every nonzero element in L is abelian. Clearly, this property is inherited by any subalgebra in L. It is not difficult to describe all finite-dimensional Lie algebras with this property (see Proposition 2). In Theorem 1, we give a classification of finite-dimensional subalgebras in polynomial Lie algebras of rank one: every such subalgebra is either abelian, or solvable with an abelian ideal of codimension one and trivial center, or isomorphic to $\mathfrak{Sl}_2(\mathbb{K})$. Moreover, for all these three types, we construct an explicit realization in some L. Applying the obtained results to the Lie algebra $W_1(\mathbb{K})$, we give a description of all finite-dimensional subalgebras of $W_1(\mathbb{K})$ (Proposition 3). In the case $\mathbb{K} = \mathbb{C}$, this description can easily be deduced from the classic results of Lie (see [5]) about realizations (up to local diffeomorphisms) of finite-dimensional Lie algebras by vector fields on the complex line. In [5], Lie also classified analogous realizations on the complex plane and on the real line. On the real plane, such a classification was given in [2].

1. Lie Algebras with Abelian Centralizers

We begin with an elementary lemma on submodules of a free module. Let A be a unique factorization domain and let $N = Ae_1 \oplus \ldots \oplus Ae_n$ be a free A-module. An element $x \in N$ is said to be *reduced* if the condition x = ax' with $a \in A$ and $x' \in N$ implies that the element a is invertible in A.

Lemma 1. For every submodule $M \subseteq N$ of rank one, there exist an ideal $I \subseteq A$ and a reduced element $m_0 \in N$ such that $M = Im_0$. The submodule M defines the element m_0 uniquely up to multiplication by an invertible element of A.

Proof. Take a nonzero element $m \in M$, $m = a_1e_1 + \ldots + a_ne_n$. Let a be the greatest common divisor of a_1, \ldots, a_n , and $m_0 = a_1^0e_1 + \ldots + a_n^0e_n$, where $a_i^0 = a_i/a$. Since M has rank one, for every nonzero $m' \in M$ there are nonzero $c, d \in A$ such that cm + dm' = 0. Then $acm_0 + dm' = 0$. If $m' = a_1'e_1 + \ldots + a_n'e_n$, then $aca_i^0 + da_i' = 0$ for all $i = 1, \ldots, n$. If d does not divide ac, then some prime $p \in A$ divides all elements a_1^0, \ldots, a_n^0 . However, the elements a_1^0, \ldots, a_n^0 are coprime, a contradiction. Thus, m' is equal to bm_0 with b = ac/d. This proves that all elements of M have the form bm_0 for some $b \in A$. Clearly, all elements $b \in A$ such that $bm_0 \in M$ form an ideal $bm_0 \in A$. The second assertion follows from the fact that a free a-module has no torsion.

Lemma 1 is proved.

We say that a derivation $P_1 \frac{\partial}{\partial x_1} + \ldots + P_n \frac{\partial}{\partial x_n}$ is *reduced* if the polynomials P_1, \ldots, P_n are coprime. Setting $A = \mathbb{K}[X]$ and $N = W_n(\mathbb{K})$, we get the following version of Lemma 1:

Lemma 2. For every submodule $M \subseteq W_n(\mathbb{K})$ of rank one, there exist an ideal $I \subseteq \mathbb{K}[X]$ and a reduced derivation $D_0 \in W_n(\mathbb{K})$ such that $M = ID_0$. The submodule M defines the derivation D_0 uniquely up to a nonzero scalar.

We now study the centralizers of elements in a polynomial Lie algebra of rank one.

Proposition 1. Let L be a subalgebra of the Lie algebra $W_n(\mathbb{K})$. Assume that L is a submodule of rank one in the $\mathbb{K}[X]$ -module $W_n(\mathbb{K})$. Then the centralizer of any nonzero element in L is abelian.

Proof. According to Lemma 2, the subalgebra L has the form ID_0 for some reduced derivation $D_0 \in W_n(\mathbb{K})$. Denote the extension of D_0 to the field $\mathbb{K}(X)$ by $\overline{D_0}$ and let S be the kernel of $\overline{D_0}$. Take any nonzero element $fD_0 \in L$, $f \in I$, and consider its centralizer $C = C_L(fD_0)$. For every nonzero element $gD_0 \in C$, one has

$$[fD_0, gD_0] = (fD_0(g) - gD_0(f))D_0 = 0.$$

This yields $D_0(f)g - fD_0(g) = 0$, whence $\overline{D_0}(f/g) = 0$ and $f/g \in S$. Take another nonzero element $hD_0 \in C$. By the same arguments, we get $f/h \in S$. This shows that $g/h \in S$. The latter condition is equivalent to $[gD_0, hD_0] = 0$, and so the subalgebra C is abelian.

Proposition 1 is proved.

The next proposition seems to be known, but, having no precise reference, we supply it with a complete proof. By Z(F) we denote the center of a Lie algebra F.

Proposition 2. Let F be a finite-dimensional Lie algebra over an algebraically closed field \mathbb{K} of characteristic zero. Assume that the centralizers of all nonzero elements in F are abelian. Then either F is abelian, or $F \cong A \setminus \langle b \rangle$, where $b \in F$, $A \subset F$ is an abelian ideal, and Z(F) = 0, or $F \cong \mathfrak{sl}_2(\mathbb{K})$.

Proof. If the centralizers of all nonzero elements of a Lie algebra F are abelian, then the same property holds for every subalgebra of F. Assume that F is not abelian and the centralizers of all elements of F are abelian. Then the center Z(F) is trivial.

Case 1. F is solvable. Then F contains a noncentral one-dimensional ideal $\langle a \rangle$ (see [3] (II.4.1, Corollary B)). Let A be the centralizer of a in F. Clearly, A is an abelian ideal of codimension one in F. Then $F \cong A \setminus \langle b \rangle$ for any $b \in F \setminus A$.

Case 2. F is semisimple. Then $F = F_1 \oplus \ldots \oplus F_k$ is the sum of simple ideals. Since the centralizer of every element $x \in F_1$ contains $F_2 \oplus \ldots \oplus F_k$, we conclude that F is simple. Let F be a Cartan subalgebra in F and let $F = N_- \oplus H \oplus N_+$ be the Cartan decomposition with opposite maximal nilpotent subalgebras F and F in F (see [3] (II.8.1)). Since the centralizer of every element in F is abelian, either the subalgebra F is abelian or F is abelian or F is abelian. This is the case if and only if the root system of the Lie algebra F has rank one, or, equivalently, $F \cong \mathfrak{Sl}_2(\mathbb{K})$.

Case 3. F is neither solvable nor semisimple. Consider the Levi decomposition $F = R \setminus G$, where G is a maximal semisimple subalgebra and R is the radical of F. According to Case 2, the algebra G is isomorphic to $\mathfrak{Sl}_2(\mathbb{K})$. Let A denote the ideal of R that coincides with R if R is abelian, and is given by A = [R, R] otherwise. According to Case 1, the ideal A is abelian. Consider the decomposition $A = A_1 \oplus \ldots \oplus A_s$ into simple G-modules with respect to the adjoint representation. If $\dim A_1 = 1$, then the centralizer of a nonzero element in A_1 contains G, a contradiction. Suppose that $\dim A_1 \geq 2$. Fix an \mathfrak{Sl}_2 -triple $\{e,h,f\}$ in G and take the highest vector $x \in A_1$ with respect to the Borel subalgebra $\langle e,h\rangle$. Then [e,x]=0 and the centralizer $C_F(x)$ contains the subalgebra $A \setminus \langle e \rangle$. The latter is not abelian because the adjoint action of the element e on A_1 is not trivial. This contradiction concludes the proof.

2. Main Results

In this section, we obtain a classification of finite-dimensional subalgebras in polynomial Lie algebras of rank one.

Theorem 1. Let L be a polynomial Lie algebra of rank one in $W_n(\mathbb{K})$, where \mathbb{K} is an algebraically closed field of characteristic zero, and let $F \subset L$ be a finite-dimensional subalgebra. Then one of the following conditions is satisfied:

- (1) F is abelian;
- (2) $F \cong A \setminus \langle b \rangle$, where $A \subset F$ is an abelian ideal and [b, a] = a for every $a \in A$;
- (3) F is a three-dimensional simple Lie algebra, i.e., $F \cong \mathfrak{sl}_2(\mathbb{K})$.

Proof. According to Propositions 1 and 2, every finite-dimensional subalgebra $F \subset L$ either is abelian, or has the form $A \setminus \langle b \rangle$, or is isomorphic to $\mathfrak{sl}_2(\mathbb{K})$. It remains to prove that, in the second case, we can find $b \in F$ with [b,a]=a for every $a \in A$. Take any element b with $F=A \setminus \langle b \rangle$.

Let us prove that the operator ad(b) is diagonalizable. Assuming the contrary, let $a_0, a_1 \in A$ be nonzero elements such that $[b, a_1] = \lambda a_1 + a_0$ and $[b, a_0] = \lambda a_0$ for some $\lambda \in \mathbb{K}$. According to Lemma 2, the subalgebra L has the form ID_0 for some ideal $I \subseteq \mathbb{K}[X]$ and some reduced derivation $D_0 \in W_n(\mathbb{K})$. We set $a_0 = fD_0$, $a_1 = gD_0$, and $b = hD_0$, $f, g, h \in I$. The relations $[b, a_1] = \lambda a_1 + a_0$, $[b, a_0] = \lambda a_0$, and $[a_0, a_1] = 0$ are equivalent to

$$hD_0(g) - gD_0(h) = \lambda g + f,$$
 $hD_0(f) - fD_0(h) = \lambda f,$ $fD_0(g) - gD_0(f) = 0.$

Multiplying the second relation by g, we get

$$hgD_0(f) - fgD_0(h) = \lambda fg.$$

This and the third relation imply that

$$hfD_0(g) - fgD_0(h) = \lambda fg \Rightarrow hD_0(g) - gD_0(h) = \lambda g.$$

Together with the first relation, this gives f = 0, a contradiction.

Now assume that $[b, a_1] = \lambda_1 a_1$ and $[b, a_2] = \lambda_2 a_2$ for some $\lambda_1, \lambda_2 \in \mathbb{K}$. If $a_1 = fD_0$, $a_2 = gD_0$, and $b = hD_0$, then

$$hD_0(f) - fD_0(h) = \lambda_1 f$$
, $hD_0(g) - gD_0(h) = \lambda_2 g$, $fD_0(g) - gD_0(f) = 0$.

Consequently,

$$ghD_0(f) = gf(\lambda_1 + D_0(h)) = fhD_0(g) = fg(\lambda_2 + D_0(h)).$$

This proves that $\lambda_1 = \lambda_2$, and, hence, ad(b) is a scalar operator. Since F is not abelian, we conclude that ad(b) is nonzero, and, multiplying b by a suitable scalar, we may assume that ad(b) is the identical operator.

Theorem 1 is proved.

Let us show that all three possibilities indicated in Theorem 1 are realizable. Take a derivation $D_0 \in W_n(\mathbb{K})$ such that there exist nonconstant polynomials $p, q \in \mathbb{K}[X]$ with $D_0(p) = 0$ and $D_0(q) = 1$. For example, one may take $p = x_1, q = x_2$, and

$$D_0 = \frac{\partial}{\partial x_2} + P_3 \frac{\partial}{\partial x_3} + \ldots + P_n \frac{\partial}{\partial x_n}$$

with arbitrary $P_3, \ldots, P_n \in \mathbb{K}[X]$.

The subalgebra $\langle D_0, pD_0, \dots, p^{m-1}D_0 \rangle$ is an *m*-dimensional abelian subalgebra in $\mathbb{K}[X]D_0$ for every positive integer m.

The subalgebra $A \setminus \langle b \rangle$ with dim A = m may be obtained by setting $A = \langle D_0, pD_0, \dots, p^{m-1}D_0 \rangle$ and $b = -qD_0$. Indeed,

$$[-qD_0, f(p)D_0] = (-D_0(f(p)) + f(p)D_0(q))D_0 = f(p)D_0$$
 for every $f(p) \in \mathbb{K}[p]$.

Finally, the derivations $e = q^2 D_0$, $h = 2q D_0$, and $f = -D_0$ form an \mathfrak{sl}_2 -triple in $\mathbb{K}[X]D_0$.

Remark 1. The structure of finite-dimensional subalgebras in a polynomial Lie algebra $L = ID_0$ depends on properties of the derivation D_0 . In particular, if $Ker(\overline{D_0}) = \mathbb{K}$, then all abelian subalgebras in $\mathbb{K}[X]D_0$ are one-dimensional.

Our last result concerns finite-dimensional subalgebras in the Lie algebra $W_1(\mathbb{K})$. According to Lemma 2, every polynomial Lie algebra in $W_1(\mathbb{K})$ has the form

$$L = q(x)\mathbb{K}[x]\frac{\partial}{\partial x}$$

with some polynomial $q(x) \in \mathbb{K}[x]$.

Proposition 3. Let

$$L = q(x)\mathbb{K}[x]\frac{\partial}{\partial x}$$

be a polynomial algebra. Then the following assertions are true:

- 1. If $\deg q(x) \geq 2$, then every finite-dimensional Lie subalgebra in L is one-dimensional.
- 2. If $\deg q(x) = 1$, then every finite-dimensional Lie subalgebra in L either is one-dimensional or coincides with

$$F_k = \left\langle q(x) \frac{\partial}{\partial x}, q(x)^k \frac{\partial}{\partial x} \right\rangle$$

for some k > 2.

3. If $q(x) = \text{const} \neq 0$ (i.e., $L = W_1(\mathbb{K})$), then every finite-dimensional Lie subalgebra in L either is one-dimensional, or coincides with

$$F_{k,\beta} = \left\langle (x+\beta)\frac{\partial}{\partial x}, (x+\beta)^k \frac{\partial}{\partial x} \right\rangle$$

for some $\beta \in \mathbb{K}$ and $k = 0, 2, 3, \ldots$, or is a three-dimensional subalgebra

$$F(\beta) = \left\langle \frac{\partial}{\partial x}, (x+\beta) \frac{\partial}{\partial x}, (x+\beta)^2 \frac{\partial}{\partial x} \right\rangle,$$

where $\beta \in \mathbb{K}$.

Proof. Let us describe all two-dimensional subalgebras in $W_1(\mathbb{K})$. Every such subalgebra has the form

$$\left\langle f(x)\frac{\partial}{\partial x}, g(x)\frac{\partial}{\partial x} \right\rangle$$
 with $f(x), g(x) \in \mathbb{K}[x]$ and $fg' - f'g = g$. (*)

If $\deg(f) \geq 2$, then, looking at the highest terms of fg' and f'g, we get $\deg(f) = \deg(g)$. However, the polynomials $(f + \lambda g, g)$ satisfy relation (*) for every $\lambda \in \mathbb{K}$, and we may thus assume that f is linear. Each root of g is also a root of f, and so g is proportional to f^k for some $k = 0, 2, 3, \ldots$. This observation, together with Theorem 1 and Remark 1, proves all the assertions.

Proposition 3 is proved.

If we consider the realizations obtained in Proposition 3 up to automorphisms of the polynomial ring $\mathbb{K}[x]$, then one can take q(x) = x in the case $\deg q(x) = 1$ for the Lie algebra F_k , and $\beta = 0$ in the case $q(x) = \cos t \neq 0$.

The first author was supported by the RFBR (grant No. 09-01-90416-Ukr-f-a). The third author was supported by the DFFD (grant No. F28.1/026).

REFERENCES

- 1. V. M. Buchstaber and D. V. Leykin, "Polynomial Lie algebras," Funkts. Anal. Prilozhen., 36, No. 4, 18–34 (2002); English translation: Funct. Anal. Appl., 36, No. 4, 267–280 (2002).
- 2. A. González-López, N. Kamran, and P. J. Olver, "Lie algebras of vector fields in the real plane," *Proc. London Math. Soc., Third Ser.*, **64**, No. 2, 339–368 (1992).
- 3. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York (1972).
- 4. D. A. Jordan, "On the ideals of a Lie algebra of derivations," J. London Math. Soc., 33, No. 1, 33–39 (1986).
- 5. S. Lie, Theorie der Transformationsgruppen, Vols. 1–3, Leipzig (1888, 1890, 1893).
- 6. A. Nowicki and M. Nagata, "Rings of constants for k-derivations of $k[x_1, \ldots, x_n]$," J. Math. Kyoto Univ., 28, No. 1, 111–118 (1988).