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Abstract Looking at the well understood case of log terminal surface singularities,
one observes that each of them is the quotient of a factorial one by a finite solvable
group. The derived series of this group reflects an iteration of Cox rings of surface
singularities. We extend this picture to log terminal singularities in any dimension
coming with a torus action of complexity one. In this setting, the previously finite
groups become solvable torus extensions. As explicit examples, we investigate com-
pound du Val threefold singularities. We give a complete classification and exhibit all
the possible chains of iterated Cox rings.
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1 Introduction

We begin with a brief discussion of the well-known surface case [2,7,13]. The two-
dimensional log terminal singularities are exactly the quotient singularities C%/ G,
where G is a finite subgroup of the general linear group GL (2). The particular case
that G is a subgroup of SL(2) leads to the du Val singularities A,,, D,, E¢, E7 and Eg,
named according to their resolution graphs. They are precisely the rational double
points, and are also characterized by being the canonical surface singularities. The du
Val singularities fill the middle row of the following commutative diagram involving
all two-dimensional log terminal singularities:

(CZ
/N
Eg Ap

R Dyis —— = Es— > By
I A
E! Al D>! D! E>! E! E!
8 nk (n+3)/2 n+3 6 6 7

Here, all arrows indicate quotients by finite groups. The label “CR” tells us that this
quotient represents a Cox ring of a du Val surface singularity; recall that the Cox rings
of (the resolutions of) these have been computed in [12, 15], see also the example given
below. So, Eg is the spectrum of the Cox ring of E7 etc. In fact, the chain of Cox rings
reflects the derived series of the binary octahedral group S4 € SL(2), producing the
E7 singularity:

S12A42 Dy 2 (+h) 2 (L),

where Ay is the binary tetrahedral group, Dy the binary dihedral group, and I, stands
for the 2 x 2 unit matrix. The respective CR labelled arrows stand for quotients by
the factors of this derived series. The arrows passing from the middle to the lower
row indicate index-one covers: the upper surface is Gorenstein, one divides by a
cyclic group of order 1 and the lower surface is of Gorenstein index :. Finally, the
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244 1. Arzhantsev et al.

superscripts 2 in D(ZI;IH) P and 3 in Eg” denote the “canonical multiplicity” of the
singularity, generalizing the “exponent” discussed in [11, 14]; see 4.2. For a discussion
of the surface case, including the determination of all Cox rings, based on the methods
provided in this article, see Example 4.8.

Another feature of the log terminal surface singularities is that, as quotients C2/ G
by a finite subgroup G € GL(2), they all come with a non-trivial C*-action, induced
by scalar multiplication on C2 The higher dimensional analogue of C*-surfaces are
T -varieties X of complexity one, that means varieties X with an effective action of an
algebraic torus T which is of dimension one less than X. The notion of log terminality
is defined in general via discrepancies in the ramification formula; see Sect. 3 for a
brief reminder. In higher dimensions, log terminal singularities form a larger class
than the quotient singularities C"/G with G a finite subgroup of GL (7). Our aim
is, however, to extend the picture drawn at the beginning for the surface case to log
terminal singularities with a torus action of complexity one in any dimension.

We use the Cox ring based approach developed in [20-22]. Recall that the Cox
ring of a normal variety X with finitely generated divisor class group C1(X) and only
constant globally invertible functions is

R(X) = @ T(X. 0x(D)).

CI(X)

where we refer to [3] for the necessary background. If X comes with a torus action
of complexity one, then the Cox ring R(X) admits an explicit description in terms of
generators and very specific trinomial relations. Vice versa, one can abstractly write
down all rings that arise as the Cox ring of some T -variety X of complexity one. Let
us briefly summarize the procedure; see Sect. 2 and [20,22] for the details.

Construction 1.1 Fix integers m > 0, ¢ € {0, 1} and r, n > 0 and a partition n =
n,+---+n,. Foreveryi =, ...,rletl; == (lj1,...,lin;) € Zgowithlil = 2 g,
and [l,; > --- > [,1 and define a monomial

T<li — Tili'l . T‘lini

1 in; °

Denote the polynomial ring C[T;;, Sx; i = ¢,...,r, j =1,...,n;, k =1,...,m]
for short by C[T;;, Sx]. We distinguish two types of rings:

Type 1. Take ¢ = 1 and pairwise different scalars 8] = 1,6,,...,6,_1 € C* and
define foreachi =1, ...,r — 1 a trinomial

gi = Ti — Ti +11 — ;.
Then we obtain a factor ring

R = CI[T;j, S1/(81s---» gr—1)-
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Type 2. Take « = 0 and pairwise different scalars 6y = 1,60;,...,6,_» € C* and
define foreachi =0, ..., r — 2 a trinomial

) Tl,' Tli+ l;
8i = Ui i i+11 ]i+22'
Then we obtain a factor rlng

R = CI[T;j, Sk1/(8go0s - -» &r—2)-

As we explain later, the rings R come with a natural grading by a finitely generated
abelian group K and suitable downgradings Ky — K give us Cox rings of rational,
normal varieties X with C1(X) = K that come with a torus action of complexity one.
More geometrically, X arises as a quotient of an open set X C X of the total coordinate
space X = Spec R by the quasitorus H having K as its character group. Conversely,
basically every rational, normal variety X with a torus action of complexity one can
be presented this way.

Geometrically speaking, Type 1 leads to the T -varieties of complexity one that admit
non-constant global invariant functions and Type 2 to those having only constant global
invariant functions, or, equivalently, having an attractive fixed point. The varieties of
Type 1 turn out to be locally isomorphic to toric varieties. In particular, they are
all log terminal and the study of their singularities is essentially toric geometry, see
Corollary 3.5 for a precise formulation. We therefore mainly concentrate on Type 2.
There, the true non-toric phenomena occur, as for instance the singularities D,,, E¢, E7
and Ejg in the surface case.

Characterizing log terminality for a T -variety of complexity one of Type 2 involves
platonic triples, that means, triples of the form

(5,32, 43,2, 33,2, ,2,2), (xyD,

where x > y € Z31. We say that positive integers ao, . .., a, form a platonic tuple
if, after reordering decreasingly, the first three numbers are a platonic triple and all
others equal one. Moreover, in the setting of Construction 1.1, we say that a ring R of
Type 2 is platonic if every (lj,, ..., lrj,) is a platonic tuple.

Example 1.2 The platonic rings of Type 2 in dimension two are the polynomial ring
C[ Ty, T»] and the factor rings C[Ty, T», T31/{f), where f is one of

T+ T3 +T8 yeley, TP+T+TE TP+T+TE TP+ T + T
Endowed with a suitable grading, C[ Ty, T3] is the Cox ring of A, and the other rings,
according to the above order of listing, of Dy_», E¢, E7 and Eg.

Our first result says that a rational, normal variety X with a torus action of complexity
one of Type 2 has at most log terminal singularities if and only if there occur enough
platonic tuples (lojy, ..., I, ) in the Cox ring R; see Theorem 3.13 for the precise
meaning of “enough”. In the affine case, the result specializes to the following; compare
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246 1. Arzhantsev et al.

also [16, Example 2.20] for an earlier result in a particular case and [25, Corollary 5.8]
for a related characterization.

Theorem 1.3 An affine, normal, Q-Gorenstein, rational variety X with torus action
of complexity one of Type 2 has at most log terminal singularities if and only if its Cox
ring R is a platonic ring.

Setfor the moment [; :== ged(/;1, ..., lin,). Then, by [22], aring R of Type 1 is factorial
ifand only if [; = 1 holds foralli = 1, ..., r. Moreover, aring R of Type 2 is factorial
if and only if the [; are pairwise coprime fori =0, ..., r, see [20, Theorem 1.1].

Example 1.4 In dimension two, the factorial platonic rings R of Type 2 are the poly-
nomial ring C[ T, T>] and the ring C[T1, T>, T31/(T} + T + T3).

To extend the iteration of Cox rings C? > A, - D4 — E¢ — E7 observed in
the surface case to higher dimensions, we have to allow instead of only finite abelian
groups also non-finite abelian groups in the respective quotients.

Theorem 1.5 Let X be a rational, normal, affine variety with a torus action of com-
plexity one of Type 2 and at most log terminal singularities. Then there is a unique
chain of quotients

H,_ H,_ H H. H
Xp//zlxp_l//12 //3X3//2 Xz//IX],

where X; = Spec R; holds with a platonic ring R; fori > 2, the ring R, is factorial
and each X; — X;_1 is the total coordinate space.

Note that iteration of Cox rings requires in each step finite generation of the divisor
class group C1(X) of the total coordinate space of X. The latter merely means that
the curve Y with function field (C(Y)HéJ is of genus zero, where Hg C Hy is the
unit component of the quasitorus Hp with character group CI(X). In Theorem 5.3, we
establish a formula for the genus of Y in terms of the entries /;; of the defining matrix
P of R = R(X), generalizing the case of C*-surfaces settled in [28, Proposition 3,
p-64]. This allows us to conclude that for log terminal affine X, the total coordinate
space is always rational. Together with the fact that the total coordinate space of a log
terminal affine X is canonical, see Proposition 5.1, we obtain that Cox ring iteration
is possible in the log terminal case; see Remark 5.12 for a discussion of a non log
terminal example with rational Cox ring. The final step in proving Theorem 1.5 is
to show that the Cox ring iteration even stops after finitely many steps. For this, we
compute explicitly in Proposition 6.6 the equations of the iterated Cox ring. It seems
to be interesting to study Cox ring iteration also more generally; note that a QQ-factorial
variety has a log terminal Cox ring if and only if it is log Fano [8,18].

The next result shows that, in a large sense, the log terminal singularities with torus
action of complexity one still can be regarded as quotient singularities: the affine plane
C? and the finite group G € GL(2) of the surface case have to be replaced with a
factorial affine T'-variety of complexity one and a solvable reductive group.

Theorem 1.6 Let X be a rational, normal, affine variety of Type 2 with a torus action
of complexity one and at most log terminal singularities.
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Log terminal singularities, platonic tuples and iteration of Cox rings 247

o X isaquotient X = X' || G of afactorial affine variety X' :== Spec R’ by a solvable
reductive group G, where R’ is a factorial platonic ring.

e The presentation of Theorem 1.5 is regained by H; := G~V /G and X; :=
X'/ GV where G is the i-th derived subgroup of G.

Example 1.7 Every log terminal affine C*-surface is a quotient of C? or the Eg-
singular surface V(T15 + T23 + T32) C C? by a finite solvable group.

A natural three-dimensional generalization of du Val singularities are the compound du
Val singularities, introduced in [29]: these are normal, canonical Gorenstein threefold
singularities x € X such that a general hypersurface section through x has a du Val
(surface) singularity at x. The isolated compound du Val singularities are precisely the
terminal Gorenstein singularities. If a threefold X admits at most compound du Val
singularities, then, for a given singular point x € X, we have possible one-dimensional
irreducible components C1, . . ., C; of the singular locus that contain x. The compound
du Val singularity type (cDV-type) of x is denoted by S(x1),..., S(x;) — cS(x),
where S(x;) stands for the type of the du Val surface singularity obtained by a general
hypersurface section through a general point of x; € C; and S(x) for that through x;
the c just indicates compound du Val. The following result goes one step beyond the
known [10] case of toric compound du Val singularities.

Theorem 1.8 The following table provides the equations for the affine threefolds with
at most compound du Val singularities which are toric (nos. 1-3) or non-toric with a
torus action of complexity one of Type 2 (nos. 4—18).

No. cDV-type Equation in C*

1 A;xC T+ 1o

2 A1, A1 = CAp 41 T\ + T, T)

3 A1, A1, A] — cDy T2 + D131y

4 Dy3xC T2+ T}T5 + Tit?

5 Ay, Aj_1 — cDi4q T2+ T7Ts + T,

6 EexC T+ T+ T

7 E;xC T2+ T + I T3

8 EgxC T+ T+ T3

Ja Al-1 = cAL {]Z211—1tr1((TLI;1111+LT22J;;?— 1
9b A1 — cAL T‘T2+H/ LT @i - Tt

L=min(L;+ 1)} 1; =1

L L
N+ 137 12 (T + @2 - DT,
L=min(L3+ L1 Y —1,Ly Y [; — 1)

L2+l)lj
9c AL3,1, A[f,1 — CAy ’
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No. cDV-type Equation in C*

L3 pnLg yyr—1.p0L1 . Lol
od  Ap1,Ap1, Ay —>cAp NRETBPTASUT + @7 = DT
: L= m1nk=3,4(Lk +h2d ;i — l)

10 A1 — cDiys T+ T2T5 + T,
11 Aoi41 = Doy TE+ 17T+ L1,

1 i
12 Ap—1, D2 = cDp 442 T12 + T22T3 + T31+1T42
13 A, Al — cDiy3 T2+ DTy + T,
14 A1, Ay, Ay — cEg T2 + 15 + T}
15 Dy — cE¢, cE7 TP+ 15 + T T,
16 Ay, Dy — cE7 TP + T35 + LT3T}
17 As, Dy — cEjg TZ + T3 + TIT}
18 E¢—> cEs T2+ T5 + T3 T}

Here, parameters are integers greater than zero with the exponents containing L1, Lo
in nos. 9a to 9d being coprime, Ay means that there is no singularity and D; = A; for
1 <3.

The defining data as toric or T-varieties of complexity one for the varieties listed in
Theorem 1.8 are provided in Sect. 7. Finally, we study the possible Cox ring iterations
of the compound du Val singularities.

Theorem 1.9 For the singularities from Theorem 1.8, one has the following Cox
ring iterations, the respective total coordinate spaces are indicated by the downward

arrows.
cC} C 100 X
Jyoloo b
3 @O @ (dl-0) (10-e)
S s
5) @4 12) (1-e) (16)

J

(6)

!

(7

X X3 X4 X5 (9a=1)
oo b
(13-e) (9b)  (9c) (Od) (9a;>2)
o
(13-0)  (14)

Here 10-e (10-0) denotes the singularity 10 with even (odd) parameter; similarly in
the other cases. Moreover with the respective parameters from Theorem 1.8:

X, = V(T?Th + Ty + 177,

@ Springer
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Log terminal singularities, platonic tuples and iteration of Cox rings 249

Xs = V(TP T + TR T+ TsTe, TR T+ 2T5Ts + T T,
TsTe + 31773 + ToTho, ...,
Tor—3Tar—2 + (r — D) Tar—1 Tor + Tor 41 Tor42).

To obtain X4, set Ty = 1 and for X3 in addition T) = 1 in the equations of Xs5. The
singularities 8, 15, 17 and 18 are factorial.

The varieties X1, ..., X5 in Theorem 1.9 are of dimension four or higher. They enjoy
a generalized compound du Val property in the sense that the hyperplane section
X;NV (T4—T3) has at most canonical singularities. For instance, for X5, the hyperplane
section gives acompound du Val singularity of Type 9a. The composition C? — (1) —
(5) is a quotient by the dihedral group D54, which is not a subgroup of SL(2).

2 Rational varieties with torus action of complexity one

We recall the basic concepts and facts on normal rational T -varieties X of complexity
one, i.e., the variety X is endowed with an effective action T x X — X of an algebraic
torus T such that dim (7)) = dim(X) — 1 holds. We work over the field C of complex
numbers. For the proofs and full details, we refer to [3,20-22].

The approach follows the general philosophy behind [3, Chapter 3]: one starts with
a Cox ring R = R(X) and then obtains X as a quotient X = X / H of an open subset
X C X of the total coordinate space X = Spec R by the action of the characteristic
quasitorus H = Spec C[K ], where K = CI(X) is the divisor class group of X. The
quotient map X — X is called the characteristic space over X. In our concrete case
of T-varieties of complexity one, the total coordinate space X will be acted on by
a larger quasitorus Hy = Spec C[Kp] containing the characteristic quasitorus H as
a closed subgroup and the torus action on X = X J H will be the induced action of
T =Hy/H.

Our first step provides Ko-graded rings R, which after suitable downgrading become
prospective Cox rings of our T -varieties. The construction depends on continuous data
A and discrete data Py introduced below. There are two types of input data (A, Py):
for Type 1, we will have the affine line as a generic quotient of the action of Hy on X
and Type 2 will lead to the projective line.

Construction 2.1 Fix integers r,n > 0, m > 0 and a partitionn = n, + --- + n,
starting at ¢ € {0, 1}. Foreach: <i < r,fixatuple!/; € Z';"O and define a monomial

i i lin; . .
M= T T e LTy, Sk << 1< <y 1<k <m)l,

in,-

T

1

We will also write C[7;;, Sx] for the above polynomial ring. We distinguish two
settings for the input data A and Py of the graded C-algebra R(A, Py).

Type 1. Taket = 1. Let A := (ay, . .., a,) be a list of pairwise different elements of C.
Set I :={1,...,r — 1} and define for every i € I a polynomial

I; l;
gi =T =T = (aix1 —a;) € C[Tyj, Sil.
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250 1. Arzhantsev et al.

We build up an 7 x (n+m) matrix from the exponent vectors /1, .. ., [ of these poly-
nomials:
I 00---0
Po:= D
0 L0---0
Type 2. Take t = 0. Let A := (ap, ..., a,) be a 2x (r+1)-matrix with pairwise
linearly independent columns a; € C2 Set [ := {0, ...,r — 2} and for every i € [
define
li pliv1 pligo
g = det [7} LA T } e CIT,, k1.
ai di+1 4i42
We build up an r x (n+m) matrix from the exponent vectors Iy, . .., [, of these poly-
nomials:

—Ilp h 00---0
Po=| i oiii
—Ip 0 ,0---0

We now define the ring R(A, Py) simultaneously for both types in terms of the data
A and Py. Denote by P the transpose of Py and consider the projection

Q: 7'M — Ko :=Z"""/im(P§).

Denote by e;;, ey € Z"™™ the canonical basis vectors corresponding to the variables
T;;, Sk. Define a Ko-grading on C[T;;, Sx] by setting

deg(Tij) == Q(eij) € Ko,  deg(Sk) == Q(ex) € Ko.

This is the coarsest possible grading of C[T7;;, S;] leaving the variables and the g;
homogeneous. In particular, we have a Ky-graded factor algebra

R(A, Py) =CI[T;;, Sl/(gisi € I).

The C-algebra R(A, Py) just constructed is an integral normal complete intersection
of dimension n 4+m + 1 —r admitting only constant invertible homogeneous elements.
Moreover, R(A, Py) is Ko-factorial in the sense that every non-zero homogeneous non-
unit is a product of Ko-primes. The latter merely means that on X = Spec R(A, Py)
every Hp-invariant divisor is the divisor of an Hp-homogeneous rational function.
Moreover, every affine variety with a quasitorus action of complexity one having this
property and admitting only constant invertible homogeneous functions arises from
Construction 2.1, see [3, Section 4.4.2].
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Log terminal singularities, platonic tuples and iteration of Cox rings 251

In the second construction step, we introduce the downgradings Ko — K that
will turn R(A, Pp) into a Cox ring. More geometrically speaking, we figure out the
possible characteristic quasitori H € Hy. This is achieved by suitably enhancing the
matrix Py.

Construction 2.2 Let integers r,n = n, + - - - 4+ n,, m and data A and Py of Type 1
or Type 2 be as in Construction 2.1. Fix 1 < s < n + m — r, choose an integral
s X (n+m) matrix d and build the (r + s) x (n+m) stack matrix

Po
P = .
We require the columns of P to be pairwise different primitive vectors generating
Q' as a vector space. Let P* denote the transpose of P and consider the projection

Q: 7" — K .= 7" /im (P¥).

Denoting as before by e;j, ex € Z"™™ the canonical basis vectors corresponding to
the variables 7;; and Sy, we obtain a K -grading on C[T;;, Sk] by setting

deg(T;j) = Q(eij) € K, deg(Si) = Q(ex) € K.

This K -grading coarsens the Ko-grading of C[T;;, Sx] given in Construction 2.1. In
particular, we have the K-graded factor algebra

R(A, P) = C[T;j, Skl/(gis i € 1).

So, as algebras R(A, Py) and R(A, P) coincide, but the latter comes with the coarser
K -grading. Again, R(A, P) is K-factorial, i.e., for the action of H = Spec C[K] on
X = Spec R(A, P), every H-invariant divisor is the divisor of an H-homogeneous
function.

Remark 2.3 Consider the defining matrix P of a K-graded ring R(A, P) as in Con-
struction 2.2. Write v;; = P(e;;) and vx = P(ex) for the columns of P. The i-th
column block of P is (v;1, ..., Viy;) and by the data of this block we mean /; and the
s x n; block d; of d. We introduce admissible operations on P:

(i) swap two columns inside a block v;1, ..., Vi,

(ii) exchange the data/;,, d;, and [;,, d;, of two column blocks,
(iii) add multiples of the upper r rows to one of the last s rows,
(iv) any elementary row operation among the last s rows,

(v) swapping among the last m columns.

The operations of type (iii) and (iv) do not change the associatedring R(A, P), whereas
the types (i), (ii), (v) correspond to certain renumberings of the variables of R(A, P)
keeping the (graded) isomorphy type.
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252 1. Arzhantsev et al.

Remark 2.4 1f R(A, P) is not a polynomial ring, then we can always assume that P
is irredundant in the sense that /;; + - -+ + l;;; > 1 holds fori = 0, ..., r. Indeed,
if P is redundant, then we have n; = 1 and /;; = 1 for some i. After an admissible
operation of type (ii), we may assume i = r. Now, erasing v, and the r-th row of P
and the last column from A produces new data defining a ring R(A, P) isomorphic
to the previous one. Iterating this procedure leads to an R(A, P) isomorphic to the
initial one but with irredundant P.

Remark 2.5 Construction 2.2 allows more flexibility than the simpler version pre-
sented in the introduction. However, given any R(A, P) as in Construction 2.2, we
can achieve [;; > --- > [y, foralli and [;; > --- > [,1 by means of admissible
operations of type (i) and (ii). Moreover, via suitable scalings of the variables T;;, we
can turn the coefficients of the relations g; into those presented in the introduction.

The algebras R(A, P) will be our prospective Cox rings. The remaining task is to
determine the open H -invariant sets XcX= Spec R(A, P) that give rise to suitable
quotients X = X / H . This is done via geometric invariant theory: the respective open
sets X C X are in correspondence with “bunches of cones”, certain collections
of convex polyhedral cones in Kg = K xzQ; we refer to [3, Section 3.2.1] for a
detailed introduction.

Construction 2.6 Let R(A, P) be a K-graded ring as provided by Construction 2.2
and § = (T}, Sk) the canonical system of generators. Consider

H :=SpecC[K], X(A, P):=SpecR(A, P).

Then H is a quasitorus and the K-grading of R(A, P) defines an action of H on
X (A, P). Any true §-bunch ® defines an H -invariant open set and a good quotient

X(A, P,®) CX(A, P), X(A,P,®) =X(A, P, ®)/H.

The action of Hy = Spec C[K(] leaves X (A, P, ®) invariant and induces an action
of the torus 7' = Spec C[Z*] on X (A, P, P).

Recall from [3, Theorem 3.4.3.7] that the resulting variety X = X (A, P, ®)isrational,
normal, admits only constant invertible functions and is of dimension n +m + 1 —
r —dim(Kg) = s + 1. Moreover, the divisor class group of X is isomorphic to K and
the Cox ring to R(A, P).

Remark 2.7 In the important cases of affine or Fano varieties X, one may evade using
the bunch of cones & due to the following observations:

e If X is affine, then 5(\(A, P, ®) = X holds and we simply have X = 7//H; see
also Proposition 2.12 and the discussion thereafter.

e If X is a Fano variety, then X (A, P, @) equals the set of semistable points defined
by the anticanonical class in the character group K = CI1(X) of H.

The basic result of the approach via the data A, P and ® says that if X is a rational,
normal variety with a torus action of complexity one having only constant globally
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invertible functions and satisfies a certain maximality property with respect to embed-
dability into toric varieties, then X is equivariantly isomorphic to some X (A, P, ®),
see [22, Theorem 1.8].

Toric embeddability is important in our subsequent considerations. More specifi-
cally, there is even a canonical embedding X — Z into a toric variety such that X
inherits many geometric properties from Z. The construction makes use of the tropical
variety of X.

Construction 2.8 Let X = X (A, P, ®) be obtained from Construction 2.6. The trop-
ical variety of X is the fan trop(X) in Q" consisting of the cones

i = cone(vj1) + lin(ey41,...,er45) fori =u,...,r, A=A N NA,

where v;; € Z" TS denote the first n columns of P and e; € Z" ™ the k-th canonical
basis vector; we call A; a leaf and A the lineality part of trop (X).

Type 1 Type 2

Construction 2.9 Let X = X (A, P, ®) be obtained from Construction 2.6. For a
face 8o < 8 of the orthant § € Q"1 let 88‘ =< § denote the complementary face and
call 8¢ relevant if

e the relative interior of P (§p) intersects trop(X),
e the image Q(B(’j) comprises a cone of @,

where Q: Z"™M — K = 7'M/ P*(Z'+5) is the projection. Then we obtain fans &
in Z"*" and ¥ in Z'™ of pointed cones by setting

T = {8; < 80; 8 < S relevant}, % = {0 < P(8); 8o < & relevant}.

The toric varieties Z and Z associated with 3 and ¥, respectively, and 7 = Crtm fig
into a commutative diagram of characteristic spaces and total coordinate spaces

XA, P) < Z
Ul Ul
X(A,P,®) < Z
//HJ/ l//H
X(A,P,®) < Z
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The horizontal inclusions are T-equivariant closed embeddings, where T acts on
Z as the subtorus of the (r+s)-torus corresponding to 0 x Z* C Z'*5. Moreover,
X (A, P, ®) intersects every closed toric orbit of Z.

We call Z from Construction 2.9 the minimal toric ambient variety of X =
X (A, P, ®). Observe that the rays of the fan ¥ of Z have precisely the columns
of the matrix P as its primitive generators. In particular, every ray of X lies on the
tropical variety trop (X). The minimal toric ambient variety is crucial for the resolution
of singularities. The following recipe for resolving singularities directly generalizes [3,
Theorem 3.4.4.9]; a related approach using polyhedral divisors is presented in [25].

Construction 2.10 Let X = X (A, P, ®) be obtained from Construction 2.6 and
consider the canonical toric embedding X € Z and the defining fan ¥ of Z.

e Let X/ = T ntrop(X) be the coarsest common refinement.
e Let X" be any regular subdivision of the fan ¥'.

Then &” — X defines a proper toric morphism Z” — Z and with the proper transform
X" C 7" of X C Z, the morphism X" — X is a resolution of singularities.

Remark 2.11 TIn the setting of Construction 2.10, the variety X” has again a torus
action of complexity one and thus is of the form X” = X (A”, P”, ®”). We have
A” = A and P” is obtained from P by inserting the primitive generators of X" as new
columns. Moreover, ®” is the Gale dual of £”, that means that with the corresponding
projection Q" and orthant §” we have

"= {Q"(&): b0 < 8”1 P"(80) € T"}.

Proposition 2.12 Consider a variety X = X(A, P, ®) of Type 2 as provided by
Construction 2.6. Then the following statements are equivalent.
(i) One has X =X.
(ii) The variety X is affine.
(iii) The minimal toric ambient variety Z of X is affine.
(iv) One has Z = Z = C+m,

If one of these statements holds, then the columns of P generate the extremal rays of
a full-dimensional cone 6 € Q"™ and we have Z = Spec C[oV N Z"T5].

Proof Only for the implication “(ii) = (iii)” there is something to show. As X is of
Type 2, we have 0 € X C Z = C"*™ Since X is affine, we have X = X and thus
0 € Z. We conclude Z = Z and thus Z = Z | H is affine. O

The characterization 2.12 (i) allows us to omit the bunch of cones ® in the affine case:
we may just speak of the affine variety X = X (A, P) .= X/H.

Corollary 2.13 Let X = X (A, P) be affine of Type 2. Then the following statements
are equivalent.

(i) The variety X is Q-factorial.
(ii) The variety Z is Q-factorial.
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(iii) The columns of P are linearly independent.

Proof The equivalence of (i) and (ii) is [3, Corollary 3.3.1.7]. The equivalence of (ii)
and (iii) is [9, Theorem 3.1.19 (b)]. O

Corollary 2.14 Let X = X (A, P) be affine of Type 2. Then the Picard group of X is
trivial.

Proof Proposition 2.12 says that the minimal toric ambient variety Z is affine. Thus, Z
has trivial Picard group; see [9, Proposition 4.2.2]. According to [3, Corollary 3.3.1.12],
the Picard group of X equals that of Z. O

More generally one can show that in fact every normal affine variety admitting a torus
action with an attractive orbit has trivial Picard group: every bundle can be linearized
and the non-vanishing loci of its homogeneous sections form an invariant trivializing
open cover. As one of these covering sets contains the attractive fixed point, the bundle
is trivial.

3 The anticanonical complex and singularities

First recall the basic singularity types arising in the minimal model programme. Let X
be a Q-Gorenstein variety, i.e., some non-zero multiple of a canonical divisor Dy on
X is an integral Cartier divisor. Then, for any resolution of singularities ¢: X’ — X,
one has the ramification formula

Dy — ¢*(Dx) = Z a; E;,

where the E; are the prime components of the exceptional divisors and the coefficients
a; € Q are the discrepancies of the resolution. The variety X is said to have at most
log terminal (canonical, terminal) singularities, if for every resolution of singularities
the discrepancies a; satisfy @; > —1 (a; = 0, a; > 0).

In [6], the “anticanonical complex” has been introduced for Fano varieties
X (A, P, ®) and served as a tool to study singularities of the above type. The pur-
pose of this section is to extend this approach and to generalize results from [6] to
the non-complete and non-Q-factorial cases. As an application, we characterize log
terminality in Theorem 3.13 via platonic triples occuring in the Cox ring. For the affine
case, the result specializes to Theorem 1.3.

Now, let X = X (A, P, ®) be a rational T-variety of complexity one arising from
Construction 2.6. Consider the embedding X C Z into the minimal toric ambient
variety. Then X and Z share the same divisor class group

K = CI(X) = Cl(Z)

and the same degree map Q: Z"™" — K for their Cox rings. Let ez € Z"™" denote
the sum over the canonical basis vectors e;; and ey of Z/"*" Then, with the defining
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relations g, ..., g-—> of the Cox ring R(A, P), the canonical divisor classes of Z and
X are given as

r—241
Kz=—Q(ez) € K, Kx=) deg(g)+XzeK,

i=t

see [3, Proposition 3.3.3.2]. Observe that if X is of Type 1, then its canonical divisor
class equals that of the minimal toric ambient variety Z. Define a (rational) polyhedron

B(=Xx) = Q' (-=Xx) NQLy" < Q"

and let B == B(g) + --- + B(gr_24.) € Q""" denote the Minkowski sum of the
Newton polytopes B(g;) of the relations g, ..., g-—2+, of R(A, P).

Definition 3.1 Let X = X (A, P, ®) be such that — Ky is ample and denote by ¥
the fan of the minimal toric ambient variety Z of X.

e The anticanonical polyhedron of X is the dual polyhedron Ay € Q" of the
polyhedron

Bx = (P*)"'(B(-Xx) + B —ex) Q™.

e The anticanonical complex of X is the coarsest common refinement of polyhedral
complexes

A = faces(Ax) M E Mtrop(X).

o The relative interior of A is the interior of its support with respect to the inter-
section Supp(X) N trop(X).
e The relative boundary 3 A is the complement of the relative interior of AS in
A%.
A first statement expresses the discrepancies of a given resolution of singularities via
the anticanonical complex; the proof is a straightforward generalization of the one
given in [6] for the Fano case and will be made available elsewhere.

Proposition 3.2 Let X = X (A, P, ®) be such that — Ky is ample and X" — X a
resolution of singularities as in Construction 2.10. For any ray o € X", let v, be its
primitive generator, vé its leaving point of A, provided o ¢ A and D, the prime
divisor on X" obtained by intersecting X" with the toric divisor of Z" corresponding
to . Then the discrepancy a, along D, satisfies

gl
/
Al

ap=—1+ if o € A,  ap < —1 if 0 C AS.

The next result characterizes the existence of at most log terminal (canonical, terminal)
singularities in terms of the anticanonical complex; again, this generalizes a result
from [6] and the proof will be made available elsewhere.
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Theorem 3.3 Let X = X (A, P, ®) be such that — Ky is ample. Then the following
statements hold.

(i) AS contains the origin in its relative interior and all primitive generators of the

fan ¥ are vertices of A%.

(i1) X has at most log terminal singularities if and only if the anticanonical complex
A is bounded.

(iii)) X has at most canonical singularities if and only if O is the only lattice point in
the relative interior of A.

(iv) X has at most terminal singularities if and only if O and the primitive generators
vo foro € 2 are the only lattice points of AS.

We describe the structure of the anticanonical complex in more detail, which general-
izes in particular statements on the QQ-factorial Fano case obtained in [6]. For Type 1,
the situation turns out to be simple, whereas Type 2 is more involved.

Proposition 3.4 Let X = X (A, P, ®) be of Type I such that —XKx is ample. Let T be

the fan of the minimal toric ambient variety of X and denote by L, ..., A, the leaves
of trop(X).
(i) Everycone o € X is contained in a leaf \; C trop(X). In particular, ¥ Mtrop (X)
equals X.

(ii) The boundary of A is the union of all faces of Ax that are contained in Supp(X).
(iii) The non-zero vertices of AS, are the primitive generators of L, i.e. the columns
of P.

Corollary 3.5 Let X = X (A, P, ®) be a T-variety of Type 1. Then X has at most
log-terminal singularities. Moreover; it has at most canonical (terminal) singularities
if and only if its minimal toric ambient variety Z does so.

Construction 3.6 Let X = X (A, P, ®) be of Type 2 and ¥ the fan of the minimal
toric ambient variety of Z. Write v;; :== P(e;;) and vy := P (ey) for the columns of P.
Consider a pointed cone of the form

T = cone(vojy, - -+ Vrj,) € Q'

that means that  contains exactly one v;; forevery i = 0,...,7. We call such 7 a
P-elementary cone and associate the following numbers with t:

P r
Cojim 2 for i =0, b= (L= P)lojo Ly, + D e
lij i=0

Moreover, we set
V(t) = Leovoj, + -+ leyvpj, € ZT 0(T) = Qx0-v(7) € Q7

We denote by T(A, P, ®) the setof all P-elementary cones t € X.Foragiveno € X,
we denote by T (o) the set of all P-elementary faces of o.
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Remark 3.7 Let X = X (A, P, ®) be of Type 2. Let X be the fan of the minimal toric
ambient variety of X and A, ..., A, C trop(X) the leaves of the tropical variety of
X. As in [6, Definition 4.1], we say that

e acone o € X is aleaf cone if o C A; holds for somei =0, ...,r,
e aconeo € X iscalled bigif o N A7 # G holds foralli =0,...,r.

Observe that a given cone o € X is big if and only if o contains some P-elementary
cone as a subset.

Proposition 3.8 Let X = X (A, P, ®) be of Type 2 such that —Kx is ample. Let &
be the fan of the minimal toric ambient variety of X, denote by Ay, . .., Ay the leaves
of trop(X) and by A = Lo N - - - N A, its lineality part.

(1) The fan X trop(X) consists of the cones o N A and o N A;, where 0 € ¥ and
i=0,...,r. Here, one always has c N A < o N A,.

(i) The fan X nitrop(X) is a subfan of the normal fan of the polyhedron Bx. In
particular, for every cone o N A;, there is a vertex us; € Bx with

dAG No N ={veoNi; (Ugi,v) =—1}

(iii) If a P-elementary cone t is contained in some o € %, then t is simplicial,
v(t) € t° holds, o(t) is a ray, o(t) = Tt N A holds as well as Qo(t) = QTr N A.

(iv) Let o € X be any cone. Then, for everyi =0, ..., r, the set of extremal rays of
o NX; € ntrop(X) is given by

(@ N )W = {0(00); 09 € T(@)} U {o e oV 0 C 4}

(v) The set of rays of X Ntrop (X) consists of the rays of X and the rays o(0y), where
oo € T(A, P, D).
(vi) If a P-elementary cone t is contained in some o € X, then the minimum value
among all (u, v(t)), where u € By, equals — .
(vii) Let the P-elementary cone t be contained in o € X. Then o(t) gZ A$ holds if
and only if £ > 0 holds; in this case, o(t) leaves A, at v(t)' = Z;l v(7).
(viii) The vertices of A are the primitive generators of I, i.e. the columns of P, and
the points v(og) = Kgolv(oo), where o9 € T(A, P, ®) and £, > 0.

Proof Assertion (i) holds more generally. Indeed, the coarsest common refinement
1M X, of any two quasifans ¥; in acommon vector space consists of the intersections
o1 N oy, where o; € ¥;. Moreover, the faces of a given cone o1 N o, of X 1M X, are
precisely the cones o N o, where o/ < 0;.

We show (ii). Let ¥/ be the complete fan in Q"+* defined by the class —Kx € K.
Since — Ky is ample, the fan ¥ is a subfan of ¥’. The preimage P~'(X’) consists
of the cones P~!(0”), where o’ € ¥/, and is the normal fan of B(—Xx) < Q"™
Moreover, P~! (trop(X)) turns out to be a subfan of the normal fan of B € Q"™ It
follows that P~1(Zym P! (trop(X)) is a subfan of the normal fan of B(—Xx) + B.
Projecting the involved fans via P to Q"** gives the assertion.
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To obtain (iii), consider first any P-elementary T = cone(vgjy, - .., Urj,). Then
V0jo» - - - » Urj, 18 linearly dependent if and only if v(7) = 0 holds. The latter is equiv-
alent to O being an inner point of . Thus, if 7 is contained in some o € X, then 7 is
pointed and thus must be simplicial. The remaining part is then obvious; recall that
the lineality part of trop(X) equals the vector subspace 0 x Q* € Q"

We turn to (iv). First, we claim that if og € X is big and o(t) = ¢(z’) holds for
any two P-elementary cones 7, 7’ C o, then g is P-elementary. Assume that oy is
not P-elementary. Then we find some 1 < ¢ < r and cones

p‘
|

= Cone(voj()’ R Ul‘jl_]a vtj,’ vth.]a ey Urjr) g 00,

T = cone(vojy, - - - » Vrj,_; » Vyjls Vtjigr s ..., p,) S op

with j, # j; and thus T # 7’ Here, we may assume that c; ', > cr_,ll,jt/ holds with
the greatest common divisors c; and ¢, of the entries of v(t) and v(z’) respectively.
Then even cr_lﬂf,i > cr_,lﬂrr,,- must hold for all 1 < i < r. Since, the rays o(t) and
o(7’) coincide, also their primitive generators cr_,l v(t’) and ¢} 'v(7) coincide. By the
definition of v(t) and v(z’), this implies

—1 _ -1 -1 —1
("L” ET”;Utjt/ = C; e-,;’kvtjt'i‘ Z(CT E-[’l' — C'L" E-[’J')viji.
i#£t

We conclude v, € 7. Since v, is an extremal ray of oo and 7/ C oy holds, Uyl
generates an extremal ray of 7. This contradicts to the choice of j; and the claim is
verified.

Now, consider the equation of (iv). To verify “C”, let o be an extremal ray of o NA;.
We have to show that o = (o) holds for some oy € T(c) or that g is aray of o with
0 C A;. According to (ii), there is a face 0, < o suchthat g = o, NAorg =0, NA;
holds. We choose o, minimal with respect to this property, that means that we have
0° € o,. We distinguish the following cases.

Case 1. We have 9 = 0, N A. If 6, € A holds, then we obtain ¢ = 0, and thus ¢ C A;
is an extremal ray of o. So, assume that o, is not contained in A. Then, because of
0, N\ # &, there is a P-elementary cone 7 C 0,,. Using (i), we obtain

o(m)=1tNACo,NA=0¢

and thus o = (7). As this does not depend on the particular choice of the P-
elementary cone T C o,, the above claim yields o :== 0, € T(0') and ¢ = 0(00).

Case 2. We do not have ¢ = g, N A. Then ¢ = 0, N A; and ¢° C A7 hold. If o, C A;
holds, then we obtain ¢ = o0, and thus ¢ C A; is an extremal ray of o. So, assume
that o, is not contained in A;. Then o, N )»}? is non-empty for all j =0, ..., r. Thus,
there is a P-elementary cone T C o,. Using (i), we obtain

o(m)=1TNAC0o,NA=0¢
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and thus o = (7). As this does not depend on the particular choice of the P-
elementary cone T C o,, the above claim yields o := 0, € T(0) and ¢ = ©(00).

We verify the inclusion “2”. Consider a face og € T(o). As seen just before, the
extremal rays of og N A; are o(op) and the rays of o that lie in A;. Since og N A; is a
face of o N A;, the ray o(op) is an extremal ray of o N A;. Finally, consider an extremal
ray o < o withp C A;. Then o = p N A; is aface of o N A;.

The proof of assertion (iv) is complete now. Assertion (v) is a direct consequence
of (iv).

We turn to assertions (vi), (vii) and (viii). Let T < & < Q’;‘gm be the faces with
P(T) = t and P(0) = o. Moreover, let e; € T be the (umque) point with P(e;) =
v(t). The minimum value (u, v(t)) is attained at some vertex u € By. For this u, we
find vertices e, € B(—Kx) and eg € B with

u= (P (es +ep —ez).
Here, e, is any vertex of B(—Xx) such that ¢ is contained in the cone of the normal

fan of B(—Xx) associated with e, ; such e, exists due to ampleness of —Kx and e,
vanishes along . Together we have

er = Zlijieij;, (u,v(r)) = (es +ep — ez, er).

As mentioned, (e;, e;) = 0 holds. Moreover, (e, e;) = (r — 1)lyjy- - - 1j, holds for
every e € B. We conclude (u, v(t)) = —{, and assertion (vi). Moreover, asser-
tions (vii) and (viii) are direct consequences of (vi) and (ii). m]

Example 3.9 Consider the E¢-singular affine surface X = V(z‘l‘ + z% + z%) cC31t
inherits a C*-action from the action

t-(z1,22,23) = (21, %22, 1%23)

on C3. The divisor class group and the Cox ring of the surface X are explicitly given
by

Cl(X) =Z/3Z, R(X)=C[T\, T, Ts1/{T} + T + T),

where the C1(X)-degrees of T1, 7>, and T3 are 1,2 and 0. The minimal toric ambient
variety is affine and corresponds to the cone

o = cone((—3, —3,-2),(3,0,1), (0,2, 1)).

Denoting by ¢; € Q3 the i-th canonical basis vector, the tropical variety trop(X) in
Q3 is given as

trop(X) = cone(e, £e3) U cone(er, 2e3) U cone(—e; — ez, Le3).
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The anticanonical polyhedron Ay € Q3 is non bounded with recession cone generated
by (-1, -1, —1), (1,0, 0), (0, 1, 0). The vertices of Ax are

(-3,-3,-2), (3,0,1), (0,2,1), (0,0,1).

The anticanonical complex A, = Ax M X Mtrop(X) lives inside trop(X) and looks as
follows.

Corollary 3.10 Let X = X (A, P, ®) be of Type 2 such that —Kx is ample. Let T
be a P-elementary cone contained in some o € X. Assume o(t) ¢ A% and denote
by c; the greatest common divisor of the entries of v(t). Then, for any resolution of
singularities ¢ : X" — X provided by 2.10, the discrepancy along the prime divisor
of X" corresponding to o(t) equals c;'¢; — 1.

Corollary 3.11 Let X = X (A, P, @) be of Type 2 such that —Kx is ample and let

T = cone(vojy, - - - » Vrj,) be contained in some o € X.
(1) If X has at most log terminal singularities, then l()_jé + -+ lr_]r1 > r — 1 holds.
(1) If X has at most canonical singularities, then lo_j(l)—f—- . '+lr_j,.1 > r—l—i—cflo_j(l)- .. lr_/,I

holds.
. ) .. _1 ~1 —1 -1
(iii) g)l(dhas atmost terminal singularities, thenly, +- -+l >r—14ccly; -1
olds.

Remark 3.12 Letay, ..., a, be positive integers. Then ao_1 +-- ~+ar_1 > r — 1 holds
if and only if (ayp, ..., a,) is a platonic tuple.

Theorem 3.13 Let X = X (A, P, ®) be of Type 2 such that —XKx is ample and let &
be the fan of the minimal toric ambient variety of X. Then the following statements
are equivalent.

(i) The variety X has at most log terminal singularities.
(ii) For every P-elementary T = cone(vojy, ..., Vrj,) contained in a cone of X, the
exponents lyjy, ..., lyj form a platonic tuple.

Proof Assume that X = X (A, P, ®) is log terminal. Then Corollary 3.11 (i) tells us

that for every P-elementary T = cone(vgjy, ..., Vrj,) contained in a cone of X, the
corresponding exponents lgj,, . . ., [, form a platonic tuple.
Now assume that (ii) holds. Then every (lyj,, - .-, l;j,) is a platonic tuple. Conse-

quently, we have £; > O for every P-elementary cone 7. Proposition 3.8 shows that
A isbounded for X = X (A, P, ®). Theorem 3.3 (ii) tells us that X is log terminal. O
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Remark 3.14 Let X = X (A, P, ®) be affine of Type 2 such that KXy is Q-Cartier.
Then — XKy is ample. The fan ¥ of the minimal toric ambient variety Z of X consists
of all the faces of the cone o generated by the columns of P. In particular, every
P-elementary cone is contained in o. Thus, Theorem 1.3 follows from Theorem 3.13.
Moreover, the rays p(0yp), where op € T(A, P, ®), are precisely the extremal rays of
the intersection of o and the lineality part of trop(X).

4 Gorenstein index and canonical multiplicity

If a normal variety X is Q-Gorenstein, then, by definition, some multiple of its canon-
ical class Ky is Cartier. The Gorenstein index of X is the smallest positive integer 1 x
such that 1 x X x is Cartier. We attach another invariant to the canonical divisor of X.

Remark 4.1 Let X = X (A, P) be a Q-Gorenstein, affine T-variety of Type 2. We
consider canonical divisors Dy on X that are of the following form, cf. [3, Proposi-
tion 3.3.3.2]:

r—1 Nig

=YD= > Ec+Y.Y liyjDij.  0<ig<r. (1
ij k

a=1j=0

Corollary 2.14 says that 1y Dy is the divisor of a T-homogeneous rational function.
Any two 1x Dx with Dy of shape (1) differ by the divisor of a T-invariant rational
function, and thus, all the functions with divsors 1x Dy, where Dy as in (1), are
homogeneous with respect to the same weight ny € X(T).

Definition 4.2 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2. We
call ny € X(T) of Remark 4.1 the canonical weight of X. The canonical multiplicity
of X is the minimal non-negative integer ¢x such that nx = ¢x-n’ holds with a
primitive element n’, € X(T).

Proposition 4.3 Let X = X (A, P) be a Q-Gorenstein, affine T-variety of Type 2
with at most log terminal singularities. Then {x > 0 holds. Moreover; for any positive
integer 1, the following statements are equivalent.

(1) The variety X is of Gorenstein index 1.
(ii) There exist integers iy, ..., iy with ged(u1, ..., ir, Cx, 1) = 1 such that with

wo:=1(r —1) — w1 — - -- — Wy we obtain integral vectors
. L — pilij
Vi = Vi1, ..., Vin;) with vjj = ——,
{x
1
vi= (], ..., 0) with vy == —
{x
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and by suitable elementary row operations on the (d,d’)-block, the matrix P

gains (vg, ..., vr, V') as its last row, Le., turns into the shape
—Iply ---00
P=1_1,0---10
vo v oe- vV

Proof We work with an anticanonical divisor Dy on X such that —Dy is of the
form (1):

no
Dx =Y Dij+ ;Ek — (- = 1)) _lo; Doj.
ij j=1

According to Corollary 2.14, the Picard group of X is trivial. Thus, 1 x Dy is the divisor
of some toric character x “, where

u:(//vl,---»,urynl,n-,ns)GZr+S'

Note that — (11, ..., ny) € Z° = X(T) is the canonical weight nx of X. Moreover,
the divisor 1y Dy = div(x“) corresponds to the vector P*.u € Z™*" under the
identification of toric divisors with lattice points via D;; > ¢;; and Ej —> ey.

We claim that nx is non-trivial. Otherwise, n; = --- = n; = 0 holds. As noted,
the ij-th and k-th components of the vector P*-u are the multiplicities of D;; and Dy
in 1x Dy, respectively. More explicitly, this leads to the conditions

m=0, ix((r—="Dloj —1)= @1+ - +u)loj, 1x=plj

for all i and j. Plugging the third into the second one, we obtain that /; 'yt l !
equals r — 1 for any choice of 1 < j; < n;. According to Corollary 3 11(1) thlS
contradicts to log terminality of X. Knowing that ny is non-zero, we obtain that {x is
non-zero.

Now, assume that (i) holds, i.e., we have 1 = 1x. Let u € Z" as above. Then we
have ¢y = ged(ny, ..., ny) and div(x ") = 1 Dx implies ged (w1, - .., s, x, 1) = 1.
Next, choose a unimodular s x s matrix B with B~L. M,...,ns) = (0,...,0,2x).
Consider P = diag(E,, B*)- P and

U= (u1,...opr,0,...,0,Lx) € Z'™

Observe that we have P*.u = P*.7i. Comparing the entries of P*-# with the multi-
plicities of the prime divisors D;; and Dy in 1 Dx shows that the last row of P is as
claimed.
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Conversely, if (ii) holds, consider u# := (11, ..., ur,0,...,0, £x). Then we obtain
1Dy = div(x"). Using ged (@1, . .., 4r, Cx, 1) = 1, we conclude that ; is the Goren-
stein index of X. O

Remark 4.4 Let X = X (A, P) be a Q-Gorenstein, affine T-variety of Type 2 and Dy
a canonical divisor on X as in (1). Then 1 x Dx is the divisor of some toric character
x“, where

w= (1, .o, s Qls-n.,n5) € LTS
In this situation, we have nx = (11, ..., ns) € X(T) for the canonical weight of X
and the canonical multiplicity of X is given by ¢y = ged(n1, ..., ns). If P isin the
shape of Proposition 4.3, then nxy = (0, ..., 0, ¢x) holds and —pu1, ..., —u, satisfy
the conditions of 4.3 (ii). m]

Remark 4.5 The defining matrix P of a given Q-Gorenstein, affine 7-variety X =
X (A, P) is in the shape of Proposition 4.3 if and only if for every i = 0, ..., r, the
numbers u; == (1x — ;xv,-l)li_ll satisfy

o Cxvij+ pilij=i1xfori=1,...,rand j=1,...,n;,

® {xvoj + poloj =1x, for uo=1x(r —1) —puy1 —---—pyand j =1,...,ng,
o ged(uy, .-y fr, $x51x) = 1,

o {xvy =ixfork=1,...,m.

Corollary 4.6 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2 with
at most log terminal singularities. Then, for every 1 € Z>1, the following statements
are equivalent.

(1) The variety X is of Gorenstein index 1 and of canonical multiplicity one.
(ii) One can choose the defining matrix P to be of the shape

—ly Ii---00

—Iy 0---,0]

t—1(r—Dlpt --- 11
where 1 stands for a vector (1, ..., 1) of suitable length.

Proof 1If (i) holds, then we may assume P to be as P in Proposition 4.3. Adding the
wi-fold of the i-th row to the last row brings P into the desired form. If (ii) holds, take
u=(0,...,0,—1) € Z'"S. Then P*-u € Z"™™ defines a divisor : Dy with Dx a
canonical divisor of shape (1) and we see {x = 1. O

Proposition 4.7 Let X = X (A, P) be a Q-Gorenstein affine T -variety of Type 2 with
at most log terminal singularities and canonical multiplicity {x > 1. Then we can
choose P of shape 4.3 (ii) such that l;j = 1 and vij = 0 holds fori = 3,...,r and
Jj =1,...,n; and, moreover, P satisfies one of the following cases:
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Case (lo1, 111, L21) (vo, v1, 12) ix 1x

(i) 4,3,2) Tax +loix —ixlhiix—h) 2 0mod 2
(ii) (3,3,2) 1 (x —lo, 1x + 1, 1x —1xh) 3 0mod 3
(i) (2k+1,2,2) 1 Gx —ixlo, 1x — 1, 1x + D) 4 2mod 4
(iv) (2k,2,2) 5 (x —lo, 1x + 1, 1x —1xh) 2 Omod 2
) (k,2,2) 7Gx —ixlo,ix —li,ix +b) 2 0mod 2
(vi) (ko. k1. 1) (vo. v1, ¢y (1x — 1xh))

where 1y stands for a vector (1x, ..., 1x) of suitable length, and in case (vi), all the

numbers (1x — voj,¢x)/loj, and (vij,¢x —1x)/ 11, are integral and coincide.

Proof Since X = X (A, P) has at most log terminal singularities, Theorem 1.3 guar-
antees that the Cox ring R(X) = R(A, P) is platonic. Thus, suitably exchanging data
column blocks, we achieve /;; = 1 for all i > 3. Next, we bring P in to the form of
Proposition 4.3 (ii). Finally, subtracting the v;;-fold of the i-th row from the last one,
we achieve v;; =0 fori =3,...,r.

Observe that our new matrix P still satisfies the conditions of Remark 4.5. For the
integers p; defined there, we have

Ho+ i+ o = M3 ==y =1x, @

Moreover, fori = 0, 1, 2 set ¢; := lp1/11/21/1;1. Then, because of 1x + p;l;; = v;;jlx,
we obtain

2
ged(€o. £1. €)™ D €iGx — pilij) = atx  for some « € Z. (3)
i=0
Finally, Remark 4.5 ensures
1 =ged(pr, ...\ fr, Sx,1x) = ged (1, 12, Ex,1x). 4)

We will now apply these conditions to establish the table of the assertion. Since
(lo1, 111, I21) is a platonic triple, we have to discuss the following cases.

Case I: (lo1, 111, I21) equals (5, 3, 2). Our task is to rule out this case. Using (2) and (3),

we see that ¢y divides

1x =3lix —30(o + (1 + p2)
=6(x —5uo) +10Gx —3u1) +15Gx — 2u2).

Consequently, (4) becomes ged (i1, u2, ¢x) = 1 and from 1x — w;l;j = v;j¢x we

infer that ¢y divides S, 31 and 2u;. This leaves us with the three possibilities
Ix =2,3,6.
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If ¢x = 2 holds, then ¢y divides g and w1 but not wo; if £x = 3 holds, then ¢y
divides po and puo but not wi. Both contradicts to the fact that ¢y divides 1y =
wo+u1+u2. Thus,only ¢x = 6isleft. Inthat case, £y mustdivide . Since ¢y divides
1x = mo+M1+ 2, we see that ¢ divides w1+ . Moreover, £x |3 gives iy = 2,u’1
and ¢x | 22 gives oy = 3, withintegers ), . Now, as £y = 6 divides 21 435,
we obtain that 1/, and hence 1, are even. This contradicts ged (i1, 2, ¢x) = 1.

Case 2: (lp1, 111, I21) equals (4, 3, 2). Similarly as in the preceding case, we apply (2)
and (3) to see that ¢y divides

1x = 131x — 12(po + p1 + u2)

1
=3 (6(1x —4m0) + 8(1x — 3u1) + 12(1x — 2u2)).

As before, we conclude ged (11, 2, £x) = 1 and obtain that ¢y divides 44, 341 and
2. This reduces to ¢x = 2, 3, 6.

If ¢x = 3 holds, then ¢x divides o and p» but not pg, contradicting the fact that
¢x divides 1y = o + 1 + p2. If £x = 6 holds, then we obtain o = 3, 1 = 24}
and py = 3, with suitable integers ;. Since ¢x divides ix = po + 1 + p2, we
obtain that w, is divisible by 3, contradicting ged (1, 12, {x) = 1.

Thus, the only possibility left is {x = 2. We show that this leads to case (i) of the
assertion. Observe that 111 is even, wu is odd because of ged (141, a2, ¢x) = 1 and ua
is odd because 1x = uo + (1 + po is even. Recall that the vectors v; in the last row
of P are given as

1 1 Wi
v = é__X(lX — wili) = S ?lli-

Thus, adding the (— o — @2)/2-fold of the first row and the (ur — 1)/2-fold of the
second row to the last row brings P into the shape of case (i).

Case 3: (lo1, 11, I21) equals (3, 3, 2). As in the two preceding cases, we infer from (2)
and (3) that ¢y divides

1x = Tix —6(uo + (1 + u2)

1
=3 (6(1x —3p0) +6(ix — 311) +9(x — 2u2)).

Since ged(u1, U2, ¢x) = 1 and ¢y divides 3uo, 31, 212, we are left with ¢y =
2,3,6.If x = 2 or £x = 6 holds, then ug, 1 and 1x = o + 1 + @2 must be even.
Thus also p, must be even, contradicting ged (111, 2, ¢x) = 1.

Let ¢x = 3. We show that this leads to case (ii) of the assertion. First, 3 divides w2
and 1x = uo + m1 + w2, hence also g + 1. Moreover, 3 divides neither (g nor wg
because of ged (i1, 42, ¢x) = 1. Interchanging, if necessary, the data of the column
blocks no. 0 and 1, we achieve that 3 divides ;g — 1 and 1 + 1. So, at the moment,
the v; in the last row of P are of the form
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1 1 Wi
Vi = g—X(lX — wili) = U~ ?lli-
Adding the (i1 + 1)/3-fold of the first and the (— o — w1)/3-fold of the second to
the last row of P, we arrive at case (ii).

Case 4: (lp1, 111, I21) equals (k, 2,2) with k > 3 odd. Then (2) and (3) show that {x
divides

2ix = (2+2k)ix — 2k(no + p1 + p12)

1
= 5 (40x = kpo) + 2k(x = 2u1) + 2k(1x = 212).

Case 4.1: ¢x does not divide 1x. Then we have 21y = a¢x with o € Z odd. Thus, ¢x
isevenand 2u; = 1x — v;;¢x implies that 444; is an odd multiple of {x fori =1,2.In
particular, 4 divides {x. Moreover, (4) implies ged (i1, (2, {x/2) = 1 and we obtain
Cx = 4. That means 1y = 2 mod 4. Since ¢y = 4 divides 1x — ki and k is odd, we
conclude po = 2mod 4. Then pog + ©1 + n2 = 1x = 2mod 4 implies that 4 divides
u1 + po. Interchanging, if necessary, the data of the column blocks no. 1 and 2, we
can assume | = —up = 1 mod 4. Then, adding the (u; — 1)/4-fold of the first and
the (up + 1)/4-fold of the second to the last row of P, we arrive at case (iii) of the
assertion.

Case 4.2: {x divides 1x. Then (4) becomes ged (w1, 12, {x) = 1. Since ¢y divides
21 and 20, we see that ¢ = 2 holds and w1, (7 are odd. Adding the (u1 — 1)/2-fold
of the first and the (i + 1)/2-fold of the second to the last row of P leads to case (v)
of the assertion.

Case 5: (lo1, 111, I21) equals (k, 2, 2) with k > 2 even. Then (2) and (3) show that ¢x
divides

1x = (k+ Dix — k(o + p1 + u2)

1
= Z (4(lX - kMO) + zk(lx — 2’[,1,1) —+ 2k(lX — 2“2))

Asearlier, we conclude that ¢x | 2; fori = 1,2and ¢y = 2. Since ged (1, u2,2) =1
holds and pg + @1 + w2 = tx is even, two of the u; are be odd and one is even. If 1]
and w are odd, then adding the (i1 — 1) /2-fold of the first and the (12 + 1) /2-fold of
the second to the last row of P leads to case (v). Now, let ;o be odd. Interchanging, if
necessary, the data of the column blocks no. 1 and 2, we achieve that p is odd. Then
we add the (u; + 1)/2-fold of the first and the (—ug — w1)/2-fold of the second to
the last row of P and arrive at case (iv) of the assertion.

Case 6: (lo1, I11, [21) equals (ko, k1, 1), where ko, k1 € Z~¢. We subtract the v, -fold
of the second row of P from the last one. Since vy = (1x — (2)/¢x holds, we obtain
vy = ;;1 (1x — 1xlr). Moreover, (2) becomes g + 1 = 0. We arrive at case (vi) of
the assertion by observing

IX — V0joCx Vij§x —ix o
B e B e
0jo Lj1

@ Springer



268 1. Arzhantsev et al.

Example 4.8 We discuss the rational affine C*-surfaces X with at most log terminal
singularities. First, the affine toric surfaces X = Cz/ C show up here, where Cy is the
cyclic group of order k acting diagonally. In terms of toric geometry, these surfaces
are given as

X =SpecCl[eYNZ%, o =cone((k,1), (1,k+m)),

where k, m € Z~ with ged(k, 1) = gcd(k+m, 1) = 1 and 1 is the Gorenstein index
of X; see [9, Chapter 10] for more background. Now consider a non-toric C*-surface
X = X (A, P) of Type 2. As a quotient of C2 by a finite group, X has finite divisor
class group and thus P is a 3 x 3 matrix of the shape

—lor I11 O
P=|—Ilpt O I
do1 di1 da

Theorem 1.3 says that (lo1, [11, [21) is a platonic triple. Moreover, Corollary 4.6 and
Proposition 4.7 provide us with constraints on the ;1. Having in mind that P is of
rank three with primitive columns, one directly arrives at the following possibilities,
where { = (x is the canonical multiplicity and 1 = 1x the Gorenstein index:

Type P e 1
1 -n+220
D' —n+202 1 gcd(z,2n) =1
L —nm+30 11
) [—2n+1 2 0
Dy w4l 0 2 2 ocd(1,8n — 4) = 4
| A—mi11/2+11/2-1
1 -330
Eg' —302 1 gcd(1,6) =1
L -2t 11
3 -3 3 0
E.! -3 0o 2 3 ged(1,18) =9
L1/3—11/3+1—1/3
1 [ —430
E;' —402 1 ged(z,6) =1
L3ttt
1 -530
Eg' -502 1 gcd(1,30) =1
—41 11

For geometric details on these surfaces, we refer to the work of Brieskorn [7], and, in
the context of the McKay Correspondence, Wunram [33] and Wemyss [32].
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5 Geometry of the total coordinate space

We take a closer look at the geometry of the total coordinate space X of a T-variety X
of complexity one. The first result says in particular that X is Gorenstein and canonical
provided that X is log terminal and affine.

Proposition 5.1 Let R(A, Py) be a platonic ring of Type 2. Then the affine variety
X = Spec R(A, Py) is Gorenstein and has at most canonical singularities.

Proof Adding suitable rows, we complement the matrix Py to a square matrix P of
full rank with lastrow (1 — (r — 1)lp, 1, ..., 1), where 1 indicates vectors of length n;
with all entries equal to one; this is possible, because the last row is not in the row
space of Py. Then X = X (A, P) is a Q-factorial affine T-variety. Theorem 1.3 tells
us that X has at most log terminal singularities and Corollary 4.6 ensures that X is
Gorenstein. Thus, X has at most canonical singularities. Since X — X is finite with
ramification locus of codimension at least two, we can use [23, Theorem 6.2.9] to see
that X is Gorenstein with at most canonical singularities. O

Now we investigate the generic quotient ¥ of X by the action of the unit component
HO0 C Hy, in other words, the smooth projective curve Y with function field C(Y) =

(C(Y)Hé) . Note that the curve Y occurs also in [1], where it carries the polyhedral
divisor of the Cox ring.

Definition 5.2 Consider the defining matrix Py of aring R(A, Pp) of Type 2 and the
vectors [; = (I;1, ..., lin;) occuring in the rows of Py. Set

=ged(in, ... i), L=ged(lo, ..., L),  Lj=ged(I7, (7)),

[:=1lem(lp, ..., [,), b =171, b(i) = ged(bj; j # ).

1

Theorem 5.3 Let R(A, Py) be of Type 2 and consider the action of the unit component
H(()) C Hy of the quasitorus Hy = Spec C[Ko] on X = Spec R(A, Py). Then the

smooth projective curve Y with function field C(Y) = C(Y)H(()) is of genus

lo--- 1y ay
g(Y) = 02_[ (@—1)—2%)+1.

i=0

Lemma 5.4 Let R(A, Po) be of Type 2, consider the degree u := deg(go) € Ko of
the defining relations and the subgroup

Ko(u) = {w € Ko; aw € Zu for some a € Z>0} C Kp.

Then the Veronese subalgebra R(A, Py)(u) of R(A, Py) associated with Ko(u) of K¢
is generated by the monomials Té(’/ [0, e Trl’/ b

Proof First, observe that every element of R(A, Py)(u) is apolynomial in the variables
T;;. Now consider a monomial T! in the T;; of degree w € Ko(u), where [ € 7,

@ Springer



270 1. Arzhantsev et al.

Thenaw € Bou holds for some @ € Z- ¢ and By € Z. Moreover, there are 81, ..., B, €
Z with

al = Poly + Br(ly — 1) + -+ B (lg = 1)),

where l{ = li1ej1 4+ - - +1iy, €in, , reflecting the fact that ol — ﬂol(’) lies in the row space
of Py. Consequently, we obtain [ = Sl + - - - 4 B,1; for suitable g/ € Q. Since / has
only non-negative integer entries, we conclude that every 8 is a non-negative integral

multiple of [;'. Thus, 7! is a monomial in the Tili /1 The assertion follows. i

Proof of Theorem 5.3 The curve Y occurs as a GIT-quotient: ¥ = X*(u?)/H, where
ul € X(Hg) represents the character induced by u = deg(go) € Ko = X(Hp). In
other words, we have Y = Proj R(A, Po)(uo) with the Veronese subalgebra defined
by u°. We may replace u° with

1
w’ = Tuo e X(H)).

Then R(A, Py)(u®) is replaced with R(A, Py)(w") which in turn equals the Veronese
subalgebra treated in Lemma 5.4. Moreover, the generators Tili/ i € R(A, Po)(wo) are
of degree b;w” € X(Hg), respectively. We obtain a closed embedding into a weighted
projective space

[ plivn plig2
Y = V(ho.....hy—2) S P(bo.....by), hi :=det[Ti Ty Tiﬂ]
ai Qi1 Giy2

where the h; generate the ideal of relations among the generators of the Veronese
subalgebra R(A, Po)(w?). The idea is now to construct a ramified covering Y/ — Y
with a suitable curve Y’ and then to compute the genus of ¥ via the Hurwitz formula.
Consider

T 1!, T!

Y =V(hy,...,h._5) CP,,  hi:=det [ i il i+2] .
—_ 1
a; adj+1 4ai42

The Y’ C P, is a smooth complete intersection curve. Computing the genus of Y’
according to [17], we obtain

1

s =3 (=D~ + DI + 1

The morphism P, — P(by, ..., b,) sending [zp, ..., z-] to [zgo, cey zfr] restricts
to a morphism Y’ — Y of degree by - - - b,. The intersection ¥ N U; with the i-th
coordinate hyperplane U; C P, contains precisely ["~! points and each of these
points has ramification order b; -b(i) — 1. Outside the U;, the morphism Y’ — Y is
unramified. The Hurwitz formula then gives g(Y). O
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We now use Theorem 5.3 to characterize rationality of X = Spec R(A, Py). For the
special case of Pham—Brieskorn surfaces, the following statement has been obtained
in [5].

Proposition 5.5 Let R(A, Py) be of Type 2 with r = 2, that means that X =
Spec R(A, Py) is given as

~ o1 l()no 111 llul I 12n2 n
X=V(T' Ty, + 101 Ty + Tf' - Ty, ) € C

1n 2np

Then the hypersurface X is rational if and only if one of the following conditions
holds:

(i) there are pairwise coprime positive integers cop, c1, c2 and a positive integer s
such that, after suitable renumbering, one has

ged(ez,s) =1, lo=s5co, b =sc1, h=ca;
(ii) there are pairwise coprime positive integers cy, c1, ¢ such that
lo =2co, 1 =2c1, b=2c.
Lemma 5.6 Fori = 0,1,2, let [; = (l;1,...,lin;) be tuples of positive integers.

Define |, |; and ;j as in Definition 5.2 for r = 2. Then the following statements are
equivalent.

(i) We have [(lo1lo2li2 — (To1 + lo2 + [12)) = —2.
(ii) Ome of the following two conditions holds:
(a) there are pairwise coprime positive integers co, c1, c2 and a positive integer s
such that, after suitable renumbering, one has

ged(ez,s) =1, lp=sco, l1=sc1, L =cy;
(b) there are pairwise coprime positive integers cg, c1, ¢ such that
lo =2c0, )1 =2c1, [p=2c.

Proof 1f (ii) holds, then a simple computation shows that (i) is valid. Now, assume
that (i) holds. Then the following cases have to be considered.

Case 1. We have | = 1. Then [g; (lp2l12 — 1) = g2 + [12 — 2 holds. From this we
deduce

lo1(looliz = 1) = (lo1 = DMo2liz = D+ Hop = Dz = D+ lop + 112 — 2
>l +hy—2,
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where equality holds if and only if at least two of [o1, lo2, [12 equal one. So, we arrive
at condition (a).

Case 2. We have [ = 2. Then we have [g; 2lg2l12 — 1) + 1 = lgo + 1. In this situation,
we conclude

lo1lp2liz — 1) + 1= (lo1 — DQ@Ilp2liz — 1) + lp2l12
+ (2 =Dz =D +lpp+l2—1
= o2 + 2,

where equality holds if and only if we have [p; = lpo = ;2 = 1. Thus, we arrive at
condition (b). O

Proof of Proposition 5.5 First, observe that X is rational if and only if ¥ is rational
or, in other words, of genus zero. For r = 2, Theorem 5.3 gives

[
gl¥) = 3 (Iorlo2ti2 — lor — fo2 — [12) + 1.

Thus, according to Lemma 5.6, condition g(Y) = 0 holds if and only if (i) or (ii) of
the proposition holds. O

Remark 5.7 If the defining polynomial in Proposition 5.5 is classically homogeneous,
then it defines a projective hypersurface X’ C P"~! and the following statements are
equivalent.

(1) X’ is rational.
(ii) CI1(X’) is finitely generated.
(iii) Condition 5.5(i) or (ii) holds.

Corollary 5.8 Let R(A, Py) be of Type 2. Then X = Spec R(A, Py) is rational if and
only if one of the following conditions holds:

(1) We have ged(l;, ;) = 1forall0 < i < j < r, in other words, R(A, Pp) is
factorial.
(ii) There are 0 < i < j < r with ged(l;, ;) > 1 and ged(l,, [,) = 1 whenever
v i, j}
(iii) Thereare 0 < i < j < k < r with ged(l;, [;) = ged(l;, k) = ged(l;, ) =2
and ged ([, [,) = 1 whenever v ¢ {i, j, k}.

Lemma 5.9 Let A, Py be defining data of Type 2, enhance A to A’ by attaching a
further column and Py to Pé by attaching l, 41 toly, ..., L. If ged(l;, l,41) = 1 holds
fori =0,...,r, then we have g(Y) = g(Y’) for the curves associated with R(A, P)
and R(A’, Py) respectively.

Proof Denote the numbers arising from P’ in the sense of Definition 5.2 by [}, I etc.
Then we have

V=1, b)) =ged(, /1 j#i)=b), i=0,...,r1,
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b(r+1)=ged('/ly, ..., U/1) = l41.

Plugging these identities into the genus formula of Theorem 5.3, we directly obtain
g(Y") =g(). o
Lemma 5.10 Let R(A, Py) be of Type 2 and assume that the curve Y associated with

R(A, P) is of genus zero. Then there are 0 < i < j < k < r with ged(l,, ) =1
whenever v ¢ {i, j, k}.

Proof According to Theorem 5.3, the fact that the curve Y associated with R(A, P)
is of genus zero implies
,
b(i
E—.) =r—-D+
i=0 !

>r—1.
lo---1,

As b(i) divides [;, we see that b(i) # [; can happen at most three times. Moreover,
b(i) =[; is equivalent to ged ([;, [;) = 1 forall j #i. O

Proof of Corollary 5.8 We may assume that the indices 7, j and k of Lemma 5.10
are 0, 1 and 2. Then Lemma 5.9 says that X is rational if and only if the trinomial
hypersurface defined by the exponent vectors [y, /1, /> is rational. Thus, Proposition 5.5
gives the assertion. O

Corollary 5.11 Let R(A, Py) be a platonic ring of Type 2. Then X = Spec R(A, Py)
is rational.

Remark 5.12 1t may happen that for a rational 7T'-variety X of complexity one, the
total coordinate space X is rational, but the total coordinate space of X not any more.
For instance consider

X3 = V(I 4+ Ty +T§) c C,

Then, according to Proposition 5.5, the surface X3 is not rational. Moreover, X3 is the
total coordinate space of an affine rational C*-surface X, with defining matrix

—440
P=|-404
—311

The divisor class group of X7 is Cl(X2) = Z /47 x Z/4Z and the C1(X3)-grading of
the Cox ring R(X») = C[ Ty, T, T3]/(T14 + T24 + T34) is given by

deg(T1) = (1, 1), deg(Tr) = (1,2), deg(T3) = (2, 1).

For an equation for X,, compute the degree zero subalgebra of R(X>): it has three
generators Sp, S», S3 and 513 + S% + S§ as defining relation. Thus,

X2 ZV(S3+83+855)cC?
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To obtain a rational affine C*-surface having X as its total coordinate space, we take
X1, defined by

-330
P=|-304
—211

The divisor class group of X is C1(X) = Z/37Z and the C1(X)-grading of the Cox
ring R(X1) = C[S1, Sz, $31/(S3 + S5 + S3) is given by

deg(T)) =1, deg(T) =2, deg(T3) =0.

We have constructed a chain of total coordinate spaces X3 — X» — X1, where X
is a rational affine C*-surface, X is rational and X3 not.

Finally, we determine the factor group of the maximal quasitorus by its unit component
acting on a given trinomial hypersurface; the proof is a direct consequence of the
subsequent lemma.

Proposition 5.13 Let R(A, P) be any ring of Type 2, where r = 2. Then, for the
quasitorus Hy acting on the corresponding trinomial hypersurface

l)l
+T21%1T22) g(cn’

— lon Iin

" Long “m

the factor group Hy/ H(? by the unit component HO0 C Hy is isomorphic to the product
of cyclic groups C (1) x C(llp1lp2112).

Lemma 5.14 Consider a matrix Py withm = 0 and r = 2 as in Type 2 of Construc-

tion 2.2:
(=l 0
PO_[—IO 012]'

As earlier; set |; = gcd(ljy, ..., 1In;). Then, with [;; = ged(l;,[;) and | =
ged(lo, [1, ), we obtain

K(t)ors — (Zn/im(Pék))tors = C() xC(lprlp2112).

Proof Suitable elementary column operations to Py transform the entries /; to
(1;,0,...,0). Thus, K™ = (Z3/im (P))™°" holds with the 2 x 3 matrix
0 1

=k O
Pr= |:—[o 0 [2]'
The determinantal divisors of Py are ged(lo, [1, [2) and ged (Iply, lplz, [1[2). Thus, the
invariant factors of Py are [ and [y [p2[12; see [27]. O
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6 Proof of Theorems 1.5 and 1.6

We are ready to prove our first main results. The proof of Theorem 1.5 will be in fact
constructive in the sense that it allows to compute the defining equations of the Cox
ring in every iteration step; see Proposition 6.6.

Remark 6.1 Let R(A, P) resp. R(A, Py) be a ring of Type 2. Applying suitable
admissible operations, one achieves that P resp. Py (is ordered in the sense that
liy 2 ... 2 lip; foralli = 0,...,r and lp; > --- > [;1 hold. For an ordered P
resp. Py, the ring R(A, P) resp. R(A, Py) is platonic if and only if (o1, /11, [21) is a
platonic triple and /;; = 1 holds for i > 3.

Definition 6.2 The leading platonic triple of aring R(A, P) resp. R(A, Py) of Type 2
is the triple (lo1, [11, [21) obtained after ordering P resp. Py.

Lemma 6.3 Let R(A, Py) be of Type 2 and platonic such that l;y > ... = liy,
holds for all i and ;1 = 1 fori > 3. Moreover, assume gcd (I, o) = . Then, with
Ko = Z"T"/im(P}), the kernel of Z"t" — Ko/K{™ is generated by the rows of
the matrix

—1 1
ged(lo, ) lo gcd([o,ll)ll 0 00 --.
_1 1
2cd(lp, ) lo 0 mlz 0 0
L 0 0 10 ---

where, as before, the symbols 1 indicate vectors of length n; with all entries equal to
one.

Proof Observe that the rows of Py generate a sublattice of finite index in the row
lattice Pj. Thus, we have a commutative diagram
Ko/K{".

~.

Z"*™ [im (P;)

It suffices to show, that Z"*"/im(P;") is torsion free. Applying suitable elementary
column operations to Pp, reduces the problem to showing that for the 2 x 3 matrix

lo [ 0
ged(lo,l1)  ged(lo,[1)

lo 0 %) >
ged(lp, [2) ged(lp, 1)
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all determinantal divisors equal one. The entries of the above matrix are coprime and
its 2 X 2 minors are

[0[2 [1[2 [0[1
ged(lo, [1) ged(lp, ) ged(lo, [1) ged(lp, )~ ged(lp, 1) ged(lo, )

up to sign. By assumption, we have gcd (I, [;) = [. Consequently, we obtain
ged(lola, loly, lil2) = ged (lol, 1112) = ged(l, 1) ged(lo, 12)

and therefore the second determinantal divisor equals one. As remarked, the first one
equals one as well and the assertion follows. O

Lemma 6.4 Let R(A, Py) be of Type 2 and X = Spec R(A, Py). Then, for any gen-
erator Ty of R(A, Py), we have

VX, To) V@) N V(T =T/ i=2,...,r) cCm

In particular, the number of irreducible components of V (X, To1) equals the product
of the invariant factors of the matrix

Proof First observe that the ideal (To1, go, ..., & —2) € C[T;j, Sk] is generated by
binomials which can be brought into the above form by scaling the variables appro-
priately. Now consider the homomorphism of tori

123 I
12 )
g Tt ol ) <i e, = )

Then the number of connected components of ker (;r) equals the product of the invari-
ant factors of the above matrix. Moreover, T"0~! x ker () x T™ is isomorphic to
V (X, To1) N T”*™. Finally, one directly checks that V (X, Tp;) has no further irre-
ducible components outside T" ™., O

Lemma 6.5 Let R(A, Py) be of Type 2 and platonic. Assume that Py is ordered. Then
the number c(i) of irreducible components of V(X, T;;) is given as

i >3

0 ‘ 1 ‘ 2

Clorlo212

c(i) H ged (I, ) ‘ ged(lo, [2) ‘ ged(lp, I)

Proof Suitable admissible operations turn 7;; to To;. Then the number of components
is computed via Lemma 6.4. O
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Proposition 6.6 Let R(A, Py) be of Type 2, platonic and non-factorial. Assume that
Py is ordered and let Py be as in Lemma 6.3. Set

Nils - Ric) =Ni,  Lij1, . lijeiy = ged((PD1ijs -« - (PDrij)-

The lig == (itas---»lin.a) € Z™e build up an r'x (n'+m) matrix Pj, where
n' = c(0)ng + - - - + c(r)n,. With a suitable matrix A’, the following holds.
(i) The affine variety Spec R(A’, P})) is the total coordinate space of the affine variety
Spec R(A, Py),
(ii) The leading platonic triple (L.p.t.) of R(A, P§) can be expressed in terms of that
of R(A, Py) as

Lp.t. of R(A, Py) Lp.t. of R(A/, P(;)
(4,3,2) (3,3,2)

3,3,2) 2,2,2)

»,2,2) (z,z, Dor(%.2,2)
.y, ) (e wag e V)

Proof We compute the Cox ring of X = Spec R(A, Py) according to [3, Theo-
rem 4.4.1.6]; use [22, Corollary 1.9] to obtain the statement given there also in the
affine case. That means that we have to figure out which invariant divisors are identi-
fied under the rational map onto the curve ¥ with function field CX) H and we have
to determine the orders of isotropy groups of invariant divisors.

Let P; be as in Lemma 6.3. Then the torus H(()) acts diagonally on C"*" with
weights provided by the projection Q: Z"™" — Kg, where Kg = Z""/im(P})
equals the character group of H(?. Consider the commutative diagram

Xo c gt
Xo/H) < C{*"/H]
Y < P

where Xo € X and C8+m C C™™ denote the open Hé)—invariant subsets obtained
by removing all coordinate hyperplanes V (Si) and all intersections V (7, j,, Tj, j,)
with (i1, j1) # (i2, j2) from C"*™ Moreover, the geometric quotient spaces in the
middle row are possibly non-separated and the maps to the lower row are separation
morphisms.

We determine the orders of isotropy groups. Every point in T**" has trivial H(()) -
isotropy. Thus, we only have to look what happens on the sets V(7;;) N (Cg“Lm.
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According to [3, Proposition 2.1.4.2], the order of isotropy group of H(()) at any point
x € V(T;)) N (C6’+m equals the greatest common divisor of the entries of the ij-th
column of Pj:

|H(())x| = lz{j = ng((Pl)l,iﬁ ey (Pl)r,ij) forall x € V(T,,) N (Cg+m.

Now we figure out which H(()) -invariant divisors of X are identified under the map
Xo — Y.Lemma 6.5 provides us explicit numbers c(0), ..., c(r) such that for fixed
iand j =1, ..., n;, we have the decomposition into prime divisors

V(X,T;j) = Djj1 U+ U Djj (i),

in particular, the number ¢(i) does not depend on the choice of j. The components
Dij 1, ..., Djj @i lie in the common affine chart Wy € X obtained by localizing
at all T;; different from T;;. Their images thus lie in the affine chart Wy/ HS c
Xo/ H(()). Consequently, the D;; 1, ..., D;j ¢(;) have pairwise disjoint images under the
composition X0 — Xo / Hé) — Y.

On the other hand, V(Y, T;j) and V(Y, T;;:) are identified isomorphically under
the separation map X/ H(? — Y Thus, suitably numbering, we obtain for every i,
anda =1, ..., c(i) achain

Dil,a, e Din;,ou

of divisors identified under the morphism X/ H(g) — Y. The order of isotropy for any
x € Djjq equals I i Now, using [3, Theorem 4.4.1.6], we can compute the defining

relations of the Cox ring of X, which establishes the two assertions. O

Remark 6.7 Let R(A, Pp) be anon factorial platonic ring with ordered Py and leading
platonic triple (lo1, /11, 21). Denote by R(A’, P;) the Cox ring of Spec R(A, Pp). Then
the exponents of the defining relations of R(A’, Py) are listed in the following table,
where 1,, denotes the vector of length n; with all entries equal to one.

leading plat. triple exponents in R(A’, P)

4,3,2) I, 1, 10/2,1,, and 2 x 1, fori > 3

3,3,2) I,lr,05,1,,,1,, and 3x1,, fori >3
x,2,2)and [ =2 lo/2,10/2,2x1,,,2x1,, and 4 x1,, fori >3
(x,2,2) and 2ty lo, lo, 1,,,1,, and 2 x 1, fori > 3
x,2,2)and [ =1 lo/2,12,1>,1,, and2x 1, fori > 3

! l .
(x,y, 1) ng(PO,[l)’ gcd([lo,h)’ ged(lp, [1) x 1, fori > 2
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Proof of Theorem 1.5 We start with a rational, normal, affine, log terminal X; of
complexity one. According to Theorem 1.3, the Cox ring R, of X is a platonic ring.
If the greatest common divisors of pairs [;, [; of R, all equal one, then R; is factorial
by [20, Theorem 1.1] and we are done. If not, then we pass to the Cox ring R3 of
X5 := Spec R; and so on. Proposition 6.6 ensures that this procedure terminates with
a factorial platonic ring R),. O

Proof of Theorem 1.6 Let X| be any rational, normal, affine variety with a torus action
of complexity one of Type 2 and at most log terminal singularities. Then Theorem 1.5
provides us with a chain of quotients

JH,— JH,_ H H H
X, p—1 X, p—2 /H3 X /H> X, /Hi X,

suchthat X; = Spec R; holds with aplatonicring R; wheni > 2, thering R), is factorial
and each X;;1 — X; is the total coordinate space. The idea is to construct stepwise
solvable linear algebraic groups G; € Aut(X;11) acting algebraically on X;; such
that the unit component G? C G; is a torus, G; contains H; as a normal subgroup,
Gi—1 = G;/H; holds and we have G| = H]|.

Start with G := Hj, acting on X». According to [3, Theorem 2.4.3.2], there exists
an (effective) action of a torus G on X3 lifting the action of G(l) on X, and commuting
with the action of Hy on X3. Moreover, [4, Theorem 5.1] provides us with an exact
sequence of groups

| — = Hy —— Aut(X3, H) —> Aut(X3) — 1,

where Aut(X3, Hy) denotes the group of automorphisms of X3 normalizing the qua-
sitorus Hy. Set G, := 7w ~1(G). Then HgSl, as a factor group of the torus Hé) x 91
by a closed subgroup, is an algebraic torus and it is of finite index in G,. Thus, G, is
an affine algebraic group with G} = Hg 91 being a torus. By construction, H, € G,
is the kernel of | := 7|, and hence a normal subgroup. Moreover, G is solvable
and acts algebraically on X3. Iterating this procedure gives a sequence

Ap-2 *p-3 ay ol ap
Gp1 —>Gp_p ——

Go G 1

of group epimorphisms, where, as wanted, G; is a solvable reductive group acting
algebraically on X; 1 such that H; = ker(¢;_1) is the characteristic quasitorus of
X;. In particular, the group G := G,_1 C Aut(X,) satisfies the first assertion of the
theorem.

We turn to the second assertion. From [3, Proposition 1.6.1.6], we infer that G| =
H, acts freely on the preimage Uy C X5 of the set of smooth points U; € X and
moreover, the complement X5\ U, is of codimension at least two in X». Let Uz € X3
be the preimage of Uy € X5. Again, the complement of Us is of codimension at least
two in X3 and, as U, consists of smooth points of X3, the quasitorus Hj acts freely
on Usz. Because of Go/H>» = G, we conclude that Us is Gs-invariant and G, acts
freely on Us. Repeating this procedure, we end up with an open set U, € X, having
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complement of codimension at least two such that G acts freely on Uj,. Thus, G acts
strongly stably on X,. Now consider

G=D92D12:---2D, 22D, =1, D; =ker(ojo - oop_3).
Thenwehave X; = X, /D;_1 and H; = D;_;/D;. Moreover for each D;, its action on

X is strongly stable, as remarked before, and X, is G-factorial because it is factorial.
Using [4, Proposition 3.5], we obtain a commutative diagram

Xp/1D:, Di] ’ X,/ Dis1

//91-/[91&A MH.

Xp/Di

where the left downward map is a total coordinate space. As D;/D;+1 = H;4
is abelian, [D;, D;] is contained in D; ;| and we have the horizontal morphism .
Since the right hand side is a total coordinate space as well, we infer from [3, Sec-
tion 1.6.4] that B is an isomorphism. This implies D;;; = [D;, D;], proving the
second assertion. O

7 Compound du Val singularities

Between the Gorenstein terminal and canonical threefold singularities lie the com-
pound du Val singularities, introduced by Miles Reid in [29], see also [24,26,30]. We
discuss compound du Val singularities in the context of T -varieties of complexity one
and provide first constraints on the defining data for affine threefolds, preparing the
proof of our classification results.

Definition 7.1 ([29, Definition 2.1], [24, Theorem 5.34, Corollary 2.3.2]) A normal,
canonical, Gorenstein threefold singularity x € X is called compound du Val, if one
of the following equivalent criteria is satisfied:

(1) For a general hypersurface Y € X with x € Y, the point x is a du Val surface
singularity of Y.

(i) Near x, the threefold X is analytically isomorphic to a hypersurface of the fol-
lowing shape

V(f(T1. T2, T3) + g(T1. T». T3, Ty Ty) < C*,

where f is a defining polynomial for a du Val surface singularity in C3 and g is
any polynomial in 71, T, T3, T4.

(iii) Foreveryresolutiong: X’ — X of singularities and every irreducible exceptional
divisor E C ¢! (x), the discrepancy of E is greater than zero.

(vi) There is a resolution ¢: X’ — X of singularities such that every irreducible
exceptional divisor E C ¢~ !(x) is of discrepancy greater than zero.

@ Springer



Log terminal singularities, platonic tuples and iteration of Cox rings 281

For an affine toric threefold X, condition 7.1 (iv) means the following: X is defined
by the cone over A x {1} with a hollow lattice polytope A € Q2 where hollow means
that A has no lattice points in its interior. Based on this characterization, one obtains
the list of toric compound du Val singularities provided in [10]:

Proposition 7.2 Let X be an affine toric variety with a compound du Val singularity.
Then X = X (o) holds with a cone o Q3 generated by the columns of one of the
following matrices

00k 00 k1 k2 002
(@) |010(, ke€eZyy, (b) [010 1|, kj,ko€Z>y, (c) 020
111 1111 111

Proof After removing the third row from the matrices, we find in their columns the
vertices of the hollow polytopes A € Qz; see [31]. O

We turn to affine T -varieties X of complexity one. As the toric case is settled, we can
concentrate on the varieties X = X (A, P) of Type 2. The basic tool is the anticanonical
complex AS,, described in Proposition 3.8. The following statement specifies a bit
more.

Proposition 7.3 Let X = X (A, P) be an affine Gorenstein, log-terminal threefold of
Type 2 such that P is in the form of Proposition 4.3. Consider the intersections

IAS (M) = 9AS N A, DAG () == 9AS Ny 9AS (A, T) = 0AS (M) N T,

where 0 A is the relative boundary of the anticanonical complex, ). C trop(X) the

lineality part, Ao, ..., A, C trop(X) are the leaves and T is any P-elementary cone.
() Let x1, ..., xr42 be the standard coordinates on the column space Q"2 of P
and set xg := —Xx1 — - - - — Xp. Then Xxi, X, +1, Xr42 are linear coordinates on the

three-dimensional vector space Ling(X;) and we have
3A§(()»,') = A():( NA; NH; € Ling(A;)

with the plane H; :== V ({x x40+ pixi —ix) S Ling(X;), where ; is the integer
defined in Remark 4.5. In particular, for fixed i, the columns v;j of P lie on the
half plane L; N H;.

(ii) The set AS Nt is a two-dimensional and 3 AS, N T a one-dimensional polyhedral
complex. Furthermore, 8A§((Ai, T) is a line segment.

Proof We show (i). Let o € Q" *2 be the cone over the columns of P. Then the set
dAS (X)) equals A N o N A;. By the assumption on P, the equation from Proposi-
tion 3.8 (ii) gives the assertion.

For (iii), write 7 = cone(wy, ..., w,) with w; € A;. Observe that A N7 N A; has
the vertices 0, w;, v(7)’" and is thus two-dimensional. Only w; and v(z)’ satisfy the
equation {xx,42 + mix; = tx. Thus Agf N t is two-dimensional and BA% Nt as well
as 0A (A;, T) are one-dimensional. O
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The following figures visualize the situation of Proposition 7.3 for the case r = 2. The
first one shows the leaves A;, the second one the half planes A; N H;, the third one all
A$ (1;) and the last one all A (X;, 7) for a given P-elementary cone 7.

o
5 T

The following statement shows that the relative boundary 9 AS, of the anticanonical
complex replaces the lattice polytope A from the toric setting discussed before.

Proposition 7.4 Let X = X (A, P) be an affine Gorenstein, log terminal threefold of
Type 2. Then X has at most compound du Val singularities if and only if there are no
integral points in the relative interior of 0 A%.

Lemma 7.5 Let X = X(A, P, ®), denote by X the fan of the minimal toric ambient
variety Z of X and let 0 € X be a big cone.

(1) The toric orbit Tz-zo, < Z corresponding to the cone o € X is contained in
X CcZ.

(1) IfTz-zo C X contains a singular point of X, then every point of Tz - 7 is singular
in X.

Proof We show (i). By the structure of the defining relations g;, the corresponding
statement holds for X € Z = C™*™. Passing to the quotient by the characteristic
quasitorus H gives the assertion.

We turn to (ii). Let z € X be a point mapping to 7z-z,. Using once more the
specific shape of the defining relations g;, we see that if the point z € X is singular in
X, then every point of T"*" .z is singular in X. Thus, the assertion follows from [3,
Corollary 3.3.1.12]. O
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Proof of Proposition 7.4 Since X is Gorenstein and log terminal, it is canonical. Let
Z be the minimal toric ambient variety of X. Recall that Z is the affine toric vari-
ety defined by the cone o over the columns of P and that the toric fixed point
x € Z belongs to X. For any point x’ € X different from x, we infer from
Lemma 7.5 and [3, 3.4.4.6] that, if x’ is singular in X, then it belongs to a curve
consisting of singular points of X. According to [24, Corollary 5.4], the point x’
is at most a compound du Val singularity. Thus, X has at most compound du
Val singularities if and only if every prime divisor E € ¢~!'(x) has positive dis-
crepancy; use condition 7.1 (iv). By Proposition 3.2, the latter holds if and only if
there are no integral points in dA$ N ¢° which in turn is the relative interior of
0AS. i

Definition 7.6 Let the matrix P be of Type 2 and ordered in the sense of Remark 6.1.
By the leading block of P, we mean the matrix [voy, . .., Ur1].

Lemma 7.7 Let X = X (A, P) be an affine, Gorenstein, log terminal threefold of
canonical multiplicity one of Type 2.

(i) By admissible operations one achieves that P is ordered in the sense of
Remark 6.1, in the form of Corollary 4.6 and the entry 0; sitting in column v;
and row number r + 1 of P satisfies 0; = 0 wheneveri > 3.

(i1) In the situation of (i), the leading block of the matrix P is fully determined by the
data (lo1, 11, [21; 90, 91, 02).

Proof The leading block contains the leading platonic triple (lo1, /11, [21). All other /;;
must be equal to one. Due to Corollary 4.6, the last row of P is determined by these
data. Subtracting the 9;-fold of the i-th from the ( 4 1)-th row, we obtain 0; = 0 for
i > 3. Thus apart from lo1, I11, [21, the only free parameters in the leading block are
00, 01, 02. O

Definition 7.8 In the situation of Lemma 7.7 (i), we call (lo1, 11, [21; 09, 01, 02) the
leading block data of P.

Proposition 7.9 Let X = X (A, P) be an affine Gorenstein log terminal threefold
of Type 2 and canonical multiplicity one in the form of Lemma 7.7. By admissible
operations, keeping the form of Lemma 7.7, we achieve that the leading block has one
of the following data:

(i) (5,3,2;0,0,0), (i) (4,3,2;0,0,0), (i) (4,3,2;1,0,0),
@iv) (3,3,2:0,0,0), (v) 3,3,2;1,0,0),  (vi) (l01,2,2;0,0,0),

(vii) (lo1,2,2;1,0,0),  (viii) (lo1,2,2;0,1,0),  (ix) (lo1, 111, 1599, 0, 0).
Proof We go through all possible leading platonic triples and explicitly list the admis-
sible operations on P that produce the desired leading block data. First, we modify P
by subtracting the i-th row from the last for i > 3. Then we have

vor=1—1Ilp1, vii=va=1, vy1=0=0, i=3,...,r
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In the sequel, by “applying ¢ = (ai, a2, a3)” we mean performing the following
sequence of admissible operations on P: add the a;-fold of the first, the a>-fold of the
second and the a3-fold of the last to the penultimate row of P.

Case 1: The leading platonic triple is (5, 3, 2). We arrive at case (i) by applying
a =(200 + 301 + 502, 300 + 501 + 702, —60¢ — 100 — 1502).

Case 2: The leading platonic triple is (4, 3, 2). If 99 = 02 mod 2 holds, then we arrive
at case (ii) by applying

3 5
a= (00+01 + 202, 500 + 201 + 502, —300 — 404 —602>.

If 09 = 02 4+ 1 mod 2 holds, then we arrive at case (iii) by applying

3 5 3
a=(00—}—014—202—1,500+201+502—§,—300—401—602+3>.

Case 3: The leading platonic triple is (3, 3, 2). We distinguish the cases 99 = 01 mod 3
and 09 = 01 + 1 mod 3 (if 99 = 01 — 1 mod 3, then exchange the data of the blocks 0
and 1 of P). We arrive at cases (iv) and (v) by applying respectively

2 1
a= <§00+§D1+02,00+01 + 02, =200 — 204 —302>,

2 1 2
a= (500+§D1+32—5,00—}-01-{-02—1, —200—201—3024—2).

Case 4: The leading platonic triple is (lo1, 2, 2). We distinguish several subcases and
will work with

-0 —00 — 07, =0 —0
20-I-4 1+4220+41+4

1 dn—2_ lojy. 1. 1 lor —2 I
a:( o Qe o+ 02,—00—%(01—%02)).

4.1: We have [p; = 1 mod 4.

4.1.1: 91 = 0 mod 4. If 9 is even, then applying a, we arrive at case (vi). If 9g is odd,
then applying a + (—1/2, —1/2, 1), we arrive at case (Vii).
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4.1.2: 91 = 07 + 1 mod 4. If 9 is even, then applying a + (1/4, —1/4, 1/2) leads to
case (viii). If 9¢ is odd, then applying a + (—1/4, 1/4, 1/2) and exchanging the data
of column blocks 1 and 2 leads to case (viii).

4.1.3: 01 = 02 — 1 mod 4. Exchanging the data of column blocks 1 and 2, we are in
4.1.2 and thus arrive at case (viii).

4.1.4:091 = 02 +2mod 4. If 0g is odd, then applying a, we arrive at case (vi). If 9 is
even, then applying a + (—1/2, —1/2, 1) leads to case (vii).

4.2: We have [p; = 2mod 4.
4.2.1: 99 = 01 = 0y mod 2. Applying a, we arrive at case (vi).
4.2.2: 00 = 01 # 02 mod 2. Applying a + (0, —1/2, 1), we arrive at case (viii).

4.2.3: 99 = 07 # 01 mod 2. Exchanging the data of column blocks 1 and 2, we are in
4.2.2 and thus arrive at case (viii).

4.2.4:099 # 01 = 0o mod 2. Applying a + (—1/2, —1/2, 1), we arrive at case (vii).

4.3 and 4.4: lp; = 3mod 4 or lp; = 3 mod 4, respectively. These cases are settled by
similar arguments as 4.1 and 4.2. That means that the same admissible operations are
applied after, if necessary exchanging the data of column blocks 1 and 2.

Case 5: The leading platonic triple is (o1, /11, 1). Applying (0,01 — 02, —01), we
arrive at case (ix).

Finally, in each of the cases (i) to (ix), we modify the matrix P obtained so far by
adding the i-th row to the last one fori = 3, ..., r. This brings P again into the form
of Lemma 7.7 (i). m]

8 Proof of Theorems 1.8 and 1.9

In Propositions 8.1, 8.3 and 8.4, we classify the compound du Val singularities admit-
ting a torus action of complexity one and list their defining matrices P, numerated
according to their appearance in Theorem 1.8. We begin with the case of Q-factorial
non-toric threefolds of canonical multiplicity one.

Proposition 8.1 Let X be a non-toric affine threefold of Type 2. Assume that X is Q-
factorial, of canonical multiplicity one and has at most compound du Val singularities.
Then X, for suitable A, is isomorphic to X (A, P), where P is one of the following
matrices:
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[—5300 [—4300]
~5020 —4020
® 1 vo01 | D1 o001 |
4111 3111 |
[—4—-130] (—33007]
—4-102 ~3020
a8 | 300 © 1 G001 |
| -3 011 ] 2111 |
[—3-130] [—3-230
—3-102 —3-202
A1 7 200 anl 1 100l
-2 011] | —2-111
—k2007 —k —k220
—k020 —k —ky 02
@) 0001 | (12-¢-¢) 0 100 |°
L 1—k111 ] 1—ki1—k 11
—k2007 —k210
—k020 —k002
(5-0) 1000 | an 1000 |
L 1—k111 ] [ 1—k111
2k —2kr—120 [—4210
2k —2kr—102 —4002
(12-0-¢/0) 0 ki—ks10]" A0 9120 |
1-2k  —2k 11 3111
[—2k—120 0 M2k —12 10
—2%k—102 0 —2%—10 02
(>-) 010k+1 |’ (10-0) 01[%170
2k11 1 2k 1 11

where the parameters k, k1, ky are positive integers and in (4), (5-0) and (11), we have
k > 2. Moreover, (12-e-e) indicates that the two exponents in the defining equation of
Theorem 1.8 (12) are even, in (5-0) the exponent is odd etc.

Proof We may assume that P is irredundant and in the form of Proposition 7.9. As X
is Q-factorial, the matrix P has precisely r + 2 columns, i.e., is a square matrix, see
Corollary 2.13. Since we assume P to be irredundant and /;; = 1 holds fori > 3,
we must have n; > 2 for i > 3. This forces r < 3. The strategy is now to compute
suitable parts of dA§ explicitly according to Proposition 3.8 and to use the fact that
they do not contain interior lattice points, as guaranteed by Proposition 7.4.
Consider the case r = 3. Here, we have ng = n; = np = 1 and n3 = 2. Moreover,
(lo1, I11, I21) is a platonic triple with I; > 1 and I3 = (1, 1) holds. The column apart

@ Springer



Log terminal singularities, platonic tuples and iteration of Cox rings 287

from the leading block of P is vy = (0,0, 1, ¢, 0), where we may assume that 7 is a
positive integer. The vertices of 8A§( (A) thus are

tlo1l11!
(050707g7l>5 <O70507w71>’
B B

a = 0ol11l21 + 01lo1la1 + 02lorly, B = lila1 +loilar +loilir — lotliilar.

where

Since lo1, I11, [21 all differ from one, ¢lo1 /11121 /8 = 2 holds and thus 9 A (1) contains
an integral point in its relative interior. Consequently » = 3 is impossible.

We are left with the case r = 2. Here, P is a4 x 4 matrix, the leading block columns
are vo1, V11, v21 and the column v of P apart from these three is one of

Vo2 = (_kv _kv t’ 1 - k)’ V12 = (k5 0’ Oy t’ 1)’
V22 = (01 kv t, 1)1 V] = (0, 0, t, 1).

We now go through the list of all possible leading block data provided by Proposi-

tion 7.9. We will often compute the line segment 0 A§ (L) € Q* from Proposition 7.3
explicitly. According to Proposition 3.8, the P-elementary cone spanned by the
columns of the leading block produces the first vertex w; of A% (1) and the sec-
ond vertex w, either arises from a (unique) second P-elementary cone or one has
Wy =0V =1].

Let P have the leading block data (5, 3, 2; 0, 0, 0). Then the first vertex of 8A§( Q)
is w; = (0,0, 0, 1). Consider the case that the additional column v lies in the relative
interior g € Ao. Then v = vpp = (—k, —k, 1, 1 —k) with 1 < k < 5, where we may
assume ¢ > 0. We compute wy = (0, 0, 6¢/(6 — k), 1). The following figures show
A (Lo) € Hp with the lower edge being 9 A, (1), where the plane Hj is defined as
in Proposition 7.3:

vo1 2
\ \ \
\ \
\ \
ﬂ)l_(' W) - ——OA» ——OL— - L o
k= 5 4 3 2 1

where the last figure indicates the case of the additional column lying in A, treated
below. Now, because of 67 /(6 — k) > 6/5, we find the point (0, 0, 1, 1) in the relative
interior of A (1) and hence in the relative interior of dA§,. According to Proposi-
tion 7.4, we leave the compound du Val case here.

We proceed in a more condensed way. Assume v € A{. Thenv = vi2 = (k, 0,1, 1)
with1 < k < 3andwecanassumet > 1. Weobtainw;, = (0, 0, 10¢/(10—3k), 1). We
find again (0, 0, 1, 1) in d A5 (1)° and thus leave the compound du Val case. Assume
v € A5. Then v = vy = (0,k,¢,1) with 1 < k < 2 and we can assume ¢ > 1. We
obtain wy = (0,0, 15¢/(15 — 7k, 1). Once more, (0,0, 1, 1) shows up in dAS (1)°
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and we leave the compound du Val case. Finally, assume v = v; = (0,0,¢,1). We
may assume ¢ > 0. Only for # = 1 there are no lattice points in d A§ (1)°. Moreover,
ift = 1, then all A, (1;) are hollow polytopes of the first type of Proposition 7.2 and
we arrive at matrix (8) from the assertion defining the compound du Val singularity
EgxC.

Let P have the leading block data (4, 3, 2; 0, 0, 0). Also here, the first vertex of
BAS(()L) isw; = (0,0,0,1). Assume v € Ag. Thenv = v = (—k, —k, ¢, 1 —k) with
1 < k < 4, where we may assume ¢ > 0. We obtain wy = (0,0, 6¢/(6 — k), 1). Thus,
(0,0,1,1) lies in A% (1)° and we leave the compound du Val case. Assume v € A].
Then v = vip = (k, 0,1, 1), where 1 < k < 3 and we can assume ¢ > 0. We obtain
wy = (0,0,4¢/(4 — k), 1) and find (0, O, 1, 1) in the relative interior of 8A§((A) and
thus leave the compound du Val case. Assume v € A3. Then v = vy = (0,%,1, 1)
with k = 1,2 and we can assume ¢ > 0. We obtain wy = (0,0, 12¢/(12 — 5k), 1)
and see that (0, 0, 1, 1) lies in 8A§( (A)°. Thus, we leave the compound du Val case.
Finally, assume v = v; = (0, 0, ¢, 1). For r > 1, we find (0,0, 1, 1) in 8A§((k)°. The
case t = 1 gives matrix (7), defining the compound du Val singularity E7 x C.

Let P have the leading block data (4, 3, 2; 1, 0, 0). Here, the first vertex of 8A§( Q)
is w1 = (0, 0, 3, 1). To visualize the setting, consider the P-elementary cone T C Q4
generated by the columns vgi, vy, v21 of the leading block and the line segments
8A§( (Xi, ) € H;, where i = 0, 1, 2, from Proposition 7.3:

Vo1

U1t

v21

N\
N

IAS (Ro. T) IASG (A1, 7) IAG (A2, 7)

Note that the additional column v is represented in the above figures by a lattice point
not contained in dA§ (A;, 7), indicated by the black line. Going through the cases,
we will also have to look at the polytopes d A% (1;) and will encounter the following
situations:

\ §
\ N\ 322
W\ \
84S (10) DA (1) 94 (012)

Assume v € AS. Then v = vyp = (—k, —k,t, 1 — k) with 1 < k < 4. The second
vertex of A (1) is wa = (0,0, 6¢/(6 — k), 1). We find one of the points (0, 0, 4, 1)
or (0,0, 2, 1)in d A5, (1)° for k = 2, 4. Moreover, for k = 3, we find (—1, —1, 3, 0) in
0A% (10)° Thus, we end up with non compound du Val singularities for k = 2, 3, 4.
In the case k = 1, we may assume ¢ > 2. Only for t = 3, no lattice points are inside
dA°. Fort > 3, the point (—1, —1, 3, 0) lies in dA§ (A0)°. So with # = 3, we obtain
matrix (18), defining a compound du Val singularity.

We show that the remaining possible locations of v all lead to non compound du Val
singularities. Assume v € AJ. Then v = vi2 = (k, 0,7, 1) € A with 1 <k < 3. The
second vertex of BA%()L) iswy = (0,0, (k+4¢1)/(4—k), 1). Thus, either (0, 0, 2, 1) or
0,0,4,1) liesin 8A§(()\)°. Assumev € A5.Thenv = vyy = (0, k, ¢, 1) withk =1, 2,
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where we can assume t > 1 or # > 0 accordingly. The second vertex of d A (4) is

wy = (0,0, 3k + 12¢)/(12 — 5k), 1). For k = 2, we find (0, 0,4, 1) in dAS (1)°.
For k = 1, the segment d A (1) is of length (127 — 18)/7. Thus, for t > 3, we find
a lattice point in A (1)°. For t = 2, we look at 3AS (10)° and see that it contains
(—1,—-1,3,0); see the figure above. Finally, if v = v; € A, one finds (—1, —1, 3, 0)
in dAS (Ao)°.

Let P have the leading block data (3, 3, 2; 0, 0, 0). Then the first vertex of 9 A§ (1)
iswy; = (0,0,0, 1). Assume v = (—k, —k, t,1—k) € Agorv = (k, 0,1, 1) € A} W1th
k = 1,2, 3. Then we can assume ¢ > 0. We obtain wy = (0,0, 6¢/(6 — k), 1) find
(0,0,1,1) in dA§,(1)° and thus leave the compound du Val case. If v = (0, k, 1, 1) €
A5, withk =1, 2 we can assume ¢ > 0. We obtain w, = (0, 0, 3¢7/(3—k), 1) and find
(0,0,1,1)in 0AS % (A)°. Thus also here, we leave the compound du Val case. Finally,
ifv = (0,0,1, 1) € A, then we end up with ¢+ = 1 and the matrix (6), defining the
compound du Val singularity Eg x C.

Let P have the leading block data (3, 3, 2; 1, 0, 0). Then the first vertex of 9 A% (1)
isw; = (0,0, 2, 1). We will take a look at the leaves:

Vo1 o1
V21
\VF, ,Qr\
IAS (Ao, 7) IAS (A1, 0) IASG (A2, 7)

Assume v € Ag. Then v = vo1 = (—k, —k, 1,1 — k) with k = 1, 2, 3. We obtain
wy = (0,0,67/(6 —k), 1). In the case k = 3 as well as in the case k = 2 with ¢t # 1,
we find one of (0,0, 1, 1) and (0,0, 3, 1) in dA$ % (A)° and leave the compound du
Val case. For k = 2 and t = 1, there are no lattlce points in A and the resulting
matrix is (15), defining a compound du Val singularity. If k = 1 and t # 2, we find
0,0,1,1) 0r (0,0, 3, 1) in A% (1)°. The case t = 2 leads to the matrix (7), defining
a compound du Val smgularlty The case of v € A{ can be reduced by means of
admissible operations to the previous case. We show that for the remaining possible
locations of v, we leave the compound du Val case. If v = (0, k,7,1) € A5, then
wy = (0,0, 3t +k)/(3—k), 1) and we find (0,0, 1, 1) or (0,0, 3, 1) in A (1)°. If
v=1(0,0,7,1) € A, then (—1, —1,2,0) or (1,0, 1, 1) lies in d A (1)°.

Let P have the leading block data (o1, 2,2;0,0,0). Then the first vertex of
BAS(()L) is (0,0,0,1). Assume v € Aj. Then v = vop = (—k, —k, 1,1 — k) with
1 < k < lp1, where we can assume ¢t > 0. We have wy = (0,0,¢,1). Fort > 1, we
obtain (0,0, 1, 1) € dAS (1)° and thus leave the compound du Val case. For t = 1,
the resulting smgulanty is compound du Val for every k and has defining matrix
(12-e-e) with ki > kp. Assume v € A7. Thenv = vj2 = (k,0,¢, 1) withk = 1, 2. We
can assume lo; > 2 and ¢t > 0. For k = 1 we have wy = (0, 0, 2tlp1 /(2 + lp1), 1) and
for k = 2, we have wy = (0, 0, tlp1 /2, 1). In both cases, d A§ % (A)° contains (0, 0, 1, 1)
and we obtain a non compound du Val singularity. The case of v € A3 can be trans-
formed via exchanging the data of blocks 1 and 2 into the previous one. Finally, if
v =(0,0,¢,1) € A, then we must have + = 1 and this gives the compound du Val
singularity Dy, 2 x C, defined by the matrix (4).
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Let P have the leading block data (Io1, 2, 2; 1, 0, 0). Then the first vertex of 8A§( Q)
is (0,0, 1, 1). Assume v € Ay. Then v = vop = (—k, —k, 1, 1 — k) with 1 <k < lo1.
We can assume ¢t < 1. For t < 0, we have (0,0,0,1) € BA}(A)O. Fort = 0, we
obtain a matrix (12-e-e) as in the case of leading block data (ly1, 2, 2; 0, 0, 0), now
with k1 < k2. Assume v € A}. The case lp; = 2 can be transformed via admissible
operations into the case of leading block data (ly1, 2, 2; 0, 1,0) and an additional
column in Ag, which is discussed below. So, let lo; > 2. Then v = (k, 0, ¢, 1), where
k = 1,2. For k = 2, we can assume ¢ > 0. We obtain wy = (0,0, 1 + tlp1/2, 1)
and (0, 0,2, 1) € A5 (1)° and thus leave the compound du Val case. Now let k = 1.
Here, t may be any integer and we obtain wy = (0, 0, 2(1 + lo17)/(2 + lp1), 1). Only
for t+ = 0, 1 there are no lattice points in 9 A (1)°. Both cases lead by admissible
operations to the compound du Val singularity with defining matrix (11). The case
of v € A5 can be transformed to the previous one by exchanging the data of column
blocks 1 and 2. Finally, if v € A, then it equals either (0, 0, 0, 1) or (0, 0, 2, 1). Both
cases lead to the compound du Val singularity with defining matrix (50).

Let P have leading block data (lo1, 2, 2; 0, 1, 0). Then the first vertex of 8A§((k)
iswy; = (0,0,lp1/2, 1).

Case I: The exponent [y is even. Assume v € A. Then v = v; = wy = (0,0, ¢, 1).
Exchanging the data of blocks 0 and 1 transforms the case /p; = 2 into the corre-
sponding case with leading block data (o1, 2, 2; 1, 0, 0) treated before. So, let [p; > 2.
Having no lattice points in d A§ (1)° implies ¢ = ly; /2 & 1. But then, there are integer
points in dA§ (Ao)°: for t = lp1 /2 + 1 we find

RIS U S IR B
-4 =1 7= = -1 A A 7
2 op TS T )"

and forr = lp; /2 — 1 we find

L —1 lo1 Lo) = 1 n 1 2 n 1 +1
s s ) ) = 101 Vo1 ) lO] wi 101 ) wy.

Assume v € Ay. Then v = vy = (—k, —k, ¢, 1 — k) with 1 < k < lp;. The second
vertex of dAS (M) iswy = (0,0, r 4+ k/2, 1). If k is even, then having no lattice points
in dAS (A)° implies t = (lo; — k)/2 £ 1. Again there are integer points in d A (A9)°:
fort = (lo1 — k)/2 + 1 we find

1 11010_1 +1 n 1 1
s " —kUOZ 2UJ1 ) ka

and fort = (lp; — k)/2 — 1 we find

TP LI I ) N VRO Y (S
’ 72 ’ _kv02 2w1 2 sz'
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If k is odd, then having no lattice points in d AS (1)° implies t = (lo; — k & 1)/2. For
both choices of ¢, this setting produces a compound du Val singularity with matrix
(12-0-e/0) and parameters k1 > k.

Before entering the discussion of the cases v € k;? withi = 1,2, the parameter k
occurring in v might be kK = 1, 2 and the vertex w; is given by

2lp1 + 2k — kloy’

0.0 2tloy + kloy
T 201 4+ 2k — kloy

2tl
(0,0,;‘1 1), v=(k,0,1,1) € A°,
wy =

1), v=(0,k1,1) € 1S

Case 1.1: We have [y; = 0mod 4. If v € A5 orv = (2,0, ¢, 1) € A7, then we find one
of (0,0,lp1/2+1,1) in 8A§((A)°. Thus, we are left with v € A} and k = 1. For any
t # lp1/4+ 1, we find the lattice point (1, 0, lo; /4 + 1, 1) in d A§ (A1)°. Thus, we end
up with

! loy + 4
U=(k,0,t,1)=<1,0’%+171>’ w2:<010,l()1 01—:_ 1>'

Note that the segment d A (1) contains no lattice points, because its length equals
lo1/(lp1 +2) < 1. Taking a look at A¢, we observe

lo1 - lo1
lor+2  20n—-1)

I}
(—1,—1, ﬂ,o) € 1A (M) = = Iy > 4.

2

Thus, to obtain compound du Val singularities, we must have lp; < 4. Aslp; = Omod 4
holds, only lp; = 4 is left and, indeed, this leads to the compound du Val singularity
with defining matrix (16).

Case 1.2: We have gy =2mod4.If v € A orv = (0, 2, ¢, 1) € A3, then we find one
of (0,0,lp1/2+1,1) in 8A§((A)°. Thus, we are left with v € A3 and k = 1. For any
t # lo1/4 + 1/2, we find the lattice point (0, 1, lo1/4 + 1/2, 1) in d A, (A2)°. We end
up with

ok =(0.0 2 L) ess
V= s Ry by - 7’4 27 2

Similarly to Case 1.1, we obtain that (—1, —1,1p1/2,0) € 8A§((ko)° as soon as
lp1 > 4. Thus, only lp; = 2 might lead to a compound du Val singularity. In this
case, we exchange the data of blocks 0 and 2 and land in case of leading block data
(lo1,2,2;0,1,0) and an additional column in Ag.

Case 2: The exponent ly] is odd. If v € A, then v = vi = wy = (0,0, (lp1 + 1)/2, 1)
holds and we arrive at the compound du Val singularity with defining matrix (5e).
If v € Ag holds, then the arguing runs similar as in Case 1. Only for k£ odd and
v =vp2 = (—k, —k, (log —k+1)/2, 1 — k), there are no lattice points in the relative
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interior of 9 A (1)° and we end up with the matrix (12-0-e/0) as in Case 1, but now
with parameters k1 < k.

Assume v € A]. Then v = vip = (k,0,¢,1) with k = 1,2. The case k = 2
gives wy = (0, 0, tlp1/2, 1), the point (0, 0, (lp1 £1)/2, 1) lies A (1)° and thus we
leave the compound du Val case. So, let k = 1. Then we have v = (1,0,¢,1) € A].
Moreover, w; = (0,0, 1p1/2, 1) and wy = (0, 0, 2¢lo1/(2 + lp1), 1). Now, as lo; is
odd, we see that 8A§((A) to have no lattice points in the relative interior means

2/

1 2
S tly lo1
2411 2

If lo1 = 1 mod 4, this is only fulfilled for t = (o1 + 3)/4. If lp; = 3 mod 4, it is only
fulfilled for t = (lo; + 1)/4. Altogether, it is fulfilled for t = [lg1/4]. This leads to
the compound du Val singularity with defining matrix (100).

The case v € Aj can be transformed by suitable admissible operations to the case
v € A just discussed.

Let P have leading block data (lp1, /11, 1; 99, 0, 0). As P is irredundant, the addi-
tional column is forced to be (0, 1, ¢, 1) € A5 and we have lo1, [11 > 2. The vertices
of A% (1) turn out to be

00l 0ol tloy!
w1=<0,0,&,1>, wz:(o,o,w,l).
lor + 111 lo1 +1n

We have 0 < tlp1l11/(lp1 + 111) < 1 only for t = 1 and lp; = I11 = 2. In this
case, the second inequality becomes an equality and thus w; is integral w; which
implies 09 = 0. We arrive at the compound du Val singularity with matrix (12-e-e)
and parameters k1 = kp = 1. O

We turn to the non-toric non-Q-factorial threefolds, still of canonical multiplicity one.
The following observation provides the link to the Q-factorial case. Given defining
data A, P foraring R(A, P) of Type 2, we will have to deal with quadratic submatrices
P’ of P, obtained by erasing columns and rows from P. The corresponding submatrix
A’ of A gathers all columns a; of A such that at least one column v; ; 1s not erased
from P when passing to P’

Lemma 8.2 Let X = X (A, P) be a compound du Val threefold of Type 2 and canon-
ical multiplicity {x with P irredundant in the form of Proposition 4.3 and ordered in
the sense of Remark 6.1.

(1) Let P’ be an (r + 2) x (r + 2) submatrix of P such that foranyi =0, ..., r at
least one v;j is not erased from P.
(a) A’ = A and P’ are defining data of Type 2 in the sense of Construction 2.2;
moreover, P’ is in the form of Proposition 4.3.
(b) X' = X (A, P') is a Q-factorial threefold with at most compound du Val
singularities of canonical multiplicity ¢x = (x.
Moreover, one always finds a submatrix P' as above being ordered and having
the same leading block as P.
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(ii) Every P’ as in (i) admits a 4 x 4 submatrix P" with the same leading block as P’
such that
(a) A” and P" are defining data of Type 2 in the sense of Construction 2.2, the
matrix P" is ordered and the form of Proposition 4.3.
(b) The varieties X' = X(A’, P") and X" = X (A", P") are equivariantly isomor-
phic to each other.
(iii) If the leading platonic triple of P is different from (x, y, 1), then r = 2 holds.
(iv) One always finds P" and P" as in (ii) with the same leading block as P such that
(a) in case of the leading platonic triple of P differing from (x, y, 1), up to admis-
sible operations, P" is one of the matrices from Proposition 8.1.
(b) }n c;z)s/;e of the leading platonic triple of P equal to (x, y, 1), we have ny =2
or P”.

Proof We verify (i). Note that each column of P’ is as well a column of P. By
Proposition 2.12, the columns of P generate the extremal rays of a full dimensional
cone 0 C Q"2 Thus, also the columns of P’ generate the extremal rays of a cone
o CQ *2 We show that o’ is full dimensional. If P’ has a column v] € A, then,
using Proposition 3.8 (iii) we see that the remaining r + 1 columns of P’ are linearly
independent and v; does not lie in their linear span. If P’ has no column inside A,
then we can form two different P-elementary cones 7| and 7, out of columns of P’.
The corresponding v, € 7 generate the pointed two-dimensional cone 6'N A and we
see that the columns of P generate Qr”. Thus, we can conclude that P’ satisfies the
conditions of Type 2 of Construction 2.2 and, together with A’ = A gives defining
data. Observe that X’ = X (A’, P’) is Q-factorial by construction. Using Remark 4.4,
we obtain ¢y = ¢x and see that P’ still is in the form of Proposition 4.3. Using
Remark 4.5, conclude 1y = 1x = 1. Moreover, according to Proposition 3.8, the
anticanonical complex A$, is a subcomplex of A% and the same holds for 9AS, and
dAS. Thus, Proposition 7.4 shows that X" inherits from X the property of having at
most compound du Val singularities. The supplement is obvious.

We prove (ii). For r = 2, there is nothing to show. So, assume r > 3. If P’ has
a column v; € A, then we have n; = [;; = 1 fori > 3 and Remark 2.4, applied
r — 2 times, yields the desired 4 x 4 matrix P”. We turn to the case that P’ has no
column in A. Then ny = 2 for some 0 < k < r and all other n; equal one. If k < 2
holds, then we have n; = I;; = 1 fori > 3 and proceed as before to obtain P”. We
discuss k = 3. First assume that the leading platonic triple of P’ equals (x, y, 1).
Then, exchanging the data of column blocks 3 and 2 of P’, we are in the case k < 2
just treated. If the leading platonic triple of P’ differs from (x, y, 1) then, applying
r — 3 times Remark 2.4, we arrive at an irredundant 5 x 5 matrix P” defining a variety
X" = X(A”, P") isomorphic to X’ = X (A’, P’); a contradiction to Proposition 8.1.
Finally, if k > 4, then we exchange the data of column blocks k and 3 of P’ and are
in the case k = 3. This proves (ii).

We turn to (iii). Assume r > 3. Since P is irredundant and ordered in the sense of
Remark 6.1, we have n; > 2 and [;; = 1 fori > 3. Consider the submatrices

, N
P":=[vo1, v11, V21, V31, V32, V41, - - ., V1], P~ = [vo1, vi1, v21, V31, V32].
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Let P” be the matrix obtained by erasing from P~ erasing all but the first three and
the last two rows. Then P” is an irredundant 5 x 5 matrix and X" = X(A”, P") is
isomorphic to X’ = X (A, P’); a contradiction to Proposition 8.1.

Finally, we show (iv). For (a), observe that because of 1 x» = 1y = 1, Proposition 4.7
gives {y» = ¢x = 1. Thus X” is Q-factorial compound du Val and P” must, up to
admissible operations, be one of the matrices from Proposition 8.1. We turn to (b).
For any i > 2, we have n; > 2, because P is irredundant. Consider the submatrices

/ ~
P":=[vo1, v11, V21, V22, V31, ..., Ur1], P = [vo1, v11, v21, v22].

Then we obtain the desired P” from P~ by erasing all but the first two and the last
two rows. O

Proposition 8.3 Let X = X (A, P) be a non-toric affine threefold of Type 2. Assume
that X is not Q-factorial, of canonical multiplicity one and has at most compound du
Val singularities. Then P can be assumed to be the matrix

—-k2100
-k 0021
10000 |’

I1-k1111

(10-e) k e ZZQ.

Proof The strategy is to look first for not necessarily irredundant matrices P” with
r” = 2 defining a Q-factorial X" = X (A", P") of canonical multiplicity one with at
most compound du Val singularities. Then we obtain, up to admissible operations, all
matrices P with X (A, P) satisfying the assumptions of the proposition by enlarging
the P” in the sense of Lemma 8.2. We organize the subsequent discussion according
to the possible leading block data, as listed in Proposition 7.9, and treat pairs P”, P
sharing the same leading block data. Note that we have r = 2 for P whenever the
leading platonic triple differs from (x, y, 1).

Consider the leading block data (5, 3, 2; 0, 0, 0). Proposition 8.1 tells us that after
suitable admissible operations, we have

-5300
-5020

0001
—-4111

P// —

After performing the corresponding admissible operations on P, we find P” as a
submatrix of P. Moreover, P has at least one further column and thus a submatrix

—530=%
502 %
000 %
—411 %

p" —
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Lemma 8.2 (i) says that X"" = X (A", P"") is Q-factorial, of canonical multiplicity one
and with at most compound du Val singularities. Thus, up to admissible operations,
P"" occurs in the list of Proposition 8.1. So, the last column must be one of

0,0,1,1), (0,0,—-1,1)

The first case is impossible, because the columns of the defining matrix P are pairwise
different. For (0,0, —1, 1) as last column, the point (0, 0, 0, 1) lies in 8A§((k)°; a
contradiction to Proposition 7.4.

The case of leading block data (4, 3, 2; 0, 0, 0) is treated by exactly the same argu-
ments as the preceding case.

Consider the leading block data (4, 3, 2; 1,0, 0). Again, Proposition 8.1 tells us
that, up to admissible operations, we have

—4-130
, | —4-102
PP=1"1 300

-3 011

Adapting P by admissible operations, it comprises P as a submatrix. As before, we
obtain a matrix P”” by enhancing the leading block with a further column of P, which
this time must be one of

(-1,-1,3,0), (-1,-1,2,0).

The first leads to two identical columns of P and this is excluded. For the second we
find (0, 0, 3, 1) inside d A% (1)° and leave the compound du Val case.

The case of leading block data (3, 3,2;0,0,0) runs exactly as the case of
(5,3,2;0,0,0).

Consider the leading block data (3, 3, 2; 1, 0, 0). Here Proposition 8.1 leaves us
with two possibilities for the submatrix P” of the accordingly adapted P. The first
possibility is

3230

, | =3-202

PP=1"17 100 )
2111

with columns v, vo2, v11, v21. Using as above Proposition 8.1, we arrive at three pos-
sibilities for submatrices P’ = [vo1, V11, V21, *]; with ¢ = cone (vo1, Vo2, V11, V21),
we find the following situation in the AS (A;) No:

9 virq
102
- v}
T [ ] N
9AS (o) N 0AS () No 90AS, () No
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where the circles indicate the prospective columns * of P”’ leading to compound
du Val singularities X (A", P"") of canonical multiplicity one. They are

(=1,-1,2,0) € o,  (1,0,1,1), (2,0,1,1) € ;.

The lower one in the middle picture is contained in o which is not possible. The other
two force (0, 0, 2, 1) to lie in 8A§((k)° which is as well impossible. So, (5) does not
occur as a submatrix of P. The second possibility is

—3-130
. | -3-102
PP=1"1 200

2 011

Here we proceed analogously as with (5) and see the only possible additional column
in P is (1,0, 1, 1). In this case again (0, 0, 2, 1) lies in BAS(()»)O and we leave the
compound du Val case.

Consider the leading block data (Ip1, 2, 2; 0, 0, 0). Here Proposition 8.1 tells us that
the submatrix P” of the accordingly adapted P is

ki -k 20
sk —ko02
P = 0 100]

l—k1 11—k 11

where we allow k» = 0 here and in this case change the second and fourth column
to have a proper defining matrix. A possible further column for P”” must have the
form (—k3, —ks,t,1 — k3) with t = *1. Fort = 1, one of (—k», —kp, 1,1 — kp)
or (—k3, —k3, 1,1 — k3) does not give an extremal ray of the cone spanned by the
columns of P. For t = —1, the point (0, 0, 0, 1) lies in 8A§((A)° and we leave the
compound du Val case.

Consider the leading block data (lo1,2,2; 1,0, 0). Proposition 8.1 allows two
choices for the submatrix P” of the accordingly adapted P. The first one is

—-k200
—-k020
1000
1-k111

P// —

We check the possible further columns of P. A column in A would lead to (0,0, 1, 1) €
9 A5 (1)° and this is impossible. For any P sharing the first three columns with P”,
the additional column, due to Proposition 8.1, must be (1, 0, ¢, 1) or (0, 1, ¢, 1), where
t = 0, 1. For t+ = 0, such column would not generate an extremal ray of the cone
spanned by the columns of P. For r = 1, we obtain (0,0, 1,1) € BAg( (A)° and we
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leave the compound du Val case. The second choice is

P// —

—_— O O N
_—0 O =
— o N O

—k
—k

1
1—k
Proposition 8.1 tells us that (1, 0, ¢, 1) or (0, 1, #, 1) withz = 0, 1 are the only possible
further columns of P. But (1, 0, 0, 1) is impossible, since this column already exists in

P andfor (1,0, 1, 1), weobtain (0,0, 1, 1) € 8A§((A)°. The same holds for (0, 1, 1, 1).
For (0, 1,0, 1), the line segment dA% (1) has, in addition to w; = (0,0, 1, 1), the

vertex
1
w2 =1{0,0, ——,1).
1+k

If we have a look at the leaves, we see that we get a compound du Val singularity with
defining matrix (10-e):

e

A (ko) A (A1) A (02)
Consider the leading block data (lo1, 2, 2; 0, 1, 0). Proposition 8.1 allows four pos-
sible submatrices P” of the suitably adapted P. We distinguish the following cases.

Case I: The exponently is odd. First assume P has after suitable admissible operations

a submatrix
—2k1—1 —=2kr 20

2% —1 =2k 02
ki —kp+1

0 b=kl g

—2%; 1—2k 11

P// —

Assume the matrix P has a further column (—k, —k, ¢, 1 — k) in Ag. We regard the
submatrix containing this further column as well as the last two columns of P” and
either the first (if k£ odd) or the second (if k even) of P”. This matrix does not show up
in Proposition 8.1 and we leave the compound du Val case. So P can have no further
column (—k, —k,t,1 — k).

Also an additional column (0, 0, ¢, 1) in the lineality part is impossible, because due
to Proposition 8.1, the only possibilities are + = kj and ¢ = k| + 1. But these would
either not give an extremal ray of the cone spanned by the columns of P (fort = k;+1)
or(—1, —1, ky, 0) would show upin d A, (Ao)°. Now the last possibility is an additional
column (1,0, ¢, 1)inA;or (0, 1, ¢, 1) in ;. But the possible values of ¢, 1.e. those giving
a compound du Val submatrix of type (10-o0) from Proposition 8.1, either generate
no extremal ray of the cone spanned by the columns of P or (—1, —1, k1, 0) is an
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interior point of d A, (A0). Thus assume P has, after suitable admissible operations,
no submatrix of the above form and one

—2k—12 10

| “2%—10 02
= 2k+1

01 [==]o0

—2k 1 11

Now, the submatrix of P given by the first, second and third column of this submatrix
and one further column must as well be of this form after suitable admissible opera-
tions. So the only possible additional column is (0, 1, [(2k 4+ 1)/4] — 1, 1) in A3, but
then (—1, —1, k1, 0) is an inner point of 8A§(()\.0) and we leave the compound du Val
case.

Case 2: The exponent lp; equals 4. After suitable admissible operations, the matrix P
has a submatrix

4210
4002

0120
3111

P// —

A further column must, together with the first two and the last row of P”, give a
compound du Val submatrix P”" of P as well. So due to Proposition 8.1, the only
possible further column is (1, 0, 1, 1). But with this, the point (0, 0, 2, 1) is an inner
point of d A% (1) and we leave the compound du Val case.

Consider the leading block data (lo1, /11, 1; 99, 0, 0). Note that here, we also have
to take care about redundant matrices P”. Proposition 8.1 provides us with one irre-
dundant matrix

-2200
2011

0001
—-1100

P// —

The only possible further columns of P are of the form (-2, —2, 1y, —1), (2,0, #, 1)
or (0, 1, 2, 0). Each of them would stretch the segment 9 A$ (1) which already has the
vertices (0, 0,0, 1) and (0,0, 1, 1).

Now we treat the redundant P”, which means to deal with /;; = 1. Due to
Lemma 8.2 (iv) (b), after suitable admissible operations, the matrix P has a submatrix

—lp1 100
—lp1 01 1

00 001
1—1Ipp 111
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But since P is irredundant, it must have a further submatrix

comprising P” and one further column in A;. For this matrix and the vertices of the
respective d A, (1), we have

0 0 t 1)l
w1=<0,0,—0,1>, w2=<0,0,w,1),
lor + 1 loy +1

But (1] + 1)lo1/(lo1 + 1) < 1 only fort; = = lp; = 1. But as P is irredundant, it
must have a sixth column (—1, —1, 09 + 79, 0) in P. The distance between the vertices
of 9 A (1) becomes

fo+1+1n >
2

| W

Thus, 9 A (A)° contains an integral point. So we obtain no compound du Val singu-
larity in this case. O

Finally, we have to deal with the non-toric threefolds of canonical multiplicity greater
than one.

Proposition 8.4 Let X = X (A, P) be a non-toric affine threefold of Type 2. Assume
that X is of canonical multiplicity greater than one and has at most compound du Val
singularities. Then one may assume P to be one of the following matrices:

[~k —k ¢x—k x—kO 0---0 0]
—k —k 0 011 00
) S : : . ’
—k —k 0 000 11
0 99 0 0100 ---00,
1—puk 1—pk 1—uk 1—uk
L ¢x [9'¢ {x +u [9'¢ +,u0 0---0 O_
—2x+11100 —2x+2 200 3300
—2x+10011 —2tx4+2 011 —3011
(13-¢) 0oo1o1 |> 139 0o oo1|" M| 0001
20000 tx =100 ~1200

In (9), r > 2 holds, the integers {x > 2 and k > 1 are coprime and | is the unique
integer 1 < w < ¢x with (x| (1 — pk). Moreover 0; € Zx1 holds fori > 0 and if
k =22 (¢x — k = 2), then one may erase the second (fourth) column of the matrix. In
(13-e), we have ¢x > 2. In (13-0), we have £x > 3 odd. In (14), we have £x = 2.
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Proof The strategy is similar to that of the proof of Proposition 8.3. We look first
for not necessarily irredundant matrices P” with r = 2 and n} = 2 defining a Q-
factorial X” = X (A”, P”) with at most compound du Val singularities and of canonical
multiplicity bigger than one. Lemma 8.2 then ensures that for X = X (A, P) satisfying
the assumptions of the proposition, the matrix P contains, after suitable admissible
operations, one of our P” as a submatrix with the same leading platonic triple as P.
In other words, we can construct the possible P by suitably enlarging P”.

The matrix P” we are looking for is 4 x 4. Since {x» > 1 holds, we are in the
setting of Proposition 4.7 and because of 1x» = 1, we end up in Proposition 4.7 (vi).
In addition to the leading block, we have the extra column vy in P”. Moreover, the
integer = (1 — vo1¢x7)/lo1 as well as [p; and /11 must all be coprime to {x», since
we have the integer entries vo; = (1 — wlo1)/¢x» and vi; = (1 4+ ul11)/¢xr. We also
see that ¢y~ divides lp; + /11 by subtracting vp; and v; from each other. Now let

lo1 I
ko = L_J ki = [_-‘ 8= lo — kolxr.
Cxr Exr

Furthermore, let in this proof 9;; be the third entry of the column v;; of P”. With these
definitions, our matrix has the following shape:

—(kosxr +8)  kigx»—380 0

o —(koZxr +8) 01 1 ;
o 001 011 002 | ©
=8 ko 28 4k 00 0
Ty — MKQ Ty + MK

where we achieve 1 < p < ¢x» by subtracting the | /¢x~ |-fold of the first from the
last row, simultaneously. Moreover, we achieve d9; = 0 by subtracting the 091 {x7-
fold of the last and the 9¢; t-fold of the first from the penultimate row. Exchanging, if
necessary, the data of column blocks 0 and 1, we achieve k; > kg > 0. We now figure
out those P” defining a compound du Val singularity. For this, we consider several
constellations of kg and k.

Case 1: We have kyp = 0 and k; = 1. Here we can also achieve 911 = 0 by subtracting
the 011 (1 — ué)/¢xr-fold of the first and the 011 5-fold of the last from the penultimate
row. The vertices of dA, (1) are

1 0 (yr —8) 1
m:@aw—) m:@aﬁﬁL—L—)

xr {xr " ox
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We illustrate the situation for the case § = 2, {x» = 5, 022 = 2 below; observe that
the lineality part A contains no integer points and the union of the A; N I; N Z* for
i =0, 1 is a sublattice

dAS, (h0) Vo) V21 22 A, (A2)
® A5,
A (1) T wi wy Y
w / wr
IAS (L))
X// vll

The polytope 0 A, (o) does not contain integer points (—k, —k, ¢, (1 — uk)/&xn)
in its relative interior as for such integer points k < § and (1 — k) /{x» integral must
hold, but § is minimal with the second property. The same holds for dA$, (1) and
8A§(,, (A2) respectively. All points in 8A§(,, (A) have 1/¢x» as last coordinate, thus are
not integral. So, there is no integral point in the relative interior of dA$,. Thus P”
defines a Q-factorial compound du Val singularity and meanwhile looks as follows:

-8 xr—80 0

—5 01 1
0 000y, @ 8946.&x) =1 02 €Zso. %)
1—pud 1—ud
Cxr Cxn +/’L 0 0

Now we check the possibilities of enlarging P” in the sense of Lemma 8.2 to a matrix
P defining a non-Q-factorial X (A, P) as in the proposition. As further columns we
can insert one or both of

1—ué
vo2 = | =48, =3, 002, : , vig = | ¢xr —8,0,012,
X//

1— s )
T U,
;X”

with 0;2 € Z¢ arbitrary. We cannot add other columns (—k, —k, 0, (1 — uk)/¢x») in
Xo. This is because first, k < § must hold since (8, {x» — §, 1) is the leading platonic
triple. Second, k = k’¢x» + & with ¥’ > 0 must hold. So we get k = §. But then one
of the columns

@ Springer



302 1. Arzhantsev et al.

1 —ué 1 —ud 1 —ud
<—8,—8,am, “), (—6,—8,002, “), <—8,—6,aoa,—“)
;X// {X” {X//

lies in the cone spanned by the other two. It can give no extremal ray of the cone
spanned by the columns of P; a contradiction. Exactly the same argument shows that
no more columns can be added in A| and A».

Moreover, we can increase r from two to arbitrary to get P from P”. The leaves

X0, - - ., A2 stay untouched, we add new columns in leaves A3, ..., A,. First we have
lij = 1,n; > 2fori > 3 due to log-terminality and irredundancy. Second, by the same
argument as above for Ag, ..., A2, we have n; < 2. Thus n; = 2 holds for i > 3. So

A; fori > 3 must have the same structure as A, with two columns ¢; and e; + 0;2¢y41.
Here 0,5 € Z- is arbitrary and e¢; denotes the j-th basis vector. The distances 0;
between v;1 and v;p for 0 < i < r and in consequence between wi and w» may vary.
Nevertheless, all polytopes d A (A;) are subsets of polytopes of the second type of
Proposition 7.2 as also the following exemplary picture shows:

3A% (20) vo1 V02 Vi1 Vi2 A% ()
o 0ASM)
3AS, () ~o wy wy ¥
X w Wy
IAS, (.
xC) vy V2
i=>2

So for any P of this form, there are no integral points in the relative interior of 9 A§.
Furthermore, as we have seen above, no more columns can be added in any leaf. In
total, we get the series (9) of defining matrices P of compound du Val singularities.

Case 2: We have k1 > 2. Recall that we have P” of shape (6) with 99; = 0. Let
X1, ..., x4 be the standard coordinates on the column space Q4 of P”. Consider the
line segments 0 A%, (1) and

L(),X” = aAg(u()\()) N {xl =x) = _5}’
Ll,X” = 8A§(//()L1) N {xl = CX — 5,)52 — 0}

Let wi, wy denote the vertices of 8A§(,, (L). Moreover, let w1, wgy be the vertices of
Lo x» and w11, w12 the vertices of L1 x». Then we have

011(kosxr +68) 1
w; =100 ——M, — |,
Cxr(ky + ko) Cxr
Wy = w1 + 0 (kotxr + 8)(kisxr — 6) o
¢xr (ki + ko) v

O11kolxr 1 —
w1 = _89 _8’ ) )
Cxn (k1 + ko) Cxr
(k1gxr — 8)ko

w2 = wo1 + DZZW e3,
1
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Cxrky — 8ko + ¢xrkiko — 6 1 — ud
w11 = |¢x» —46,0,01 , “,
(ki1&xn — 8) (k1 + ko) Exr
(kotx +8)(ky — 1) o
k1 + ko '

w12 = w11 + 022

Since there must be no integral point in the relative interior of the line segments Lo x~
and L x~, we at least require
(kilxr — 8)ko (kosx» +8) (ki — 1)
022 <

0pyp———— < 1, < 1. 8
2k + ko k1 + ko ®

These inequalities will be observed in the following different cases.

Case 2.1: We have ko = 0. Here, the inequalities (8) ease to 0228 (k1 — 1)/ k1 < 1. We
distinguish between § = 1 and § > 1.

Case 2.1.1: We have § = 1. Here the matrix P” is redundant. So any matrix P with
such submatrix must have an additional column in Ag. We move on to a matrix P also
containing this additional column. Such matrix is of the form

1 =1 kigx—10 0

| -1 -1 01 1
0 o2 011 0 922
0 O ki O O

where we can assume 99y > 0. But here the length of the line segment L; x is

(02 +002) (k1 — 1)
kq ’

which is less or equal to one—which must hold if it does not contain an integral
point—only for 09y = 022 = 1 and k; = 2. Thus by adding multiples of the last to
the penultimate row, we can assume that 911 equals one or zero. If 911 = 1, then the
line segment L x has the vertices

2ex +1 2cx +1
- 1,0, , 1, -1,0, 1,1).
(“ by —2 ) (“ b —2 " )

So it contains an integer point in its relative interior, since (2¢x + 1)/(4¢x — 2) is not
integral. If 917 = O, then L yx has the vertices

(¢x—1,0,0,1), ¢x—1,0,1,1)

and thus contains no integer points. Since L7 y is the only subset of dAS° that may
contain integer points, we get the series of defining matrices (13e) with arbitrary ¢x
from this.

Such P cannot again be the submatrix of a non-Q-factorial matrix with possibly
larger r. This is because for any additional columnin Ag, . .., A, theline segment L1 x
would be stretched and then contain one its the former integral vertices (¢{x—1, 0, 0, 1)
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and (¢x — 1,0, 1, 1). The same holds for additional leaves, which by irredundancy
must contain at least two columns and also would lead to a stretching of L x.

Case 2.1.2: We have § > 1. Here 0206 (k; — 1)/ k1 > 2(k1 — 1)/ k1 holds. Thus (8) is
fulfilled only for k; = § = 2 and 02> = 1. Moreover {x» must be odd since lp; = 2 is
even. Also u = (¢x» + 1)/2 holds, i.e. we have the matrix

—2 2x» =200
v | —2 011
P = 0 011 01
—1 Zx7 0 0

By admissible operations, again 011 can be assumed to be equal to zero or one. For
011 = 1, the line segment L x~ has the vertices

Exr —1 &xr —1 {xr — 1 txr — 1
”_2507 [ ) ”_2709 17 ’
GX tx—2 2 tx o —2 " 2

which have an integer point inbetween due to ({x» — 1)/({x» — 2) not being integral.
In case 011 equals zero, the segment L x» has the vertices

{xr —1 {xr —1
. —2.0.0, , ,=2,0,1, :
(Cx > ) (Cx >

Since again L‘f) 18 the only subset of 9AS,° that may contain integer points, we get
a compound du Val series with defining matrices (13-0) and odd ¢y~. With exactly the
same argument as in Case 2.1.1, these matrices cannot serve as submatrices for other
compound du Val defining matrices.

Case 2.2: We have ko > 1. Here, the first inequality of (8) leads to

ki
1<k ——m8M8M8M8M8 — 0>k n—1)—8—1. 9
0 Nler —3—1 =5 1(¢x ) 9

Case 2.2.1: We have k; > 3. Remembering § < {y», we in total require § < {yx» <
(6 + 4)/3 from the above inequality (9), leading to 1 = § < ¢ < 5/3. This gives a
contradiction, since ¢y~ is integral.

Case 2.2.2: We have k1 = 2. The inequality (9) gives § < ¢x» < (8§ + 3)/2 here,
leading to § < 3. While § = 2 leads to ¢{x» < 5/2, which contradicts § < ¢y,
the case § = 1 allows {x» = 2. The first inequality of (8) can only be fulfilled for
02 = ko = 1 here. Furthermore, ;# = 1 must hold and inserting everything in (6), we
get a defining matrix

-3 300
, =3 o011
P = 001101
-1 200
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Here in a first step, by admissible operations we can assume 017 € {0,1,2}. In a
second step, the vertices

2 2
w11=(1,0,011§,1), w12=<1,0,011§+1,1)

of the line segment L x~ are integer only for 011 = 0. Exactly the same holds for
Lo, x». So in this case, P” itself gives the compound du Val defining matrix (14). By
the same arguments as in Case 2.1.1, these matrix cannot serve as submatrix for other
compound du Val defining matrices. O

We now provide the necessary input for establishing the defining equation in C* of
our compound du Val singularities. Recall that the Cox ring R(X) of X = X (A, P) is
determined by the defining data, where generators and relations are read off directly
and the degree matrix Q of R(X), listing the generator degrees in C1(X) = K, needs
to be computed.

Proposition 8.5 Consider X = X (A, P) as in case (9) of Proposition 8.4 with the
defining matrix P and the parameters therein. As indicated there, we have four sub-

cases. k C—koo_
k 011
(Oa) P = 0 000 |
l—é‘uk 1—§Mk+MOO_
C —k fx—kO0 0---0 07
—k 01 1 0 0
%b) P = ' ' ) ,
—k 00 O 1 1
0 000 --- 00,
1—pk 1—pk
L 7 o +u 0 0 0 0 |
r —k Ix — k tx—k0 0---0 07
—k 0 01 1 0 0
Oc) P = ’ ’ ’ ’ ,
—k 0 00 O 1 1
0 0 0100 --- 00,
1—pk 1—pk 1—uk
L & o TH & +u0 0---0 0]
-~k —k x—k (x—kO 0--0 07
-k —k 0 01 1 0 0
9d) P = : : : : .
-k -k 0 00 O 11
0 00 0 0100 --- 00,
1—pk 1—pk 1—uk 1—uk
L ox tx & TH g tr0 00 0]
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According to these subcases, the divisor class group C1(X) and the degree matrix Q
of the Cox ring R(X) are given as follows:

(9a) one has C1(X) = Z/3Z and Q = [00T1 =11,
(9b) with 0 := gcd(07, ..., 0;) and integers o; such that or0y + --- + 0, = 0
holds, one has C1(X) = Z" 2 x Z/0Z and

00 —03 03 0 —0p 0 0

0= R - ’
-0, 0, O 0 0 —0p
00 -m @~ @& - ~& &

(9c) with 0 := gcd(0y, ..., 0,) and integers o; such that €101 + -+ + &0, = 0
holds, one has C1(X) = Z/"~' x Z/3Z and

0 0 —00 —01 0

—03 03 02 —02 0 0

0= L 3 :
-0, 0, O 0 0 —0
0 —oy af —op ap —@3 @3 -+ —0 O

(9d) with 0 := gcd (0o, ..., 0;) and integers o; such that oagdg + --- + 0, = 0
holds, one has C1(X) = Z" x Z/0Z and

2, -0, O 0 —09 09 T
0 0 02 —02 —01 0q
—03 03 07 —0p 0 0
Q= Do )
-0, 0, O 0 02 —02
| —%) @y —op o] —op 0y —03 o3 - —0Op O |

Proof Let P* be the transpose of P. Then we have C1(X) = Z"™/im(P*) and
Q: Z"™ — 77" /im (P*) is the projection, see Construction 2.2. To describe C1(X)
and Q explicitly, choose unimodular matrices V and W such that S := V- P*- W is in
Smith Normal Form, let 8y, ..., B, denote the elementary divisors and 8 the number
of zero rows of S. Then

ClX)=72PZ/BIZ® - ®Z/B, L.

Moreover, the matrix Q is basically the stack of the last v 4+ 8 rows of V. Now, we
elaborate this explicitly for case (9d). Set x1 := (kpw — 1)/¢x — p and k2 = {x — k.
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Then
e 0 =5 00 kg 0 kg 0 - kg 0 T
3%
1 0
1 0
10 E. 00
V = K 0 k 0 kip O kip 0 - kip 0 W = 001
0 -0 0 0 —99 9 ’
0 0 0 —0p —01 04 010
—03 03 07 —0p 0 0
-0, 0, O 0 9 -0
L —ap oy —op @ —o0p ap —a3 o3 - —Qp Op

are both unimodular matrices and turn the matrix P* into Smith Normal Form: we
have

Er+10
V-P*W = 0 9o
0 0

This proves the assertion for case (9d). The other cases run similarly and will be
presented elsewhere. O

Proposition 8.6 Consider X = X (A, P) with the defining matrix P and the param-
eters therein as in Propositions 7.2, 8.1, 8.3 and 8.4, except case 8.4(9). Then the
divisor class group C1(X) and the degree matrix Q of the Cox ring R(X) are given as
follows.

P ClL(X) 0

7.2(1) 7. kZ. [TOk—1]

7.2(2) ZxZ/KZ ko —ki —k k_l}
| —o] —op o) a2

k = ged(ky, k) arky +axky =k

(101

12(3) Z)27x7]27 5 TT]

8.1(4) 1010

& even 7)27.x7.)27. 5 TTG}

8.1(4) o

k odd Z/AZ [2130]

8.1(5-e) 7.)27. [0k+1kT1]
0101

8.1(5-0) 7)22.x7.)22 [6 1o 6}

8.1(6) 7.)37 [1200]
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P Cl1(X) 0
8.1(7) 7.)27. [T0O10]
8.1(8) {0} —
8.3(10-¢) Z [01—-2-12]
8.1(10-0) {0} —
8.1(11) 727 [0101]
8.1 (12-e-¢) 1010

Ky even LI2LX T[22 [6 01 T]
8.1 (12-¢e-¢) — =

k1 odd 7./AZ, [2031]
8.1 (12-0-¢/0) 727 [TO0T]

01—-1-11

8.4(13-e) Z.x7)27 15 1 6}
8.4(13-0) 7.)27. [1100]
8.4(14) 7.)37 [1200]
8.1(15, 17, 18) (0} —
8.1(16) 7.)27. [T00T1]

Proof The arguing is the same as for Proposition 8.5 and will be explicitly presented
elsewhere. Note that the cases without parameters can easily be settled by computer,
e.g. using [19]. O

Proof of Theorem 1.8 Propositions 7.2, 8.1, 8.3 and 8.4 provide us with the defining
matrices P of the compound du Val threefold singularities X of complexity one. This
gives in particular their Cox rings R(X) = R(A, P). The grading of the Cox ring by
CI(X) = K is given by the degree matrices Q provided in Propositions 8.5 and 8.6. We
have X = Spec R(A, P) and will obtain the describing equation for X € C* from a
suitable presentation of the degree zero part R(A, P)o of R(A, P) by generators and
relations.

We exemplarily carry this procedure out for case (9d) from Proposition 8.5. A
glance at the degree matrix Q given in Proposition 8.5 (9d) shows that the following
monomials are of K-degree zero:

. 00 0 00 0
xi=TnTp, i=0,...,r, Xr4+1 = TQ]"'Tr]r, Xr42 = TOQ"‘Trzr-

Obviously, any monomial £ in the 7;; is a product of powers of x, ..., x,42 and
a monomial 4" depending of at most one variable 7;; per i and at most on r — 1
variables in total. By the shape of Q, such a monomial 4’ is of degree zero if and only
if it is constant. We conclude that xo, .. ., x,42 generate R(A, P)o. Now consider the
morphism
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T:C"—>C 2 (0@), . x42(2).

Then X = Spec R(A, P)o is the image of X = Spec R(A, P) under 7. We claim that
X = 7(X) € C"*3 is contained in the zero set of the polynomials

0 0
Xrp1Xr42 — X e X0,
—k —k
X+ xf T x x] T 4 20 4 s,
X2+ 3x3+x4, ooy X2+ (= Dxpog + X

Indeed, the first polynomial is an obvious relation between the x; and the remaining
ones pull back via w to the Cox ring relations given by the matrix P. The above
relations allow elimination of variables x3, ..., x,: starting with the last relation, we
successively plug these into the first one and arrive at

.

2.0 k C—kn\D;

Xrp1Xrg2 — Xy X! H(aixo + bix] ) ‘
i=2

where we can by a suitable coordinate change achieve thata; =i — 1 and b; = 2i — 3
hold for all i = 2,...,r. Thus, X can be realized as a closed subset inside the
hypersurface X’ € C* defined by the above polynomial. As the latter is irreducible,
we conclude X = X’, which proves the assertion in case (9d).

For the other non-factorial compound du Val singularities, one argues analogously;
we present this elsewhere. In the cases (9a), (9b) and (9c), we obtain the following
invariants x; and relations among them:

Invariant monomials .
Case Relations among x;
X0y .oy Xy

X0X1] — xzt‘

9a) TO, T2, To1T», Tor, T _
(9a) 210 Try, To1 T2, To1, Thi x§+x§ 4

02 0,
Xr+1Xr42 — Xp 70 - = Xy

k -k
(9b) To1, T, 11T, ..., T Tra, Xo X +x
02 [y 02 0, .
Ly T\ . Ty~ T,y :
X2+ (r = Dxp—1 + %
01 0,
Xr+1Xr42 — )21 e Xy
k [
To1, Ti1Th2, T Tn2, ..., Tr1 T2, Xo +x; T+ x2
9¢) IO . T T .
VARSI S DI )

Xr—2+ (0 —Dxp1 +x;

For the cases different from (9), we list the relevant data in the following table; note
that the cases without parameters can be settled by computer, e.g., using [19]:
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Case Relations in R(X) Invar;aint mor;omlals Relations among x;
s ey Ay
() TH T8, T3, b xixp — xh
ki ko ki ko
T, ' T5°, T, T, k
2 1 L2 A3 dyn — 2
@ T3, Ty 12 x3 4
3) N1, T2, T2, T2 x% — xox3x4
T¢ + T2 + T2 2 2 2 — X2X3X4
1 2 3
4) & ecen nh'DI:, T, 1;, T, Ty k) 4oxs s
X1X2 —x
k—1)/2
w AT B s nienssd
k odd T, TL Ty <" D2 s+ x1 +x2
(k+1)/2 + x3 4+ x4
2
5-¢ T 4 12 4 72 T2, T2, TrTs, Ty, T F1X2 = A3
( ) 1 2 3 4 2 214, L1, L3 2k+1+xg+x2
2
5-0 TF + T2 + T2 TT3Ty, T2, T2, T2, Ty 1~ 25
(5-0) 1 2 3 2342341x§+x2+x3
3 3 2 3 3 X1X2 —x3
(6) Tl +T2 +T3 Tl,T27T1T21 T3, T4 X1+X2+X4
2
4 3 2 2 2 x1x2—x3
(7) Tl +T2 +T3 T15T3,T1T3a T, 14 xl +x4+x2
2 2 2
] k 2 2 313, T Ts, X1X2 — X3X4
(10-¢) I+ L5+ 1T DTy, T3Ts, Ty xE x4+
2
11 T + T2T5 + T2 T2, T2, T, T4, Ty, T X273
(11) 1+23+4 o Ly, 1214, 17, L3 X§+X]X5+X2
(12-e-¢) TP + 12 4+ 12 T T Te T2 T2. T2 T X7 — x2x3%x4
ki even 14344, L5 L3, Ly, 12 k1/2 k2+X3+X4
X1X3 — xgL
Tkl Tk2 + T2 + T2 T34, T44, T32T1, T42T1, (k /2 kzx + x2 +X5
(12-e-e) 2 3 4 2 (k /2 i
ki odd BT, 17, T Xq x72x4 + X1 + x5
(k+1)/2 k2+x3+x4
2k r2ka+1 2 2 2 2 X1X2 —x3
12-0-e/0) T ' T;™ T. T T, T7, Th14, T, T
(12-0-e/0) T;"'T, + I3+ 17 17,1, 114, 12, 13 xk12k2+1+x5+x2
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Invariant monomials

Case Relations in R(X) Relations among x;

Xlyevny Xy

X3X4 — X5X6X7
X1X2 — xéx%

T2T2, T2T2, T\ T> T xg_xsxl
(13-e)  TE '+ T3 + TuTs Foa T’Tl "’T3T Xj — X5x2
14415, , 4214, 1315 x§+X3+X4
x§71X3 + x1 + x6x7
x§—1x4 + X2 + xgx7
2
_ X1X2 — X
(13-0) TEZ?+ T2+ 13Ty T2 TE T, T3, Ty (T
X{  + X2+ x4x5
3
3 3 3 3 X1X2 — X3
(14) 7+ T + 3Ty 0,1, T, T3, 1y Xaxs 4 x1 + 10
2
(16)  T{ 4 T2T; + T} T2, T2, T\ Ty, T, Ts 1142 = X3

x% + x})@ =+ X7

Proof of Theorem 1.9 Theorem 1.8 gives us all compound du Val singularities of com-
plexity one. The respective Cox rings finally can be computed using Remark 6.7. O

Acknowledgements We would like thank the referee for carefully reading the manuscript and for many
helpful remarks.
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