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Abstract In the first part of the paper, we consider a “random flight” process in
Rd and obtain the weak limits under different transformations of the Poissonian
switching times. In the second part, we construct diffusion approximations for this
process and investigate their accuracy. To prove the weak convergence result, we
use the approach of [15]. We consider more general model which may be called
“random walk over ellipsoids in Rd”. For this model, we establish the Edgeworth-
type expansion. The main tool in this part is the parametrix method [5, 7].
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1 Introduction

We consider the moving particle process in Rd which is defined in the following
way. There are two independent sequences (Tk) and (εk) of random variables.

The variables Tk are nonnegative and ∀k Tk ≤ Tk+1, while variables εk form an
i.i.d sequence with common distribution concentrated on the unit sphere Sd−1.

The values εk are interpreted as the directions, and Tk as the moments of change
of directions.

A particle starts from zero and moves in the direction ε1 up to the moment T1. It
then changes direction to ε2 and moves on within the time interval of length T2 −T1,
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etc. The speed is constant at all sites. The position of the particle at time t is denoted
by X (t).

The study of the processes of this type has a long history. The first work dates
back probably to [13] and continued by [6, 14]. In [8] the case was considered where
the increments Tn − Tn−1 form i.i.d. sequence with the common law having a heavy
tail. The term “Levy flights” later changed to “Random flights”.

To date, a large number of works were accumulated, devoted to the study of such
processes, we mention here only articles by [4, 9, 11, 12] which contain an extensive
bibliography andwhere for different assumptions on (Tk) and (εk) the exact formulas
for the distribution of X (t) were derived.

Our goals are different.
First, we are interested in the global behavior of the process X = {X (t), t ∈ R+},

namely, we are looking for conditions under which the processes {YT , T > 0},

YT (t) = 1

B(T )
X (tT ), t ∈ [0, 1],

weakly converges in C[0, 1] : YT =⇒ Y, BT −→ ∞, T −→ ∞.

From now on, we suppose that the points (Tk), Tk ≤ Tk+1, form a Poisson point
process in R+ denoted by T.

It is clear that in the homogeneous case the process X (t) is a conventional random
walk because the spacings Tk+1 − Tk are independent, and then the limit process is
Brownian motion.

In the nonhomogeneous case, the situation is more complicated as these spacings
are not independent. Nevertheless, it was possible to distinguish three modes that
determine different types of limiting processes.

For a more precise description of the results, it is convenient to assume that
Tk = f (�k), where � = (�k) is a standard homogeneous Poisson point process on
R+ with intensity 1. In this case,

(�k)
L= (γ1 + γ2 + · · · + γk),

where (γk) are i.i.d standard exponential random variables.
If the function f has power growth,

f (t) = tα, α > 1/2,

the behavior of the process is analogous to the uniform case and then in the limit we
obtain a Gaussian process which is a linearly transformed Brownian motion

Y (t) =
∫ t

0
Kα(s)dW (s),
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whereW is a process of Brownian motion, for which the covariance matrix ofW (1)
coincides with the covariance matrix of ε1 and Kα(s) is a nonrandom kernel, and its
exact expression is given below.

In the case of exponential growth,

f (t) = etβ, β > 0,

the limiting process is piecewise linear with an infinite number of units, but ∀ε > 0
the number of units in the interval [ε, 1] will be a.s. finite.

Finally, with the super exponential growth of f , the process degenerates: its
trajectories are linear functions:

Y (t) = εt, t ∈ [0, 1], ε
Law= ε1.

In the second part of the paper, the process X (t) is assumed to be a Markov
chain. We construct diffusion approximations for this process and investigate their
accuracy. To prove the weak convergence, we use the approach of [15]. Under our
assumptions the diffusion coefficients a and b have the property that for each x ∈ Rd

the martingale problem for a and b has exactly one solution Px starting from x
(that is well posed). It remains to check the conditions from [15] which imply the
weak convergence of our sequence of Markov chains to this unique solution Px .
We consider also the more general model which may be called as “random walk
over ellipsoids in Rd”. For this model, we establish the convergence of the transition
densities and obtain the Edgeworth-type expansion up to the order n−3/2, where n is
a number of switching. The main tool in this part is the parametrix method [5, 7].

2 Random Flights in Poissonian Environment

The reader is reminded that we suppose Tk = f (�k), where (�k) is a standard
homogeneous Poisson point process on R+. Assume also that Eε1 = 0.

It is more convenient to consider at first the behavior of the processes

Zn(t) = YTn (t),

as for T = Tn the paths of Zn have an integer number of full segments on the interval
[0,1]. The typical path of {Zn(t), t ∈ [0, 1]} is a continuous broken line with vertices
{(tn,k,

Sk
Bn

), k = 0, 1, . . . , n}, where tn,k = Tk
Tn

, T0 = 0, Bn = B(Tn), Sk =∑k
1 εi (Ti − Ti−1).

Theorem 1 Under the previous assumptions

(1) If the function f has power growth: f (t) = tα, α > 1/2, we take B(T ) =
T

2α−1
2α .
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Then Zn =⇒ Y, where Y is a Gaussian process

Y (t) = √
2α

∫ t

0
s

α−1
2α dW (s),

and W is a process of Brownian motion, for which the covariance matrix of
W (1) coincides with the covariance matrix of ε1.

(2) If the function f has exponential growth: f (t) = etβ, β > 0, we take
B(T ) = T .

Then Zn =⇒ Y, where Y is a continuous piecewise linear process with the
vertices at the points (tk,Y (tk)),

tk = e−β�k−1 , �0 = 0,

Y (tk) =
∞∑
i=k

εk(e
−β�i−1 − e−β�i ), Y (0) = 0.

(3) In the super exponential case, suppose that f is increasing absolutely continuous
and such that

lim
t→∞

f ′(t)
f (t)

= +∞.

We take B(T ) = T .

Then Tn
Tn+1

→ 0 in probability, and Zn =⇒ Y, where the limiting process Y
degenerates:

Y (t) = ε1t, t ∈ [0, 1].

Remark 1 In the case of power growth, the limiting process admits the following
representation:

Y (t)
L= α

√
2

2α − 1
W (t

2α−1
α ),

where, as before,W is a Brownian motion, for which the covariance matrix ofW (1)
coincides with the covariance matrix of ε1.

It is clear that we can also express Y in another way:

Y (t)
L= α

√
2

2α − 1
K

1
2 w(t

2α−1
α ),

where w is a standard Brownian motion and K is the covariance matrix of ε1.

Remark 2 In the case of exponential growth, it is possible to describe the limiting
process Y in the following way:

We take a Poisson point process T = (tk), tk = e−β�k−1 , defined on (0, 1], and
define a step process {Z(t), t ∈ (0, 1]},
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Z(t) = εk for t ∈ (tk+1, tk].

Then

Y (t) =
∫ t

0
Z(s) ds.

3 Diffusion Approximation

In this section, first we consider a model of random flight which is equivalent to the
study of random broken lines {Xn(t), t ∈ [0, 1]} with the vertices ( kn , Xn(

k
n )), and

such that (h = 1
n )

Xn ((k + 1)h) = Xn(kh) + hb(Xn(kh)) + √
hξk(X (kh)),

Xn(0) = x0, ξk(Xn(kh)) = ρkσ(Xn(kh))εk, (1)

where {εk} and {ρk} are two independent sequences and
{εk} are i.i.d. r. v. uniformly distributed on the unit sphere Sd−1;
{ρk} are i.i.d. r. v. having an absolutely continuous distribution, ρk ≥ 0, Eρ2

k = d;
b : Rd −→ Rd is a bounded measurable function and σ : Rd −→ Rd × Rd is a

bounded measurable matrix function.

Theorem 2 Let X = {X (t), t ∈ [0, 1]} be a solution of stochastic equation

X (t) = x0 +
∫ t

0
b(X (s))ds +

∫ t

0
σ(X (s))dw(s).

Suppose that b and σ are continuous functions satisfying the Lipschitz condition

|b(t) − b(s)| + |σ(t) − σ(s)| ≤ K |t − s|.

Moreover, it is supposed that b(x) and 1
det (σ (x)) are bounded.

Then,

Xn =⇒ X in C[0, 1].
Our next result is about the approximation of the transition density. We consider

now more general models given by a triplet (b(x), σ (x), f (r; θ)), x ∈ Rd , r ≥
0, θ ∈ R+, where b(x) is a vector field, σ(x) is a d × d matrix, a(x) := σσ T (x) >

δ I, δ > 0, and f (r; θ) is a radial density depending on a parameter θ controlling
the frequency of changes of directions, namely, the frequency increases when θ

decreases. Suppose X (0) = x0. The vector b(x0) acts by shifting a particle from x0
to x0 +
(θ)b(x0),where
(θ) = cdθ2, cd > 0. Several examples of such functions

(θ) for different models will be given below. Define
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Ex0(r) := {x : ∣∣a−1/2(x0)(x − x0 − 
(θ)b(x0))
∣∣2 = r2},

Sd
x0(r) := {y : |y − x0 − 
(θ)b(x0)|2 = r2}.

The initial direction is defined by a random variable ξ0, and the law of ξ0 is a
pushforward of the spherical measure on Sd

x0(1) under affine change of variables

x − x0 − 
(θ)b(x0) = a1/2(x0)(y − x0 − 
(θ)b(x0)).

Then particle moves along the ray lx0 corresponding to the directional unit vector

ε0 := ξ0 − x0 − 
(θ)b(x0)

|ξ0 − x0 − 
(θ)b(x0)| ,

and changes the direction in (r, r + dr) with probability

det
(
a−1/2(x0)

) · f (r
∣∣a−1/2(x0)e0

∣∣)dr. (2)

Let ρ0 be a random variable independent of ξ0 and distributed on lx0 with the radial
density (2). We consider the point x1 = x0 + 
(θ)b(x0) + ρ0ε0. Let (εk, ρk) be
independent copies of (ε0, ρ0). Starting from x1, we repeat the previous construction
to obtain x2 = x1 + 
(θ)b(x1) + ρ1ε1. After n switches, we arrive at the point xn,

xn = xn−1 + 
(θ)b(xn−1) + ρn−1εn−1.

To obtain the one-step characteristic function �1(t), we make use of formula (6)
from [17] (see also the proof of Theorem 2.1 in [10]):

�1(t) = Eei〈t,ρ0ε0〉 =
∫ ∞

0

∫
Ex0 (r)

ei〈t,a1/2(x0)a−1/2(x0)ξ〉μEx0 (r)(dξ)d�E(r) =

=
∫ ∞

0

∫
Sd

x0
(r)

ei〈a1/2(x0)t,y〉λd
r (dy) f (r; θ)dr =

= 2
d−2
2 �

(
d

2

)∫ ∞

0

Jd−2
2

(r
∣∣a1/2(x0)t∣∣)(

r
∣∣a1/2(x0)t∣∣) d−2

2

f (r; θ)dr, (3)

where Jν(z) is the Bessel function, d�E(r) is the F-measure of the layer between
Ex0(r) and Ex0(r+dr), and F is the law of ρ0ε0.Nowwemake our main assumption
about the radial density:

(A1) The function f (r; θ) is homogeneous of degree −1, that is

f (λr; λθ) = λ−1 f (r; θ), ∀λ 
= 0.
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Denote by pE(n, x, y) the transition density after n switches in the RF model de-
scribed above. To obtain the one-step transition density pE(1, x, y) (we write (x, y)
instead of (x0, x1) ), we use the inverse Fourier transform, (3) and (A1). We have

pE(1, x, y) = 
−d/2(θ)qx

(
y − x − 
(θ)b(x)√


(θ)

)
, (4)

where

qx (z) = 2
d−2
2 �

(
d
2

)
(2π)d

∫
Rd

cos 〈τ, z〉
⎡
⎣
∫ ∞

0

Jd−2
2

(ρ
∣∣a1/2(x)τ ∣∣)

(
ρ
∣∣a1/2(x)τ ∣∣) d−2

2

f (ρ; cd)dρ
⎤
⎦ dτ. (5)

Consider two examples.

Example 1 We put 
(θ) = (d + 1)2θ2 and

f (r; θ) = 1

�(d)
r−1

( r
θ

)d
exp

(
− r

θ

)
.

Using (3), formula 6.623 (2) on p. 694 from [3], and the doubling formula for the
Gamma function, we obtain

pE(1, x, y) = 
−d/2(θ)qx

(
y − x − 
(θ)b(x)√


(θ)

)
,

where

qx (z) = (d + 1)d/2

2dπ(d−1)/2�
(
d+1
2

) ∣∣det a1/2(x)∣∣e
−√

d+1|a−1/2(x)z|.

It is easy to check that

∫
ziqx (z) = 0,

∫
zi z jqx (z)dz = ai j (x).

Example 2 We put 
(θ) = θ2/2 and

f (r; θ) = Cdr
−1

( r
θ

)d
exp

(
− r2

θ2

)
,

where Cd = 2(d+1)/2

(d−2)!!√π
if d is odd, and Cd = 2

[(d−2)/2]! if d is even. From (3) and
formula 6.631 (4) on p. 698 of [3], we obtain

pE(1, x, y) = 
−d/2(θ)φx(
y − x − 
(θ)b(x)√


(θ)
),
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where

φx (z) = 1

(2π)d/2 √
det a(x)

exp

(
−1

2

〈
a−1(x)z, z

〉)
.

It is easy to see that the transition density (4) corresponds to the one-step transition
density in the following Markov chain model:

X(k+1)
(θ) = Xk
(θ) + 
(θ) b(Xk
(θ)) + √

(θ)ξ(k+1)
(θ),

where the conditional density (under Xk
(θ) = x) of the innovations ξ(k+1)
(θ) is

equal to qx (·). If we put θ = θn =
√

2
n , then 
(θn) = 1

n and we obtain a sequence
of Markov chains defined on an equidistant grid

X k+1
n

= X k
n
+ 1

n
b(X k

n
) + 1√

n
ξ k+1

n
, X0 = x0. (6)

Note that the triplet (b(x), σ (x), f (r; θ)), x ∈ Rd , r ≥ 0, θ ∈ R+, of Example 2
corresponds to the classical Euler scheme for the d-dimensional SDE

dX (t) = b(Xt )dt + σ(Xt )dW (t), X (0) = x0. (7)

Let p(1, x, y) be transition density from 0 to 1 in the model (7). We make the
following assumptions.

(A2) The function a(x) = σσ T (x) is uniformly elliptic.
(A3) The functions b(x) and σ(x) and their derivatives up to the sixth order are

continuous and bounded uniformly in x . The sixth derivative is globally Lipschitz.

Theorem 3 Under the assumptions (A2) and (A3,) we have the following expansion:
for any positive integer S as n → ∞

sup
x,y∈Rd

(
1 + |y − x |S

)
·
∣∣∣∣pE (n, x, y) − p(1, x, y) − 1

2n
p ⊗

(
L2∗ − L2

)
p(1, x, y)

∣∣∣∣ = O(n−3/2),

(8)
where

L = 1

2

d∑
i, j=1

ai j (x)∂
2
xi x j

+
d∑

i=1

bi (x)∂xi . (9)

The operator L∗ in (8) is the same operator as in (9) but with coefficients “frozen”
at x . It means that when calculating degrees of the operator we do not differentiate
coefficients and we consider them as constants, taking them out of the derivative.

Clearly, L = L∗ but, in general, L2 
= L2∗. The convolution-type binary operation
⊗ is defined for functions f and g in the following way:

( f ⊗ g) (t, x, y) =
∫ t

0
ds

∫
Rd

f (s, x, z)g(t − s, z, y)dz.
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Proof It follows immediately from Theorem 1 of [7].

4 Proof of Theorem 1

4.1 Asymptotic Behavior in Case (3)

We have, by taking Bn = B(Tn) = Tn :

sup
t∈
[
0,

Tn−1
Tn

] ‖Xn(t)‖∞ ≤
n−1∑
k=1

Tk − Tk−1

Tn
= Tn−1

Tn
−−−→
n→∞ 0 a.s.

At the same time,

Xn(1) = Sn−1 + εn(Tn − Tn−1)

Tn
= εn + o(1) ⇒ Pε1

Therefore, the process Xn converges weakly to the process {Y (t)}, Y (t) = ε1t ,
t ∈ [0, 1].

This process is in some sense degenerate. Hence, this case is not very interesting.

4.2 Asymptotic Behavior in Case (2)

Take Bn = Tn and show that the limit process Y is not trivial. For simplicity fix
β = 1. We have now tn,k := Tk

Tn
= e−(�n−�k ) = e−(γk+1+···+γn), and

Xn
(
tn,k

) =
k∑

i=1

εi (e
−(γi+1+···+γn) − e−(γi+···+γn)), k = 1, . . . , n.

The process Xn is completely defined by two independent vectors (ε1, . . . , εn)

and (γ1, . . . , γn). Hence, its distribution will be the same if we replace these vectors

by (εn, . . . , ε1) and (γn, . . . , γ1). In another words, the process (Xn(·)) L= (Yn(·)),
where Yn(·) is a broken line with vertices (τn,k,Yn(τn,k)), (τn,k) ↓, τn,1 = 1, τn,k =
e−(γ1+···+γk−1), k = 2, . . . , n, and

Yn(τn,k) =
n−1∑
i=k

εi
(
e−(γ1+···+γi−1) − e−(γ1+···+γi )

) + εne
−(γ1+···+γn−1);

Yn(0) = 0, and γ0 := 0.
Using the notation �k = γ1 + · · · + γk , we get the more compact formula:
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Yn(τn,k) =
n−1∑
i=k

εi
(
e−�i−1 − e−�i

) + εne
−�n−1 .

Consider now the process {Y (t), t ∈ [0, 1]} defined as follows:

Y (0) = 0, Y (tk) =
∞∑
i=k

εi
(
e−�i−1 − e−�i

)
, (10)

where tk = e−�k−1 , k = 2, 3, . . . , t1 = 1; for t ∈ [tk+1, tk], Y (t) is defined by linear
interpolation. The paths of Y are continuous broken lines, starting at 0 and having
an infinite number of segments in the neighborhood of zero.

The evident estimation

sup
t∈[0,1]

|Y (t) − Yn(t)| ≤
∣∣∣∣∣

∞∑
i=n

εi
(
e−�i−1 − e−�i

)∣∣∣∣∣ + e−�n−1 ≤

≤
∞∑
i=n

(
e−�i−1 − e−�i

) + e−�n−1 = 2e−�n−1 −→ 0 a.s.

shows that a.s. Yn(·) C[0,1]−−−→ Y (·).
Conclusion: In case (2), the process Xn converges weakly to Y (·).

Remark 3 In the case where β 
= 1, it is simply necessary to replace e−�k by e− �k
β .

Remark 4 It seems that the last result could be expanded by consideringmore general
sequences (εk).

Interpretation: εk
|εk | defines the direction and |εk | defines the velocity of displace-

ment in this direction on the step Sk .

4.3 Asymptotic Behavior in Case of Power Growth

In this case, Tk = �α
k , α > 1/2, tn,k = Tk

Tn
=
(

�k
�n

)α

, and

Xn(tn,k) = 1

Bn

k∑
i=1

εi (�
α
i − �α

i−1); �0 = 0, k = 0, 1, . . . , n. (11)

Let x ∈ R
d be such that |x | = 1. We will show below that

Var

⎛
⎝ n∑
i=1

〈εi , x〉(�α
i − �α

i−1)

⎞
⎠ = E〈εi , x〉2

n∑
i=1

E(�α
i − �α

i−1)
2 ∼ C(x)n2α−1, n → ∞,
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where C(x) = 2α2

2α−1 E〈ε1, x〉2. Therefore it is natural to take B2
n = n2α−1.

We proceed in five steps:
Step 1: Lemmas
Step 2: We compare Xn(·) with Zn(·) where Zn(tn,k) = α

Bn

∑k
i=1 εiγi�

α−1
i−1 and

show that ‖Xn − Zn‖∞
P−→ 0.

Step 3: We compare Zn(·) with Wn(·) where Wn(tn,k) = α
Bn

∑k
i=1 εiγi (i − 1)α−1

and state that ‖Zn − Wn‖∞
P−→ 0.

Step 4: We show that process Un(·),

Un

((
k

n

)α)
= α

Bn

k∑
i=1

εiγi (i − 1)α−1,

converges weakly to the limiting process

Y (t) = √
2α

∫ t

0
s

α−1
2α dW (s);

hereW (·) is a process of Brownian motion, for which the covariance matrix ofW (1)
coincides with the covariance matrix of ε1.

Step 5: We show that the convergence Wn ⇒ Y follows from the convergence
Un ⇒ Y .

Finally: We get the convergence Xn ⇒ Y .

4.3.1 Step 1

This section contains several technical lemmas necessary for realization of subse-
quent steps.

Lemma 1 Let α > 0 and m ≥ 1. Then ∀x > 0, h > 0

(x + h)α − xα =
m∑

k=1

akh
kxα−k + R(x, h), (12)

where

ak = α(α − 1) . . . (α − k + 1)

k! ,

and
|R(x, h)| ≤ |am+1|hm+1 max{xα−(m+1), (x + h)α−(m+1)}. (13)

Proof By the formula of Taylor–Lagrange, we have (12) with



14 Y. Davydov and V. Konakov

|R(x, y)| ≤ 1

(m + 1)!h
m+1 sup

x≤t≤x+h
| f (m+1)(t)|,

where f (t) = tα . As f (m+1)(t) = α(α − 1) . . . (α −m)tα−(m+1), we get the claimed
result. �

Lemma 2 For α ≥ 0 and k → ∞
(
1 + α

k

)k = eα + O

(
1

k

)
. (14)

Proof It follows from the inequalities:

0 ≤ eα −
(
1 + α

k

)k ≤ eαα2

k
. �

Lemma 3 Let � be the Gamma function. Then as k → ∞
�(k + α)

�(k)
= kα + O(kα−1).

Proof It follows from Lemma 2 and well-known asymptotic (see a.e. [16], v. 2,
12.33)

�(t) = t t−
1
2 e−t

√
2π

(
1 + 1

12t
+ O

(
1

t2

))
, t → ∞.

Lemma 4 For any real β, we have as k → ∞

E(�
β

k ) = kβ + O(kβ−1).

Proof The result follows from the well-known fact that

E(�
β

k ) = �(k + β)

�(k)

and Lemma 3.

Lemma 5 Let α ≥ 0. The following relations take place as k → ∞:

�α
k+1 − �α

k = αγk+1�
α−1
k + ρk, (15)

where |ρk | = O(kα−2) in probability;

E |�α
k+1 − �α

k |2 = 2α2k2α−2 + O(k2α−3); (16)

E |�α
k+1 − �α

k − αγk+1�
α−1
k |2 = O(k2α−4). (17)
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Proof of Lemma 5 We find, by applying Lemma 1,

�α
k+1 − �α

k = αγk+1�
α−1
k + R(�k, γk+1), (18)

where

R(�k, γk+1) ≤ 1

2
γ 2
k+1 max

�k≤s≤�k+1

|α(α−1)|sα−2 ≤ |α(α − 1)|
2

γ 2
k+1 max{�α−2

k+1 , �α−2
k }.
(19)

As �k ∼ k a.s. when k → ∞, we get (15).
The proofs of (16) and (17) follow directly from (18), (19) and Lemma 4. �

We deduce immediately from (16) the following relation.

Corollary 1 We have

n−1∑
1

E |�α
k+1 − �α

k |2 = 2α2

2α − 1
n2α−1 + O(n2α−2).

4.3.2 Step 2

We show that ‖Xn − Zn‖∞
P−→ 0, where

Zn(tn,k) = α

Bn

k∑
i=1

εiγi�
α−1
i−1 .

It is clear that

δn := ‖Xn − Zn‖∞ = sup
t∈[0,1]

|Xn(t) − Zn(t)| = max
k≤n

|X (tn,k) − Zn(tn,k)| = max
k≤n

|rk |,

where

rk = 1

Bn

k∑
i=1

εi
[
�α
i − �α

i−1 − αγi�
α−1
i−1

] =
k∑

i=1

εiξi ,

and

ξi = (
�α
i − �α

i−1 − αγi�
α−1
i−1

) 1

Bn
.

Let M = σ(ξ1, ξ2, . . . , ξn) = σ(γ1, γ2, . . . , γn). Under condition M, the se-
quence (rk) is the sequence of sums of independent random variables with mean
zero. By Kolmogorov’s inequality,
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P{max
k≤n

|rk | ≥ t} = E{P{max
k≤n

|rk | ≥ t |M}} ≤ E

⎛
⎝ 1

t2

n∑
j=1

ξ 2
j

⎞
⎠ = 1

t2

n∑
j=1

Eξ 2
j .

(20)
By Lemma 5, Eξ 2

j = O( j−3). Therefore,

n∑
j=1

Eξ 2
j = O(n−2).

Finally, we get from (20): ∀t > 0

P{δn ≥ t} −−−→
n→∞ 0,

which gives the convergence ‖Xn − Zn‖∞
P−→ 0.

4.3.3 Step 3

We show now that ‖Zn −Wn‖∞
P−−−→

n→∞ 0; whereWn(tn,k) = α
Bn

∑k
i=1 εiγi (i −1)α−1.

We have


n = sup
t∈[0,1]

|Zn(t) − Wn(t)| = max
k≤n

|Zn(tn,k) − Wn(tn,k)| = max
k≤n

{|βk |},

where βk = α
Bn

∑k
i=1 εiγi

(
�α−1
i−1 − (i − 1)α−1

)
.

Similar to the previous case, (βk) under condition M is the sequence of sums of
independent random variables with mean zero. Therefore,

P{max
k≤n

{|βk |} ≥ t} = E

(
P{max

k≤n
{|βk |} ≥ t |M}

)
≤ 1

t2

n∑
j=1

Eη2
j ,

where η j = α
Bn

γ j

(
�α−1

j−1 − ( j − 1)α−1
)
.

Estimation of Eη2
j .

By independence of γ j and � j−1

Eη2
j = 2α2

B2
n

E
(
�α−1

j−1 − ( j − 1)α−1
)2

.

Let us change j − 1 to k
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E
(
�α−1
k − kα−1

)2 = E
(
�2α−2
k

) + k2α−2 − 2kα−1E
(
�α−1
k

) =
= �(k + 2α − 2)

�(k)
+ k2α−2 − 2kα−1 �(k + α − 1)

�(k)
= (by Lemma3) =

= [
k2α−2 + O(k2α−3) + k2α−2 − 2k2α−2

] = O(k2α−3).

Hence,

Eη2
j ≤ C

j2α−3

n2α−1.

It follows from this estimation that
for α > 1

n∑
j=1

Eη2
j ≤ C

n
;

for α = 1
n∑
j=1

Eη2
j ≤ log n

n
;

and for 1/2 < α < 1
n∑
j=1

Eη2
j ≤ C

n2α−1
.

We have finally P{maxk≤n |βk | ≥ t} → 0, n → ∞,which gives the convergence

‖Wn − Zn‖ P−→ 0.

4.3.4 Step 4

Let Un be the process defined at the points k
n by

Un

((
k

n

)α)
= α

Bn

k∑
i=1

εiγi (i − 1)α−1, k = 1, 2, . . . , n,

and by linear interpolation on the intervals [ kn , k+1
n ], k = 0, . . . , n−1.We now state

the weak convergence of the processes Un to the process Y ,

Y (t) = √
2α

∫ t

0
s

α−1
2α dW (s),

W is a Brownian motion, for which the covariance matrix of W (1) coincides with
the covariance matrix of ε1.
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The proof is standard because Un(·) represents a (more or less) usual broken
line constructed by the consecutive sums of independent (nonidentically distributed)
random variables. One could apply Prokhorov’s theorem (see [2], Chap. IX, Sect. 3,
Theorem1).

Only one thing must be checked: the Lindeberg condition.
Let ε > 0. We have

�n(ε) := 1

B2
n

n∑
1

E
{‖εiγi (i − 1)α−1‖21{‖εiγi (i−1)α−1‖≥εBn}

} =

= 1

n2α−1

n∑
2

(i − 1)2α−2E
{
γ 2
1 1{|γ1|(i−1)α−1‖≥εnα−1/2}

}
.

As
{|γ1|(i − 1)α−1‖ ≥ εnα−1/2} ⊂ {|γ1| ≥ ε

√
n}

for 2 ≤ i ≤ n, we get

�n(ε) ≤ 1

2α − 1
Eγ 2

1 1{|γ1|≥ε
√
n} → 0,

as n → ∞.

It means that the Lindeberg condition is fulfilled, and by the above-mentioned
Prokhorov’s theorem the process Un is weakly converging. To identify the limiting
process with Y , it is sufficient to state that for any 0 < s < t ≤ 1, and for any
x ∈ R

d , |x | = 1,we have the convergence 〈Un(t)−Un(s), x〉 =⇒ 〈Y (t)−Y (s), x〉.
It is clear that

[Un(t) −Un(s)] −
[
Un

((
k

n

)α)
−Un

((
l

n

)α)]
P−−→ 0,

if
(
k
n

)α → t,
(
l
n

)α → s.
Let l < k. As

〈
Un

((
k

n

)α)
−Un

((
l

n

)α)
, x

〉
= α

Bn

k∑
i=l+1

〈εi , x〉γi (i − 1)α−1,

by the theorem of Lindeberg–Feller, it is sufficient to state the convergence of vari-
ances.

We have

Var

〈
Un

((
k

n

)α)
−Un

((
l

n

)α)
, x

〉
=
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= 2α2

n2α−1
E〈ε1, x〉2

k∑
i=l+1

(i − 1)2α−2 −−−→
n→∞

2α2

2α − 1
E〈ε1, x〉2[t 2α−1

α − s
2α−1

α ],

and

Var〈Y (t) − Y (s), x〉 = 2αE〈ε1, x〉2
∫ t

s
u

α−1
α du = 2α2

2α − 1
E〈ε1, x〉2[t 2α−1

α − s
2α−1

α ],

which are the same. Therefore, indeed Un ⇒ Y.

4.3.5 Step 5: Convergence Xn ⇒ Y .

Due to the steps 2 and 3, it is sufficient to show that Wn ⇒ Y .
Let fn : [0, 1] → [0, 1], be a piecewise linear continuous function such that

fn(tn,k) = (
k
n

)α
; tn,k =

(
�k
�n

)α

; k = 0, 1, . . . , n.

By definition of Wn and Un , we have

Wn(t) = Un( fn(t)), t ∈ [0, 1].

By the corollary to Lemma 6 (see below), the function fn converges in probability
uniformly to f , f (t) = t , and by previous step Un ⇒ Y .

It means that we can apply Lemma 7 which gives the necessary convergence.

Lemma 6 Let

Mn = max
k≤n

{∣∣∣∣�k

�n
− k

n

∣∣∣∣
}

.

Then Mn
P−→ 0, n → ∞.

Proof of Lemma 6 We have

P{Mn > ε} = E

{
P

{
max
k≤n

∣∣∣∣�k

�n
− k

n

∣∣∣∣ > ε | �n

}}
=

=
∫ ∞

0
P

{
max
k≤n

∣∣∣∣�k

�n
− k

n

∣∣∣∣ > ε | �n = t

}
P�n (dt) =

=
∫ ∞

0
P

{
max
k≤n

∣∣∣∣ξn,k − k

n

∣∣∣∣ > ε

}
P�n (dt) = P

{
max
k≤n

∣∣∣∣ξn,k − k

n

∣∣∣∣ > ε

}
,

(21)

where (ξn,k)k=1,...,n are the order statistics from [0, 1]-uniform distribution.
Let δn := maxk≤n

∣∣ξn,k − k
n

∣∣. Evidently, δn ≤ sup[0,1] |F∗
n (x) − x |, where

F∗
n is the uniform empirical distribution function. By Glivenko–Cantelli theo-

rem, sup[0,1] |F∗
n (x) − x | → 0 a.s, which gives the convergence Mn → 0 in

probability. �
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Corollary 2 M (1)
n = maxk≤n

∣∣∣
(

�k
�n

)α − (
k
n

)α∣∣∣ P−→ 0, n → ∞.

The proof follows directly from Lemma 6 due to the uniform continuity of the
function h(x) = xα , x ∈ [0, 1].
Lemma 7 Let {Un} be a sequence of continuous processes on [0, 1] weakly con-
vergent to some limit process U. Let { fn} be a sequence of random continuous
bijections [0, 1] on [0, 1] which in probability uniformly converges to the identity
function f (t) ≡ t . Then the process Wn, Wn(t) = Un( fn(t)), t ∈ [0, 1], will con-
verge weakly to U.

Proof of Lemma 7 By theorem 4.4 from [1], we have the weak convergence in
M := C[0, 1] × C[0, 1]

(Un, fn) =⇒ (U, f ).

By Skorohod representation theorem, we can find random elements (Ũn, f̃n) and
(Ũ , f̃ ) of M (defined probably on a new probability space) such that

(Un, fn)
L= (Ũn, f̃n), (U, f )

L= (Ũ , f̃ ),

and (Ũn, f̃n) → (Ũ , f̃ ) a.s. inM.

As the last convergence implies evidently the a.s. uniform convergence of
Ũn( f̃n(t)) to Ũ ( f̃ (t)), we get the convergence in distribution of U ( fn(·)) to
U ( f (·)) = U (·). �

5 Proof of Theorem 2

Proof of Theorem 2. We need some facts from [15]. Consider (�,M), where
� = C([0,∞); Rd) be the space of continuous trajectories from [0,∞) into Rd .

Given t ≥ 0 and ω ∈ � let x(t, ω) denote the position of ω in Rd at time t. If we put

D(ω, ω′) =
∞∑
n=1

1

2n
sup0≤t≤n

∣∣x(t, ω) − x(t, ω′)
∣∣

1 + sup0≤t≤n |x(t, ω) − x(t, ω′)|

then it is well known that D is a metric on � and (�, D) is a Polish space. The
convergence induced by D is the uniform convergence on bounded t-intervals. For
simplicity, we will omitω in the future and wewill be assuming that all our processes
are homogeneous in time. Analogous results for time-inhomogeneous processes may
be obtained by simply considering the time-space processes.

We will useM to denote the Borel σ -field of subsets of (�, D) , M = σ [x(t) :
t ≥ 0]. We also will consider an increasing family of σ -algebras Mt = σ [x(s) :
0 ≤ s ≤ t]. The classical approach to the construction of diffusion processes cor-
responding to given coefficients a and b involves a transition probability function
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P(s, x; t, ·) which allows to construct for each x ∈ Rd , a probability measure Px on
� = C([0,∞); Rd) with the properties that

Px (x(0) = x) = 1

and
Px (x(t2) ∈ � |Mt1) = P(t1, x(t1); t2, �) a.s.Px

for all 0 ≤ t1 < t2 and � ∈ BRd (the Borel σ -algebra in Rd). It appears that this
measure is a martingale measure for a special martingale related with the second-
order differential operator

L = 1

2

d∑
i, j=1

ai j (·) ∂2

∂xi∂x j
+

d∑
i=1

bi (·) ∂

∂xi
,

namely, for all f ∈ C
∞
0 (Rd)

Px (x(0) = x) = 1,

( f (x(t)) −
∫ t

0
L f (x(u))du,Mt , Px ) (22)

is a martingale. We will say that the martingale problem for a and b is well posed
if, for each x , there is exactly one solution to that martingale problem starting from
x . We will be working with the following setup. For each h > 0, let �h(x, ·) be a
transition function on Rd . Given x ∈ Rd , let Ph

x be the probability measure on �

characterized by the properties that

(i) Ph
x (x(0) = x) = 1, (23)

(i i) Ph
x

{
x(t) = (k + 1)h − t

h
x(kh)+ t − kh

h
x((k+1)h), kh ≤ t < (k+1)h

}
= 1

(24)
for all k ≥ 0,

(i i i) Ph
x (x((k + 1)h) ∈ � | Mkh) = �h(x(kh), �), Ph

x − a.s.

for all k ≥ 0 and � ∈ BRd . (25)

Define

ai jh (x) = 1

h

∫
|y−x |≤1

(yi − xi )(y j − x j )�h(x, dy), (26)
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bih(x) = 1

h

∫
|y−x |≤1

(yi − xi )�h(x, dy), (27)

and


ε
h(x) = 1

h
�h(x, R

d\B(x, ε)), (28)

where B(x, ε) is the open ball with center x and radius ε. What we are going to
assume is that for all R > 0

lim
h↘0

sup
|x |≤R

‖ah(x) − a(x)‖ = 0, (29)

lim
h↘0

sup
|x |≤R

|bh(x) − b(x)| = 0, (30)

sup
h>0

sup
x∈Rd

(‖ah(x)‖ + |bh(x)|) < ∞, (31)

lim
h↘0

sup
x∈Rd


ε
h(x) = 0. (32)

Theorem A. ([15], p. 272, Theorem 11.2.3). Assume that in addition to (29)–(32)
the coefficients a and b are continuous and have the property that for each x ∈ Rd

the martingale problem for a and b has exactly one solution Px starting from x (that
is well posed). Then Ph

x converges weakly to Px uniformly in x on compact subsets
of Rd .

Sufficient conditions for the well posedness are given by the following theorem.
Let Sd be the set of symmetric nonnegative definite d × d real matrices.

Theorem B. ([15], p. 152, Theorem 6.3.4). Let a : Rd −→ Sd and b : Rd −→ Rd

be bounded measurable functions and suppose that σ : Rd −→ Rd × Rd is a
bounded measurable function such that a = σσ ∗. Assume that there is an A such
that

‖σ(x) − σ(y)‖ + |b(x) − b(y)| ≤ A |x − y| (33)

for all x, y ∈ Rd . Then the martingale problem for a and b is well posed and
the corresponding family of solutions {Px : x ∈ Rd} is Feller continuous (that is
Pxn → Px weakly if xn → x).

Note that (33) and uniform ellipticity of a(x) imply the existence of the transition
density p(s, x; t, y) ([15], Theorem 3.2.1, p. 71).

Consider the model

X ((k + 1)h) = X (kh) + hb(X (kh)) + √
hξ(X (kh)),

ξ(X (kh)) = ρkσ(X (kh))εk, (34)
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where {εk} are i.i.d. random vectors uniformly distributed on the unit sphere Sd−1,

and {ρk} are i.i.d. random variables having a density, ρk ≥ 0, Eρ2
k = d. Let us check

the conditions (29)–(32). It is easy to see that

�h(x, dy) = pxh (y)dy, where pxh (y) = h−d/2 fξ

(
y − x − hb(x)√

h

)
. (35)

Here, fξ denotes the density of the random vector ξ. Let us check (32). Note that
Eξ = 0 and the covariance matrix of the vector ξ is equal to

Cov(ξ, ξ T ) = E(ρ2
kσ(x)εkε

T
k σ T (x)) = a(x). (36)

We have

h
ε
h(x) = �h(x, R

d\B(x, ε)) =
∫
Rd\B(x,ε)

pxh (y)dy =

=
∫

v+√
hb(x)∈Rd\B(0, ε√

h
)

fξ (v)dv = P

{
ξ ∈ B

(
0,

ε√
h

)}
− √

hb(x)) ≤

≤ P

{
|ξ |2 ≥ ε2

4h

}
= o(h). (37)

The last equality is a consequence of the Markov inequality. The equality (36), the
uniform ellipticity of a(x) and (37) imply (32). To prove (29), note that by (33)

ai jh (x) = 1

h

∫
|y−x |≤1

(yi − xi )(y j − x j )p
x
h (y)dy =

=
∫
|v+√

hb(x)|≤ 1√
h

(vi + √
hbi (x))(v j + √

hb j (x)) fξ (v)dv =

=
∫
|v+√

hb(x)|≤ 1√
h

viv j fξ (v)dv + o(
√
h) = a(x) + o(1). (38)

To check (30), note that

bih(x) = 1

h

∫
|y−x |≤1

(yi − xi )p
x
h (y)dy =

= 1√
h

∫
|v+√

hb(x)|≤ 1√
h

(vi + √
hbi (x)) fξ (v)dv =
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= bi (x)
∫
|v+√

hb(x)|≤ 1√
h

fξ (v)dv − 1√
h

∫
|v+√

hb(x)|> 1√
h

vi fξ (v)dv. (39)

To estimate the second integral in (39), we apply the Cauchy–Schwarz inequality

1√
h

∫
∣∣∣v+√

hb(x)
∣∣∣> 1√

h

|v| fξ (v)dv ≤ 1√
h

(∫
|v|2 fξ (v)dv

)1/2 (
P(|ξ |2 ≥ 1

4h

)1/2

= o(1),

(40)
and (39), (40) imply (30). Finally, (31) follows fromour calculations and assumptions
of Theorem B. Weak convergence Ph

x to Px follows now from Theorems A and B
cited above. �
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