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AN EASY PROOF OF POLYA’S THEOREM ON RANDOM

WALKS

YURY KOCHETKOV

Abstract. We present an easy proof of Polya’s theorem on random walks:
with the probability one a random walk on the two-dimensional lattice returns
to the starting point.

1. Introduction

We consider two-dimensional random walks that start at the origin and performed
on the lattice Z

2. There are four directions for each step and the choice of a
direction is random with probability 1/4 for each direction. We will consider only
finite walks. A given walk of length n is performed with probability 1/22n.

A loop is a walk that begins and ends at origin. It is convenient to consider the
walk of length zero — the trivial loop. A loop is simple, if it is not a concatenation
of two nontrivial loops. We will assume that a simple loop is nontrivial.

Obviously, a loop has an even length. Let Pn be the number of simple loops of
length 2n. It is easy to see that P1 = 4 and P2 = 20. The number

r =
P1

24
+

P2

28
+ . . . =

∞
∑

n=1

Pn

24n
6 1

is the probability of returning to the origin.

Polya’s theorem on random walk. r = 1.

There are many proofs of this theorem. See, for example, [1], [2], [3], [4].

2. The one-dimensional case

In our approach the reasoning in the one-dimensional and the reasoning in the
two-dimensional cases are the same, so we will study the one-dimensional case at
first.
Let Bn be the number of loops of the length 2n, Pn be the number of simple loops
of the same length and

B(t) = 1 +B1t+B2t
2 + . . . and P (t) = P1t+ P2t

2 + . . .

be the corresponding generating functions. As each loop is the concatenation of
the simple loop and a loop (maybe trivial), then B(t) = P (t) · B(t) + 1. Thus,
P (t) = 1− 1/B(t) in the ring of formal series.

The probability of a given walk of the length n is 1/2n, hence, we will work with
”weighted” generating functions

b(x) = B
(x

4

)

= 1+
B1

22
x+

B2

24
x2+ . . . and p (x) = P

(x

4

)

=
P1

22
x+

P2

24
x2+ . . .
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Then

r = p (1) =
P1

22
+

P2

24
+ . . . 6 1

is the probability of returning to the origin. So, the convergence radius of the series
p(x) is > 1

As Bn =
(

2n
n

)

, then the convergence radius of the series b(x) is one. Indeed,

lim
n→∞

(

2n+ 2

n+ 1

)

· 2−(2n+2) :

(

2n

n

)

· 2−2n = 1.

It means that p(x) = 1 − 1/b(x) as functions, if 0 < x < 1. As limx→1 p(x) = r,
then

r = 1−
1

limx→1 b(x)
.

But

Bn/2
2n =

(2n)!

(n!)222n
∼

√
4πn · 22n · n2n

2πn · n2n · 22n
=

1
√
πn

.

Thus, limx→1 b(x) = ∞ and r = 1.

3. The two-dimensional case

As above, let Bn be the number of loops of length 2n, Pn be the number of simple
loops of the same length,

B(t) = 1 +B1t+B2t
2 + . . . and P (t) = P1t+ P2t

2 + . . .

be the corresponding generating functions. Then

r =
P1

42
+

P2

44
+

P3

46
+ . . . 6 1

is the probability of the returning to the origin. As above we have that B(t) =
P (t) · B(t) + 1 and P (t) = 1 − 1/B(t) in the ring of formal series. We have to
compute the number Bn.

Proposition 1. Bn =
(

2n
n

)2
.

Proof. Given two strings a and b of +1 and −1 of length 2n , such that there are
equal number of plus and minus ones in each string, we must construct a loop of
length 2n. It can be done in the following way: the pair (a[i], b[i]) corresponds to
the i-th step

• in the direction (0, 1), if (a[i], b[i]) = (−1,+1);
• in the direction (0,−1), if (a[i], b[i]) = (+1,−1);
• in the direction (1, 0), if (a[i], b[i]) = (+1,+1);
• and in the direction (−1, 0), if (a[i], b[i]) = (−1,−1).

Thus constructed walk returns to the origin. Indeed, let the number of pairs
(+1,+1) is k, the number of pairs (−1,−1) is l, the number of pairs (+1,−1)
is m and the number of pairs (−1,+1) is n, then k+m = l+ n and k+ n = l+m.
Hence, 2k = 2l, i.e. k = l and m = n. So, the number of ”right” steps is equal to
the number of ”left” steps and the number of ”up” steps is equal to the number of
”down” steps. �
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Example 3.1.

+ + − − −+
+ − − − ++ ⇒

x

y

q q q q q

q q q q q

q q q q q

q q q q q

✲
✻

✛✛

❄✲

In the opposite way,

x

y

q q q q q

q q q q q

q q q q q

q q q q q

✲
✻
❄

❄✛
✻

⇒ + − + + −−
+ + − − −+

Remark 3.1. A similar bijection does not exist in the three dimensional case, be-
cause there are eight triads of plus and minus ones, but only six directions in the
three dimensional lattice.

As above, let

b(x) = B
( x

16

)

= 1+
B1

42
x+

B2

44
x2+. . . and p (x) = P

( x

16

)

=
P1

42
x+

P2

44
x2+. . .

The proof of Polya’s theorem. As coefficients of the series b(x) are squares of
the coefficients of the same series in the one-dimensional case, then the radius of
convergence of this series is one and its coefficients are equivalent to 1/πn. Thus
this series is divergent at one and

r = lim
x→1

p(x) = 1− 1/ lim
x→1

b(x) = 1.

�
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