УДК 512.745

И.В. Аржанцев, М.Г. Зайденберг, К.Г. Куюмжиян

Многообразия флагов, торические многообразия и надстройки: три примера бесконечной транзитивности

Будем говорить, что группа G действует на множестве X бесконечно транзитивно, если для любого $m \in \mathbb{N}$ диагональное действие группы G транзитивно на $X^m \setminus \Delta$, где $X^m \setminus \Delta$ – дополнение к объединению диагоналей в m-й декартовой степени множества X. Описываются три класса аффинных алгебраических многообразий, для которых группа автоморфизмов действует на множестве гладких точек бесконечно транзитивно. Первый класс образуют нормальные конусы над многообразиями флагов, второй – невырожденные торические многообразия, третий – итерированные надстройки над аффинными многообразиями с бесконечно транзитивной группой автоморфизмов описанного типа.

Библиография: 42 названия.

Ключевые слова: аффинное алгебраическое многообразие, автоморфизм, бесконечная транзитивность, дифференцирование.

Введение

Все рассматриваемые алгебраические многообразия предполагаются приведенными и неприводимыми. Если не оговорено противное, основное поле k считается алгебраически замкнутым полем нулевой характеристики.

Эффективное действие аддитивной группы $G_{\mathbf{a}}(\mathbb{k})$ на алгебраическом многообразии X определяет однопараметрическую унипотентную подгруппу в группе автоморфизмов $\mathrm{Aut}(X)$. Обозначим через $\mathrm{SAut}(X)$ подгруппу группы $\mathrm{Aut}(X)$, порожденную всеми однопараметрическими унипотентными подгруппами. В дальнейшем нам потребуются следующие определения.

Определение 0.1. Пусть X – алгебраическое многообразие над полем \Bbbk . Будем говорить, что точка $x \in X$ является $\mathit{гибкой}$, если касательное пространство $T_x X$ порождено касательными векторами к орбитам H.x однопараметрических унипотентных подгрупп $H \subseteq \operatorname{Aut}(X)$. Назовем многообразие X $\mathit{гибким}$, если все гладкие точки $x \in X_{\operatorname{reg}}$ являются гибкими.

ОПРЕДЕЛЕНИЕ 0.2. Действие группы G на множестве A называется m-mранзитивным, если для любых двух наборов попарно различных точек (a_1,a_2,\ldots,a_m) и (b_1,b_2,\ldots,b_m) из A найдется такой элемент $g\in G$, что $g(a_i)=b_i$ для всех $i=1,2,\ldots,m$. Действие, являющееся m-транзитивным для всех $m\in\mathbb{N}$, будем называть b

Первый автор поддержан грантом Пьера Делиня, первый и третий авторы поддержаны фондом Дмитрия Зимина "Династия", третий автор частично поддержан Лабораторией алгебраической геометрии НИУ ВШЭ, Правительством РФ (договор № 11.G34.31.0023), EADS Foundation Chair in Mathematics и Русско-французской лабораторией Понселе (UMI 2615 CNRS). Основная часть работы была выполнена во время визита первого автора в Институт Фурье, г. Гренобль.

Ясно, что при $m>\dim G$ связная группа Ли G не может действовать на многообразии m-транзитивно. Более того, следующая теорема показывает, что такая группа не может действовать на гладком односвязном многообразии даже 4-транзитивно.

ТЕОРЕМА 0.1 (см. [1; теоремы 5, 6]). Не существует 3-транзитивных действий вещественной группы Ли G на односвязном некомпактном многообразии, а 2-транзитивные действия существуют только на евклидовых пространствах \mathbb{R}^n при $n \geqslant 2$. Не существует 4-транзитивных действий группы Ли G на компактном односвязном многообразии, а 3-транзитивные действия существуют только на сферах S^n при $n \geqslant 2$.

Дальнейшие результаты о 2- и 3-транзитивных действиях групп Ли можно найти в работах [2] и [3]. В работе [4] изучается свойство "типичной транзитивности" для действий алгебраических групп G, т.е. наличие открытой по Зарискому орбиты в декартовых степенях данного алгебраического G-многообразия.

В то же время хорошо известно, что полная группа автоморфизмов аффинного пространства \mathbb{A}^n над полем \mathbb{k} при $n\geqslant 2$ действует на \mathbb{A}^n бесконечно транзитивно (аналитическую версию и обобщение этого утверждения см. в [5] и [6]). Этот эффект имеет место и для гиперповерхностей X в \mathbb{A}^{n+1} , заданных уравнением $uv-f(x_1,\ldots,x_{n-1})=0$, где $n\geqslant 3$ и $f\in\mathbb{k}[x_1,\ldots,x_{n-1}]$ непостоянный многочлен (см. [7; § 5]). Мы называем такое многообразие X надстройкой над $Y=\mathbb{A}^{n-1}$. В аналитической категории близкие факты были получены в рамках теории Андерсена—Лемперта—Варолина (см. [6], [8], а также [9]—[12]). В частности, обсуждается бесконечная транзитивность на гладких аффинных многообразиях некоторых подгрупп биголоморфных преобразований, порожденных полными регулярными векторными полями (см. обзор [13], в особенности § 2, (В) и замечание 2.2).

Следуя [7; § 5], ниже мы изучаем аффинные алгебраические многообразия X, для которых группа специальных автоморфизмов $\mathrm{SAut}(X)$ действует бесконечно транзитивно на множестве гладких точек X_{reg} . Среди прочего мы показываем, что это свойство сохраняется при переходе к надстройке.

Определение 0.3. Назовем надстройкой над аффинным многообразием Y гиперповерхность $X\subseteq Y\times \mathbb{A}^2$, заданную уравнением uv-f(y)=0, где $\mathbb{A}^2=\operatorname{Spec} \mathbb{k}[u,v]$ и $f\in \mathbb{k}[Y]$ отлично от константы. В частности, $\dim X=1+\dim Y$.

Сформулируем основные результаты работы. Будем называть аффинное многообразие *невырожеденным*, если каждая обратимая регулярная функция на нем постоянна.

- ТЕОРЕМА 0.2. 1. Рассмотрим многообразие флагов G/P, где G полупростая алгебраическая группа и P параболическая подгруппа в G. Тогда любой нормальный аффинный конус X над G/P является гибким и группа $\mathrm{SAut}(X)$ действует на множестве гладких точек X_{reg} бесконечно транзитивно.
- 2. Аналогичное утверждение справедливо для невырожденного аффинного торического многообразия X размерности не ниже 2.
- 3. Предположим, что аффинное многообразие X является гибким и либо $X=\mathbb{A}^1$, либо $\dim X\geqslant 2$ и группа специальных автоморфизмов $\mathrm{SAut}(X)$ действует на X_{reg} бесконечно транзитивно. Тогда все итерированные надстройки над X также обладают свойствами гибкости и бесконечной транзитивности для группы специальных автоморфизмов.

Соответствующие части теоремы 0.2 доказываются в § 1–§ 3.

Гладкие компактные вещественные алгебраические поверхности с бесконечно транзитивными группами автоморфизмов были классифицированы в работах [14]—[17]. В теореме 3.3 мы распространяем часть 3 теоремы 0.2 на вещественные алгебраические многообразия при некоторых дополнительных ограничениях. Эти ограничения удалось ослабить в недавней работе [18]. В частном случае надстройки над аффинной прямой полученный результат справедлив над произвольным полем нулевой характеристики (см. теорему 3.1).

Напомним (см. [19; § 9]), что инвариант Макар-Лиманова $\mathrm{ML}(X)$ аффинного многообразия X – это пересечение ядер всех локально нильпотентных дифференцирований алгебры $\mathbb{k}[X]$, или, другими словами, подалгебра в $\mathbb{k}[X]$, состоящая из функций, инвариантных относительно всех однопараметрических унипотентных подгрупп в $\mathrm{Aut}(X)$. Из этого определения непосредственно следует, что $\mathrm{ML}(X) = \mathbb{k}[X]^{\mathrm{SAut}(X)}$. Поэтому инвариант Макар-Лиманова многообразия X тривиален (т.е. $\mathrm{ML}(X) = \mathbb{k}$), если группа специальных автоморфизмов $\mathrm{SAut}(X)$ действует на X с плотной открытой орбитой (ср. [20]). В частности, это выполняется для многообразий всех трех видов из теоремы 0.2 (для первых двух из них см. также [20], [21; 3.16] и [22]). С другой стороны, если X гибко, то инвариант $\mathrm{ML}(X)$ тривиален. Действительно, если $f \in \mathbb{k}[X]^{\mathrm{SAut}(X)}$, то дифференциал df равен нулю вдоль орбит всех унипотентных подгрупп, поэтому он равен нулю в касательном пространстве к любой гибкой точке X_{reg} . Так как X гибкое, функция f является константой.

Интересно прояснить связь между гибкостью и бесконечной транзитивностью. Хотя аффинная прямая $X=\mathbb{A}^1$ является гибкой, аффинная группа $\operatorname{Aut}(\mathbb{A}^1)$ всего лишь 2-транзитивна. Тем не менее можно предположить, что в высших размерностях для многообразий над алгебраически замкнутым полем характеристики нуль транзитивность группы $\operatorname{SAut}(X)$ влечет гибкость многообразия X, а гибкость X влечет бесконечную транзитивность $\operatorname{SAut}(X)$. После того как настоящая работа появилась в качестве препринта, эта гипотеза была доказана в [23]. Кроме того в нашем препринте мы предлагали охарактеризовать те аффинные многообразия, на которых группа $\operatorname{SAut}(X)$ действует бесконечно транзитивно на открытом по Зарискому подмножестве. Это также сделано в [23] (см. теорему 2.2 и предложение 5.1) в терминах полевого инварианта Макар-Лиманова $\operatorname{FML}(X)$, введенного A . Льендо (см. [24]). В работе [25] доказана гибкость для аффинных конусов над поверхностями дель Пеццо степеней 4 и 5, из чего следует бесконечная транзитивность действия группы $\operatorname{SAut}(X)$ на этих многообразиях.

Авторы благодарны Д. Н. Ахиезеру, Ш. Калиману и А. Льендо за полезные обсуждения и важные библиографические ссылки. Авторы рады возможности поблагодарить Институт Фурье за гостеприимство и замечательные условия для работы.

§ 1. Аффинные конусы над многообразиями флагов

Пусть G – связная односвязная полупростая алгебраическая группа над полем \mathbb{k} . Рассмотрим неприводимое представление $V(\lambda)$ группы G со старшим весом λ и старшим вектором $v_0 \in V(\lambda)$. Обозначим через Y замкнутую G-орбиту

точки $[v_0]$ в ассоциированном проективном представлении,

$$Y = G[v_0] \subseteq \mathbb{P}(V(\lambda)),$$

а через

$$X = \operatorname{AffCone}(Y) = \overline{Gv_0} = Gv_0 \cup \{0\}$$

— аффинный конус над Y. Отметим, что в терминологии работы [26] такие конусы называются HV-многообразиями.

Замечание 1.1. Каждое проективное вложение $\varphi\colon G/P \stackrel{\cong}{\longrightarrow} Y \hookrightarrow \mathbb{P}^n$ с проективно нормальным образом Y, где $P\subseteq G$ – параболическая подгруппа, может быть построено таким способом. В самом деле, поскольку Y проективно нормально, оно также линейно нормально, т.е. $\varphi=\varphi_{|D|}$, где дивизор $D\in \mathrm{Pic}(G/P)$ очень обилен. Поэтому $D\sim \sum_{i=1}^s a_iD_i$, где D_1,\ldots,D_s – дивизориальные циклы Шуберта на G/P, и $a_i\in\mathbb{Z},\ a_i>0$ для всех $i=1,\ldots,s$. Тогда $V(\lambda)=H^0(G/P,\mathscr{O}_{G/P}(D))^*$ – простой G-модуль со старшим весом $\lambda=\sum_{i=1}^s a_i\omega_i$, где ω_1,\ldots,ω_s – фундаментальные веса, и $Y=G[v_0]$ для вектора старшего веса v_0 (см. [27; теорема 5]).

Замечание 1.2. Напомним, что концом в смысле Фрейденталя топологического многообразия M называется класс эквивалентности убывающих последовательностей связных открытых подмножеств в M, границы которых компактны и пересечение дополнений к которым пусто. Пусть X – аффинный конус, введенный выше, и пусть $k = \mathbb{C}$. Тогда однородное пространство $X \setminus \{0\}$ имеет два конца. Предположим, что G – связная группа Ли и $H \subseteq G$ – замкнутая связная подгруппа. Как показал А. Борель (см. [1; теорема 2]), однородное пространство G/H имеет не более двух концов. Д. Н. Ахиезер в [28] доказал 1 , что если G – комплексная линейная алгебраическая группа и $H \subseteq G$ – алгебраическая подгруппа (не обязательно связная), то G/H имеет два конца в точности тогда, когда H является ядром нетривиального характера $\chi \colon P \to G_{\mathrm{m}}(\mathbb{C})$, где P – параболическая подгруппа в G и $G_{\mathrm{m}}(\mathbb{C})$ – мультипликативная группа поля комплексных чисел. Однородное расслоение $G/H \to G/P$ реализует G/H как главное $G_{\mathrm{m}}(\mathbb{C})$ -расслоение над однородным проективным многообразием 2 G/P. Далее, G/H допускает проективное пополнение двумя непересекающимися дивизорами E_0 и E_∞ , где $E_0\cong E_\infty\cong G/P$, и $X:=G/H\cup E_0\to G/P$ определяет линейное расслоение L над G/P. Его нулевое сечение E_0 стягиваемо тогда и только тогда, когда двойственное линейное расслоение L^{-1} обильно, а значит, и очень обильно. В последнем случае стягивание E_0 приводит к аффинному конусу X над образом $Y=\varphi_{|L^{-1}|}(G/P)\subseteq \mathbb{P}^n$. При $\mathbb{k}=\mathbb{C}$ любой аффинный конус X из теоремы 1.1 реализуется посредством этой конструкции, причем $H\subseteq P$ – это стабилизатор гладкой точки на конусе $X,\,X$ – раздутие конуса Xв вершине и E_0 – исключительный дивизор.

Следующий результат влечет утверждение 1 теоремы 0.2.

ТЕОРЕМА 1.1. Пусть X – аффинный конус над многообразием флагов G/P в некотором вложении $G/P \hookrightarrow \mathbb{P}^N$ с проективно нормальным образом. Тогда

 $^{^{1}}$ См. также [29] и [30], где получен комплексно-аналитический аналог в контексте комплексных групп Ли.

²Вообще говоря, ни пара (G, P), ни пара (G, H) не определяются многообразием флагов G/P однозначно.

многообразие X является гибким и группа $\mathrm{SAut}(X)$ действует на $X\setminus\{0\}$ m-транзитивно для любого $m\in\mathbb{N}$.

Гибкость вытекает из следующего общего наблюдения.

ПРЕДЛОЖЕНИЕ 1.1. Если полупростая линейная алгебраическая группа G действует на аффинном многообразии X и это действие транзитивно на $X_{\rm reg}$, то X является гибким.

Доказательство. Группа G действует на X с открытой орбитой $X_{\text{reg}} = G.x_0$. Орбитное отображение $\varphi \colon G \to X, \ g \longmapsto g.x_0$, определяет сюръекцию $d\varphi \colon \mathfrak{g} \to T_{x_0}X$, где $\mathfrak{g} = \operatorname{Lie}(G)$. Достаточно показать, что \mathfrak{g} порождено над \Bbbk нильпотентными элементами. Рассмотрим разложение $\mathfrak{g} = \bigoplus_{i=1}^k \mathfrak{g}_i$ в сумму простых идеалов. Пусть \mathfrak{h} — линейная оболочка множества нильпотентных элементов в \mathfrak{g} . Это аd-подмодуль в \mathfrak{g} и, значит, идеал в \mathfrak{g} . Тем самым, \mathfrak{h} совпадает с прямой суммой некоторых из простых идеалов \mathfrak{g}_i . Однако каждый простой идеал \mathfrak{g}_i , $i=1,\ldots,k$, содержит ненулевой нильпотентный элемент. Значит, $\mathfrak{h} = \mathfrak{g}$, что и требовалось доказать.

В условиях теоремы 1.1 $X_{\text{reg}} = X$, если $X \cong \mathbb{A}^n$, и $X_{\text{reg}} = X \setminus \{0\}$ в противном случае. В любом случае группа G действует на $X \setminus \{0\}$ транзитивно (см. [26; теорема 1]). Тем самым, гибкость многообразия X следует из предложения 1.1.

Для доказательства бесконечной транзитивности нам потребуются некоторые предварительные сведения.

Пусть $P \subseteq G$ – стабилизатор прямой $\langle v_0 \rangle \subseteq V(\lambda)$, $B = TB_{\rm u} \subseteq P$ – подгруппа Бореля в G с максимальным тором T и унипотентным радикалом $B_{\rm u}$ и $\mathbb{X}(T)$ – решетка характеров тора T. Рассмотрим весовое разложение

$$V(\lambda) = \bigoplus_{\nu \in \mathbb{X}(T)} V(\lambda)_{\nu} = \langle v_0 \rangle \oplus H(\lambda),$$

где $\langle v_0 \rangle = V(\lambda)_{\lambda}$, а $H(\lambda) \subseteq V(\lambda)$ – гиперплоскость, заданная как

$$H(\lambda) = \bigoplus_{\nu \in \mathbb{X}(T) \setminus \{\lambda\}} V(\lambda)_{\nu}.$$

Координатная функция $l_{\lambda} \in V(\lambda)^*$, отвечающая первой проекции $p_1 \colon v \longmapsto l_{\lambda}(v)v_0$, определяет нетривиальный характер подгруппы P.

Пусть $B^- = TB_u^-$ – подгруппа Бореля в G, противоположная к $B = B^+$. Многообразие флагов G/P содержит открытую B^- -орбиту (открытую клетку Шуберта), изоморфную аффинному пространству \mathbb{A}^n , где $n = \dim G/P$. Ее дополнение совпадает с объединением дивизориальных циклов Шуберта D_1, D_2, \ldots, D_s (см. [31; с. 22–24].

Орбитный морфизм $G \to \mathbb{P}(V(\lambda)), g \mapsto g.[v_0],$ отображает G/P на подмногообразие $Y \subseteq \mathbb{P}(V(\lambda))$. Пусть $\omega_\lambda \subseteq Y$ – образ открытой клетки Шуберта при этом вложении. Согласно [27; теорема 2] гиперплоскость

$$\mathscr{H}(\lambda) = \mathbb{P}(H(\lambda)) = l_{\lambda}^{-1}(0) \subseteq \mathbb{P}(V(\lambda))$$

содержит объединение дивизоров Шуберта $\bigcup_{i=1}^s D_i$. В частности, получаем $\omega_{\lambda} = Y \setminus \mathcal{H}(\lambda)$.

Пусть $\sigma: \widehat{X} \to X$ – раздутие конуса X в вершине 0. Исключительный дивизор $E \subseteq \widehat{X}$ изоморфен Y. Более того, естественное отображение $\pi: X \setminus \{0\} \to Y$

соответствует проекции $p: \widehat{X} \to Y$ линейного расслоения $\mathscr{O}_Y(-1)$ на Y, для которого E является нулевым сечением. Поскольку $\omega_\lambda \cong \mathbb{A}^n$, ограничение $\mathscr{O}_Y(-1)$ на ω_λ тривиально. Тем самым, открытое подмножество

$$\Omega_{\lambda} := \pi^{-1}(\omega_{\lambda}) = X \setminus H(\lambda) \subseteq X \setminus \{0\} \cong \widehat{X} \setminus E$$

изоморфно $\mathbb{A}^n \times \mathbb{A}^1_*$, где $\mathbb{A}^1_* = \mathbb{A}^1 \setminus \{0\}$.

Для любого $c \in \mathbb{A}^1_*$ обратимая функция $l_{\lambda}(\cdot,c)$ постоянна на аффинном пространстве \mathbb{A}^n . Поэтому на Ω_{λ} , изоморфном $\mathbb{A}^n \times \mathbb{A}^1_*$, получаем $l_{\lambda} = az^k$ для некоторого $a \in G_{\mathrm{m}}(\mathbb{k})$, где z – координата на \mathbb{A}^1_* . Здесь k=1, поскольку l_{λ} является координатой на $\langle v_0 \rangle$. Также можно считать, что a=1, и, значит, $l_{\lambda}|_{\Omega_{\lambda}}: \Omega_{\lambda} \to \mathbb{A}^1_*$ совпадает со второй проекцией.

Для доказательства бесконечной транзитивности действия группы SAut(X) на $X\setminus\{0\}$ в условиях теоремы 1.1 докажем вначале бесконечную транзитивность действия группы SAut(X) на каждом гиперплоском сечении $\Omega_{\lambda}(c_0):=l_{\lambda}^{-1}(c_0)\subseteq X$, где $c_0\neq 0$ (ср. [7; лемма 5.6]). Более точно, для каждого набора $c_1,\ldots,c_k\in\mathbb{K}$ попарно различных точек, отличных от c_0 , рассмотрим подгруппу $Stab_{c_1,\ldots,c_k}^{\lambda}\subseteq SAut(X)$ всех автоморфизмов, стабилизирующих поточечно подмногообразия $\Omega_{\lambda}(c_i)$ для всех $i=1,\ldots,k$ и оставляющих инвариантной функцию l_{λ} .

ПРЕДЛОЖЕНИЕ 1.2. B данных обозначениях для любого $n\geqslant 2$ и любого $m\in\mathbb{N}$ группа $\operatorname{Stab}_{c_1,\dots,c_k}^{\lambda}$ действует на $\Omega_{\lambda}(c_0)\cong\mathbb{A}^n$ т-транзитивно.

Доказательство. Рассмотрим два набора попарно различных точек Q_1,Q_2,\ldots,Q_m и Q'_1,Q'_2,\ldots,Q'_m в $\Omega_\lambda(c_0)$. Для любого $n\geqslant 2$ группа $\mathrm{SAut}(\mathbb{A}^n)$ действует на \mathbb{A}^n m-транзитивно (см., например, [7; лемма 5.5]). Поскольку $\Omega_\lambda(c_0)\cong \mathbb{A}^n$, существует автоморфизм $g\in \mathrm{SAut}(\Omega_\lambda(c_0))$, отображающий (Q_1,Q_2,\ldots,Q_m) в (Q'_1,Q'_2,\ldots,Q'_m) . По определению $g=\delta_1(1)\delta_2(1)\ldots\delta_s(1)$ для некоторых однопараметрических унипотентных подгрупп $\delta_1,\delta_2,\ldots,\delta_s\subseteq \mathrm{SAut}(\Omega_\lambda(c_0))$. Пусть $\partial_1,\partial_2,\ldots,\partial_s$ – соответствующие локально нильпотентные дифференцирования (сокращенно ЛНД) алгебры $\mathbb{k}[\Omega_\lambda(c_0)]$. Вначале продолжим их до ЛНД $\overline{\partial}_1,\overline{\partial}_2,\ldots,\overline{\partial}_s$ алгебры $\mathbb{k}[\Omega_\lambda]\cong \mathbb{k}[\mathbb{A}^n\times\mathbb{A}^1_*]$, положив $\overline{\partial}_i(l_\lambda)=0$.

Напомним, что Ω_{λ} является главным открытым по Зарискому подмножеством в X, задаваемым функцией l_{λ} . В частности, для любого $i=1,\ldots,s$ имеем $\overline{\partial}_i\colon \Bbbk[X] \to \Bbbk[X][1/l_{\lambda}]$. Поскольку алгебра $\Bbbk[X]$ конечно порожденная, найдется такое $N\in\mathbb{N}$, что $(l_{\lambda})^N\overline{\partial}_i$ является ЛНД алгебры $\Bbbk[X]$ для всех $i=1,\ldots,s$ (ср. [21; утверждение 3.5]).

Пусть $q[z] \in \mathbb{k}[z]$ – многочлен, для которого $q(c_0) = 1$, элементы c_1, \ldots, c_k являются простыми корнями и корень z = 0 имеет кратность N (напомним, что $c_0 \neq 0$). Тогда для любого $i = 1, \ldots, s$ ЛНД $q(l_\lambda) \overline{\partial}_i$ алгебры $\mathbb{k}[X]$ таково, что соответствующая однопараметрическая подгруппа в $\operatorname{Stab}_{c_1, \ldots, c_k}^{\lambda}$ продолжает подгруппу δ_i . Тем самым, g продолжается до элемента группы $\operatorname{Stab}_{c_1, \ldots, c_k}^{\lambda}$ и требуемое утверждение доказано.

Рассмотрим экстремальный вес μ простого G-модуля $V(\lambda)$, отличный от λ . Вес μ определяет параболическую подгруппу P', сопряженную с P, линейную форму $l_{\mu} \in V(\lambda)^*$ и главное открытое по Зарискому подмножество $\Omega_{\mu} = \{l_{\mu} \neq 0\}$ в X, где $X \setminus \Omega_{\mu} = H(\mu) := l_{\mu}^{-1}(0)$.

 $^{^3}$ Дифференцирование ∂ кольца A называется локально нильпотентным, если для любого $a \in A$ справедливо $\partial^n a = 0$ для некоторого $n \in \mathbb{N}$.

ЛЕММА 1.1. Для любого множества из m попарно различных точек $Q_1,$ $Q_2,\ldots,Q_m\in X\setminus\{0\}$ найдется такое $g\in \mathrm{SAut}(X),$ что $g(Q_i)\in\Omega_\mu$ для всех $i=1,\ldots,m$.

Доказательство. Поскольку группа G полупроста, она содержится в $\mathrm{SAut}(X)$ (см. [20; лемма 1.1]). Ясно, что $G_i := \{g \in G \mid g(Q_i) \in H(\mu)\}, i = 1,\ldots,m$, являются собственными замкнутыми подмножествами в G. Значит, утверждение леммы выполнено для любого $g \in G \setminus (G_1 \cup \cdots \cup G_{\mathrm{m}})$.

ЛЕММА 1.2. Для любого $c \neq 0$ ограничение $l_{\lambda}|\Omega_{\mu}(c)$ не является константой.

Доказательство. Если бы ограничение $l_{\lambda}|\Omega_{\mu}(c)$ было константой, скажем, равной b, то конус X содержался бы в гиперплоскости $bl_{\mu}-cl_{\lambda}=0$ в $V(\lambda)$, что приводит к противоречию.

Доказательство теоремы 1.1. Если $n=\dim G/P=1$ (и, тем самым, $G/P\cong \mathbb{P}^1$), то X – нормальная аффинная торическая поверхность, или, иными словами, конус Веронезе. Бесконечная транзитивность следует в этом случае из теоремы 2.1, которую мы докажем в § 2.

Далее считаем, что $n \geqslant 2$. Зафиксируем $m \in \mathbb{N}$ и набор попарно различных точек $Q_{10}, Q_{20}, \ldots, Q_{m0} \in \Omega_{\lambda}(1)$. Покажем, что для любого набора попарно различных точек $Q_1, Q_2, \ldots, Q_m \in X \setminus \{0\}$ найдется такое $\psi \in \mathrm{SAut}(X)$, что $\psi(Q_1) = Q_{10}, \ldots, \psi(Q_m) = Q_{m0}$.

По лемме 1.1 можно считать, что $Q_i \in \Omega_\mu$ для всех $i=1,\ldots,m$. Разобьем множество $\{Q_1,Q_2,\ldots,Q_m\}$ на подмножества в соответствии со значениями $l_\mu(Q_i)$:

$${Q_1, Q_2, \dots, Q_m} = \bigsqcup_{j=1}^k M_j, \qquad M_j = {Q_i \mid Q_i \in \Omega_\mu(c_j)},$$

где $c_1,\ldots,c_k\in\mathbb{A}^1_*$ попарно различны. Из леммы 1.2 следует, что каждое пересечение $\Omega_\lambda(1)\cap\Omega_\mu(c_i)$ содержит бесконечно много точек. Действуя подгруппами $\operatorname{Stab}_{c_1,\ldots,\widehat{c}_i,\ldots,c_k}^\mu\subseteq\operatorname{SAut}(X)$ (см. предложение 1.2), мы можем последовательно отобразить подмножества $M_i,\ i=1,\ldots,k$, в аффинное гиперплоское сечение $\Omega_\lambda(1)$. Получившийся набор из m точек можно отобразить далее в стандартный набор $(Q_{10},Q_{20},\ldots,Q_{m0})$, полагая $c_0=1,\ k=0$ и используя автоморфизм из предложения 1.2. Это завершает доказательство теоремы.

§ 2. Автоморфизмы аффинных торических многообразий

Как и выше, основное поле \Bbbk алгебраически замкнуто и имеет характеристику нуль. В этом параграфе рассматривается аффинное торическое многообразие X над \Bbbk с эффективным действием тора $\mathbb T$. Мы предполагаем, что X является невырожденным, т.е. обратимыми регулярными функциями на X являются только константы, или, что эквивалентно, $X \ncong Y \times \mathbb A^1_*$, где $\mathbb A^1_* = \operatorname{Spec} \Bbbk[t, t^{-1}] \cong G_{\mathrm{m}}(\Bbbk)$.

Следующий результат составляет часть 2 теоремы 0.2.

ТЕОРЕМА 2.1. Каждое невырожденное аффинное торическое многообразие X размерности $n \geqslant 1$ является гибким. Если $n \geqslant 2$, то для любого $m \in \mathbb{N}$

группа $\mathrm{SAut}(X)$ действует на множестве гладких точек X_{reg} многообразия X т-транзитивно.

Заметим, что X является гибким, если $\mathrm{Aut}(X)$ действует на X_{reg} транзитивно и хотя бы одна гладкая точка на X является гибкой. Оба этих условия будут проверены ниже. Сначала напомним необходимые сведения об аффинных торических многообразиях.

1. Порождающие на лучах. Пусть N – решетка однопараметрических подгрупп тора $\mathbb{T},\ M=\mathbb{X}(\mathbb{T})$ – двойственная к ней решетка характеров и $\langle\,\cdot\,,\cdot\,\rangle$: $N\times M\to\mathbb{Z}$ – каноническое спаривание. Пусть χ^m обозначает характер тора $\mathbb{T},$ отвечающий точке $m\in M$. При этом $\chi^m\chi^{m'}=\chi^{m+m'},$ так что групповую алгебру

$$\Bbbk[M] = \bigoplus_{m \in M} \Bbbk \chi^m$$

можно отождествить с алгеброй $\mathbb{k}[\mathbb{T}]$ регулярных функций на торе \mathbb{T} . Обозначим через $\mathbb{T}.x_0$ открытую \mathbb{T} -орбиту на X. Поскольку орбитное отображение $\mathbb{T} \to X$, $t \longmapsto t.x_0$, доминантно, мы можем отождествить $\mathbb{k}[X]$ с подалгеброй в $\mathbb{k}[M]$. Более точно, найдется такой выпуклый полиэдральный конус $\sigma^{\vee} \subseteq M_{\mathbb{Q}} := M \otimes_{\mathbb{Z}} \mathbb{Q}$, что $\mathbb{k}[X]$ совпадет с полугрупповой алгеброй полугруппы $\sigma^{\vee} \cap M$, т.е.

$$\mathbb{k}[X] = \bigoplus_{m \in \sigma^{\vee} \cap M} \mathbb{k}\chi^m \tag{2.1}$$

(подробности см. в [32]). Двойственный конус σ к конусу σ^{\vee} является острым конусом в $N_{\mathbb{Q}}$ полной размерности. Пусть $\Xi = \{\rho_1, \dots, \rho_r\}$ – множество порождающих на лучах, т.е. множество примитивных векторов на одномерных гранях конуса σ . С каждым вектором $\rho \in \Xi$ связана однопараметрическая подгруппа R_{ρ} тора \mathbb{T} .

2. Соответствие между орбитами и гранями (см. [33; § 3.2]). Имеются естественные взаимно однозначные соответствия $\delta \stackrel{1 \div 1}{\longleftrightarrow} \tau \stackrel{1 \div 1}{\longleftrightarrow} O_{\tau}$ между гранями δ конуса σ , двойственными гранями $\delta \leftarrow \tau \stackrel{1 \div 1}{\longleftrightarrow} O_{\tau}$ между гранями $\delta \leftarrow \tau$, при которых $\dim O_{\tau} = \dim \tau = \dim \sigma - \dim \delta$. В частности, единственная \mathbb{T} -неподвижная точка на $\delta \leftarrow \tau$ соответствует вершине конуса $\delta \leftarrow \tau$, а открытая $\delta \leftarrow \tau$ соответствия сохраняют включения: $\delta \leftarrow \tau$ соответствия сохраняют включения: $\delta \leftarrow \tau$ соответствия охраняют включения: $\delta \leftarrow \tau$ от $\delta \leftarrow \tau$ от $\delta \leftarrow \tau$ от $\delta \leftarrow \tau$ охраняют включения: $\delta \leftarrow \tau$ от $\delta \leftarrow \tau$ от

Каждая грань $\tau \subseteq \sigma^{\vee}$ определяет разложение

$$\mathbb{k}[X] = \mathbb{k}[\overline{O_{\tau}}] \oplus I(\overline{O_{\tau}}),$$

где $\mathbb{k}[\overline{O_{\tau}}] = \bigoplus_{m \in \tau \cap M} \mathbb{k}\chi^m$, а

$$I(\overline{O_{\tau}}) = \bigoplus_{m \in (\sigma^{\vee} \setminus \tau) \cap M} \mathbb{k} \chi^m \tag{2.2}$$

является идеалом подмногообразия $\overline{O_{ au}}$ в $\Bbbk[X].$

Стабилизатор $\mathbb{T}_p=\operatorname{Stab}_{\mathbb{T}}(p)$ любой точки $p\in X$ связен, т.е. $\mathbb{T}_p\subseteq \mathbb{T}$ является подтором. Далее, $\mathbb{T}_p\subseteq \mathbb{T}_q$ в точности тогда, когда $\mathbb{T}.q\subseteq \overline{\mathbb{T}.p}$, и $\overline{\mathbb{T}.p}=X^{\mathbb{T}_p}$, где X^G обозначает, как обычно, множество неподвижных точек действия группы G на X.

 $^{^4}$ Для упрощения грань $\delta^{\perp} \cap \sigma^{\vee}$ мы обозначаем просто как δ^{\perp} .

3. Корни и ассоциированные однопараметрические подгруппы.

Определение 2.1 (см. [34]). Корень конуса σ – это такой вектор $e \in M$, что для некоторого i, где $1 \le i \le r$ и $r = \operatorname{card} \Xi$, выполнены соотношения

$$\langle \rho_i, e \rangle = -1, \quad \langle \rho_j, e \rangle \geqslant 0 \qquad \forall j \neq i.$$
 (2.3)

Обозначим через $\mathscr{R}(\sigma)$ множество всех корней конуса σ . Имеется взаимно однозначное соответствие $e \stackrel{1 \div 1}{\longleftrightarrow} H_e$ между корнями конуса σ и однопараметрическими унипотентными подгруппами в $\mathrm{Aut}(X)$, нормализуемыми действующим тором (см. [22] и [34]). Положим $\rho_e := \rho_i$. Корень $e \in \mathscr{R}(\sigma)$ определяет ЛНД ∂_e на M-градуированной алгебре $\Bbbk[X]$, заданное как

$$\partial_e(\chi^m) = \langle \rho_e, m \rangle \chi^{m+e}. \tag{2.4}$$

Его ядро является (конечно порожденной) однородной подалгеброй в $\Bbbk[X]$ (см. [22]):

$$\ker \partial_e = \bigoplus_{m \in \rho_+^{\perp} \cap M} \mathbb{k} \chi^m, \tag{2.5}$$

где $\rho_e^\perp=\{m\in\sigma^\vee\cap M,\,\langle\rho_e,m\rangle=0\}$ – гипергрань (т.е. грань коразмерности 1) конуса σ^\vee , ортогональная ρ_e .

Определение 2.2 (см. [19], [22]). Корни e и e', для которых $\rho_e = \rho_{e'}$, называются эквивалентными; будем записывать $e \sim e'$. Корни e и e' эквивалентны тогда и только тогда, когда $\ker \partial_e = \ker \partial_{e'}$.

Замечание 2.1. Нумерация порождающих на лучах $\Xi = \{\rho_1, \dots, \rho_r\}$ определяет разбиение

$$\mathscr{R}(\sigma) = \bigcup_{i=1}^{r} \mathscr{R}_i,$$

где $\mathscr{R}_i = \{e \in \mathscr{R}(\sigma) \mid \rho_e = \rho_i\}$ непусты. В самом деле, рассмотрим гипергрань τ_i конуса σ^\vee , ортогональную лучу, порожденному ρ_i . Для любого v из относительной внутренности $\mathrm{Int_{rel}}(\tau_i)$ неравенство $\langle \rho_j, m \rangle > 0$ выполнено при всех $j \neq i$. Предположим, что $e_0 \in M$ таково, что $\langle \rho_i, e_0 \rangle = -1$ и что $v_0 \in \mathrm{Int_{rel}}(\tau_i) \cap M$. Положив $e = e_0 + kv_0$ для $k \gg 1$, мы получим $\langle \rho_j, e \rangle > 0$ для всех $j \neq i$ и $\langle \rho_i, e \rangle = -1$. Тем самым, $e \in \mathscr{R}_i$.

В качестве примера рассмотрим аффинную плоскость $X = \mathbb{A}^2$ со стандартным действием двумерного тора. Здесь конусы σ и σ^{\vee} совпадают с положительными квадрантами. Множество $\mathcal{R}(\sigma)$ состоит из двух классов эквивалентности

$$\mathscr{R}_1 = \{(x, -1) \mid x \in \mathbb{Z}_{\geq 0}\}, \qquad \mathscr{R}_2 = \{(-1, y) \mid y \in \mathbb{Z}_{\geq 0}\}.$$

4. Однопараметрические группы автоморфизмов. Дифференцирование ∂_e порождает однопараметрическую унипотентную подгруппу $H_e = \lambda_e(G_{\mathbf{a}}(\Bbbk)) \subseteq \operatorname{Aut}(X)$, где $\lambda_e \colon t \longmapsto \exp(t\partial_e)$. Алгебра инвариантов $\Bbbk[X]^{H_e}$ совпадает с $\ker \partial_e$. Вложение $\Bbbk[X]^{H_e} \subseteq \Bbbk[X]$ индуцирует морфизм $\pi \colon X \to Z = \operatorname{Spec} \Bbbk[X]^{H_e}$, типичными слоями которого являются одномерные H_e -орбиты, изоморфные прямой \mathbb{A}^1 (см. [35; теоремы 2.3 и 3.3]). Тор \mathbb{T} нормализует подгруппу H_e . В частности, \mathbb{T} оставляет инвариантным множество неподвижных точек X^{H_e} .

Пусть $R_e = R_{\rho_e} \subseteq \mathbb{T}$ – одномерный подтор, соответствующий вектору $\rho_e \in N$. Действие R_e на градуированной алгебре $\Bbbk[X]$ при подходящей параметризации $\rho_e \colon G_{\mathrm{m}}(\Bbbk) \ni t \longmapsto \rho_e(t) \in R_e$ задается как

$$t \cdot \chi^m = t^{\langle \rho_e, m \rangle} \chi^m, \qquad t \in G_m(\mathbb{k}).$$
 (2.6)

В частности, $\mathbb{k}[X]^{R_e} = \mathbb{k}[X]^{H_e}$. Поэтому морфизм $\pi \colon X \to Z$ совпадает с морфизмом факторизации $X \to X/\!/R_e$ и типичные H_e -орбиты совпадают с замыканиями типичных R_e -орбит. Предложение 2.1 ниже показывает, что это утверждение справедливо для любой одномерной H_e -орбиты⁵.

Имеется разложение

$$\mathbb{k}[X] = \mathbb{k}[X]^{R_e} \oplus \bigoplus_{m \in \sigma^{\vee} \cap M \setminus \rho_e^{\perp}} \mathbb{k}\chi^m = \mathbb{k}[X]^{R_e} \oplus I(D_e), \tag{2.7}$$

где $D_e:=X^{R_e}\cong Z$. Дивизор D_e совпадает с множеством предельных точек действия R_e на X. Тем самым, каждая одномерная R_e -орбита имеет предельную точку на D_e . Следующая простая лемма дополняет картину.

ЛЕММА 2.1. Пусть τ – грань конуса σ^{\vee} , \mathcal{O}_{τ} – соответствующая орбита, \mathbb{T}_{τ} – стабилизатор точки в \mathcal{O}_{τ} и Ξ_{τ} – множество порождающих на лучах двойственной грани $\tau^{\perp} \subseteq \sigma$. Тогда выполнены следующие условия.

а) Замыкание орбиты $\overline{\mathcal{O}}_{\tau}$ инвариантно относительно H_e тогда и только тогда, когда

$$m + e \in \sigma^{\vee} \setminus \tau \qquad \forall m \in (\sigma^{\vee} \setminus \tau) \cap M : \langle \rho_e, m \rangle > 0.$$
 (2.8)

- b) Замыкание $\overline{\mathcal{O}_{\tau}}$ является $H_{e'}$ -инвариантным для любого корня $e'\sim e$ конуса σ , если выполнено любое из следующих эквивалентных условий:
 - (i) $\rho_e \notin \Xi_\tau$;
 - (ii) $\overline{\mathscr{O}_{\tau}} \not\subseteq D_e$;
 - (iii) $R_e \not\subseteq \mathbb{T}_{\tau}$.

Доказательство.
а) Согласно (2.4) идеал $I(\overline{\mathscr{O}_{\tau}})$ является ∂_e -инвариантным тогда и только тогда, когда

$$\chi^{m+e} \in I(\overline{\mathcal{O}_{\tau}}) \qquad \forall \chi^m \in I(\overline{\mathcal{O}_{\tau}}) : \langle \rho_e, m \rangle > 0,$$
(2.9)

что равносильно (2.8) (см. (2.2)). Это доказывает условие а).

b) Для $m \in M$ выполнено

$$m \in \sigma^{\vee} \setminus \tau \iff \langle \rho, m \rangle \geqslant 0 \quad \forall \rho \in \Xi \text{ и } \exists \rho \in \Xi_{\tau} \colon \langle \rho, m \rangle > 0.$$

Для любого $\rho \neq \rho_e$ имеем $\langle \rho, m+e \rangle \geqslant \langle \rho, m \rangle$. Поэтому из (i) следует (2.8).

Имеем $\overline{\mathscr{O}_{\tau}} = X^{\mathbb{T}_{\tau}}$ и $D_e = X^{R_e} = \overline{\mathscr{O}_{\rho_e^{\perp}}}$, где $\rho_e^{\perp} = (\mathbb{R}_+ \rho_e)^{\perp}$. Таким образом, эквивалентность (i) \iff (ii) \iff (iii) следует из соответствия между орбитами и гранями.

Замечание 2.2. Если $\overline{\mathscr{O}_{\tau}}$ не является H_e -инвариантным, то $\rho_e \in \Xi_{\tau}$. Обратное в общем случае неверно. Например, рассмотрим $X = \mathbb{A}^2$ со стандартным действием двумерного тора. Здесь $\Xi = \{(1,0),(0,1)\}$. Пусть $\tau = \{0\}$ и

 $^{^5}$ Если X — поверхность, то каждый слой морфизма π изоморфен \mathbb{A}^1 и совпадает с замыканием R_e -орбиты (см. параболический случай в [36]). В то же время для трехмерного аффинного торического многообразия X вырожденные слои π могут оказаться двумерными.

 $e=(0,-1),\ e'=(a,-1)\sim e$, где a>0 и $\rho_e=(0,1)$. Тогда (2.8) выполнено для $H_{e'}$, но не для H_e . Тем самым, $\rho_e\in\Xi_{\tau}$ и \mathbb{T} -неподвижная точка $\overline{\mathscr{O}_{\tau}}=\{(0,0)\}$ является $H_{e'}$ -неподвижной, но не H_e -неподвижной. Можно также построить пример, в котором $\dim X=4$ и замыкание $\overline{\mathscr{O}_{\tau}}$ является $H_{e'}$ -инвариантным для любого корня $e'\sim e$, в то время как эквивалентные условия (i)–(iii) не выполнены.

Для доказательства бесконечной транзитивности нам понадобится более точная информация о действии однопараметрических групп автоморфизмов на торических многообразиях; см. предложение 2.1 и леммы 2.2, 2.3 ниже.

ПРЕДЛОЖЕНИЕ 2.1. Пусть $e \in \mathcal{R}(\sigma)$ и $H_e \subseteq \text{SAut}(X)$ – ассоциированная однопараметрическая унипотентная подгруппа. Тогда выполнено следующее.

- а) Для любой точки $x \in X \setminus X^{H_e}$ орбита $H_e.x$ пересекает в точности две \mathbb{T} -орбиты \mathcal{O}_1 и \mathcal{O}_2 на X, причем $\dim \mathcal{O}_1 = 1 + \dim \mathcal{O}_2$.
- b) Пересечение $\mathscr{O}_2 \cap H_e.x$ состоит из единственной точки, тогда как

$$\mathscr{O}_1 \cap H_e.x = R_e.y \qquad \forall y \in \mathscr{O}_1 \cap H_e.x.$$

ДОКАЗАТЕЛЬСТВО. а) Поскольку число \mathbb{T} -орбит на X конечно, найдется \mathbb{T} -орбита \mathscr{O}_1 , для которой пересечение $\mathscr{O}_1 \cap H_e.x$ открыто по Зарискому в $H_e.x$. Тогда $H_e.x \subseteq \overline{\mathscr{O}}_1$. Найдется другая \mathbb{T} -орбита \mathscr{O}_2 , пересекающая $H_e.x$. В самом деле, если $H_e.x \cong \mathbb{A}^1$ содержится в единственной \mathbb{T} -орбите \mathscr{O}_1 , то обратимые регулярные функции разделяют точки на \mathscr{O}_1 , а значит, и на $H_e.x$, противоречие. Поскольку \mathscr{O}_2 пересекает $\overline{\mathscr{O}}_1$, мы получаем $\mathscr{O}_2 \subseteq \overline{\mathscr{O}}_1$ и dim $\mathscr{O}_2 <$ dim \mathscr{O}_1 .

Мы знаем, что тор $\mathbb T$ нормализует унипотентную подгруппу H_e , а значит, элементы $\mathbb T$ отображают H_e -орбиты в H_e -орбиты. В частности, для любой точки $q \in H_e.x$ стабилизатор $\mathbb T_q$ сохраняет орбиту $H_e.x$. Все точки $q \in \mathscr O_1 \cap H_e.x$ имеют одинаковые стабилизаторы. Поскольку $H_e.x \subseteq \overline{\mathscr O_1} = X^{\mathbb T_q}$, этот стабилизатор действует на $H_e.x$ тривиально. Поэтому $\mathbb T_r \supseteq \mathbb T_q$ для любой точки $r \in H_e.x$, и $\mathbb T_r = \mathbb T_q$ тогда и только тогда, когда $r \in \mathscr O_1 \cap H_e.x$.

Зафиксируем точку $p\in\mathscr{O}_2\cap H_e.x$. Если $\mathbb{T}_p\subseteq\mathbb{T}_q$, то $\mathbb{T}_p=\mathbb{T}_q$ и dim $\mathscr{O}_2=\dim\mathscr{O}_1$, противоречие. Следовательно, стабилизатор \mathbb{T}_p действует на $H_e.x$ с двумя орбитами, т.е. $H_e.x=\mathbb{T}_p.q\cup\{p\}$, где $q\in H_e.x\setminus\{p\}$. Из наличия точной последовательности

$$1 \to \mathbb{T}_q \to \mathbb{T}_p \to G_{\mathrm{m}}(\mathbb{k}) \to 1$$

следует, что dim $\mathbb{T}_p = 1 + \dim \mathbb{T}_q$. Наконец, $H_e.x \subseteq \mathcal{O}_1 \cup \mathcal{O}_2$, dim $\mathcal{O}_1 = 1 + \dim \mathcal{O}_2$, как и утверждается в а).

b) Можно считать, что $\mathscr{O}_1=\mathbb{T}.x$. Поскольку $H_e.x\subseteq\overline{\mathscr{O}_1}$ и тор \mathbb{T} нормализует подгруппу H_e , мы получаем $H_e(\mathscr{O}_1)\subseteq\overline{\mathscr{O}_1}$. Тем самым, $\overline{\mathscr{O}_1}$ является H_e -инвариантным. С другой стороны, поскольку $H_e.p=H_e.x\not\subseteq\overline{\mathscr{O}_2}$, замыкание $\overline{\mathscr{O}_2}$ не является H_e -инвариантным. В частности, лемма 2.1 влечет $\rho_e\in\Xi_{\tau_2}$, где τ_i — грань конуса σ^\vee , отвечающая $\mathscr{O}_i=\mathscr{O}_{\tau_i},\ i=1,2$. По той же лемме $R_e\subseteq\mathbb{T}_{\tau_2}=\mathbb{T}_p$. Покажем, что $R_e\not\subseteq\mathbb{T}_{\tau_1}=\mathbb{T}_q$, где $q\in H_e.x\setminus\{p\}$. Применяя вновь лемму 2.1, мы получаем, что (2.8) выполнено для $\tau=\tau_1$, но не для $\tau=\tau_2$. Поскольку $\tau_2\subseteq\tau_1$, условие (2.8) не выполнено для некоторого $m\in\tau_1\setminus\tau_2$. Последнее возможно только при $\rho_e\in\tau_2^\perp\setminus\tau_1^\perp$. Лемма 2.1 влечет $R_e\not\subseteq\mathbb{T}_{\tau_1}=\mathbb{T}_q$. Наконец, одномерная орбита $\mathbb{T}_p.q$ совпадает с $R_e.q$.

Определение 2.3. Будем говорить, что пара \mathbb{T} -орбит $(\mathscr{O}_1,\mathscr{O}_2)$ на X является H_e -связанной, если $H_e.x\subseteq\mathscr{O}_1\cup\mathscr{O}_2$ для некоторого $x\in X\setminus X^{H_e}$. Предложение 2.1 показывает, что для такой пары (с точностью до перестановки) $\mathscr{O}_2\subseteq\overline{\mathscr{O}}_1$ и dim $\mathscr{O}_2=1$ + dim \mathscr{O}_1 . Как и выше, мы можем выбрать точку x на орбите \mathscr{O}_2 . Поскольку тор нормализует подгруппу H_e , любая точка на \mathscr{O}_2 может выступать в качестве точки x из нашего определения.

ПРИМЕР 2.1. Если $e \in \mathcal{R}(\sigma)$, то дифференцирование ∂_e , как в (2.4), продолжается до ЛНД большей градуированной алгебры

$$A(\rho_e) = \bigoplus_{m \in M, \langle \rho_e, m \rangle \geqslant 0} \mathbb{k} \chi^m.$$

В самом деле, положив $k=\langle \rho_e,m\rangle\geqslant 0$, мы получим $\langle \rho_e,m+ke\rangle=0$ и, значит, $\partial_e^k(\chi^m)\in\ker\partial_e$. Это гарантирует наличие $\mathbb T$ - и H_e -инвариантного открытого подмножества

$$U = \operatorname{Spec} A(\rho_e) \cong (\mathbb{A}^1_*)^{n-1} \times \mathbb{A}^1 \subseteq X,$$

где $n=\dim X$, $\mathbb{A}^1_*=\operatorname{Spec} \mathbb{k}[t,t^{-1}]$, $\mathbb{A}^1=\operatorname{Spec} \mathbb{k}[u]$ и $u=\chi^{-e}$, причем H_e действует сдвигами вдоль второго множителя. Единственными \mathbb{T} -орбитами в U являются открытая орбита $\mathscr{O}_1=\{u\neq 0\}$, которая отвечает вершине конуса σ , и орбита коразмерности 1 $\mathscr{O}_2=\{u=0\}$, отвечающая лучу $\mathbb{k}\rho_e$. Нетрудно показать, что пара $(\mathscr{O}_1,\mathscr{O}_2)$ является H_e -связанной.

Из предложения 2.1 и его доказательства мы получаем следующий критерий H_e -связанности.

ЛЕММА 2.2. Пусть $(\mathcal{O}_1,\mathcal{O}_2)$ – пара \mathbb{T} -орбит на X с $\mathcal{O}_2\subseteq\overline{\mathcal{O}_1}$, где $\mathcal{O}_i=\mathcal{O}_{\sigma_i^\perp}$ для грани σ_i конуса σ , i=1,2. Для данного корня $e\in\mathcal{R}(\sigma)$ пара $(\mathcal{O}_1,\mathcal{O}_2)$ является H_e -связанной тогда и только тогда, когда $e|_{\sigma_2}\leqslant 0$ и σ_1 – гипергрань конуса σ_2 , заданная уравнением $\langle v,e\rangle=0$.

Доказательство. В процессе доказательства предложения 2.1, b) мы установили, что пара $(\mathcal{O}_1,\mathcal{O}_2)$ является H_e -связанной тогда и только тогда, когда замыкание $\overline{\mathcal{O}}_1$ является H_e -инвариантным, $\overline{\mathcal{O}}_2$ не инвариантно относительно H_e и dim $\mathcal{O}_1=1$ + dim \mathcal{O}_2 . Более того, если пара $(\mathcal{O}_1,\mathcal{O}_2)$ является H_e -связанной, то σ_2^{\perp} – гипергрань конуса σ_1^{\perp} (а σ_1 – гипергрань σ_2), и существует такое $m_0\in\sigma_1^{\perp}\setminus\sigma_2^{\perp}$, что

$$\langle \rho_e, m_0 \rangle > 0, \qquad m_0 + e \in \sigma_2^{\perp}.$$

Поскольку $\langle \rho_i, e \rangle \geqslant 0$ для любого $\rho_i \neq \rho_e$, мы заключаем, что $\sigma_2 = \operatorname{Cone}(\sigma_1, \rho_e)$. Кроме того, $e|_{\sigma_1} = 0$, поскольку $e = m_0 + e - m_0 \in \operatorname{span} \sigma_1^{\perp}$. Тем самым, $e|_{\sigma_2} \leqslant 0$ и σ_1 выделяется в σ_2 уравнением $\langle v, e \rangle = 0$.

Обратно, предположим, что $e|_{\sigma_2}\leqslant 0$ и σ_1 задано в σ_2 уравнением $\langle v,e\rangle=0$. Для любого $m\in\sigma^\vee\setminus\sigma_1^\perp$ такого, что $\langle \rho_e,m\rangle>0$, выполнено условие $m+e\not\in\sigma_1^\perp$. В самом деле, $e|_{\sigma_1}=0$ и $e\in\sigma_1^\perp$. Значит, условие (2.8) выполнено для σ_1^\perp . Далее, $\langle \rho_e,m'\rangle>0$ для любого $m'\in\sigma_1^\perp\setminus\sigma_2^\perp$. Отсюда следует, что

$$m_0 := m' + (\langle \rho_e, m' \rangle - 1) \cdot e \in \sigma_1^{\perp} \setminus \sigma_2^{\perp}, \qquad m_0 + e \in \sigma_2^{\perp}.$$

В самом деле, $\langle \rho_e, m_0 \rangle = 1$ и $\langle \rho_e, m_0 + e \rangle = 0$, тогда как $\langle \rho_i, m_0 \rangle \geqslant 0$ и $\langle \rho_i, m_0 + e \rangle \geqslant 0$ для любого $\rho_i \neq \rho_e$. Поэтому (2.8) выполнено для σ_1^{\perp} , но не для σ_2^{\perp} . Следовательно, пара $(\mathcal{O}_1, \mathcal{O}_2)$ является H_e -связанной.

Замечание 2.3. Пусть даны однопараметрическая подгруппа $R\subseteq \mathbb{T}$ и точка $x\in X\setminus X^R$. Замыкание орбиты $\overline{R.x}$ совпадает с H_e -орбитой тогда и только тогда, когда $\overline{R.x}$ покрыто парой H_e -связанных \mathbb{T} -орбит. Например, для $X=\mathbb{A}^2$ со стандартным действием двумерного тора и подгруппой скалярных матриц в качестве $R\subseteq \mathbb{T}$ последнее условие выполнено только для точек $x\neq 0$ на одной из координатных осей.

ЛЕММА 2.3. Для любой точки 6 $x \in X_{\text{reg}} \setminus \mathcal{O}_{\sigma^{\vee}}$ найдется такой корень $e \in \mathcal{R}(\sigma)$, что

$$\dim \mathbb{T}.y > \dim \mathbb{T}.x$$

для типичной точки $y\in H_e.x.$ В частности, пара $(\mathbb{T}.y,\mathbb{T}.x)$ является H_e -связанной.

Доказательство. Поскольку $x \notin \mathcal{O}_{\sigma^\vee}$, найдется собственная грань, скажем, $\sigma_2 \subseteq \sigma$, для которой $\mathbb{T}.x = \mathcal{O}_{\sigma_2^\perp}$. Поскольку точка $x \in X$ гладкая, порождающие на ребрах ρ_1, \ldots, ρ_s конуса σ_2 образуют базис примитивной подрешетки $N' \subseteq N$ (см. [32; § 2.1]). Пусть σ_1 – гипергрань конуса σ_2 , порожденная ρ_2, \ldots, ρ_s . Используя вновь соответствие между орбитами и гранями, получаем, что $\mathcal{O}_{\sigma_2^\perp} \subseteq \overline{\mathcal{O}_{\sigma_1^\perp}}$ и dim $\mathcal{O}_{\sigma_1^\perp} = 1 + \dim \mathcal{O}_{\sigma_2^\perp}$. Покажем, что пара $(\mathcal{O}_{\sigma_1^\perp}, \mathcal{O}_{\sigma_2^\perp})$ является H_e -связанной для некоторого корня $e \in \mathcal{R}(\sigma)$, удовлетворяющего условиям леммы 2.2.

Выберем такую гиперплоскость $L\subseteq N_{\mathbb{Q}}$, касающуюся σ , что $\sigma_2=\sigma\cap L$. Мы получим разложение $N=N'\oplus N''\oplus N'''$, где $N\cap L=N'\oplus N''$ и $N'''\cong \mathbb{Z}$. Рассмотрим линейную форму e_1 на N', определенную условиями

$$\langle \rho_1, e_1 \rangle = -1, \qquad \langle \rho_2, e_1 \rangle = \dots = \langle \rho_s, e_1 \rangle = 0.$$

Пусть e_2 – ненулевая линейная форма на N'''. Продолжая e_1 и e_2 на всю решетку N нулем на дополнительных подрешетках, мы получаем линейную форму $e=e_1+e_2$ на N. Умножая e_2 на подходящее целое число, мы можем считать, что $\langle \rho_j,e\rangle>0$ для любого $\rho_j\notin\sigma_2$. Тогда e – такой корень конуса σ , что $\rho_e=\rho_1$, и условие леммы 2.2 для e выполнено. По лемме 2.2 пара $(\mathscr{O}_{\sigma_1^\perp},\mathscr{O}_{\sigma_2^\perp})$ является H_e -связанной, как и утверждалось. Поскольку $\mathbb{T}.x=\mathscr{O}_{\sigma_2^\perp}$ и тор \mathbb{T} нормализует подгруппу H_e , требуемое утверждение следует из предложения 2.1 и наблюдения из определения 2.3.

Итак, мы располагаем всем необходимым для доказательства бесконечной транзитивности в теореме 2.1. Это доказательство проводится в несколько этапов; см. ниже леммы 2.4-2.9.

ЛЕММА 2.4. Для любого набора $Q_1, \ldots, Q_m \in X_{\text{reg}}$ из m попарно различных точек найдется такой автоморфизм $\phi \in \text{SAut}(X)$, что образы $\phi(Q_1), \ldots, \phi(Q_m)$ содержатся в открытой \mathbb{T} -орбите.

Доказательство. Положим

$$d(Q_1, \ldots, Q_m) = \dim \mathbb{T}.Q_1 + \cdots + \dim \mathbb{T}.Q_m$$

и будем считать, что $\dim \mathbb{T}.Q_i < \dim X$ для некоторого i. Согласно лемме 2.3 найдется такой корень $e \in \mathcal{R}(\sigma)$, что $\dim \mathbb{T}.P_i > \dim \mathbb{T}.Q_i$ для типичной точки $P_i \in H_e.Q_i$. Зафиксируем изоморфизм $\lambda_e \colon G_\mathbf{a}(\Bbbk) \xrightarrow{\cong} H_e$. Имеется конечное множество значений $t \in G_\mathbf{a}(\Bbbk)$, для которых $\dim \mathbb{T}.(\lambda_e(t).Q_j) < \dim \mathbb{T}.Q_j$ при

 $^{^6}$ Напомним, что $\mathscr{O}_{\sigma^{\vee}}$ – открытая \mathbb{T} -орбита в X.

некотором $j \neq i$. Поэтому для типичного $t \in G_a(\mathbb{k})$ получаем

$$d(\lambda_e(t).Q_1,\ldots,\lambda_e(t).Q_m) > d(Q_1,\ldots,Q_m).$$

Теперь требуемое утверждение легко проверяется по индукции.

С этого момента будем предполагать, что точки Q_1,\ldots,Q_m содержатся в открытой \mathbb{T} -орбите $\mathbb{T}.x_0$. Зафиксируем максимальное линейно независимое подмножество порождающих на лучах $\{\rho_1,\ldots,\rho_n\}=:\Xi^{(0)}\subseteq\Xi$, где $n=\dim X$. Для каждого $i=1,\ldots,n$ выберем изоморфизм $\rho_i\colon G_{\mathrm{m}}(\Bbbk)\stackrel{\cong}{\longrightarrow} R_{\rho_i}$, который обозначим той же буквой, что и порождающий элемент. Напомним, что для корня $e\in\mathscr{R}(\sigma)$ вложение $\Bbbk[X]^{H_e}\subseteq \Bbbk[X]$ индуцирует морфизм $\tau\colon X\to Z$, где $Z=\mathrm{Spec}\, \Bbbk[X]^{H_e}$.

ЛЕММА 2.5. Пусть $\rho_i \in \Xi^{(0)}$ и $e \in \mathcal{R}(\sigma)$ – корень, для которого $\rho_e = \rho_i$. Тогда для любого конечного набора $\mathcal{T}_0, \ldots, \mathcal{T}_k$ попарно различных R_e -орбит в $\mathbb{T}.x_0$ найдется регулярный инвариант $q \in \mathbb{k}[X]^{H_e}$, который тождественно равен 1 на \mathcal{T}_0 и обращается в нуль на $\mathcal{T}_1, \ldots, \mathcal{T}_k$.

Доказательство. Морфизм факторизации $\tau\colon X\to Z$ разделяет типичные H_e -орбиты (см. [35; теоремы 2.3 и 3.3]). Поскольку тор $\mathbb T$ нормализует подгруппу H_e , имеется такое $\mathbb T$ -действие на Z, что морфизм τ является $\mathbb T$ -эквивариантным. В частности, для любого $x\in\mathbb T.x_0$ слой τ , проходящий через точку x, составляет одну H_e -орбиту. В соответствии с предложением 2.1 R_e -орбиты $\mathcal T_0,\dots,\mathcal T_k$ совпадают с пересечениями соответствующих H_e -орбит и открытой орбиты $\mathbb T.x_0$. Поэтому для каждого $j=1,\dots,k$ найдется инвариант $q_j\in \mathbb K[X]^{H_e}$, который обращается в нуль на $\mathcal T_j$ и равен константе 1 на $\mathcal T_0$. Легко видеть, что произведение $q=q_1\cdots q_k\in \mathbb K[X]^{H_e}$ обладает искомыми свойствами.

В обозначениях леммы 2.5 пусть $\operatorname{Stab}_{\mathscr{T}_1,\ldots,\mathscr{T}_k}(\mathscr{T}_0)\subseteq\operatorname{SAut}(X)$ – подгруппа всех преобразований, которые стабилизируют поточечно орбиты $\mathscr{T}_1,\ldots,\mathscr{T}_k$ и оставляют инвариантным замыкание $\overline{\mathscr{T}_0}$ в X.

ЛЕММА 2.6. Существует однопараметрическая унипотентная подгруппа $H \subseteq \operatorname{Stab}_{\mathscr{T}_1,\dots,\mathscr{T}_k}(\mathscr{T}_0)$, действующая на $\overline{\mathscr{T}_0}$ транзитивно.

Доказательство. Как и ранее, пусть $e \in \mathcal{R}(\sigma)$ – корень, для которого $\rho_e = \rho_i$, и q – регулярный H_e -инвариант из леммы 2.5. Локально нильпотентное дифференцирование $q\partial_e \in \mathrm{Der}\, \Bbbk[X]$ определяет однопараметрическую унипотентную подгруппу $H \subseteq \mathrm{Stab}_{\mathcal{I}_1,\dots,\mathcal{T}_k}(\mathcal{T}_0)$. Ясно, что ограничение $H|_{\mathcal{T}_0} = H_e|_{\mathcal{T}_0}$ действует на $\overline{\mathcal{T}_0} \cong \mathbb{A}^1$ сдвигами и поэтому транзитивно.

В оставшейся части доказательства теоремы 2.1 используются следующие обозначения. Пусть $\Xi^{(0)}=\{\rho_1,\ldots,\rho_n\}$ — базис в $N_{\mathbb Q}$, составленный из порождающих на лучах. Рассмотрим гомоморфизм $\theta\colon G_{\mathrm{m}}(\Bbbk)^n\to \mathbb T$ из стандартного n-мерного тора в $\mathbb T$, заданный как

$$\theta: (t_1, \dots, t_n) \longmapsto (\rho_1(t_1) \cdots \rho_n(t_n)).$$
 (2.10)

Легко видеть, что θ сюръективен, а его ядро $\Theta = \ker(\theta)$ – это конечная подгруппа в $G_{\mathrm{m}}(\Bbbk)^n$. Рассмотрим также индуцированный сюръективный морфизм из $G_{\mathrm{m}}(\Bbbk)^n$ на открытую орбиту $\mathbb{T}.x_0$. В частности, для m попарно различных точек $Q_1, \ldots, Q_m \in \mathbb{T}.x_0$ можно записать

$$Q_j = \theta(t_{1,j}, \dots, t_{n,j}).x_0, \qquad j = 1, \dots, m,$$
 (2.11)

где точка $(t_{1,j},\ldots,t_{n,j})\in G_{\mathrm{m}}(\Bbbk)^n$ определяется по Q_j с точностью до покоординатного действия подгруппы Θ на $G_{\mathrm{m}}(\Bbbk)^n$:

$$\vartheta.(t_1,\ldots,t_n) = (\vartheta_1 t_1,\ldots,\vartheta_n t_n),$$
 где $\vartheta = (\vartheta_1,\ldots,\vartheta_n) \in \Theta.$ (2.12)

Для $\kappa = \operatorname{ord} \Theta$ из теоремы Лагранжа следует, что $\vartheta_i^{\kappa} = 1$ для всех $i = 1, \ldots, n$. Зафиксируем стандартный набор из m точек на $\mathbb{T}.x_0$:

$$Q_{j0} = \theta(j, \dots, j).x_0, \qquad j = 1, \dots, m.$$
 (2.13)

Поскольку $\operatorname{Char}(\Bbbk) = 0$ и $\overline{\Bbbk} = \Bbbk$, эти точки попарно различны. Остается найти такой автоморфизм $\varphi \in \operatorname{SAut}(X)$, что $\varphi(Q_j) = Q_{j0}$ для каждого $j = 1, \ldots, m$. Для этого воспользуемся леммами 2.7 и 2.8 (см. ниже).

Будем говорить, что $t,t' \in G_{\mathrm{m}}(\Bbbk)$ κ -эквивалентны, если $t' = \varepsilon t$, где $\varepsilon \in G_{\mathrm{m}}(\Bbbk)$ – корень степени κ из единицы.

ЛЕММА 2.7. а) Для любых попарно различных элементов $t_1, \ldots, t_n \in G_{\mathrm{m}}(\Bbbk)$ множество таких элементов $a \in \Bbbk$, что $t_i + a$ и $t_j + a$ являются κ -эквивалентными для некоторых $i \neq j$, конечно.

- b) Зафиксируем $s \in \{1, ..., n\}$. Если точки Q_i и Q_j принадлежат одной R_s -орбите, то их r-е координаты $t_{i,r}$ и $t_{j,r}$ κ -эквивалентны для всех $r \neq s$.
- с) Предположим, что точки Q_{j_1}, \ldots, Q_{j_l} лежат на одной R_s -орбите $\mathcal{T}^{(s)}$. Тогда их образы при типичном сдвиге вдоль прямой $\overline{\mathcal{T}^{(s)}} \cong \mathbb{A}^1$ лежат на попарно различных R_r -орбитах для всех $r \neq s$.

Доказательство. а) Пусть ε – корень степени κ из единицы. Тогда линейное соотношение

$$t_i + a = \varepsilon(t_j + a)$$

выполнено не более чем для одного значения a. Это доказывает п. a).

Пункт b) имеет место, поскольку R_s -действие на X, поднятое посредством (2.10), изменяет только компоненту $t_{i,s}$ точки Q_i в (2.11), тогда как Θ -действие на $G_{\mathrm{m}}(\Bbbk)^n$ заменяет значение $t_{i,r}$ ($r \neq s$) на κ -эквивалентное.

Пункт с) немедленно следует из а) и b), поскольку для $i \neq j$ пересечение любых R_i - и R_j -орбит не более чем конечно.

ЛЕММА 2.8. В использованных выше обозначениях найдется такое $\psi \in \mathrm{SAut}(X)$, что точки $\psi(Q_1), \ldots, \psi(Q_m)$ лежат в различных R_1 -орбитах на $\mathbb{T}.x_0$.

Доказательство. По нашему предположению $n \geqslant 2$, поэтому на X определено действие группы R_2 . Пусть $\mathcal{T}_0^{(2)},\ldots,\mathcal{T}_k^{(2)}$ – различные R_2 -орбиты, проходящие через точки Q_1,\ldots,Q_m таким образом, что этот набор распадается на k+1 попарно непересекающихся поднаборов. Мы можем считать, что поднаборо, лежащий на $\mathcal{T}_0^{(2)}$ – это Q_1,\ldots,Q_l . Применяя лемму 2.6 к $\rho_e=\rho_2$, мы найдем однопараметрическую унипотентную подгруппу $H\subseteq \operatorname{Stab}_{\mathcal{T}_1^{(2)},\ldots,\mathcal{T}_k^{(2)}}(\mathcal{T}_0^{(2)})$,

действующую сдвигами вдоль $\overline{\mathscr{T}_0^{(2)}}\cong \mathbb{A}^1$. По лемме 2.7 образы Q_1,\dots,Q_l при типичном сдвиге лежат в разных R_r -орбитах для всех $r\neq 2$, тогда как остальные точки $Q_j,\,j>l$, остаются неподвижными. Применяя такую же процедуру последовательно к другим поднаборам, мы получим в итоге такой автоморфизм $\psi\in \mathrm{SAut}(X)$, что точки $\psi(Q_1),\dots,\psi(Q_m)$ лежат в разных R_r -орбитах для всех $r\neq 2$.

Доказательство теоремы 2.1. Начнем с утверждения о бесконечной транзитивности. По лемме 2.8 мы можем считать, что орбиты $\mathcal{T}_j^{(1)} = R_1.Q_j$, $j=1,\ldots,m$, попарно различны. Лемма 2.6 показывает, что можно изменить компоненту $t_{1,j}$ точки Q_j произвольно, оставляя неизменными другие компоненты и другие точки из нашего набора. Добьемся того, чтобы $t_{1,j}=j$ для всех $j=1,\ldots,m$. После этого для любого $l\geqslant 2$ орбиты $R_l.Q_1,\ldots,R_l.Q_m$ будут попарно различны. Вновь применяя лемму 2.6 к каждой R_l -орбите для $l=2,\ldots,n$, мы получаем стандартный набор $Q_1^{(0)},\ldots,Q_m^{(0)}$, как в (2.13), с $t_{l,j}=j$ для всех $j=1,\ldots,m,\ l=1,\ldots,n$. Это доказывает бесконечную транзитивность в теореме 2.1.

Утверждение о гибкости сформулируем в виде отдельной леммы.

ЛЕММА 2.9. Любое невырожденное аффинное торическое многообразие X является гибким.

Доказательство. Если $\dim X=1$, то $X\cong \mathbb{A}^1$, и утверждение леммы очевидно. Далее считаем, что $\dim X\geqslant 2$. Мы уже знаем, что группа $\mathrm{SAut}(X)$ действует на X_{reg} (бесконечно) транзитивно. Поэтому достаточно найти на X_{reg} одну гибкую точку. Покажем, что точка x_0 в открытой \mathbb{T} -орбите является гибкой. Рассмотрим действие стандартного тора $G_{\mathrm{m}}(\Bbbk)^n$ на X, индуцированное \mathbb{T} -действием на X посредством (2.10). Стабилизатор $\mathrm{Stab}(x_0)\subseteq G_{\mathrm{m}}(\Bbbk)^n$ конечен и касательное отображение $T_gG_{\mathrm{m}}(\Bbbk)^n\to T_{x_0}X$ в каждой точке $g\in\mathrm{Stab}(x_0)$ сюръективно. Поэтому касательные векторы в x_0 к орбитам $R_i.x_0, i=1,\ldots,n,$ порождают касательное пространство $T_{x_0}X$. Замечание 2.1 показывает, что для каждого $i=1,\ldots,n$ найдется такой корень $e_i\in\mathscr{R}(\sigma)$, что $\rho_i=\rho_{e_i}$. Поскольку точка x_0 не может быть неподвижной относительно однопараметрической подгруппы H_{e_i} , из предложения 2.1 вытекает, что $H_{e_i}.x_0=\overline{R_i.x_0}$. При подходящей параметризации этих двух орбит их векторы скоростей в x_0 совпадут. Поэтому $T_{x_0}X$ порождается касательными векторами к орбитам $H_{e_i}.x_0$, $i=1,\ldots,n$, что и означает, что точка x_0 является гибкой на X.

Доказательство теоремы 2.1 завершено.

ПРИМЕР 2.2. Рассмотрим особую аффинную торическую поверхность $X_{d,e} = \mathbb{A}^2/G_d$, где d и e — взаимно простые целые числа, 0 < e < d, и G_d обозначает циклическую группу, порожденную первообразным корнем ζ степени d из единицы, которая действует на \mathbb{A}^2 как $\zeta.(x,y) = (\zeta x, \zeta^e y)$. Известно (см. [36]–[38]), что для $e \geqslant 2$ множество гладких точек $(X_{d,e})_{\text{reg}} = X_{d,e} \setminus \{0\}$ не является однородным пространством аффинной алгебраической группы. Однако $X_{d,e} \setminus \{0\}$ однородно относительно действия бесконечномерной группы $\mathrm{SAut}(X_{d,e})$.

§ 3. Аффинные надстройки

В этом параграфе мы доказываем часть 3 теоремы 0.2. Напомним следующие необходимые понятия.

Определение 3.1. Пусть $X^{(0)}$ – аффинное многообразие. Будем называть *цилиндром* над $X^{(0)}$ произведение $X^{(0)} \times \mathbb{A}^1$. Если задана непостоянная регулярная функция $f_1 \in \mathbb{k}[X^{(0)}]$, то рассмотрим новое аффинное многообразие

$$X^{(1)} = \operatorname{Susp}(X^{(0)}, f_1) := \{ f_1(x) - uv = 0 \} \subseteq X^{(0)} \times \mathbb{A}^2,$$

называемое nadcmpoйкой над $X^{(0)}$. По индукции для любого $l \in \mathbb{N}$ можно построить итерированную надстройку $X^{(l)} = \operatorname{Susp}(X^{(l-1)}, f_l)$.

Например, начиная с $X^{(0)}=\mathbb{A}^k$, на l-м шаге мы получим итерированную надстройку $X^{(l)}$, заданную в аффинном пространстве

$$\mathbb{A}^{k+2l} = \operatorname{Spec} \mathbb{k}[x_1, \dots, x_k, u_1, v_1, \dots, u_l, v_l]$$

следующей системой уравнений:

где многочлены $f_i \in \mathbb{k}[x_1,\ldots,x_k,u_1,v_1,\ldots,u_{i-1},v_{i-1}]$ выбираются так, что f_i не равен константе по модулю идеала $(u_1v_1-f_1,\ldots,u_{i-1}v_{i-1}-f_{i-1}), i=1,2,\ldots,l.$

Теорема 0.2 доказывается отдельно для надстроек над прямой и над многообразием размерности хотя бы 2. Для надстроек над прямой утверждение остается верным над любым полем характеристики нуль при некотором дополнительном ограничении на функцию $f = f_1$.

ТЕОРЕМА 3.1. Пусть & – поле характеристики нуль u $f \in \&[x]$ – такой многочлен, что f(&) = &. Рассмотрим поверхность $X \subseteq \mathbb{A}^3_{\&}$, заданную уравнением f(x) - uv = 0. Тогда многообразие X является гибким u группа специальных автоморфизмов $\mathrm{SAut}(X)$ действует на X_{reg} m-транзитивно для любого $m \in \mathbb{N}$.

В высших размерностях часть 3 теоремы 0.2 может быть сформулирована следующим образом.

ТЕОРЕМА 3.2. Пусть \Bbbk – алгебраически замкнутое поле характеристики нуль, $X^{(0)}$ – гибкое аффинное многообразие. Предположим, что либо $X^{(0)}\cong \mathbb{A}^1$, либо $\dim X^{(0)}\geqslant 2$ и группа специальных автоморфизмов $\mathrm{SAut}(X^{(0)})$ действует на $X^{(0)}_{\mathrm{reg}}$ т-транзитивно для всех $m\in \mathbb{N}$. Тогда все итерированные надстройки $X^{(l)}$, $l\geqslant 1$, над $X^{(0)}$ являются гибкими и группа специальных автоморфизмов $\mathrm{SAut}(X^{(l)})$ действует на $X^{(l)}_{\mathrm{reg}}$ т-транзитивно для всех $m\in \mathbb{N}$.

Так как условия теоремы выполняются для аффинного пространства $X^{(0)} = \mathbb{A}^k, \, k \geqslant 1$, то можно заключить, что для всех $k, l \geqslant 1$ аффинное многообразие $X^{(l)} \subseteq \mathbb{A}^{k+2l}$, заданное системой уравнений (3.1), является гибким и группа $\mathrm{SAut}(X^{(l)})$ действует на $X^{(l)}_{\mathrm{reg}}$ бесконечно транзитивно.

Доказательство теоремы 3.2 с незначительными изменениями остается верным для вещественных алгебраических многообразий. Мы получаем следующий результат.

ТЕОРЕМА 3.3. Пусть $X^{(0)}$ – гибкое вещественное аффинное алгебраическое многообразие. Предположим, что множество гладких точек $X_{\text{reg}}^{(0)}$ связно и группа специальных автоморфизмов $\mathrm{SAut}(X^{(0)})$ действует на $X_{\text{reg}}^{(0)}$ тетранзитивно для всех $m \in \mathbb{N}$. Рассмотрим итерированные надстройки $X^{(i)} = \mathrm{Susp}(X^{(i-1)}, f_i)$, где для каждого $i = 1, \ldots, l$ функция $f_i \in \mathbb{R}[X^{(i-1)}]$ удовлетворяет условию $f_i(X_{\text{reg}}^{(i-1)}) = \mathbb{R}$. Тогда для каждого $i = 1, \ldots, l$ многообразие

 $X^{(i)}$ является гибким и группа $\mathrm{SAut}(X^{(i)})$ действует на $X^{(i)}_{\mathrm{reg}}$ m-транзитивно для всех $m \in \mathbb{N}$.

Бесконечная транзитивность в теоремах 3.1–3.3 доказывается в пп. 3.1–3.3 соответственно. Гибкость во всех трех случаях проверяется в п. 3.4.

3.1. Надстройки над прямой.

Доказательство бесконечной транзитивности в теореме 3.1. (Рассуждения совершенно элементарны и опираются на явную формулу из работы [39].) Можно считать, что $d = \deg f \geqslant 2$. Согласно работе [39] в нашем случае группа специальных автоморфизмов $\mathrm{SAut}(X)$ содержит коммутативные подгруппы G_u и G_v , порожденные унипотентными подгруппами

$$H_u(q): (x, u, v) \mapsto \left(x + tq(u), u, v + \frac{f(x + tq(u)) - f(x)}{u}\right),$$
 (3.2)

$$H_v(q): (x, u, v) \mapsto \left(x + tq(v), u + \frac{f(x + tq(v)) - f(x)}{v}, v\right)$$
 (3.3)

соответственно, где $q(z) \in \mathbb{k}[z], \ q(0) = 0$ и $t \in \mathbb{k}$. Очевидно, что $u \in \mathbb{k}[X]^{G_u}$ и $v \in \mathbb{k}[X]^{G_v}$. Мы утверждаем, что подгруппа $G = \langle G_u, G_v \rangle \subseteq \mathrm{SAut}(X)$ действует на X_{reg} m-транзитивно при всех $m \in \mathbb{N}$. Таким образом, для любого заданного набора попарно различных точек из X_{reg}

$$Q_1 = (x_1, u_1, v_1), \dots, Q_m = (x_m, u_m, v_m)$$

мы хотим найти автоморфизм $\phi \in G$, переводящий этот набор в стандартный набор

$$Q_i^{(0)} = (x_i^{(0)}, u_i^{(0)}, v_i^{(0)}), \qquad i = 1, \dots, m,$$

выбранный таким образом, что все $v_i^{(0)}$ отличны от нуля и попарно различны. Шаг 1. Действуя при помощи подгруппы G_u , можно перевести исходный набор в такой набор, что $v_i \neq 0$ для всех $i=1,\ldots,m$. Действительно, так как $f^{(d)}(x)$ — ненулевая постоянная и либо $f'(x) \neq 0$, либо $u \neq 0$, то многочлен

$$\frac{f(x+tu) - f(x)}{u} = \frac{f'(x)}{1!}t + \dots + \frac{f^{(d)}(x)}{d!}u^{d-1}t^d \in \mathbb{k}[x,u][t]$$

отличен от константы. Так как точка $Q_s \in X$ гладкая, равенства $u_s = 0$, $v_s = 0$, $f'(x_s) = 0$ не могут выполняться одновременно. Поэтому действие автоморфизма (3.2) с q = z и достаточно общим значением параметра t не меняет координату $v_s = 0$, но при этом оставляет ненулевыми те v_i , которые уже были ненулевые. Отсюда вытекает требуемое утверждение.

Шаг 2. С этого момента будем считать, что $v_i \neq 0$ для всех $i=1,\ldots,m$. Тогда, действуя группой G_v , мы можем перевести исходный набор в такой, для которого все $u_i, i=1,\ldots,m$, отличны от нуля и попарно различны. Действительно, пусть

$$F(Q_i, q, t) = \frac{f'(x_i)}{1!} \frac{q(v_i)}{v_i} t + \dots + \frac{f^{(d)}(x_i)}{d!} \frac{q(v_i)^d}{v_i} t^d \in \mathbb{k}[t].$$

⁷См. также [40]–[42].

Получаем, что $(x_i, v_i) \neq (x_i, v_i)$ для всех $i \neq j$, так как $(x_i, u_i, v_i) \neq (x_i, u_i, v_i)$, где $u_i = f(x_i)/v_i$ и $u_j = f(x_j)/v_j$. Если $v_i = v_j$, то $f^{(d-1)}(x_i) \neq f^{(d-1)}(x_j)$, так как линейная функция $f^{(d-1)}(x)$ является ненулевой. Поэтому для подходящего $q \in \mathbb{k}[z]$, удовлетворяющего условию $q(v_i) \neq 0$ для всех i, многочлены $F(Q_i,q,t)$ и $F(Q_i,q,t)$ различны при всех $i\neq j$. Применяя автоморфизм $H_v(q)$ из (3.3) с достаточно общим t, получаем требуемое.

Шаг 3. Далее можно считать, что все координаты u_i отличны от нуля и попарно различны. Покажем, что при помощи группы G_u можно перевести исходный набор точек в набор со стандартными значениями $v_s^{(0)}, s = 1, \dots, m$. Для этого мы строим автоморфизм, оставляющий неподвижными все точки, кроме Q_i , и переводящий Q_i в новую точку Q'_i , для которой $v'_i = v_i^{(0)}$. А именно, зафиксируем многочлен q(z), для которого $q(0)=0,\ q(u_i)\neq 0$ и $q(u_j)=0$ при всех $j \neq i$. Из условий, наложенных на f(x), следует, что у уравнения $f(x)=u_i(v_i^{(0)}-v_i)+f(x_i)$ есть корень $x=a_i$, где $a_i\in \Bbbk$. Применяя $H_u(q)$ в (3.2) для $t=(a_i-x_i)/q(u_i)$, получаем требуемое.

 Шаг 4. Теперь можно считать, что $v_i=v_i^{(0)}$ для всех i. Достаточно при помощи группы G_v добиться того, чтобы для всех i значения координат x_i были равны $x_i^{(0)}$. Действительно, в этом случае $u_i=f(x_i)/v_i=f(x_i^{(0)})/v_i^{(0)}=u_i^{(0)}$. Далее применим $H_u(q)$, как и в (3.3), полагая t=1 и выбирая многочлен q таким образом, что q(0)=0 и $q(v_i^{(0)})=x_i^{(0)}-x_i$ для всех i. Это завершает доказательство.

3.2. Бесконечная транзитивность в высших размерностях. Достаточно доказать теоремы 3.2, 3.3 при l=1. Прежде чем переходить к собственно доказательствам, установим в леммах 3.1-3.3 некоторые полезные элементарные свойства надстроек. В леммах 3.1-3.4 мы предполагаем, что основное поле к имеет характеристику нуль.

 ПЕММА 3.1. Если многообразие $X^{(0)}$ неприводимо, то и надстройка $X^{(1)}=$ $Susp(X^{(0)}, f)$ также неприводима.

Доказательство. Рассуждая от противного, предположим, что найдутся такие ненулевые функции

$$F_1, F_2 \in \mathbb{k}[X^{(1)}] = \mathbb{k}[X^{(0)}][u, v]/(uv - f),$$
 что $F_1F_2 = 0.$

Можно считать, что мы выбрали F_1 и F_2 так, что $\deg_{u,v}(F_1) + \deg_{u,v}(F_2)$ минимально, а также что ни один моном в F_i не содержит произведение uv, иначе мы могли бы заменить это произведение на f согласно определению 3.1. Если переменная u входит и в F_1 , и в F_2 , то $\deg_u(F_1F_2) > 0$, так как старший по u член ни с чем не сократится. С точностью до перестановки u и v мы можем считать, что в многочлен F_1 не входит переменная v, а в многочлен F_2 не входит переменная и. Запишем

$$F_1 = \sum_{i=0}^{k} a_i u^i, \qquad F_2 = \sum_{j=0}^{l} b_j v^j,$$

где $a_i,b_j\in \Bbbk[X^{(0)}],$ а значение k+l минимально возможное. Если k=l=0, то $F_1,F_2\in \Bbbk[X^{(0)}]$ являются делителями нуля, что противоречит неприводимости $X^{(0)}$. Поэтому k+l>0.

Если $a_0=b_0=0$, то мы можем уменьшить общую степень k+l, вынося за скобки u и v. Это противоречит предположению о минимальности. Поэтому можно считать, что $a_0\neq 0$. Тогда в произведение F_1F_2 должен входить ненулевой член $a_0b_lv^l$, что вновь приводит к противоречию. Лемма доказана.

ЛЕММА 3.2. Пусть $\pi\colon X^{(1)}\to X^{(0)}$ – ограничение проекции $X^{(0)}\times \mathbb{A}^2\to X^{(0)}$ на $X^{(1)}$. Тогда $\pi(X^{(1)}_{\mathrm{reg}})=X^{(0)}_{\mathrm{reg}}$.

Доказательство. Предположим, что идеал подмногообразия $X^{(0)}\subseteq \mathbb{A}^s$ порождается функциями $f_1,f_2,\ldots,f_m\in \mathbb{k}[x_1,x_2,\ldots,x_s]$. Точка $P\in X^{(0)}$ является гладкой тогда и только тогда, когда ранг якобиана

$$D_0 = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_s} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_s} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_s} \end{pmatrix}$$

в точке P достигает своего максимального значения $s-\dim X^{(0)}$. Аналогичная матрица для $X^{(1)}$ имеет вид

$$D_{1} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \dots & \frac{\partial f_{1}}{\partial x_{s}} & 0 & 0 \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \dots & \frac{\partial f_{2}}{\partial x_{s}} & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \dots & \frac{\partial f_{m}}{\partial x_{s}} & 0 & 0 \\ \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \dots & \frac{\partial f}{\partial x_{s}} & -v & -u \end{pmatrix}$$

Очевидно, в любой точке $\operatorname{rk} D_1 \leqslant 1+\operatorname{rk} D_0$. Так как $\dim X^{(1)}=1+\dim X^{(0)}$, все гладкие точки многообразия $X^{(1)}$ отображаются под действием π в гладкие точки $X^{(0)}$. С другой стороны, пусть M – квадратная подматрица D_0 , а $P \in X^{(0)}_{\operatorname{reg}}$ – такая точка, что ранг M(P) равен $r=s-\dim X^{(0)}$, т.е. рангу матрицы D_0 . Расширим M до квадратной подматрицы M' ранга r+1: добавим последнюю строку и один из дополнительных столбцов D_1 таким образом, чтобы $\operatorname{rk} M'(P,u,v)=1+\operatorname{rk} M(P)=r+1$ для некоторых $(u,v)\neq (0,0)$, где $(P,u,v)\in X^{(1)}$. Тогда $(P,u,v)\in X^{(1)}$. Из этого следует утверждение леммы.

Замечание 3.1. Пусть A – аффинная алгебра. Напомним (см. [7]), что аффинной модификацией A с центром (I,v), где $I\subseteq A$ – идеал, а $v\in I$ не является делителем нуля, называется факторалгебра A[It]/(1-vt), где

$$A[It] = A \oplus \bigoplus_{n=1}^{\infty} (It)^n \cong A \oplus I \oplus I^2 \oplus \dots = \mathrm{Bl}_I(A)$$

– алгебра Рисса, ассоциированная с парой (A, I), и t – формальная переменная.

Геометрически многообразие Spec(A[It]/(1-vt)) можно получить из X= Spec A следующим образом. Надо раздуть X с центром в I, а затем удалить из $\mathrm{Bl}_I(X)$ собственный прообраз дивизора нулей V(v) в X. Полученное многообразие снова будет аффинным. (Заметим, что собственный прообраз D пересекает исключительный дивизор E, так как $v\in I$; детали можно найти в $[7;\S 1]$.)

Согласно [7; пример 1.4 и § 5] надстройка $X^{(1)} = \operatorname{Susp}(X^{(0)}, f)$ может быть получена как аффинная модификация $X^{(0)} \times \mathbb{A}^1$ (где $\mathbb{A}^1 = \operatorname{Spec} \mathbb{k}[v]$) с центром $(I_1 = (v, f), v)$ вдоль дивизора v = 0. Меняя ролями v и u, получаем, что многообразие $X^{(1)}$ является также аффинной модификацией $X^{(0)} \times \mathbb{A}^1$, где на сей раз $\mathbb{A}^1 = \operatorname{Spec} \mathbb{k}[u]$, с центром $(I_2 = (u, f), u)$ вдоль дивизора u = 0. Исключительные дивизоры этих двух модификаций (v = 0 и u = 0 соответственно) оба изоморфны $X^{(0)} \times \mathbb{A}^1$, но различны как подмногообразия в $X^{(1)}$. Для произвольного $c \in \mathbb{k}$ будем обозначать через $U_c = \{u = c\}$ и $V_c = \{v = c\}$ гиперповерхности уровня в $X^{(1)}$, часто используемые в дальнейшем.

В [7; §2] указан способ, позволяющий поднять произвольное ЛНД ∂ на аффинную модификацию в том случае, когда ∂ сохраняет центр модификации. В лемме 3.3 (см. ниже) мы конкретизируем этот метод для частного случая аффинных надстроек.

Пусть дано ЛНД δ_0 аффинной области целостности A_0 и многочлен $q \in \mathbb{k}[z]$, для которого q(0) = 0. Тогда можно определить новое ЛНД $\delta' = \delta'(\delta_0, q)$ на $A' = A_0 \otimes \mathbb{k}[v]$, где v — новая переменная, следующим образом. Сначала продолжим δ_0 на A', полагая $\delta_0(v) = 0$, а затем домножим δ_0 на элемент $q(v) \in \ker \delta_0$. Предположим, что A_0 порождается x_1, x_2, \ldots, x_s . Тогда δ' записывается в координатах как

$$\delta'(x_i) = q(v)\delta_0(x_i), \quad i = 1, 2, \dots, s, \qquad \delta'(v) = 0.$$
 (3.4)

Теперь рассмотрим еще одну независимую переменную u и ненулевой элемент $f \in A_0$. Рассмотрим алгебру регулярных функций A_1 на надстройке над A_0 :

$$A_1 = (A_0 \otimes \mathbb{k}[u, v])/(uv - f).$$

ЛЕММА 3.3. В тех же обозначениях, что и выше, любое ЛНД $\delta' \in \operatorname{Der} A'$ может быть преобразовано в ЛНД $\delta_1 = \delta_1(\delta_0, q) \in \operatorname{Der} A_1$, если положить

$$\delta_1(x_i) = \delta'(x_i), \quad i = 1, 2, \dots, s, \qquad \delta_1(u) = \frac{q(v)}{v} \delta_0(f), \qquad \delta_1(v) = \delta'(v) = 0.$$
(3.5)

Доказательство. Сначала проверим, что эти формулы поднимают δ' до $\delta_1 = \delta_1(\delta_0,q) \in \mathrm{Der}(A_0 \otimes \Bbbk[u,v])$, где δ_1 сохраняет идеал (uv-f). Благодаря выбору q получаем, что $q(v)/v \in \Bbbk[v]$, и дифференцирование δ_1 корректно определено на образующих алгебры $A_0 \otimes \Bbbk[u,v]$. Легко видеть, что δ_1 локально нильпотентно. Непосредственное вычисление показывает, что $\delta_1(uv-f)=0$. Поэтому δ_1 опускается до ЛНД факторалгебры A_1 . Это последнее ЛНД мы также обозначаем через δ_1 .

Определение 3.2. Пусть G_v – подгруппа группы специальных автоморфизмов $\mathrm{SAut}(X^{(1)})$, порожденная всеми однопараметрическими унипотентными подгруппами

$$H_v(\delta_0, q) = \exp(t\delta_1),$$
 где $t \in \mathbb{k}_+, \delta_1 = \delta_1(\delta_0, q),$

причем δ_0 и q(t) определены, как выше⁸. Меняя v и u ролями, мы получаем вторую подгруппу $G_u \subseteq \text{SAut}(X^{(1)})$. При этом $u \in \mathbb{k}[X^{(1)}]^{G_u}$ и $v \in \mathbb{k}[X^{(1)}]^{G_v}$. Покажем, что подгруппа $G \subseteq SAut(X^{(1)})$, порожденная G_u и G_v , действует бесконечно транзитивно на $X_{{\rm res}}^{(1)}.$

Зафиксируем k попарно различных чисел $c_1,\ldots,c_k\in \mathbb{k}$. Пусть $\operatorname{Stab}_{c_1\ldots c_k}^v$ подгруппа группы G_v , оставляющая неподвижными все точки каждой гиперповерхности $V_{c_s} \subseteq X^{(1)}, s = 1, \dots, k$.

 Лемма 3.4. Предположим, что группа $\mathrm{SAut}(X^{(0)})$ действует на $X^{(0)}_{\mathrm{reg}}$ m-транзитивно. Тогда для любых попарно различных чисел $c_0, c_1, \ldots, c_k \in$ $G_{\mathrm{m}}(\mathbb{k})$ группа $\mathrm{Stab}_{c_1...c_k}^v$ действует на $V_{c_0} \cap X_{\mathrm{reg}}^{(1)}$ т-транзитивно.

Доказательство. Рассмотрим два набора из m различных точек $P_1',\ldots,$ P_m' и Q_1',\dots,Q_m' в $V_{c_0}\cap X_{\mathrm{reg}}^{(1)}.$ Пусть P_1,\dots,P_m и Q_1,\dots,Q_m – их проекции на $X^{(0)}$ под действием $\pi.$ Заметим, что гиперповерхность $V_{c_0}\subseteq X^{(1)}$ под действием π отображается изоморфно на $X^{(0)}$. При этом по лемме 3.2 известно, что $\pi(V_{c_0}\cap X_{\mathrm{reg}}^{(1)})\subseteq X_{\mathrm{reg}}^{(0)}$. Точка $P'\in V_{c_0}$ может быть записана как $P'=(P,u,c_0)$, где $P=\pi(P')\in X^{(0)}$ и $u=u(P')=f(P)/c_0$. Поэтому у любой гладкой точки на $X^{(0)}$ есть прообраз на $X^{(1)}_{\text{reg}}$. Следовательно, мы имеем изоморфизм $X^{(0)} \stackrel{\cong}{\longrightarrow} V_{c_0}$, переводящий P в P'.

Так как в силу наших предположений группа $\mathrm{SAut}(X^{(0)})$ действует на $X^{(0)}_{\mathrm{reg}}$ m-транзитивно, существует автоморфизм $\psi_0 \in \mathrm{SAut}(X^{(0)})$, который переводит упорядоченный набор (P_1,\ldots,P_m) в (Q_1,\ldots,Q_m) . Этот автоморфизм может быть записан как произведение

$$\psi_0 = \prod_{i=1}^k \exp(\delta_0^{(i)})$$

для некоторых ЛНД $\delta_0^{(1)},\dots,\delta_0^{(k)}\in\operatorname{Der}\Bbbk[X^{(0)}].$ Полагая $q=\alpha z(z-c_1)\cdots(z-c_k)$, где $\alpha\in G_{\mathrm{m}}(\Bbbk)$ таково, что $q(c_0)=1$, по лемме 3.3 мы можем поднять ЛНД $\delta_0^{(i)}$ до ЛНД

$$\delta_1^{(i)} = \delta_1^{(i)}(\delta_0^{(i)}, q) \in \mathrm{Der}\, \Bbbk[X^{(1)}], \qquad i = 1, \dots, k.$$

Поэтому ψ_0 может быть поднят до автоморфизма

$$\psi_1 = \prod_{i=1}^k \exp(\delta_1^{(i)}) \in G_v \subseteq \text{SAut}(X^{(1)}).$$

Применив (3.4), можно легко установить, что все действия на $X^{(1)}$ соответствующих однопараметрических унипотентных подгрупп $H_v(\delta_0^{(i)},q)$ ограничиваются до исходных действий на $V_{c_0}\cong X^{(0)}$. Поэтому автоморфизм $\psi_1|_{V_{c_0}}=\psi_0$ переводит (P'_1,\ldots,P'_m) в (Q'_1,\ldots,Q'_m) . Благодаря подходящему выбору q(z)этот автоморфизм оставляет неподвижными все точки остальных гиперповерхностей V_{c_s} . Лемма доказана.

 $[\]overline{^8}$ Заметим, что для $X^{(0)}=\mathbb{A}^1=\operatorname{Spec} \mathbb{k}[z]$ и $\delta_0=d/dz$ мы получим $H_v(\delta_0,q)=H_v(q)$ согласно (3.3).

ЛЕММА 3.5. Пусть \Bbbk – алгебраически замкнутое поле характеристики нуль. Предположим, как и выше, что группа $\mathrm{SAut}(X^{(0)})$ действует на $X^{(0)}_{\mathrm{reg}}$ т-транзитивно. Тогда для любого набора попарно различных точек $Q'_1,\ldots,Q'_m\in X^{(1)}_{\mathrm{reg}}$ существует такой автоморфизм $\varphi\in\mathrm{SAut}(X^{(1)}),$ что $\varphi(Q'_i)\not\in U_0\cup V_0$ при всех $i=1,2,\ldots,m$.

Доказательство. Будем называть точку $Q_i' = (Q_i, u_i, v_i) \in X^{(1)}$ гиперболической, если $u_i v_i \neq 0$, т.е. если $Q_i' \not\in U_0 \cup V_0$. Мы хотим показать, что при помощи элемента группы специальных автоморфизмов можно перевести исходный набор в такой набор, в котором все точки будут гиперболическими. Предположим, что Q_1', \ldots, Q_l' уже гиперболические, а Q_{l+1}' – нет, $l \geqslant 0$. Достаточно доказать, что можно отобразить Q_{l+1}' в точку, лежащую вне $U_0 \cup V_0$, не нарушая гиперболичности точек Q_1', \ldots, Q_l' , и воспользоваться индукцией. Рассмотрим два случая.

Случай 1: $u_{l+1} = 0, v_{l+1} \neq 0.$

Cлучай 2: $u_{l+1} = v_{l+1} = 0$.

Мы утверждаем, что существует автоморфизм $\varphi \in \mathrm{SAut}(X^{(1)})$, оставляющий Q'_1,\ldots,Q'_l гиперболическими и такой, что в случае 1 точка $\varphi(Q'_{l+1})$ становится тоже гиперболической, а в случае 2 эта точка удовлетворяет условиям случая 1.

В случае 1 разобьем Q'_1,\ldots,Q'_{l+1} на группы M_0,\ldots,M_k в соответствии со значениями координаты $v\colon Q'_i\in M_j\Longleftrightarrow v_i=c_j$, где $c_j\neq 0$. Предположим, что $M_0=\{Q'_{i_1},\ldots,Q'_{i_r},Q'_{l+1}\}$, где $i_k\leqslant l$ для всех $k=1,\ldots,r$. Мы можем выбрать новую точку Q''_{l+1} , где $Q''_{l+1}\in (V_{c_0}\cap X^{(1)}_{\mathrm{reg}})\setminus U_0$. Действительно, так как $c_0=v_{l+1}\neq 0$, то $V_{c_0}\cong X^{(0)}$. По предположению теоремы 3.2 $\dim X^{(0)}\geqslant 2$, поэтому $\dim((V_{c_0}\cap X^{(1)}_{\mathrm{reg}})\setminus U_0)=\dim X^{(0)}\geqslant 2$.

По лемме 3.4 подгруппа $\operatorname{Stab}_{c_1,\dots,c_k}^v\subseteq G_v$ действует на $V_{c_0}\cap X_{\operatorname{reg}}^{(1)}$ (r+1)-транзитивно. Поэтому можно перевести набор $(Q'_{i_1},\dots,Q'_{i_r},Q'_{l+1})$ в набор $(Q'_{i_1},\dots,Q'_{i_r},Q''_{l+1})$, оставляя неподвижными остальные точки из $M_1\cup\dots\cup M_k$. Это доказывает утверждение в случае 1.

В случае 2 точка $Q'_{l+1}=(Q_{l+1},0,0)$ лежит в $X^{(1)}_{\text{reg}}$. Из леммы 3.2 и ее доказательства следует, что $Q_{l+1}=\pi(Q'_{l+1})\in X^{(0)}_{\text{reg}}$ и $df(Q_{l+1})\neq 0$ в кокасательном пространстве $T^*_{Q_{l+1}}X^{(0)}$. Так как многообразие $X^{(0)}$ является гибким, найдется такое ЛНД $\partial_0\in \text{Der }\mathbb{k}[X^{(0)}]$, что $\partial_0(f)(Q_{l+1})\neq 0$. Полагая $q(v)=v(v-v_1)(v-v_2)\cdots(v-v_l)\in \mathbb{k}[v]$ и выбирая множество образующих x_1,\ldots,x_s алгебры $\mathbb{k}[X^{(0)}]$, мы можем аналогично (3.5) поднять ∂_0 до $\partial_1\in \text{Der }\mathbb{k}[X^{(1)}]$ по формулам

$$\partial_1(x_i) = q(v)\partial_0(x_i), \quad i = 1, 2, \dots, s, \qquad \partial_1(u) = \frac{q(v)}{v}\partial_0(f), \qquad \partial_1(v) = 0.$$
 (3.6)

Согласно нашему выбору $\partial_1(u)(Q'_{l+1}) \neq 0$. Поэтому действие соответствующей однопараметрической подгруппы $H_v(\partial_0,q)=\exp(t\partial_1)$ отображает точку Q'_{l+1} в точку вне U_0 . Тем самым, орбита $H_v(\partial_0,q).Q'_{l+1}$ может пересекаться с гиперповерхностью $U_0\subseteq X^{(1)}$ лишь в конечном числе точек. Аналогично для всех $j=1,2,\ldots,l$ орбита $H_v(\partial_0,q).Q_j\not\subseteq U_0$ пересекается с U_0 лишь в конечном числе точек. Полагая $\varphi=\exp(t_0\partial_1)\in H_v(\partial_0,q)\subseteq G_v$, мы заключаем, что для почти всех значений параметра $t_0\in \Bbbk$ образы $\varphi(Q'_j)$ лежат вне U_0 для

всех $j=1,2,\ldots,l+1$. Так как группа $H_v(\partial_0,q)$ сохраняет значение координаты v, точки $\varphi(Q_1'),\ldots,\varphi(Q_l')$ по-прежнему гиперболические. Переставляя u и v, мы заключаем, что для нового набора $\varphi(Q_1'),\ldots,\varphi(Q_l'),\varphi(Q_{l+1}')$ выполняются предположения случая 1, что и требовалось.

Доказательство бесконечной транзитивности в теореме 3.2. Если $X^{(0)}=\mathbb{A}^1$, то утверждение следует из теоремы 3.1. Пусть теперь $\dim X^{(0)}\geqslant 2$. Чтобы показать, что действие группы $\mathrm{SAut}(X^{(1)})$ на $X^{(1)}_{\mathrm{reg}}$ является m-транзитивным для всех $m\in\mathbb{N}$, зафиксируем стандартный набор из m попарно различных точек $P'_1,\ldots,P'_m\in U_1\cap X^{(1)}_{\mathrm{reg}}$. Достаточно показать, что можно перевести набор попарно различных точек $Q'_1,\ldots,Q'_m\in X^{(1)}_{\mathrm{reg}}$ в P'_1,\ldots,P'_m при помощи автоморфизма $\psi\in\mathrm{SAut}(X^{(1)})$. По лемме 3.5 можно считать, что $Q'_i\not\in U_0\cup V_0$ для всех $i=1,\ldots,m$. Аналогично доказательству леммы 3.5 разобьем набор Q'_1,\ldots,Q'_m на группы M_1,\ldots,M_k в соответствии со значениями координаты v.

По нашему предположению многообразие $X^{(0)}$ является гибким. Следовательно, каждый обратимый элемент в $\Bbbk[X^{(0)}]$ является константой. Так как f непостоянна, то $f(X^{(0)}) = \Bbbk$. В частности, $U_c \cap V_d \neq \varnothing$ для любых $c, d \in \Bbbk$. Так как $\dim X^{(1)} = 1 + \dim X^{(0)} \geqslant 3$, то пересечение $U_c \cap V_d$ имеет положительную размерность, поэтому оно бесконечно.

Действуя подгруппами $\operatorname{Stab}_{c_1...c_i...c_l}^v\subseteq G_v$, по лемме 3.4 мы можем отобразить M_i в $U_1\cap V_{c_i}\cap X_{\mathrm{reg}}^{(1)}$, не изменяя положения остальных точек из $\bigcup_{j\neq i}M_j$. Поэтому можно предполагать, что $Q_1',\ldots,Q_m'\in U_1\cap X_{\mathrm{reg}}$. Снова применяя лемму 3.4 с переставленными u и v,k=0 и $c_0=1$, т.е. действуя подгруппой G_u , мы можем отобразить полученный на предыдущем шаге набор в стандартный набор P_1',\ldots,P_m' . Это завершает доказательство.

3.3. Надстройки над вещественными многообразиями. В этом пункте мы доказываем теорему 3.3. Нам потребуется следующая элементарная лемма.

ЛЕММА 3.6. Пусть Y — гладкое связное вещественное многообразие размерности 2 или более. Тогда для любой непрерывной функции $f: Y \to \mathbb{R}$ множество уровня $f^{-1}(c)$ бесконечно для всех $c \in \text{Int } f(Y)$.

Доказательство. Из условия леммы следует, что $\operatorname{Int} f(Y) \subseteq \mathbb{R}$ является открытым интервалом. Выберем две точки $y_1, y_2 \in Y$ так, чтобы $f(y_1) = c_1 < c$ и $f(y_2) = c_2 > c$. Их можно соединить в Y гладким путем l. Тогда у l есть окрестность U, диффеоморфная цилиндру $\Delta \times I$, где I = [0,1], а Δ – шар размерности $\dim \Delta = \dim Y - 1 \geqslant 1$. Поэтому существует непрерывное семейство путей в U, соединяющих y_1 и y_2 , при этом любые два пути пересекаются только в начале y_1 и в конце y_2 . Так как гиперповерхность $f^{-1}(c)$ разделяет Y на две части, все пути из y_1 в y_2 пересекают эту гиперповерхность. В частности, $f^{-1}(c)$ бесконечно.

Доказательство теоремы 3.3 в целом совпадает с доказательством теоремы 3.2. Поэтому мы укажем лишь необходимые изменения.

СХЕМА ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ 3.3. Предположение о том, что поле \Bbbk алгебраически замкнуто, использовалось в доказательстве теоремы 3.2 только в двух местах. А именно, в доказательствах леммы 3.5 и бесконечной

⁹Это не было сделано ранее, чтобы сохранить обозначения.

транзитивности в теореме 3.2 мы пользовались тем, что при выполнении всех предположений множества уровня $(V_{c_k} \cap X_{\mathrm{reg}}^{(1)}) \setminus U_0$ и $U_1 \cap V_{c_i} \cap X_{\mathrm{reg}}^{(1)}$ имеют положительную размерность и поэтому бесконечны. Для $\mathbb{k} = \overline{\mathbb{k}}$ их бесконечность следует из теоремы Крулля и подсчета размерностей. В случае $\mathbb{k} = \mathbb{R}$ это же следует из леммы 3.6. Действительно, в этих обозначениях для любого $c_i \neq 0$ ограничения

$$\pi \colon V_{c_i} \cap X_{\mathrm{reg}}^{(1)} = (V_{c_i})_{\mathrm{reg}} \to X_{\mathrm{reg}}^{(0)}, \qquad \pi \colon U_1 \cap V_{c_i} \cap X_{\mathrm{reg}}^{(1)} \to f^{-1}(c_i) \cap X_{\mathrm{reg}}^{(0)}$$

являются изоморфизмами. При выполнении предположений теоремы 3.3 гладкое вещественное многообразие $X_{\text{reg}}^{(0)}$ имеет размерность хотя бы 2 и связно. Поскольку $f(X_{\text{reg}}^{(0)}) = \mathbb{R}$, по лемме 3.6 множество уровня $f^{-1}(c_i) \cap X_{\text{reg}}^{(0)}$ бесконечно. Так как $c_k \neq 0$, множество $(V_{c_k} \cap X_{\text{reg}}^{(1)}) \setminus U_0 \supseteq U_1 \cap V_{c_k} \cap X_{\text{reg}}^{(1)}$ тоже бесконечно.

Оказывается, многообразие $X_{\text{reg}}^{(1)}$ тоже связно. Поэтому по индукции то же самое рассуждение можно применить к итерированной надстройке $X^{(i)}$ над $X^{(0)}$, $i=1,\ldots,l$.

3.4. Гибкость. Чтобы завершить доказательства теорем 3.1–3.3, достаточно проверить гибкость $X^{(1)}$.

 Π ЕММА $3.7.~ \Pi pu$ выполнении предположений любой из теорем 3.1– $3.3~ многообразие <math>X^{(1)}$ является гибким.

Доказательство. Мы уже знаем, что группа $\mathrm{SAut}(X^{(1)})$ действует на $X^{(1)}_{\mathrm{reg}}$ транзитивно. Поэтому аналогично доказательству леммы 2.9 достаточно указать одну гибкую точку $P'=(P,u,v)\in X^{(1)}_{\mathrm{reg}}$.

Поскольку функция $f \in \Bbbk[X^{(0)}]$ непостоянна, $df(P) \neq 0$ в некоторой точке $P \in X_{\mathrm{reg}}^{(0)}$, для которой $f(P) \neq 0$. По предположению $X^{(0)}$ гибкое. Поэтому существуют такие ЛНД $\partial_0^{(1)}, \ldots, \partial_0^{(n)} \in \mathrm{Der}\, \Bbbk[X^{(0)}]$, где $n = \dim X^{(0)}$, что соответствующие векторные поля ξ_1, \ldots, ξ_n порождают касательное пространство $T_P X^{(0)}$, т.е.

$$\operatorname{rk} \begin{pmatrix} \xi_1(P) \\ \dots \\ \xi_n(P) \end{pmatrix} = n.$$

Следовательно, $\partial_0^{(i)}(f)(P) \neq 0$ хотя бы для одного индекса $i \in \{1, \dots, n\}$.

Пусть $P'=(P,u_0,v_0)\in X_{\mathrm{reg}}^{(1)}$ – такая точка, что $\pi(P')=P$. Так как $u_0v_0=f(P)\neq 0$, точка P' гиперболическая. Полагая в лемме 3.3 q(v)=v, получаем ЛНД

$$\partial_1^{(1)},\ldots,\partial_1^{(n)}\in\operatorname{Der} \Bbbk[X^{(1)}],\qquad \text{rge}\quad \partial_1^{(j)}=\partial_1^{(j)}(\partial_0^{(j)},v).$$

Меняя ролями u и v и полагая j=i, получаем еще одно ЛНД

$$\partial_2^{(i)} = \partial_2^{(i)}(\partial_0^{(i)}, u) \in \operatorname{Der} \mathbb{k}[X^{(1)}].$$

Покажем, что соответствующие n+1 векторных полей порождают касательное пространство $T_{P'}X^{(1)}$ в точке P', что и требуется. Можно рассматривать $\partial_1^{(1)},\dots,\partial_1^{(n)},\partial_2^{(i)}$ как ЛНД в $\mathrm{Der}\,\Bbbk[X^{(0)}][u,v]$, сохраняющие идеал (uv-f), т.е. такие, что соответствующие векторные поля касательны к гиперповерхности

$$X^{(1)} = \{uv - f(P) = 0\} \subseteq X^{(0)} \times \mathbb{A}^2.$$

Значения этих векторных полей в точке $P' \in X^{(1)}_{\text{reg}}$ образуют матрицу размера $(n+1) \times (n+2)$

$$E = \begin{pmatrix} v_0 \xi_1(P) & \partial_0^{(1)}(f)(P) & 0 \\ \dots & \dots & \dots \\ v_0 \xi_n(P) & \partial_0^{(n)}(f)(P) & 0 \\ u_0 \xi_i(P) & 0 & \partial_0^{(i)}(f)(P) \end{pmatrix}.$$

Первые n строк матрицы E линейно независимы, а последняя строка линейно независима с предыдущими, поскольку $\partial_0^{(i)}(f)(P) \neq 0$. Следовательно, $\mathrm{rk}(E) = n+1 = \dim X^{(1)}$. Поэтому данные локально нильпотентные векторные поля действительно порождают касательное пространство $T_{P'}X^{(1)}$ в точке P'.

Это завершает доказательства теорем 3.1-3.3.

Список литературы

- [1] A. Borel, "Les bouts des espaces homogènes de groupes de Lie", Ann. of Math. (2), 58:3 (1953), 443–457.
- [2] J. Tits, "Sur certaines classes d'espaces homogènes de groupes de Lie", Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8°, 29:3 (1955).
- [3] L. Kramer, "Two-transitive Lie groups", J. Reine Angew. Math., 563 (2003), 83–113.
- [4] V. L. Popov, "Generically multiple transitive algebraic group actions", Algebraic groups and homogeneous spaces (Mumbai, India, 2004), Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 481–523.
- [5] J.-P. Rosay, W. Rudin, "Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n ", Trans. Amer. Math. Soc., **310**:1 (1988), 47–86.
- [6] E. Andersén, L. Lempert, "On the group of holomorphic automorphisms of C"", Invent. Math., 110:1 (1992), 371–388.
- [7] Sh. Kaliman, M. Zaidenberg, "Affine modifications and affine hypersurfaces with a very transitive automorphism group", *Transform. Groups*, 4:1 (1999), 53–95.
- [8] D. Varolin, "The density property for complex manifolds and geometric structures. II", *Internat. J. Math.*, **11**:6 (2000), 837–847.
- [9] J.-P. Rosay, "Automorphisms of Cⁿ, a survey of Andersén-Lempert theory and applications", Complex geometric analysis in Pohang (Pohang, Korea, 1997), Contemp. Math., 222, Amer. Math. Soc., Providence, RI, 1999, 131–145.
- [10] F. Forstneric, "Interpolation by holomorphic automorphisms and embeddings in \mathbb{C}^n ", J. Geom. Anal., 9:1 (1999), 93–117.
- [11] Á. Tóth, D. Varolin, "Holomorphic diffeomorphisms of semisimple homogeneous spaces", Compos. Math., 142:5 (2006), 1308–1326.
- [12] S. Kaliman, F. Kutzschebauch, "Density property for hypersurfaces $UV = P(\overline{X})$ ", Math. Z., 258:1 (2008), 115–131.
- [13] S. Kaliman, F. Kutzschebauch, "On the present state of the Andersén-Lempert theory", Affine algebraic geometry: The Russell Festschrift (Montreal, QC, Canada, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 85–122.
- [14] I. Biswas, J. Huisman, "Rational real algebraic models of topological surfaces", Doc. Math., 12 (2007), 549–567.
- [15] J. Huisman, F. Mangolte, "The group of automorphisms of a real rational surface is n-transitive", Bull. Lond. Math. Soc., 41:3 (2009), 563–568.

- [16] J. Blanc, F. Mangolte, "Geometrically rational real conic bundles and very transitive actions", Compos. Math., 147:1 (2011), 161–187.
- [17] J. Huisman, F. Mangolte, "Automorphisms of real rational surfaces and weighted blow-up singularities", Manuscripta Math., 132:1–2 (2010), 1–17.
- [18] K. Kuyumzhiyan, F. Mangolte, "Infinitely transitive actions on real affine suspensions", J. Pure Appl. Algebra., 216:10 (2012), 2106–2112.
- [19] G. Freudenburg, "Algebraic theory of locally nilpotent derivations", Invariant theory and algebraic transformation groups, v. VII, Encyclopaedia Math. Sci., 136, Springer-Verlag, Berlin, 2006.
- [20] V. L. Popov, "On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties", Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311.
- [21] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, "Group actions on affine cones", Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 123–164.
- [22] A. Liendo, "Affine T-varieties of complexity one and locally nilpotent derivations", Transform. Groups, 15:2 (2010), 389–425.
- [23] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, arXiv: 1011.5375.
- [24] A. Liendo, " G_a -actions of fiber type on affine \mathbb{T} -varieties", J. Algebra, **324**:12 (2010), 3653–3665.
- [25] A. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5, arXiv: 1108.5841; Функц. анализ и его прил. (в печати).
- [26] Э. Б. Винберг, В. Л. Попов, "Об одном классе квазиоднородных аффинных многообразий", Изв. АН СССР. Сер. матем., 36:4 (1972), 749–764; англ. пер.: È. В. Vinberg, V. L. Popov, "On a class of quasihomogeneous affine varieties", Math. USSR-Izv., 6:4 (1972), 743–758.
- [27] В. Л. Попов, "Группы Пикара однородных пространств линейных алгебраических групп и одномерные однородные векторные расслоения", Изв. АН СССР. Сер. матем., 38:2 (1974), 294–322; англ. пер.: V. L. Popov, "Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles", Math. USSR-Izv., 8:2 (1974), 301–327.
- [28] Д. Н. Ахиезер, "Плотные орбиты с двумя концами", *Изв. АН СССР. Сер. матем.*, **41**:2 (1977), 308–324; англ. пер.: D. N. Ahiezer, "Dense orbits with two ends", *Math. USSR-Izv.*, **11**:2 (1977), 293–307.
- [29] A. T. Huckleberry, E. Oeljeklaus, "A characterization of complex homogeneous cones", Math. Z., 170:2 (1980), 181–194.
- [30] F. Lescure, "Élargissement du groupe d'automorphismes pour des variétés quasi-homogenes", Math. Ann., 261:4 (1982), 455–462.
- [31] V. Lakshmibai, K. N. Raghavan, Standard monomial theory. Invariant theoretic approach, Encyclopaedia Math. Sci., 137, Springer-Verlag, Berlin, 2008.
- [32] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993.
- [33] D. A. Cox, J. B. Little, H. Schenck, *Toric varieties*, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011.
- [34] M. Demazure, "Sous-groupes algebriques de rang maximum du groupe de Cremona", Ann. Sci. École Norm. Sup. (4), 3:4 (1970), 507–588.
- [35] Э.Б. Винберг, В.Л. Попов, "Теория инвариантов", Алгебраическая геометрия 4, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 55, ВИНИТИ, М., 1989, 137–309; англ. пер.: V.L. Popov, E.B. Vinberg, "Linear algebraic groups, invariant theory", Algebraic geometry. IV, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278.

- [36] H. Flenner, M. Zaidenberg, "Locally nilpotent derivations on affine surfaces with a C*-action", Osaka J. Math., 42:4 (2005), 931–974.
- [37] М. Х. Гизатуллин, "Аффинные поверхности, квазиоднородные относительно алгебраической группы", Изв. АН СССР. Сер. матем., 35:4 (1971), 738–753; англ. пер.: М. Н. Gizatullin, "Affine surfaces which are quasihomogeneous with respect to an algebraic group", Math. USSR-Izv., 5:4 (1971), 754–769.
- [38] В. Л. Попов, "Классификация аффинных алгебраических поверхностей, квазиоднородных относительно алгебраической группы", Изв. АН СССР. Сер. матем., 37:5 (1973), 1038–1055; англ. пер.: V. L. Popov, "Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group", Math. USSR-Izv., 7:5 (1973), 1039–1056.
- [39] L. Makar-Limanov, "On groups of automorphisms of a class of surfaces", *Israel J. Math.*, **69**:2 (1990), 250–256.
- [40] L. Makar-Limanov, "Locally nilpotent derivations on the surface xy = p(z)", Proceedings of the third international algebra conference (Tainan, Taiwan, 2002), Kluwer Acad. Publ., Dordrecht, 2003, 215–219.
- [41] D. Daigle, "On locally nilpotent derivations of $k[X_1, X_2, Y]/(\varphi(Y) X_1X_2)$ ", J. Pure Appl. Algebra, 181:2–3 (2003), 181–208.
- [42] H. Flenner, S. Kaliman, M. Zaidenberg, "Uniqueness of C*- and C+-actions on Gizatullin surfaces", Transform. Groups, 13:2 (2008), 305−354.

И.В. Аржанцев (I.V. Arzhantsev)

Механико-математический факультет Московского государственного университета им. М. В. Ломоносова

 $E ext{-}mail: arjantse@mccme.ru$

М. Г. Зайденберг (М. G. Zaidenberg)

University of Grenoble 1 - Joseph Fourier, France *E-mail*: Mikhail.Zaidenberg@ujf-grenoble.fr

К. Г. Куюмжиян (К. G. Kuyumzhiyan)

Лаборатория алгебраической геометрии и ее приложений, Национальный исследовательский университет

"Высшая школа экономики", г. Москва

E-mail: karina@mccme.ru

Поступила в редакцию 07.04.2011 и 24.01.2012