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AN EASY PROOF OF POLYA’S THEOREM ON RANDOM
WALKS

YURY KOCHETKOV

ABSTRACT. We present an easy proof of Polya’s theorem on random walks:
with the probability one a random walk on the two-dimensional lattice returns
to the starting point.

1. INTRODUCTION

We consider two-dimensional random walks that start at the origin and performed
on the lattice Z2. There are four directions for each step and the choice of a
direction is random with probability 1/4 for each direction. We will consider only
finite walks. A given walk of length n is performed with probability 1/22".

A loop is a walk that begins and ends at origin. It is convenient to consider the
walk of length zero — the trivial loop. A loop is simple, if it is not a concatenation
of two nontrivial loops. We will assume that a simple loop is nontrivial.

Obviously, a loop has an even length. Let P, be the number of simple loops of
length 2n. It is easy to see that P; =4 and P, = 20. The number
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is the probability of returning to the origin.
Polya’s theorem on random walk. r = 1.

There are many proofs of this theorem. See, for example, [I], [2], [3], [4].

2. THE ONE-DIMENSIONAL CASE

In our approach the reasoning in the one-dimensional and the reasoning in the
two-dimensional cases are the same, so we will study the one-dimensional case at
first.

Let B, be the number of loops of the length 2n, P, be the number of simple loops
of the same length and

B(t) =1+ Bit+ Bot*4+... and P(t) = Pit+ Pyt + ...

be the corresponding generating functions. As each loop is the concatenation of
the simple loop and a loop (maybe trivial), then B(t) = P(t) - B(t) + 1. Thus,
P(t) =1—1/B(t) in the ring of formal series.

The probability of a given walk of the length n is 1/2", hence, we will work with
”weighted” generating functions
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Then
P P
r=p(l)= %2 + 91 +...<1
is the probability of returning to the origin. So, the convergence radius of the series
p(z)is > 1

As B, = (21?), then the convergence radius of the series b(z) is one. Indeed,
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It means that p(z) = 1 — 1/b(x) as functions, if 0 < x < 1. As lim,_,1 p(x) = r,

then
1
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Thus, lim,_1 b(x) = co and r = 1.

3. THE TWO-DIMENSIONAL CASE

As above, let B, be the number of loops of length 2n, P, be the number of simple
loops of the same length,

B(t)=1+Bit+Bot* +... and P(t) = Pit + Pot* +

be the corresponding generating functions. Then

is the probability of the returning to the origin. As above we have that B(t) =
P(t) - B(t) + 1 and P(t) = 1 — 1/B(t) in the ring of formal series. We have to
compute the number B,,.

Proposition 1. B, = ( ")2.

n

Proof. Given two strings a and b of +1 and —1 of length 2n , such that there are
equal number of plus and minus ones in each string, we must construct a loop of
length 2n. It can be done in the following way: the pair (a[é],b[i]) corresponds to
the i-th step

e in the direction (0,1), if (a[¢],b[i]) = (=1, +1);

e in the direction (0, —1), if (ai], b[i]) = (+1,-1);

e in the direction (1,0), if (a[d], b[ D= (+1, —|—1)

e and in the direction (—1,0), if (a[i],b[i]) = (=1, —1).

Thus constructed walk returns to the origin. Indeed, let the number of pairs
(+1,41) is k, the number of pairs (—1,—1) is I, the number of pairs (+1,—1)
is m and the number of pairs (—1,+1) isn, then k+m =Il+nand k+n =1+ m.
Hence, 2k = 2[, i.e. kK =1 and m = n. So, the number of "right” steps is equal to
the number of ”left” steps and the number of ”up” steps is equal to the number of
”down” steps. (|
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Example 3.1.

+ - =—-++
j ..... PO O G TP PO
++ - = —+ x

In the opposite way,
Y.
u + -+ + ——
..... PO e =

x ++-—-—-+

Remark 3.1. A similar bijection does not exist in the three dimensional case, be-
cause there are eight triads of plus and minus ones, but only six directions in the
three dimensional lattice.

As above, let

b(x)zB(x) =1+&x+%x2+... and p(x):P(

x ) o Pl P2
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The proof of Polya’s theorem. As coefficients of the series b(xz) are squares of
the coefficients of the same series in the one-dimensional case, then the radius of
convergence of this series is one and its coefficients are equivalent to 1/7n. Thus
this series is divergent at one and

r=limp(x) =1—1/lim b(x) = 1.
z—1 z—1
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