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BRIEF COMMUNICATIONS

FINITE-DIMENSIONAL SUBALGEBRAS IN POLYNOMIAL LIE ALGEBRAS
OF RANK ONE

I. V. Arzhantsev,1 E. A. Makedonskii,2 and A. P. Petravchuk2 UDC 512.554

Let Wn.K/ be the Lie algebra of derivations of the polynomial algebra KŒX� WD KŒx1; : : : ; xn� over an
algebraically closed field K of characteristic zero. A subalgebra L � Wn.K/ is called polynomial if
it is a submodule of the KŒX�-module Wn.K/: We prove that the centralizer of every nonzero element
in L is abelian, provided that L is of rank one. This fact allows one to classify finite-dimensional
subalgebras in polynomial Lie algebras of rank one.

Introduction

Let K be an algebraically closed field of characteristic zero and let KŒX� WD KŒx1; : : : ; xn� be the polynomial
algebra over K: Recall that a derivation of KŒX� is a linear operator DWKŒX�! KŒX� such that

D.fg/ D D.f /g C fD.g/ for all f; g 2 KŒX�:

Every derivation of the algebra KŒX� has the form

P1
@

@x1
C : : :C Pn

@

@xn
for some P1; : : : ; Pn 2 KŒX�:

A derivation D can be extended to the derivation D of the field of rational functions K.X/ WD K.x1; : : : ; xn/ as
follows:

D

�
f

g

�
WD

D.f /g � fD.g/

g2
:

The kernel S of D is an algebraically closed subfield of K.X/ (see Lemma 2.1 in [6]).
Denote the Lie algebra of all derivations of KŒX� with respect to the standard commutator by Wn.K/ . The

study of the structure of the Lie algebra Wn.K/ and of its subalgebras is an important problem arising in various
contexts (note that, in the case where K D R or K D C; we have the Lie algebra Wn.K/ of all vector fields

with polynomial coefficients on Rn or Cn/: Since Wn.K/ is a free KŒX�-module, with basis
@

@x1
; : : : ;

@

@xn
; it
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is natural to consider the subalgebras L � Wn.K/ that are KŒX�-submodules. Following the work of Buchstaber
and Leykin [1], we call such subalgebras polynomial Lie algebras. In [1], the polynomial Lie algebras of maximal
rank were considered. Earlier, Jordan studied the subalgebras of the Lie algebra Der .R/ for a commutative ring R
that are R-submodules in the R-module Der .R/ (see [4]).

In this note, we study polynomial Lie algebras L of rank one. In Sec. 2, we prove that the centralizer of every
nonzero element in L is abelian. Clearly, this property is inherited by any subalgebra in L: It is not difficult
to describe all finite-dimensional Lie algebras with this property (see Proposition 2). In Theorem 1, we give a
classification of finite-dimensional subalgebras in polynomial Lie algebras of rank one: every such subalgebra is
either abelian, or solvable with an abelian ideal of codimension one and trivial center, or isomorphic to sl2.K/:
Moreover, for all these three types, we construct an explicit realization in some L: Applying the obtained results to
the Lie algebra W1.K/; we give a description of all finite-dimensional subalgebras of W1.K/ (Proposition 3). In
the case K D C; this description can easily be deduced from the classic results of Lie (see [5]) about realizations
(up to local diffeomorphisms) of finite-dimensional Lie algebras by vector fields on the complex line. In [5],
Lie also classified analogous realizations on the complex plane and on the real line. On the real plane, such a
classification was given in [2].

1. Lie Algebras with Abelian Centralizers

We begin with an elementary lemma on submodules of a free module. Let A be a unique factorization domain
and let N D Ae1 ˚ : : : ˚ Aen be a free A-module. An element x 2 N is said to be reduced if the condition
x D ax0 with a 2 A and x0 2 N implies that the element a is invertible in A:

Lemma 1. For every submodule M � N of rank one, there exist an ideal I � A and a reduced element
m0 2 N such that M D Im0: The submodule M defines the element m0 uniquely up to multiplication by an
invertible element of A:

Proof. Take a nonzero element m 2M; m D a1e1 C : : :C anen: Let a be the greatest common divisor of
a1; : : : ; an; and m0 D a01e1C : : :Ca

0
nen; where a0i D ai=a: Since M has rank one, for every nonzero m0 2M

there are nonzero c; d 2 A such that cmCdm0 D 0: Then acm0Cdm0 D 0: If m0 D a01e1C : : :Ca
0
nen; then

aca0i C da
0
i D 0 for all i D 1; : : : ; n: If d does not divide ac; then some prime p 2 A divides all elements

a01; : : : ; a
0
n: However, the elements a01; : : : ; a

0
n are coprime, a contradiction. Thus, m0 is equal to bm0 with

b D ac=d: This proves that all elements of M have the form bm0 for some b 2 A: Clearly, all elements b 2 A
such that bm0 2 M form an ideal I of A: The second assertion follows from the fact that a free A-module has
no torsion.

Lemma 1 is proved.

We say that a derivation P1
@

@x1
C : : : C Pn

@

@xn
is reduced if the polynomials P1; : : : ; Pn are coprime.

Setting A D KŒX� and N D Wn.K/; we get the following version of Lemma 1:

Lemma 2. For every submodule M � Wn.K/ of rank one, there exist an ideal I � KŒX� and a reduced
derivation D0 2 Wn.K/ such that M D ID0: The submodule M defines the derivation D0 uniquely up to a
nonzero scalar.

We now study the centralizers of elements in a polynomial Lie algebra of rank one.

Proposition 1. Let L be a subalgebra of the Lie algebra Wn.K/: Assume that L is a submodule of rank
one in the KŒX�-module Wn.K/: Then the centralizer of any nonzero element in L is abelian.
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Proof. According to Lemma 2, the subalgebra L has the form ID0 for some reduced derivation D0 2

Wn.K/: Denote the extension of D0 to the field K.X/ by D0 and let S be the kernel of D0: Take any nonzero
element fD0 2 L; f 2 I; and consider its centralizer C D CL.fD0/: For every nonzero element gD0 2 C;
one has

ŒfD0; gD0� D .fD0.g/ � gD0.f //D0 D 0:

This yields D0.f /g � fD0.g/ D 0; whence D0.f =g/ D 0 and f=g 2 S: Take another nonzero element
hD0 2 C: By the same arguments, we get f=h 2 S: This shows that g=h 2 S: The latter condition is equivalent
to ŒgD0; hD0� D 0; and so the subalgebra C is abelian.

Proposition 1 is proved.

The next proposition seems to be known, but, having no precise reference, we supply it with a complete proof.
By Z.F / we denote the center of a Lie algebra F:

Proposition 2. Let F be a finite-dimensional Lie algebra over an algebraically closed field K of charac-
teristic zero. Assume that the centralizers of all nonzero elements in F are abelian. Then either F is abelian, or
F Š Ah hbi; where b 2 F; A � F is an abelian ideal, and Z.F / D 0; or F Š sl2.K/:

Proof. If the centralizers of all nonzero elements of a Lie algebra F are abelian, then the same property holds
for every subalgebra of F: Assume that F is not abelian and the centralizers of all elements of F are abelian.
Then the center Z.F / is trivial.

Case 1. F is solvable. Then F contains a noncentral one-dimensional ideal hai (see [3] (II.4.1, Corol-
lary B)). Let A be the centralizer of a in F: Clearly, A is an abelian ideal of codimension one in F: Then
F Š Ah hbi for any b 2 F n A:

Case 2. F is semisimple. Then F D F1 ˚ : : : ˚ Fk is the sum of simple ideals. Since the centralizer of
every element x 2 F1 contains F2 ˚ : : :˚ Fk; we conclude that F is simple. Let H be a Cartan subalgebra
in F and let F D N�˚H ˚NC be the Cartan decomposition with opposite maximal nilpotent subalgebras N�
and NC in F (see [3] (II.8.1)). Since the centralizer of every element in NC is abelian, either the subalgebra
NC is abelian or Z.NC/ D 0: The second possibility is excluded because NC is nilpotent. Thus, NC is abelian.
This is the case if and only if the root system of the Lie algebra F has rank one, or, equivalently, F Š sl2.K/:

Case 3. F is neither solvable nor semisimple. Consider the Levi decomposition F D R h G; where G is
a maximal semisimple subalgebra and R is the radical of F: According to Case 2, the algebra G is isomorphic
to sl2.K/: Let A denote the ideal of R that coincides with R if R is abelian, and is given by A D ŒR;R�

otherwise. According to Case 1, the ideal A is abelian. Consider the decomposition A D A1 ˚ : : : ˚ As into
simple G-modules with respect to the adjoint representation. If dimA1 D 1; then the centralizer of a nonzero
element in A1 contains G; a contradiction. Suppose that dimA1 � 2: Fix an sl2-triple fe; h; f g in G and
take the highest vector x 2 A1 with respect to the Borel subalgebra he; hi: Then Œe; x� D 0 and the centralizer
CF .x/ contains the subalgebra Ah hei: The latter is not abelian because the adjoint action of the element e on
A1 is not trivial. This contradiction concludes the proof.

2. Main Results

In this section, we obtain a classification of finite-dimensional subalgebras in polynomial Lie algebras of rank
one.
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Theorem 1. Let L be a polynomial Lie algebra of rank one in Wn.K/; where K is an algebraically closed
field of characteristic zero, and let F � L be a finite-dimensional subalgebra. Then one of the following condi-
tions is satisfied:

(1) F is abelian;

(2) F Š Ah hbi; where A � F is an abelian ideal and Œb; a� D a for every a 2 AI

(3) F is a three-dimensional simple Lie algebra, i.e., F Š sl2.K/:

Proof. According to Propositions 1 and 2, every finite-dimensional subalgebra F � L either is abelian, or
has the form Ah hbi; or is isomorphic to sl2.K/: It remains to prove that, in the second case, we can find b 2 F
with Œb; a� D a for every a 2 A: Take any element b with F D Ah hbi:

Let us prove that the operator ad.b/ is diagonalizable. Assuming the contrary, let a0; a1 2 A be nonzero
elements such that Œb; a1� D �a1 C a0 and Œb; a0� D �a0 for some � 2 K: According to Lemma 2, the
subalgebra L has the form ID0 for some ideal I � KŒX� and some reduced derivation D0 2 Wn.K/: We set
a0 D fD0; a1 D gD0; and b D hD0; f; g; h 2 I: The relations Œb; a1� D �a1 C a0; Œb; a0� D �a0; and
Œa0; a1� D 0 are equivalent to

hD0.g/ � gD0.h/ D �g C f; hD0.f / � fD0.h/ D �f; fD0.g/ � gD0.f / D 0:

Multiplying the second relation by g; we get

hgD0.f / � fgD0.h/ D �fg:

This and the third relation imply that

hfD0.g/ � fgD0.h/ D �fg) hD0.g/ � gD0.h/ D �g:

Together with the first relation, this gives f D 0; a contradiction.
Now assume that Œb; a1� D �1a1 and Œb; a2� D �2a2 for some �1; �2 2 K: If a1 D fD0; a2 D gD0; and

b D hD0; then

hD0.f / � fD0.h/ D �1f; hD0.g/ � gD0.h/ D �2g; fD0.g/ � gD0.f / D 0:

Consequently,

ghD0.f / D gf .�1 CD0.h// D f hD0.g/ D fg.�2 CD0.h//:

This proves that �1 D �2; and, hence, ad.b/ is a scalar operator. Since F is not abelian, we conclude that ad.b/
is nonzero, and, multiplying b by a suitable scalar, we may assume that ad.b/ is the identical operator.

Theorem 1 is proved.

Let us show that all three possibilities indicated in Theorem 1 are realizable. Take a derivation D0 2 Wn.K/
such that there exist nonconstant polynomials p; q 2 KŒX� with D0.p/ D 0 and D0.q/ D 1: For example, one
may take p D x1; q D x2; and

D0 D
@

@x2
C P3

@

@x3
C : : :C Pn

@

@xn

with arbitrary P3; : : : ; Pn 2 KŒX�:
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The subalgebra hD0; pD0; : : : ; pm�1D0i is an m-dimensional abelian subalgebra in KŒX�D0 for every
positive integer m:

The subalgebra A h hbi with dimA D m may be obtained by setting A D hD0; pD0; : : : ; p
m�1D0i and

b D �qD0: Indeed,

Œ�qD0; f .p/D0� D .�D0.f .p//C f .p/D0.q//D0 D f .p/D0 for every f .p/ 2 KŒp�:

Finally, the derivations e D q2D0; h D 2qD0; and f D �D0 form an sl2-triple in KŒX�D0:

Remark 1. The structure of finite-dimensional subalgebras in a polynomial Lie algebra L D ID0 depends
on properties of the derivation D0: In particular, if Ker.D0/ D K; then all abelian subalgebras in KŒX�D0 are
one-dimensional.

Our last result concerns finite-dimensional subalgebras in the Lie algebra W1.K/: According to Lemma 2,
every polynomial Lie algebra in W1.K/ has the form

L D q.x/KŒx�
@

@x

with some polynomial q.x/ 2 KŒx�:

Proposition 3. Let

L D q.x/KŒx�
@

@x

be a polynomial algebra. Then the following assertions are true:

1. If deg q.x/ � 2; then every finite-dimensional Lie subalgebra in L is one-dimensional.

2. If deg q.x/ D 1; then every finite-dimensional Lie subalgebra in L either is one-dimensional or coin-
cides with

Fk D

�
q.x/

@

@x
; q.x/k

@

@x

�
for some k � 2:

3. If q.x/ D const ¤ 0 (i.e., L D W1.K//; then every finite-dimensional Lie subalgebra in L either is
one-dimensional, or coincides with

Fk;ˇ D

�
.x C ˇ/

@

@x
; .x C ˇ/k

@

@x

�
for some ˇ 2 K and k D 0; 2; 3; : : : ; or is a three-dimensional subalgebra

F.ˇ/ D

�
@

@x
; .x C ˇ/

@

@x
; .x C ˇ/2

@

@x

�
;

where ˇ 2 K:
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Proof. Let us describe all two-dimensional subalgebras in W1.K/: Every such subalgebra has the form�
f .x/

@

@x
; g.x/

@

@x

�
with f .x/; g.x/ 2 KŒx� and fg0 � f 0g D g: (�)

If deg.f / � 2; then, looking at the highest terms of fg0 and f 0g; we get deg.f / D deg.g/: However, the
polynomials .f C �g; g/ satisfy relation .�/ for every � 2 K; and we may thus assume that f is linear. Each
root of g is also a root of f; and so g is proportional to f k for some k D 0; 2; 3; : : : : This observation,
together with Theorem 1 and Remark 1, proves all the assertions.

Proposition 3 is proved.

If we consider the realizations obtained in Proposition 3 up to automorphisms of the polynomial ring KŒx�;
then one can take q.x/ D x in the case deg q.x/ D 1 for the Lie algebra Fk; and ˇ D 0 in the case q.x/ D
const ¤ 0:

The first author was supported by the RFBR (grant No. 09-01-90416-Ukr-f-a). The third author was supported
by the DFFD (grant No. F28.1/026).
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