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Abstract Looking at the well understood case of log terminal surface singularities,
one observes that each of them is the quotient of a factorial one by a finite solvable
group. The derived series of this group reflects an iteration of Cox rings of surface
singularities. We extend this picture to log terminal singularities in any dimension
coming with a torus action of complexity one. In this setting, the previously finite
groups become solvable torus extensions. As explicit examples, we investigate com-
pound du Val threefold singularities. We give a complete classification and exhibit all
the possible chains of iterated Cox rings.
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1 Introduction

We begin with a brief discussion of the well-known surface case [2,7,13]. The two-
dimensional log terminal singularities are exactly the quotient singularities C

2/G,
where G is a finite subgroup of the general linear group GL(2). The particular case
that G is a subgroup of SL(2) leads to the du Val singularities An, Dn, E6, E7 and E8,
named according to their resolution graphs. They are precisely the rational double
points, and are also characterized by being the canonical surface singularities. The du
Val singularities fill the middle row of the following commutative diagram involving
all two-dimensional log terminal singularities:

C
2

CR

E8 An
CR

n odd

Dn+3
CR

n=1
n=1

E6
CR

E7

Eı
8 Aı

n,k D2,ı
(n+3)/2 Dı

n+3 E3,ı
6 Eı

6 Eı
7.

Here, all arrows indicate quotients by finite groups. The label “CR” tells us that this
quotient represents a Cox ring of a du Val surface singularity; recall that the Cox rings
of (the resolutions of) these have been computed in [12,15], see also the example given
below. So, E6 is the spectrum of the Cox ring of E7 etc. In fact, the chain of Cox rings
reflects the derived series of the binary octahedral group ˜S4 ⊆ SL(2), producing the
E7 singularity:

˜S4 ⊇ ˜A4 ⊇ ˜D4 ⊇ {±I2} ⊇ {I2},

where ˜A4 is the binary tetrahedral group, ˜D4 the binary dihedral group, and I2 stands
for the 2×2 unit matrix. The respective CR labelled arrows stand for quotients by
the factors of this derived series. The arrows passing from the middle to the lower
row indicate index-one covers: the upper surface is Gorenstein, one divides by a
cyclic group of order ı and the lower surface is of Gorenstein index ı . Finally, the
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244 I. Arzhantsev et al.

superscripts 2 in D2,ı
(n+3)/2 and 3 in E3,ı

6 denote the “canonical multiplicity” of the
singularity, generalizing the “exponent” discussed in [11,14]; see 4.2. For a discussion
of the surface case, including the determination of all Cox rings, based on the methods
provided in this article, see Example 4.8.

Another feature of the log terminal surface singularities is that, as quotients C
2/G

by a finite subgroup G ⊆ GL(2), they all come with a non-trivial C
∗-action, induced

by scalar multiplication on C
2. The higher dimensional analogue of C

∗-surfaces are
T -varieties X of complexity one, that means varieties X with an effective action of an
algebraic torus T which is of dimension one less than X . The notion of log terminality
is defined in general via discrepancies in the ramification formula; see Sect. 3 for a
brief reminder. In higher dimensions, log terminal singularities form a larger class
than the quotient singularities C

n/G with G a finite subgroup of GL(n). Our aim
is, however, to extend the picture drawn at the beginning for the surface case to log
terminal singularities with a torus action of complexity one in any dimension.

We use the Cox ring based approach developed in [20–22]. Recall that the Cox
ring of a normal variety X with finitely generated divisor class group Cl(X) and only
constant globally invertible functions is

R(X) ..=
⊕

Cl(X)

�(X,OX (D)),

where we refer to [3] for the necessary background. If X comes with a torus action
of complexity one, then the Cox ring R(X) admits an explicit description in terms of
generators and very specific trinomial relations. Vice versa, one can abstractly write
down all rings that arise as the Cox ring of some T -variety X of complexity one. Let
us briefly summarize the procedure; see Sect. 2 and [20,22] for the details.

Construction 1.1 Fix integers m � 0, ι ∈ {0, 1} and r, n > 0 and a partition n =
nι+· · ·+nr . For every i = ι, . . . , r let li ..= (li1, . . . , lini ) ∈ Z

ni
>0 with li1 � · · · � lini

and lι1 � · · · � lr1 and define a monomial

T li
i

..= T li1
i1 · · · T lini

ini
.

Denote the polynomial ring C[Ti j , Sk; i = ι, . . . , r, j = 1, . . . , ni , k = 1, . . . ,m ]
for short by C[Ti j , Sk]. We distinguish two types of rings:

Type 1. Take ι = 1 and pairwise different scalars θ1 = 1, θ2, . . . , θr−1 ∈ C
∗ and

define for each i = 1, . . . , r − 1 a trinomial

gi ..= T li
i − T li+1

i+1 − θi .

Then we obtain a factor ring

R = C[Ti j , Sk]/〈g1, . . . , gr−1〉.
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Type 2. Take ι = 0 and pairwise different scalars θ0 = 1, θ1, . . . , θr−2 ∈ C
∗ and

define for each i = 0, . . . , r − 2 a trinomial

gi ..= θi T
li
i + T li+1

i+1 + T li+2
i+2 .

Then we obtain a factor ring

R = C[Ti j , Sk]/〈g0, . . . , gr−2〉.

As we explain later, the rings R come with a natural grading by a finitely generated
abelian group K0 and suitable downgradings K0 → K give us Cox rings of rational,
normal varieties X with Cl(X) = K that come with a torus action of complexity one.
More geometrically, X arises as a quotient of an open set ̂X ⊆ X of the total coordinate
space X = Spec R by the quasitorus H having K as its character group. Conversely,
basically every rational, normal variety X with a torus action of complexity one can
be presented this way.

Geometrically speaking,Type1 leads to theT -varieties of complexity one that admit
non-constant global invariant functions andType 2 to those having only constant global
invariant functions, or, equivalently, having an attractive fixed point. The varieties of
Type 1 turn out to be locally isomorphic to toric varieties. In particular, they are
all log terminal and the study of their singularities is essentially toric geometry, see
Corollary 3.5 for a precise formulation. We therefore mainly concentrate on Type 2.
There, the true non-toric phenomena occur, as for instance the singularities Dn, E6, E7
and E8 in the surface case.

Characterizing log terminality for a T -variety of complexity one of Type 2 involves
platonic triples, that means, triples of the form

(5, 3, 2), (4, 3, 2), (3, 3, 2), (x, 2, 2), (x, y, 1),

where x � y ∈ Z�1. We say that positive integers a0, . . . , ar form a platonic tuple
if, after reordering decreasingly, the first three numbers are a platonic triple and all
others equal one. Moreover, in the setting of Construction 1.1, we say that a ring R of
Type 2 is platonic if every (l0 j0 , . . . , lr jr ) is a platonic tuple.

Example 1.2 The platonic rings of Type 2 in dimension two are the polynomial ring
C[T1, T2] and the factor rings C[T1, T2, T3]/〈 f 〉, where f is one of

T y
1 + T 2

2 + T 2
3 , y ∈ Z>1, T 3

1 + T 3
2 + T 2

3 , T 4
1 + T 3

2 + T 2
3 , T 5

1 + T 3
2 + T 2

3 .

Endowed with a suitable grading, C[T1, T2] is the Cox ring of An , and the other rings,
according to the above order of listing, of Dy−2, E6, E7 and E8.

Our first result says that a rational, normal variety X with a torus action of complexity
one of Type 2 has at most log terminal singularities if and only if there occur enough
platonic tuples (l0 j0 , . . . , lrnr ) in the Cox ring R; see Theorem 3.13 for the precise
meaningof “enough”. In the affine case, the result specializes to the following; compare
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246 I. Arzhantsev et al.

also [16, Example 2.20] for an earlier result in a particular case and [25, Corollary 5.8]
for a related characterization.

Theorem 1.3 An affine, normal, Q-Gorenstein, rational variety X with torus action
of complexity one of Type 2 has at most log terminal singularities if and only if its Cox
ring R is a platonic ring.

Set for themoment li ..= gcd(li1, . . . , lini ). Then, by [22], a ring R ofType 1 is factorial
if and only if li = 1 holds for all i = 1, . . . , r . Moreover, a ring R of Type 2 is factorial
if and only if the li are pairwise coprime for i = 0, . . . , r , see [20, Theorem 1.1].

Example 1.4 In dimension two, the factorial platonic rings R of Type 2 are the poly-
nomial ring C[T1, T2] and the ring C[T1, T2, T3]/〈T 5

1 + T 3
2 + T 2

3 〉.
To extend the iteration of Cox rings C

2 → A1 → D4 → E6 → E7 observed in
the surface case to higher dimensions, we have to allow instead of only finite abelian
groups also non-finite abelian groups in the respective quotients.

Theorem 1.5 Let X1 be a rational, normal, affine variety with a torus action of com-
plexity one of Type 2 and at most log terminal singularities. Then there is a unique
chain of quotients

Xp
//Hp−1

Xp−1
//Hp−2 · · · //H3

X3
//H2

X2
//H1

X1,

where Xi = Spec Ri holds with a platonic ring Ri for i � 2, the ring Rp is factorial
and each Xi → Xi−1 is the total coordinate space.

Note that iteration of Cox rings requires in each step finite generation of the divisor
class group Cl(X) of the total coordinate space of X . The latter merely means that
the curve Y with function field C(X)H

0
0 is of genus zero, where H0

0 ⊆ H0 is the
unit component of the quasitorus H0 with character group Cl(X). In Theorem 5.3, we
establish a formula for the genus of Y in terms of the entries li j of the defining matrix
P of R = R(X), generalizing the case of C

∗-surfaces settled in [28, Proposition 3,
p. 64]. This allows us to conclude that for log terminal affine X , the total coordinate
space is always rational. Together with the fact that the total coordinate space of a log
terminal affine X is canonical, see Proposition 5.1, we obtain that Cox ring iteration
is possible in the log terminal case; see Remark 5.12 for a discussion of a non log
terminal example with rational Cox ring. The final step in proving Theorem 1.5 is
to show that the Cox ring iteration even stops after finitely many steps. For this, we
compute explicitly in Proposition 6.6 the equations of the iterated Cox ring. It seems
to be interesting to study Cox ring iteration also more generally; note that aQ-factorial
variety has a log terminal Cox ring if and only if it is log Fano [8,18].

The next result shows that, in a large sense, the log terminal singularities with torus
action of complexity one still can be regarded as quotient singularities: the affine plane
C
2 and the finite group G ⊆ GL(2) of the surface case have to be replaced with a

factorial affine T -variety of complexity one and a solvable reductive group.

Theorem 1.6 Let X be a rational, normal, affine variety of Type 2 with a torus action
of complexity one and at most log terminal singularities.

123



Log terminal singularities, platonic tuples and iteration of Cox rings 247

• X is a quotient X = X ′//G of a factorial affine variety X ′ ..= Spec R′ by a solvable
reductive group G, where R′ is a factorial platonic ring.

• The presentation of Theorem 1.5 is regained by Hi
..= G(i−1)/G(i) and Xi

..=
X ′/G(i−1), where G(i) is the i-th derived subgroup of G.

Example 1.7 Every log terminal affine C
∗-surface is a quotient of C

2 or the E8-
singular surface V (T 5

1 + T 3
2 + T 2

3 ) ⊆ C
3 by a finite solvable group.

A natural three-dimensional generalization of duVal singularities are the compound du
Val singularities, introduced in [29]: these are normal, canonical Gorenstein threefold
singularities x ∈ X such that a general hypersurface section through x has a du Val
(surface) singularity at x . The isolated compound du Val singularities are precisely the
terminal Gorenstein singularities. If a threefold X admits at most compound du Val
singularities, then, for a given singular point x ∈ X , we have possible one-dimensional
irreducible componentsC1, . . . ,Cr of the singular locus that contain x . The compound
du Val singularity type (cDV-type) of x is denoted by S(x1), . . . , S(xr ) → cS(x),
where S(xi ) stands for the type of the du Val surface singularity obtained by a general
hypersurface section through a general point of xi ∈ Ci and S(x) for that through x ;
the c just indicates compound du Val. The following result goes one step beyond the
known [10] case of toric compound du Val singularities.

Theorem 1.8 The following table provides the equations for the affine threefolds with
at most compound du Val singularities which are toric (nos. 1–3) or non-toric with a
torus action of complexity one of Type 2 (nos. 4–18).

No. cDV-type Equation in C
4

1 Al×C T1T2 + T l+1
3

2 Al1−1, Al2−1 → cAl1+l2−1 T1T2 + T l1
3 T l2

4

3 A1, A1, A1 → cD4 T 2
1 + T2T3T4

4 Dl+3×C T 2
1 + T 2

2 T3 + T l+2
3

5 A1, Al−1 → cDl+4 T 2
1 + T 2

2 T3 + T3T
l+2
4

6 E6×C T 2
1 + T 3

2 + T 4
3

7 E7×C T 2
1 + T 3

2 + T2T 3
3

8 E8×C T 2
1 + T 3

2 + T 5
3

9a Al−1 → cAL
T1T2 + (T L1+1

3 + T
L2+1
4

)l
,

L = min(L1 + 1, L2 + 1)l − 1

9b Alj−1 → cAL
T1T2 +∏r−1

j=1

(

jT
L1+1
3 + (2 j − 1)T L2+1

4
)l j,

L = min(Li + 1)
∑

l j − 1

9c AL3−1, Alj−1 → cAL
T1T2 + T

L3
3
∏r−1

j=1

(

jT
L1
3 + (2 j − 1)T L2+1

4
)l j,

L = min
(

L3 + L1
∑

l j − 1, L2
∑

l j − 1
)
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248 I. Arzhantsev et al.

No. cDV-type Equation in C
4

9d AL3−1, AL4−1, Alj−1 → cAL
T1T2 + T

L3
3 T

L4
4
∏r−1

j=1

(

jT
L1
3 + (2 j − 1)T L2

4
)l j,

L = mink=3,4
(

Lk + lk−2
∑

l j − 1
)

10 Al+1 → cDl+3 T 2
1 + T 2

2 T3 + T l+2
4

11 A2l+1 → cD2l+2 T 2
1 + T 2

2 T3 + T2T
l+1
4

12 Al2−1, Dl1+2 → cDl1+l2+2 T 2
1 + T 2

2 T3 + T l1+1
3 T l2

4

13 A1, A1 → cDl+3 T 2
1 + T2T3T4 + T l+2

4

14 A1, A1, A2 → cE6 T 2
1 + T 3

2 + T 2
3 T

2
4

15 D4 → cE6, cE7 T 2
1 + T 3

2 + T 3
3 T4

16 A1, D4 → cE7 T 2
1 + T 3

2 + T2T3T 2
4

17 A2, D4 → cE8 T 2
1 + T 3

2 + T 2
3 T

3
4

18 E6 → cE8 T 2
1 + T 3

2 + T3T 4
4

Here, parameters are integers greater than zero with the exponents containing L1, L2
in nos. 9a to 9d being coprime, A0 means that there is no singularity and Dl ∼= Al for
l � 3.

The defining data as toric or T -varieties of complexity one for the varieties listed in
Theorem 1.8 are provided in Sect. 7. Finally, we study the possible Cox ring iterations
of the compound du Val singularities.

Theorem 1.9 For the singularities from Theorem 1.8, one has the following Cox
ring iterations; the respective total coordinate spaces are indicated by the downward
arrows:

C
3

C
4 (10-o) X1 X2 X3 X4 X5 (9al=1)

(3) (1) (2) (11-o) (10-e) (13-e) (9b) (9c) (9d) (9al�2)

(5) (4) (12) (11-e) (16) (13-o) (14)

(6)

(7)

Here 10-e (10-o) denotes the singularity 10 with even (odd) parameter; similarly in
the other cases. Moreover with the respective parameters from Theorem 1.8:

X1 = V
(

T 2
1 T2 + T 2

3 T4 + T (l+2)/2
5

)

, X2 = V
(

T1T2 + T3T4 + T l−1
5

)

,
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X5 = V
(

T L1
1 T L1

2 + T L2
3 T L2

4 + T5T6, T
L2
3 T L2

4 + 2T5T6 + T7T8,

T5T6 + 3T7T8 + T9T10, . . . ,

T2r−3T2r−2 + (r − 1)T2r−1T2r + T2r+1T2r+2
)

.

To obtain X4, set T4 = 1 and for X3 in addition T2 = 1 in the equations of X5. The
singularities 8, 15, 17 and 18 are factorial.

The varieties X1, . . . , X5 in Theorem 1.9 are of dimension four or higher. They enjoy
a generalized compound du Val property in the sense that the hyperplane section
Xi∩V (T4−T3)has atmost canonical singularities. For instance, for X2, the hyperplane
section gives a compound duVal singularity of Type 9a. The compositionC

3 → (1) →
(5) is a quotient by the dihedral group D2l+4, which is not a subgroup of SL(2).

2 Rational varieties with torus action of complexity one

We recall the basic concepts and facts on normal rational T -varieties X of complexity
one, i.e., the variety X is endowed with an effective action T ×X → X of an algebraic
torus T such that dim(T ) = dim(X) − 1 holds. We work over the field C of complex
numbers. For the proofs and full details, we refer to [3,20–22].

The approach follows the general philosophy behind [3, Chapter 3]: one starts with
a Cox ring R = R(X) and then obtains X as a quotient X = ̂X//H of an open subset
̂X ⊆ X of the total coordinate space X = Spec R by the action of the characteristic
quasitorus H = SpecC[K ], where K ∼= Cl(X) is the divisor class group of X . The
quotient map ̂X → X is called the characteristic space over X . In our concrete case
of T -varieties of complexity one, the total coordinate space X will be acted on by
a larger quasitorus H0 = SpecC[K0] containing the characteristic quasitorus H as
a closed subgroup and the torus action on X = ̂X//H will be the induced action of
T = H0/H .

Ourfirst step provides K0-graded rings R,which after suitable downgradingbecome
prospective Cox rings of our T -varieties. The construction depends on continuous data
A and discrete data P0 introduced below. There are two types of input data (A, P0):
for Type 1, we will have the affine line as a generic quotient of the action of H0 on X
and Type 2 will lead to the projective line.

Construction 2.1 Fix integers r, n > 0, m � 0 and a partition n = nι + · · · + nr
starting at ι ∈ {0, 1}. For each ι � i � r , fix a tuple li ∈ Z

ni
>0 and define a monomial

T li
i

..= T li1
i1 · · · T lini

ini
∈ C[Ti j , Sk; ι � i � r, 1 � j � ni , 1 � k � m ].

We will also write C[Ti j , Sk] for the above polynomial ring. We distinguish two
settings for the input data A and P0 of the graded C-algebra R(A, P0).

Type 1. Take ι = 1. Let A ..= (a1, . . . , ar ) be a list of pairwise different elements of C.
Set I ..= {1, . . . , r − 1} and define for every i ∈ I a polynomial

gi ..= T li
i − T li+1

i+1 − (ai+1 − ai ) ∈ C[Ti j , Sk].
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We build up an r×(n+m) matrix from the exponent vectors l1, . . . , lr of these poly-
nomials:

P0 ..=
⎡

⎢

⎣

l1 0 0 · · · 0
...

. . .
...

...
...

0 lr 0 · · · 0

⎤

⎥

⎦
.

Type 2. Take ι = 0. Let A ..= (a0, . . . , ar ) be a 2×(r+1)-matrix with pairwise
linearly independent columns ai ∈ C

2. Set I ..= {0, . . . , r − 2} and for every i ∈ I
define

gi ..= det

[

T li
i T li+1

i+1 T li+2
i+2

ai ai+1 ai+2

]

∈ C[Ti j , Sk].

We build up an r×(n+m) matrix from the exponent vectors l0, . . . , lr of these poly-
nomials:

P0 ..=
⎡

⎢

⎣

− l0 l1 0 0 · · · 0
...

...
. . .

...
...

...

− l0 0 lr 0 · · · 0

⎤

⎥

⎦
.

We now define the ring R(A, P0) simultaneously for both types in terms of the data
A and P0. Denote by P∗

0 the transpose of P0 and consider the projection

Q : Z
n+m → K0

..= Z
n+m/im(P∗

0 ).

Denote by ei j , ek ∈ Z
n+m the canonical basis vectors corresponding to the variables

Ti j , Sk . Define a K0-grading on C[Ti j , Sk] by setting

deg(Ti j ) ..= Q(ei j ) ∈ K0, deg(Sk) ..= Q(ek) ∈ K0.

This is the coarsest possible grading of C[Ti j , Sk] leaving the variables and the gi
homogeneous. In particular, we have a K0-graded factor algebra

R(A, P0) ..= C[Ti j , Sk]/〈gi ; i ∈ I 〉.

The C-algebra R(A, P0) just constructed is an integral normal complete intersection
of dimension n+m+1−r admitting only constant invertible homogeneous elements.
Moreover, R(A, P0) is K0-factorial in the sense that every non-zero homogeneous non-
unit is a product of K0-primes. The latter merely means that on X = Spec R(A, P0)
every H0-invariant divisor is the divisor of an H0-homogeneous rational function.
Moreover, every affine variety with a quasitorus action of complexity one having this
property and admitting only constant invertible homogeneous functions arises from
Construction 2.1, see [3, Section 4.4.2].
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In the second construction step, we introduce the downgradings K0 → K that
will turn R(A, P0) into a Cox ring. More geometrically speaking, we figure out the
possible characteristic quasitori H ⊆ H0. This is achieved by suitably enhancing the
matrix P0.

Construction 2.2 Let integers r , n = nι + · · · + nr , m and data A and P0 of Type 1
or Type 2 be as in Construction 2.1. Fix 1 � s � n + m − r , choose an integral
s×(n+m) matrix d and build the (r + s)×(n+m) stack matrix

P ..=
[

P0
d

]

.

We require the columns of P to be pairwise different primitive vectors generating
Q

r+s as a vector space. Let P∗ denote the transpose of P and consider the projection

Q : Z
n+m → K ..= Z

n+m/im(P∗).

Denoting as before by ei j , ek ∈ Z
n+m the canonical basis vectors corresponding to

the variables Ti j and Sk , we obtain a K -grading on C[Ti j , Sk] by setting

deg(Ti j ) ..= Q(ei j ) ∈ K , deg(Sk) ..= Q(ek) ∈ K .

This K -grading coarsens the K0-grading of C[Ti j , Sk] given in Construction 2.1. In
particular, we have the K -graded factor algebra

R(A, P) ..= C[Ti j , Sk]/〈gi ; i ∈ I 〉.

So, as algebras R(A, P0) and R(A, P) coincide, but the latter comes with the coarser
K -grading. Again, R(A, P) is K -factorial, i.e., for the action of H = SpecC[K ] on
X = Spec R(A, P), every H -invariant divisor is the divisor of an H -homogeneous
function.

Remark 2.3 Consider the defining matrix P of a K -graded ring R(A, P) as in Con-
struction 2.2. Write vi j = P(ei j ) and vk = P(ek) for the columns of P . The i-th
column block of P is (vi1, . . . , vini ) and by the data of this block we mean li and the
s×ni block di of d. We introduce admissible operations on P:

(i) swap two columns inside a block vi1, . . . , vini ,
(ii) exchange the data li1 , di1 and li2 , di2 of two column blocks,
(iii) add multiples of the upper r rows to one of the last s rows,
(iv) any elementary row operation among the last s rows,
(v) swapping among the last m columns.

The operations of type (iii) and (iv) do not change the associated ring R(A, P), whereas
the types (i), (ii), (v) correspond to certain renumberings of the variables of R(A, P)

keeping the (graded) isomorphy type.
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Remark 2.4 If R(A, P) is not a polynomial ring, then we can always assume that P
is irredundant in the sense that li1+ · · · + lini > 1 holds for i = 0, . . . , r . Indeed,
if P is redundant, then we have ni = 1 and li1 = 1 for some i . After an admissible
operation of type (ii), we may assume i = r . Now, erasing vr1 and the r -th row of P
and the last column from A produces new data defining a ring R(A, P) isomorphic
to the previous one. Iterating this procedure leads to an R(A, P) isomorphic to the
initial one but with irredundant P .

Remark 2.5 Construction 2.2 allows more flexibility than the simpler version pre-
sented in the introduction. However, given any R(A, P) as in Construction 2.2, we
can achieve li1 � · · · � lini for all i and lι1 � · · · � lr1 by means of admissible
operations of type (i) and (ii). Moreover, via suitable scalings of the variables Ti j , we
can turn the coefficients of the relations gi into those presented in the introduction.

The algebras R(A, P) will be our prospective Cox rings. The remaining task is to
determine the open H -invariant sets ̂X ⊆ X = Spec R(A, P) that give rise to suitable
quotients X = ̂X//H . This is done via geometric invariant theory: the respective open
sets ̂X ⊆ X are in correspondence with “bunches of cones”, certain collections �

of convex polyhedral cones in KQ
..= K ×ZQ; we refer to [3, Section 3.2.1] for a

detailed introduction.

Construction 2.6 Let R(A, P) be a K -graded ring as provided by Construction 2.2
and F = (Ti j , Sk) the canonical system of generators. Consider

H ..= SpecC[K ], X(A, P) ..= Spec R(A, P).

Then H is a quasitorus and the K -grading of R(A, P) defines an action of H on
X(A, P). Any true F-bunch � defines an H -invariant open set and a good quotient

̂X(A, P,�) ⊆ X(A, P), X (A, P,�) ..= ̂X(A, P,�)//H.

The action of H0 = SpecC[K0] leaves ̂X(A, P,�) invariant and induces an action
of the torus T = SpecC[Zs] on X (A, P,�).

Recall from [3, Theorem3.4.3.7] that the resulting variety X = X (A, P,�) is rational,
normal, admits only constant invertible functions and is of dimension n + m + 1 −
r − dim(KQ) = s + 1. Moreover, the divisor class group of X is isomorphic to K and
the Cox ring to R(A, P).

Remark 2.7 In the important cases of affine or Fano varieties X , one may evade using
the bunch of cones � due to the following observations:

• If X is affine, then ̂X(A, P,�) = X holds and we simply have X = X//H ; see
also Proposition 2.12 and the discussion thereafter.

• If X is a Fano variety, then ̂X(A, P,�) equals the set of semistable points defined
by the anticanonical class in the character group K = Cl(X) of H .

The basic result of the approach via the data A, P and � says that if X is a rational,
normal variety with a torus action of complexity one having only constant globally
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invertible functions and satisfies a certain maximality property with respect to embed-
dability into toric varieties, then X is equivariantly isomorphic to some X (A, P,�),
see [22, Theorem 1.8].

Toric embeddability is important in our subsequent considerations. More specifi-
cally, there is even a canonical embedding X → Z into a toric variety such that X
inherits many geometric properties from Z . The construction makes use of the tropical
variety of X .

Construction 2.8 Let X = X (A, P,�) be obtained fromConstruction 2.6. The trop-
ical variety of X is the fan trop(X) in Q

r+s consisting of the cones

λi
..= cone(vi1) + lin(er+1, . . . , er+s) for i = ι, . . . , r, λ ..= λι ∩ · · · ∩ λr ,

where vi j ∈ Z
r+s denote the first n columns of P and ek ∈ Z

r+s the k-th canonical
basis vector; we call λi a leaf and λ the lineality part of trop(X).

Construction 2.9 Let X = X (A, P,�) be obtained from Construction 2.6. For a
face δ0 � δ of the orthant δ ⊆ Q

n+m , let δ∗
0 � δ denote the complementary face and

call δ0 relevant if

• the relative interior of P(δ0) intersects trop(X),
• the image Q(δ∗

0) comprises a cone of �,

where Q : Z
n+m → K = Z

n+m/P∗(Zr+s) is the projection. Then we obtain fans ̂�
in Z

n+m and � in Z
r+s of pointed cones by setting

̂� ..= {δ1 � δ0; δ0 � δ relevant}, � ..= {σ � P(δ0); δ0 � δ relevant}.

The toric varieties ̂Z and Z associated with ̂� and �, respectively, and Z = C
n+m fit

into a commutative diagram of characteristic spaces and total coordinate spaces

X(A, P) ⊆

⊆

Z

⊆

̂X(A, P,�) ⊆

//H

̂Z

//H

X (A, P,�) ⊆ Z .
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The horizontal inclusions are T -equivariant closed embeddings, where T acts on
Z as the subtorus of the (r+s)-torus corresponding to 0×Z

s ⊆ Z
r+s. Moreover,

X (A, P,�) intersects every closed toric orbit of Z .

We call Z from Construction 2.9 the minimal toric ambient variety of X =
X (A, P,�). Observe that the rays of the fan � of Z have precisely the columns
of the matrix P as its primitive generators. In particular, every ray of � lies on the
tropical variety trop(X). Theminimal toric ambient variety is crucial for the resolution
of singularities. The following recipe for resolving singularities directly generalizes [3,
Theorem 3.4.4.9]; a related approach using polyhedral divisors is presented in [25].

Construction 2.10 Let X = X (A, P,�) be obtained from Construction 2.6 and
consider the canonical toric embedding X ⊆ Z and the defining fan � of Z .

• Let �′ = �
 trop(X) be the coarsest common refinement.
• Let �′′ be any regular subdivision of the fan �′.

Then�′′ → � defines a proper toricmorphism Z ′′ → Z andwith the proper transform
X ′′ ⊆ Z ′′ of X ⊆ Z , the morphism X ′′ → X is a resolution of singularities.

Remark 2.11 In the setting of Construction 2.10, the variety X ′′ has again a torus
action of complexity one and thus is of the form X ′′ = X (A′′, P ′′,�′′). We have
A′′ = A and P ′′ is obtained from P by inserting the primitive generators of�′′ as new
columns. Moreover,�′′ is the Gale dual of�′′, that means that with the corresponding
projection Q′′ and orthant δ′′ we have

�′′ = {Q′′(δ∗
0); δ0 � δ′′; P ′′(δ0) ∈ �′′}.

Proposition 2.12 Consider a variety X = X (A, P,�) of Type 2 as provided by
Construction 2.6. Then the following statements are equivalent.

(i) One has ̂X = X.
(ii) The variety X is affine.
(iii) The minimal toric ambient variety Z of X is affine.
(iv) One has ̂Z = Z = C

n+m.

If one of these statements holds, then the columns of P generate the extremal rays of
a full-dimensional cone σ ⊆ Q

r+s and we have Z = SpecC[σ∨ ∩ Z
r+s].

Proof Only for the implication “(ii)⇒ (iii)” there is something to show. As X is of
Type 2, we have 0 ∈ X ⊆ Z = C

n+m. Since X is affine, we have X = ̂X and thus
0 ∈ ̂Z . We conclude ̂Z = Z and thus Z = Z//H is affine. 
�
The characterization 2.12 (i) allows us to omit the bunch of cones � in the affine case:
we may just speak of the affine variety X = X (A, P) ..= X//H .

Corollary 2.13 Let X = X (A, P) be affine of Type 2. Then the following statements
are equivalent.

(i) The variety X is Q-factorial.
(ii) The variety Z is Q-factorial.
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(iii) The columns of P are linearly independent.

Proof The equivalence of (i) and (ii) is [3, Corollary 3.3.1.7]. The equivalence of (ii)
and (iii) is [9, Theorem 3.1.19 (b)]. 
�
Corollary 2.14 Let X = X (A, P) be affine of Type 2. Then the Picard group of X is
trivial.

Proof Proposition 2.12 says that theminimal toric ambient variety Z is affine. Thus, Z
has trivial Picardgroup; see [9, Proposition4.2.2].According to [3,Corollary 3.3.1.12],
the Picard group of X equals that of Z . 
�
More generally one can show that in fact every normal affine variety admitting a torus
action with an attractive orbit has trivial Picard group: every bundle can be linearized
and the non-vanishing loci of its homogeneous sections form an invariant trivializing
open cover. As one of these covering sets contains the attractive fixed point, the bundle
is trivial.

3 The anticanonical complex and singularities

First recall the basic singularity types arising in the minimal model programme. Let X
be a Q-Gorenstein variety, i.e., some non-zero multiple of a canonical divisor DX on
X is an integral Cartier divisor. Then, for any resolution of singularities ϕ : X ′ → X ,
one has the ramification formula

DX ′ − ϕ∗(DX ) =
∑

ai Ei ,

where the Ei are the prime components of the exceptional divisors and the coefficients
ai ∈ Q are the discrepancies of the resolution. The variety X is said to have at most
log terminal (canonical, terminal) singularities, if for every resolution of singularities
the discrepancies ai satisfy ai > −1 (ai � 0, ai > 0).

In [6], the “anticanonical complex” has been introduced for Fano varieties
X (A, P,�) and served as a tool to study singularities of the above type. The pur-
pose of this section is to extend this approach and to generalize results from [6] to
the non-complete and non-Q-factorial cases. As an application, we characterize log
terminality in Theorem 3.13 via platonic triples occuring in the Cox ring. For the affine
case, the result specializes to Theorem 1.3.

Now, let X = X (A, P,�) be a rational T -variety of complexity one arising from
Construction 2.6. Consider the embedding X ⊆ Z into the minimal toric ambient
variety. Then X and Z share the same divisor class group

K = Cl(X) = Cl(Z)

and the same degree map Q : Z
n+m → K for their Cox rings. Let eZ ∈ Z

n+m denote
the sum over the canonical basis vectors ei j and ek of Z

n+m. Then, with the defining
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relations gι, . . . , gr−2 of the Cox ring R(A, P), the canonical divisor classes of Z and
X are given as

KZ = −Q(eZ ) ∈ K , KX =
r−2+ι
∑

i=ι

deg(gi ) + KZ ∈ K ,

see [3, Proposition 3.3.3.2]. Observe that if X is of Type 1, then its canonical divisor
class equals that of theminimal toric ambient variety Z . Define a (rational) polyhedron

B(−KX ) ..= Q−1(−KX ) ∩ Q
n+m
�0 ⊆ Q

n+m

and let B ..= B(gι) + · · · + B(gr−2+ι) ⊆ Q
n+m denote the Minkowski sum of the

Newton polytopes B(gi ) of the relations gι, . . . , gr−2+ι of R(A, P).

Definition 3.1 Let X = X (A, P,�) be such that −KX is ample and denote by �

the fan of the minimal toric ambient variety Z of X .

• The anticanonical polyhedron of X is the dual polyhedron AX ⊆ Q
r+s of the

polyhedron

BX
..= (P∗)−1(B(−KX ) + B − e�) ⊆ Q

r+s.

• The anticanonical complex of X is the coarsest common refinement of polyhedral
complexes

Ac
X

..= faces(AX )
�
 trop(X).

• The relative interior of Ac
X is the interior of its support with respect to the inter-

section Supp(�) ∩ trop(X).
• The relative boundary ∂Ac

X is the complement of the relative interior of Ac
X in

Ac
X .

A first statement expresses the discrepancies of a given resolution of singularities via
the anticanonical complex; the proof is a straightforward generalization of the one
given in [6] for the Fano case and will be made available elsewhere.

Proposition 3.2 Let X = X (A, P,�) be such that −KX is ample and X ′′ → X a
resolution of singularities as in Construction 2.10. For any ray � ∈ �′′, let v� be its
primitive generator, v′

� its leaving point of Ac
X provided � � Ac

X and D� the prime
divisor on X ′′ obtained by intersecting X ′′ with the toric divisor of Z ′′ corresponding
to �. Then the discrepancy a� along D� satisfies

a� = −1 + ‖v�‖
‖v′

�‖ if � � Ac
X , a� � −1 if � ⊆ Ac

X .

The next result characterizes the existence of at most log terminal (canonical, terminal)
singularities in terms of the anticanonical complex; again, this generalizes a result
from [6] and the proof will be made available elsewhere.
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Theorem 3.3 Let X = X (A, P,�) be such that −KX is ample. Then the following
statements hold.

(i) Ac
X contains the origin in its relative interior and all primitive generators of the

fan � are vertices of Ac
X .

(ii) X has at most log terminal singularities if and only if the anticanonical complex
Ac
X is bounded.

(iii) X has at most canonical singularities if and only if 0 is the only lattice point in
the relative interior of Ac

X .
(iv) X has at most terminal singularities if and only if 0 and the primitive generators

v� for � ∈ �(1) are the only lattice points of Ac
X .

We describe the structure of the anticanonical complex in more detail, which general-
izes in particular statements on the Q-factorial Fano case obtained in [6]. For Type 1,
the situation turns out to be simple, whereas Type 2 is more involved.

Proposition 3.4 Let X = X (A, P,�) be of Type 1 such that−KX is ample. Let� be
the fan of the minimal toric ambient variety of X and denote by λ0, . . . , λr the leaves
of trop(X).

(i) Every cone σ ∈ � is contained in a leaf λi ⊆ trop(X). In particular,�
 trop(X)

equals �.
(ii) The boundary of Ac

X is the union of all faces of AX that are contained inSupp(�).
(iii) The non-zero vertices of Ac

X are the primitive generators of �, i.e. the columns
of P.

Corollary 3.5 Let X = X (A, P,�) be a T -variety of Type 1. Then X has at most
log-terminal singularities. Moreover, it has at most canonical (terminal) singularities
if and only if its minimal toric ambient variety Z does so.

Construction 3.6 Let X = X (A, P,�) be of Type 2 and � the fan of the minimal
toric ambient variety of Z . Write vi j

..= P(ei j ) and vk
..= P(ek) for the columns of P .

Consider a pointed cone of the form

τ = cone(v0 j0 , . . . , vr jr ) ⊆ Q
r+s,

that means that τ contains exactly one vi j for every i = 0, . . . , r . We call such τ a
P-elementary cone and associate the following numbers with τ :

�τ,i
..= l0 j0 · · · lr jr

li ji
for i = 0, . . . , r, �τ

..= (1 − r)l0 j0 · · · lr jr +
r
∑

i=0

�τ,i .

Moreover, we set

v(τ) ..= �τ,0v0 j0 + · · · + �τ,rvr jr ∈ Z
r+s, �(τ ) ..= Q�0 ·v(τ) ∈ Q

r+s.

Wedenote by T(A, P,�) the set of all P-elementary cones τ ∈ �. For a given σ ∈ �,
we denote by T(σ ) the set of all P-elementary faces of σ .
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Remark 3.7 Let X = X (A, P,�) be of Type 2. Let � be the fan of the minimal toric
ambient variety of X and λ0, . . . , λr ⊆ trop(X) the leaves of the tropical variety of
X . As in [6, Definition 4.1], we say that

• a cone σ ∈ � is a leaf cone if σ ⊆ λi holds for some i = 0, . . . , r ,
• a cone σ ∈ � is called big if σ ∩ λ◦

i �= ∅ holds for all i = 0, . . . , r .

Observe that a given cone σ ∈ � is big if and only if σ contains some P-elementary
cone as a subset.

Proposition 3.8 Let X = X (A, P,�) be of Type 2 such that −KX is ample. Let �

be the fan of the minimal toric ambient variety of X, denote by λ0, . . . , λr the leaves
of trop(X) and by λ = λ0 ∩ · · · ∩ λr its lineality part.

(i) The fan �
 trop(X) consists of the cones σ ∩ λ and σ ∩ λi , where σ ∈ � and
i = 0, . . . , r . Here, one always has σ ∩ λ � σ ∩ λi .

(ii) The fan �
 trop(X) is a subfan of the normal fan of the polyhedron BX . In
particular, for every cone σ ∩ λi , there is a vertex uσ,i ∈ BX with

∂Ac
X ∩ σ ∩ λi = {v ∈ σ ∩ λi ; 〈uσ,i , v〉 = −1}.

(iii) If a P-elementary cone τ is contained in some σ ∈ �, then τ is simplicial,
v(τ) ∈ τ ◦ holds, �(τ) is a ray, �(τ) = τ ∩λ holds as well as Q�(τ) = Qτ ∩λ.

(iv) Let σ ∈ � be any cone. Then, for every i = 0, . . . , r , the set of extremal rays of
σ ∩ λi ∈ �
 trop(X) is given by

(σ ∩ λi )
(1) = {�(σ0); σ0 ∈ T(σ )} ∪ {� ∈ σ (1); � ⊆ λi }.

(v) The set of rays of�
 trop(X) consists of the rays of� and the rays �(σ0), where
σ0 ∈ T(A, P,�).

(vi) If a P-elementary cone τ is contained in some σ ∈ �, then the minimum value
among all 〈u, v(τ )〉, where u ∈ BX , equals −�τ .

(vii) Let the P-elementary cone τ be contained in σ ∈ �. Then �(τ) � Ac
X holds if

and only if �τ > 0 holds; in this case, �(τ) leaves Ac
X at v(τ)′ = �−1

τ v(τ ).
(viii) The vertices of Ac

X are the primitive generators of �, i.e. the columns of P, and
the points v(σ0)

′ = �−1
σ0

v(σ0), where σ0 ∈ T(A, P,�) and �σ0 > 0.

Proof Assertion (i) holds more generally. Indeed, the coarsest common refinement
�1
�2 of any two quasifans�i in a common vector space consists of the intersections
σ1 ∩ σ2, where σi ∈ �i . Moreover, the faces of a given cone σ1 ∩ σ2 of �1
�2 are
precisely the cones σ ′

1 ∩ σ ′
2, where σ ′

i � σi .
We show (ii). Let �′ be the complete fan in Q

r+s defined by the class −KX ∈ K .
Since −KX is ample, the fan � is a subfan of �′. The preimage P−1(�′) consists
of the cones P−1(σ ′), where σ ′ ∈ �′, and is the normal fan of B(−KX ) ⊆ Q

n+m.
Moreover, P−1(trop(X)) turns out to be a subfan of the normal fan of B ⊆ Q

n+m. It
follows that P−1(�′)
P−1(trop(X)) is a subfan of the normal fan of B(−KX ) + B.
Projecting the involved fans via P to Q

r+s gives the assertion.
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To obtain (iii), consider first any P-elementary τ = cone(v0 j0 , . . . , vr jr ). Then
v0 j0 , . . . , vr jr is linearly dependent if and only if v(τ) = 0 holds. The latter is equiv-
alent to 0 being an inner point of τ . Thus, if τ is contained in some σ ∈ �, then τ is
pointed and thus must be simplicial. The remaining part is then obvious; recall that
the lineality part of trop(X) equals the vector subspace 0×Q

s ⊆ Q
r+s.

We turn to (iv). First, we claim that if σ0 ∈ � is big and �(τ) = �(τ ′) holds for
any two P-elementary cones τ, τ ′ ⊆ σ , then σ0 is P-elementary. Assume that σ0 is
not P-elementary. Then we find some 1 � t � r and cones

τ = cone(v0 j0 , . . . , vt jt−1 , vt jt , vt jt+1 , . . . , vr jr ) ⊆ σ0,

τ ′ = cone(v0 j0 , . . . , vt jt−1 , vt j ′t , vt jt+1, . . . , vr jr ) ⊆ σ0

with jt �= j ′t and thus τ �= τ ′. Here, we may assume that c−1
τ lt jt � c−1

τ ′ lt j ′t holds with
the greatest common divisors cτ and cτ ′ of the entries of v(τ) and v(τ ′) respectively.
Then even c−1

τ �τ,i � c−1
τ ′ �τ ′,i must hold for all 1 � i � r . Since, the rays �(τ) and

�(τ ′) coincide, also their primitive generators c−1
τ ′ v(τ ′) and c−1

τ v(τ ) coincide. By the
definition of v(τ) and v(τ ′), this implies

c−1
τ ′ �τ ′,tvt j ′t = c−1

τ �τ,kvt jt +
∑

i �=t

(c−1
τ �τ,i − c−1

τ ′ �τ ′,i )vi ji .

We conclude vt j ′t ∈ τ . Since vt j ′t is an extremal ray of σ0 and τ ′ ⊆ σ0 holds, vt j ′t
generates an extremal ray of τ . This contradicts to the choice of j ′t and the claim is
verified.

Now, consider the equation of (iv). To verify “⊆”, let � be an extremal ray of σ ∩λi .
We have to show that � = �(σ0) holds for some σ0 ∈ T(σ ) or that � is a ray of σ with
� ⊆ λi . According to (ii), there is a face σ� � σ such that � = σ� ∩ λ or � = σ� ∩ λi
holds. We choose σ� minimal with respect to this property, that means that we have
�◦ ⊆ σ ◦

�. We distinguish the following cases.

Case 1.We have � = σ� ∩λ. If σ� ⊆ λ holds, then we obtain � = σ� and thus � ⊆ λi
is an extremal ray of σ . So, assume that σ� is not contained in λ. Then, because of
σ ◦

� ∩ λ �= ∅, there is a P-elementary cone τ ⊆ σ�. Using (i), we obtain

�(τ) = τ ∩ λ ⊆ σ� ∩ λ = �

and thus � = �(τ). As this does not depend on the particular choice of the P-
elementary cone τ ⊆ σ�, the above claim yields σ0

..= σ� ∈ T(σ ) and � = �(σ0).

Case 2. We do not have � = σ� ∩ λ. Then � = σ� ∩ λi and �◦ ⊆ λ◦
i hold. If σ� ⊆ λi

holds, then we obtain � = σ� and thus � ⊆ λi is an extremal ray of σ . So, assume
that σ� is not contained in λi . Then σ� ∩ λ◦

j is non-empty for all j = 0, . . . , r . Thus,
there is a P-elementary cone τ ⊆ σ�. Using (i), we obtain

�(τ) = τ ∩ λ ⊆ σ� ∩ λ = �
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and thus � = �(τ). As this does not depend on the particular choice of the P-
elementary cone τ ⊆ σ�, the above claim yields σ0

..= σ� ∈ T(σ ) and � = �(σ0).
We verify the inclusion “⊇”. Consider a face σ0 ∈ T(σ ). As seen just before, the

extremal rays of σ0 ∩ λi are �(σ0) and the rays of σ0 that lie in λi . Since σ0 ∩ λi is a
face of σ ∩λi , the ray �(σ0) is an extremal ray of σ ∩λi . Finally, consider an extremal
ray � � σ with � ⊆ λi . Then � = � ∩ λi is a face of σ ∩ λi .

The proof of assertion (iv) is complete now. Assertion (v) is a direct consequence
of (iv).

We turn to assertions (vi), (vii) and (viii). Let τ̂ � σ̂ � Q
n+m
�0 be the faces with

P (̂τ ) = τ and P (̂σ ) = σ . Moreover, let eτ ∈ τ̂ be the (unique) point with P(eτ ) =
v(τ). The minimum value 〈u, v(τ )〉 is attained at some vertex u ∈ BX . For this u, we
find vertices eσ ∈ B(−KX ) and eB ∈ B with

u = (P∗)−1(eσ + eB − eZ ).

Here, eσ is any vertex of B(−KX ) such that σ̂ is contained in the cone of the normal
fan of B(−KX ) associated with eσ ; such eσ exists due to ampleness of −KX and eσ

vanishes along σ̂ . Together we have

eτ =
r
∑

i=0

li ji ei ji , 〈u, v(τ )〉 = 〈eσ + eB − eZ , eτ 〉.

As mentioned, 〈eσ , eτ 〉 = 0 holds. Moreover, 〈e, eτ 〉 = (r − 1)l0 j0 · · · lr jr holds for
every e ∈ B. We conclude 〈u, v(τ )〉 = −�τ and assertion (vi). Moreover, asser-
tions (vii) and (viii) are direct consequences of (vi) and (ii). 
�
Example 3.9 Consider the E6-singular affine surface X = V (z41 + z32 + z23) ⊆ C

3. It
inherits a C

∗-action from the action

t ·(z1, z2, z3) = (t3z1, t
4z2, t

6z3)

on C
3. The divisor class group and the Cox ring of the surface X are explicitly given

by

Cl(X) = Z/3Z, R(X) = C[T1, T2, T3]/〈T 3
1 + T 3

2 + T 2
3 〉,

where the Cl(X)-degrees of T1, T2, and T3 are 1, 2 and 0. The minimal toric ambient
variety is affine and corresponds to the cone

σ = cone((−3,−3,−2), (3, 0, 1), (0, 2, 1)).

Denoting by ei ∈ Q
3 the i-th canonical basis vector, the tropical variety trop(X) in

Q
3 is given as

trop(X) = cone(e1,±e3) ∪ cone(e2,±e3) ∪ cone(−e1 − e2,±e3).
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The anticanonical polyhedron AX ⊆ Q
3 is non boundedwith recession cone generated

by (−1,−1,−1), (1, 0, 0), (0, 1, 0). The vertices of AX are

(−3,−3,−2), (3, 0, 1), (0, 2, 1), (0, 0, 1).

The anticanonical complex Ac
X = AX 
�
 trop(X) lives inside trop(X) and looks as

follows.

Corollary 3.10 Let X = X (A, P,�) be of Type 2 such that −KX is ample. Let τ

be a P-elementary cone contained in some σ ∈ �. Assume �(τ) � Ac
X and denote

by cτ the greatest common divisor of the entries of v(τ). Then, for any resolution of
singularities ϕ : X ′′ → X provided by 2.10, the discrepancy along the prime divisor
of X ′′ corresponding to �(τ) equals c−1

τ �τ − 1.

Corollary 3.11 Let X = X (A, P,�) be of Type 2 such that −KX is ample and let
τ = cone(v0 j0 , . . . , vr jr ) be contained in some σ ∈ �.

(i) If X has at most log terminal singularities, then l−1
0 j0

+ · · · + l−1
r jr

> r − 1 holds.

(ii) If X has atmost canonical singularities, then l−1
0 j0

+· · ·+l−1
r jr

� r−1+cτ l
−1
0 j0

· · · l−1
r jr

holds.
(iii) If X has at most terminal singularities, then l−1

0 j0
+· · ·+l−1

r jr
> r−1+cτ l

−1
0 j0

· · · l−1
r jr

holds.

Remark 3.12 Let a0, . . . , ar be positive integers. Then a
−1
0 +· · ·+a−1

r > r −1 holds
if and only if (a0, . . . , ar ) is a platonic tuple.

Theorem 3.13 Let X = X (A, P,�) be of Type 2 such that −KX is ample and let �
be the fan of the minimal toric ambient variety of X. Then the following statements
are equivalent.

(i) The variety X has at most log terminal singularities.
(ii) For every P-elementary τ = cone(v0 j0 , . . . , vr jr ) contained in a cone of �, the

exponents l0 j0 , . . . , lr jr form a platonic tuple.

Proof Assume that X = X (A, P,�) is log terminal. Then Corollary 3.11 (i) tells us
that for every P-elementary τ = cone(v0 j0 , . . . , vr jr ) contained in a cone of �, the
corresponding exponents l0 j0 , . . . , lr jr form a platonic tuple.

Now assume that (ii) holds. Then every (l0 j0 , . . . , lr jr ) is a platonic tuple. Conse-
quently, we have �τ > 0 for every P-elementary cone τ . Proposition 3.8 shows that
Ac
X is bounded for X = X (A, P,�). Theorem 3.3 (ii) tells us that X is log terminal. 
�
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Remark 3.14 Let X = X (A, P,�) be affine of Type 2 such that KX is Q-Cartier.
Then −KX is ample. The fan � of the minimal toric ambient variety Z of X consists
of all the faces of the cone σ generated by the columns of P . In particular, every
P-elementary cone is contained in σ . Thus, Theorem 1.3 follows from Theorem 3.13.
Moreover, the rays �(σ0), where σ0 ∈ T(A, P,�), are precisely the extremal rays of
the intersection of σ and the lineality part of trop(X).

4 Gorenstein index and canonical multiplicity

If a normal variety X is Q-Gorenstein, then, by definition, some multiple of its canon-
ical classKX is Cartier. The Gorenstein index of X is the smallest positive integer ıX
such that ıXKX is Cartier. We attach another invariant to the canonical divisor of X .

Remark 4.1 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2. We
consider canonical divisors DX on X that are of the following form, cf. [3, Proposi-
tion 3.3.3.2]:

−
∑

i, j

Di j −
∑

k

Ek +
r−1
∑

α=1

niα
∑

j=0

liα j Diα j , 0 � iα � r. (1)

Corollary 2.14 says that ıX DX is the divisor of a T -homogeneous rational function.
Any two ıX DX with DX of shape (1) differ by the divisor of a T -invariant rational
function, and thus, all the functions with divsors ıX DX , where DX as in (1), are
homogeneous with respect to the same weight ηX ∈ X(T ).

Definition 4.2 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2. We
call ηX ∈ X(T ) of Remark 4.1 the canonical weight of X . The canonical multiplicity
of X is the minimal non-negative integer ζX such that ηX = ζX ·η′

X holds with a
primitive element η′

X ∈ X(T ).

Proposition 4.3 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2
with at most log terminal singularities. Then ζX > 0 holds. Moreover, for any positive
integer ı , the following statements are equivalent.

(i) The variety X is of Gorenstein index ı .
(ii) There exist integers μ1, . . . , μr with gcd(μ1, . . . , μr , ζX , ı) = 1 such that with

μ0
..= ı(r − 1) − μ1 − · · · − μr we obtain integral vectors

νi
..= (νi1, . . . , νini ) with νi j

..= ı − μi li j
ζX

,

ν′ ..= (ν′
1, . . . , ν

′
m) with ν′

k
..= ı

ζX
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and by suitable elementary row operations on the (d, d ′)-block, the matrix P
gains (ν0, . . . , νr , ν

′) as its last row, i.e., turns into the shape

˜P =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−l0 l1 · · · 0 0
...

...
. . .

...
...

−l0 0 · · · lr 0
∗ ∗ · · · ∗ ∗
ν0 ν1 · · · νr ν′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Proof We work with an anticanonical divisor DX on X such that −DX is of the
form (1):

DX
..=
∑

i, j

Di j +
∑

k

Ek − (r − 1)
n0
∑

j=1

l0 j D0 j .

According to Corollary 2.14, the Picard group of X is trivial. Thus, ıX DX is the divisor
of some toric character χ u, where

u = (μ1, . . . , μr , η1, . . . , ηs) ∈ Z
r+s.

Note that −(η1, . . . , ηs) ∈ Z
s = X(T ) is the canonical weight ηX of X . Moreover,

the divisor ıX DX = div(χ u) corresponds to the vector P∗·u ∈ Z
m+n under the

identification of toric divisors with lattice points via Di j �→ ei j and Ek �→ ek .
We claim that ηX is non-trivial. Otherwise, η1 = · · · = ηs = 0 holds. As noted,

the i j-th and k-th components of the vector P∗·u are the multiplicities of Di j and Dk

in ıX DX , respectively. More explicitly, this leads to the conditions

m = 0, ıX ((r − 1)l0 j − 1) = (μ1 + · · · + μr )l0 j , ıX = μi li j

for all i and j . Plugging the third into the second one, we obtain that l−1
0 j0

+ · · · + l−1
r jr

equals r − 1 for any choice of 1 � ji � ni . According to Corollary 3.11 (i), this
contradicts to log terminality of X . Knowing that ηX is non-zero, we obtain that ζX is
non-zero.

Now, assume that (i) holds, i.e., we have ı = ıX . Let u ∈ Z
r+s as above. Then we

have ζX = gcd(η1, . . . , ηs) and div(χ u) = ı DX implies gcd(μ1, . . . , μr , ζX , ı) = 1.
Next, choose a unimodular s×s matrix B with B−1 ·(η1, . . . , ηs) = (0, . . . , 0, ζX ).
Consider ˜P ..= diag(Er ,B

∗) ·P and

ũ = (μ1, . . . , μr , 0, . . . , 0, ζX ) ∈ Z
r+s.

Observe that we have P∗·u = ˜P∗· ũ. Comparing the entries of ˜P∗· ũ with the multi-
plicities of the prime divisors Di j and Dk in ı DX shows that the last row of ˜P is as
claimed.
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Conversely, if (ii) holds, consider u ..= (μ1, . . . , μr , 0, . . . , 0, ζX ). Then we obtain
ı DX = div(χ u). Using gcd(μ1, . . . , μr , ζX , ı) = 1, we conclude that ı is the Goren-
stein index of X . 
�
Remark 4.4 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2 and DX

a canonical divisor on X as in (1). Then ıX DX is the divisor of some toric character
χ u, where

u = (μ1, . . . , μr , η1, . . . , ηs) ∈ Z
r+s.

In this situation, we have ηX = (η1, . . . , ηs) ∈ X(T ) for the canonical weight of X
and the canonical multiplicity of X is given by ζX = gcd(η1, . . . , ηs). If P is in the
shape of Proposition 4.3, then ηX = (0, . . . , 0, ζX ) holds and −μ1, . . . ,−μr satisfy
the conditions of 4.3 (ii). 
�
Remark 4.5 The defining matrix P of a given Q-Gorenstein, affine T -variety X =
X (A, P) is in the shape of Proposition 4.3 if and only if for every i = 0, . . . , r , the
numbers μi

..= (ıX − ζXνi1)l
−1
i1 satisfy

• ζXνi j + μi li j = ıX for i = 1, . . . , r and j = 1, . . . , ni ,
• ζXν0 j + μ0l0 j = ıX , for μ0

..= ıX (r − 1) − μ1 − · · · − μr and j = 1, . . . , n0,
• gcd(μ1, . . . , μr , ζX , ıX ) = 1,
• ζXν′

k = ıX for k = 1, . . . ,m.

Corollary 4.6 Let X = X (A, P) be a Q-Gorenstein, affine T -variety of Type 2 with
at most log terminal singularities. Then, for every ı ∈ Z�1, the following statements
are equivalent.

(i) The variety X is of Gorenstein index ı and of canonical multiplicity one.
(ii) One can choose the defining matrix P to be of the shape

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−l0 l1 · · · 0 0
...

...
. . .

...
...

−l0 0 · · · lr 0
∗ ∗ · · · ∗ ∗

ı − ı(r − 1)l0 ı · · · ı ı

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where ı stands for a vector (ı, . . . , ı) of suitable length.

Proof If (i) holds, then we may assume P to be as ˜P in Proposition 4.3. Adding the
μi -fold of the i-th row to the last row brings P into the desired form. If (ii) holds, take
u = (0, . . . , 0,−1) ∈ Z

r+s. Then P∗·u ∈ Z
n+m defines a divisor ı DX with DX a

canonical divisor of shape (1) and we see ζX = 1. 
�
Proposition 4.7 Let X = X (A, P) be a Q-Gorenstein affine T -variety of Type 2 with
at most log terminal singularities and canonical multiplicity ζX > 1. Then we can
choose P of shape 4.3 (ii) such that li j = 1 and νi j = 0 holds for i = 3, . . . , r and
j = 1, . . . , ni and, moreover, P satisfies one of the following cases:
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Case (l01, l11, l21) (ν0, ν1, ν2) ζX ıX

(i) (4, 3, 2) 1
2 ( ıX + l0, ıX − ıX l1, ıX − l2) 2 0mod 2

(ii) (3, 3, 2) 1
3 ( ıX − l0, ıX + l1, ıX − ıX l2) 3 0mod 3

(iii) (2k+1, 2, 2) 1
4 ( ıX − ıX l0, ıX − l1, ıX + l2) 4 2mod 4

(iv) (2k, 2, 2) 1
2 ( ıX − l0, ıX + l1, ıX − ıX l2) 2 0mod 2

(v) (k, 2, 2) 1
2 ( ıX − ıX l0, ıX − l1, ıX + l2) 2 0mod 2

(vi) (k0, k1, 1) (ν0, ν1, ζ−1
X ( ıX − ıX l2))

where ıX stands for a vector (ıX , . . . , ıX ) of suitable length, and in case (vi), all the
numbers (ıX − ν0 j0ζX )/ l0 j0 and (ν1 j1ζX − ıX )/ l1 j1 are integral and coincide.

Proof Since X = X (A, P) has at most log terminal singularities, Theorem 1.3 guar-
antees that the Cox ring R(X) = R(A, P) is platonic. Thus, suitably exchanging data
column blocks, we achieve li j = 1 for all i � 3. Next, we bring P in to the form of
Proposition 4.3 (ii). Finally, subtracting the νi j -fold of the i-th row from the last one,
we achieve νi j = 0 for i = 3, . . . , r .

Observe that our new matrix P still satisfies the conditions of Remark 4.5. For the
integers μi defined there, we have

μ0 + μ1 + μ2 = μ3 = · · · = μr = ıX . (2)

Moreover, for i = 0, 1, 2 set �i ..= l01l11l21/ li1. Then, because of ıX +μi li j = νi jζX ,
we obtain

gcd(�0, �1, �2)
−1

2
∑

i=0

�i (ıX − μi li j ) = αζX for some α ∈ Z. (3)

Finally, Remark 4.5 ensures

1 = gcd(μ1, . . . , μr , ζX , ıX ) = gcd(μ1, μ2, ζX , ıX ). (4)

We will now apply these conditions to establish the table of the assertion. Since
(l01, l11, l21) is a platonic triple, we have to discuss the following cases.

Case 1: (l01, l11, l21) equals (5, 3, 2). Our task is to rule out this case. Using (2) and (3),
we see that ζX divides

ıX = 31ıX − 30(μ0 + μ1 + μ2)

= 6(ıX − 5μ0) + 10(ıX − 3μ1) + 15(ıX − 2μ2).

Consequently, (4) becomes gcd(μ1, μ2, ζX ) = 1 and from ıX − μi li j = νi jζX we
infer that ζX divides 5μ0, 3μ1 and 2μ2. This leaves us with the three possibilities
ζX = 2, 3, 6.
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If ζX = 2 holds, then ζX divides μ0 and μ1 but not μ2; if ζX = 3 holds, then ζX
divides μ0 and μ2 but not μ1. Both contradicts to the fact that ζX divides ıX =
μ0+μ1+μ2. Thus, only ζX = 6 is left. In that case, ζX must divideμ0. Since ζX divides
ıX = μ0+μ1+μ2, we see that ζX dividesμ1+μ2.Moreover, ζX |3μ1 givesμ1 = 2μ′

1
and ζX |2μ2 givesμ2 = 3μ′

2 with integersμ′
1, μ

′
2. Now, as ζX = 6 divides 2μ′

1+3μ′
2,

we obtain that μ′
2 and hence μ2 are even. This contradicts gcd(μ1, μ2, ζX ) = 1.

Case 2: (l01, l11, l21) equals (4, 3, 2). Similarly as in the preceding case, we apply (2)
and (3) to see that ζX divides

ıX = 13ıX − 12(μ0 + μ1 + μ2)

= 1

2

(

6(ıX − 4μ0) + 8(ıX − 3μ1) + 12(ıX − 2μ2)
)

.

As before, we conclude gcd(μ1, μ2, ζX ) = 1 and obtain that ζX divides 4μ0, 3μ1 and
2μ2. This reduces to ζX = 2, 3, 6.

If ζX = 3 holds, then ζX divides μ0 and μ2 but not μ1, contradicting the fact that
ζX divides ıX = μ0 +μ1 +μ2. If ζX = 6 holds, then we obtain μ0 = 3μ′

0, μ1 = 2μ′
1

and μ2 = 3μ′
2 with suitable integers μ′

i . Since ζX divides ıX = μ0 + μ1 + μ2, we
obtain that μ2 is divisible by 3, contradicting gcd(μ1, μ2, ζX ) = 1.

Thus, the only possibility left is ζX = 2. We show that this leads to case (i) of the
assertion. Observe that μ1 is even, μ2 is odd because of gcd(μ1, μ2, ζX ) = 1 and μ2
is odd because ıX = μ0 + μ1 + μ2 is even. Recall that the vectors νi in the last row
of P are given as

νi = 1

ζX
( ıX − μi li ) = 1

2
ıX − μi

2
li .

Thus, adding the (−μ0 − μ2)/2-fold of the first row and the (μ2 − 1)/2-fold of the
second row to the last row brings P into the shape of case (i).

Case 3: (l01, l11, l21) equals (3, 3, 2). As in the two preceding cases, we infer from (2)
and (3) that ζX divides

ıX = 7ıX − 6(μ0 + μ1 + μ2)

= 1

3

(

6(ıX − 3μ0) + 6(ıX − 3μ1) + 9(ıX − 2μ2)
)

.

Since gcd(μ1, μ2, ζX ) = 1 and ζX divides 3μ0, 3μ1, 2μ2, we are left with ζX =
2, 3, 6. If ζX = 2 or ζX = 6 holds, then μ0, μ1 and ıX = μ0 + μ1 + μ2 must be even.
Thus also μ2 must be even, contradicting gcd(μ1, μ2, ζX ) = 1.

Let ζX = 3. We show that this leads to case (ii) of the assertion. First, 3 divides μ2
and ıX = μ0 + μ1 + μ2, hence also μ0 + μ1. Moreover, 3 divides neither μ0 nor μ1
because of gcd(μ1, μ2, ζX ) = 1. Interchanging, if necessary, the data of the column
blocks no. 0 and 1, we achieve that 3 divides μ0 − 1 and μ1 + 1. So, at the moment,
the νi in the last row of P are of the form
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νi = 1

ζX
( ıX − μi li ) = 1

3
ıX − μi

3
li .

Adding the (μ1 + 1)/3-fold of the first and the (−μ0 − μ1)/3-fold of the second to
the last row of P , we arrive at case (ii).

Case 4: (l01, l11, l21) equals (k, 2, 2) with k � 3 odd. Then (2) and (3) show that ζX
divides

2ıX = (2 + 2k)ıX − 2k(μ0 + μ1 + μ2)

= 1

2

(

4(ıX − kμ0) + 2k(ıX − 2μ1) + 2k(ıX − 2μ2)
)

.

Case 4.1: ζX does not divide ıX . Then we have 2ıX = αζX with α ∈ Z odd. Thus, ζX
is even and 2μi = ıX −νi jζX implies that 4μi is an odd multiple of ζX for i = 1, 2. In
particular, 4 divides ζX . Moreover, (4) implies gcd(μ1, μ2, ζX/2) = 1 and we obtain
ζX = 4. That means ıX ≡ 2mod 4. Since ζX = 4 divides ıX − kμ0 and k is odd, we
conclude μ0 ≡ 2mod 4. Then μ0 + μ1 + μ2 = ıX ≡ 2mod 4 implies that 4 divides
μ1 + μ2. Interchanging, if necessary, the data of the column blocks no. 1 and 2, we
can assume μ1 ≡ −μ2 ≡ 1mod 4. Then, adding the (μ1 − 1)/4-fold of the first and
the (μ2 + 1)/4-fold of the second to the last row of P , we arrive at case (iii) of the
assertion.

Case 4.2: ζX divides ıX . Then (4) becomes gcd(μ1, μ2, ζX ) = 1. Since ζX divides
2μ1 and 2μ2, we see that ζ = 2 holds andμ1,μ2 are odd. Adding the (μ1−1)/2-fold
of the first and the (μ2 + 1)/2-fold of the second to the last row of P leads to case (v)
of the assertion.

Case 5: (l01, l11, l21) equals (k, 2, 2) with k � 2 even. Then (2) and (3) show that ζX
divides

ıX = (k + 1)ıX − k(μ0 + μ1 + μ2)

= 1

4

(

4(ıX − kμ0) + 2k(ıX − 2μ1) + 2k(ıX − 2μ2)
)

.

As earlier,we conclude that ζX |2μi for i = 1, 2 and ζX = 2. Since gcd(μ1, μ2, 2) = 1
holds and μ0 + μ1 + μ2 = ıX is even, two of the μi are be odd and one is even. If μ1
and μ2 are odd, then adding the (μ1 −1)/2-fold of the first and the (μ2 +1)/2-fold of
the second to the last row of P leads to case (v). Now, let μ0 be odd. Interchanging, if
necessary, the data of the column blocks no. 1 and 2, we achieve that μ1 is odd. Then
we add the (μ1 + 1)/2-fold of the first and the (−μ0 − μ1)/2-fold of the second to
the last row of P and arrive at case (iv) of the assertion.

Case 6: (l01, l11, l21) equals (k0, k1, 1), where k0, k1 ∈ Z>0. We subtract the ν21-fold
of the second row of P from the last one. Since ν21 = (ıX − μ2)/ζX holds, we obtain
ν2 = ζ−1

X ( ıX − ıX l2). Moreover, (2) becomes μ0 + μ1 = 0. We arrive at case (vi) of
the assertion by observing

ıX − ν0 j0ζX

l0 j0
= μ0 = −μ1 = ν1 j1ζX − ıX

l1 j1
.


�
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Example 4.8 We discuss the rational affine C
∗-surfaces X with at most log terminal

singularities. First, the affine toric surfaces X = C
2/Ck show up here, where Ck is the

cyclic group of order k acting diagonally. In terms of toric geometry, these surfaces
are given as

X = SpecC[σ∨ ∩ Z
2], σ = cone((k, ı), (ı, k+m)),

where k,m ∈ Z>0 with gcd(k, ı) = gcd(k+m, ı) = 1 and ı is the Gorenstein index
of X ; see [9, Chapter 10] for more background. Now consider a non-toric C

∗-surface
X = X (A, P) of Type 2. As a quotient of C

2 by a finite group, X has finite divisor
class group and thus P is a 3×3 matrix of the shape

P =
⎡

⎣

−l01 l11 0
−l01 0 l21
d01 d11 d21

⎤

⎦ .

Theorem 1.3 says that (l01, l11, l21) is a platonic triple. Moreover, Corollary 4.6 and
Proposition 4.7 provide us with constraints on the di1. Having in mind that P is of
rank three with primitive columns, one directly arrives at the following possibilities,
where ζ = ζX is the canonical multiplicity and ı = ıX the Gorenstein index:

Type P ζ ı

D1,ı
n

⎡

⎣

−n + 2 2 0
−n + 2 0 2

−nı + 3ı ı ı

⎤

⎦ 1 gcd(ı, 2n) = 1

D2,ı
2n+1

⎡

⎣

−2n + 1 2 0
−2n + 1 0 2
(1 − n)ı ı/2 + 1 ı/2 − 1

⎤

⎦ 2 gcd(ı, 8n − 4) = 4

E1,ı
6

⎡

⎣

−3 3 0
−3 0 2

−2ı ı ı

⎤

⎦ 1 gcd(ı, 6) = 1

E3,ı
6

⎡

⎣

−3 3 0
−3 0 2

ı/3 − 1 ı/3 + 1 −ı/3

⎤

⎦ 3 gcd(ı, 18) = 9

E1,ı
7

⎡

⎣

−4 3 0
−4 0 2

−3ı ı ı

⎤

⎦ 1 gcd(ı, 6) = 1

E1,ı
8

⎡

⎣

−5 3 0
−5 0 2

−4ı ı ı

⎤

⎦ 1 gcd(ı, 30) = 1

For geometric details on these surfaces, we refer to the work of Brieskorn [7], and, in
the context of the McKay Correspondence, Wunram [33] and Wemyss [32].
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5 Geometry of the total coordinate space

We take a closer look at the geometry of the total coordinate space X of a T -variety X
of complexity one. The first result says in particular that X is Gorenstein and canonical
provided that X is log terminal and affine.

Proposition 5.1 Let R(A, P0) be a platonic ring of Type 2. Then the affine variety
X = Spec R(A, P0) is Gorenstein and has at most canonical singularities.

Proof Adding suitable rows, we complement the matrix P0 to a square matrix P of
full rank with last row (1− (r −1)l0, 1, . . . , 1), where 1 indicates vectors of length ni
with all entries equal to one; this is possible, because the last row is not in the row
space of P0. Then X = X (A, P) is a Q-factorial affine T -variety. Theorem 1.3 tells
us that X has at most log terminal singularities and Corollary 4.6 ensures that X is
Gorenstein. Thus, X has at most canonical singularities. Since X → X is finite with
ramification locus of codimension at least two, we can use [23, Theorem 6.2.9] to see
that X is Gorenstein with at most canonical singularities. 
�
Now we investigate the generic quotient Y of X by the action of the unit component
H0
0 ⊆ H0, in other words, the smooth projective curve Y with function field C(Y ) =

C(X)H
0
0 . Note that the curve Y occurs also in [1], where it carries the polyhedral

divisor of the Cox ring.

Definition 5.2 Consider the defining matrix P0 of a ring R(A, P0) of Type 2 and the
vectors li = (li1, . . . , lini ) occuring in the rows of P0. Set

li ..= gcd(li1, . . . , lini ), l ..= gcd(l0, . . . , lr ), li j ..= gcd(l−1li , l
−1l j ),

l ..= lcm(l0, . . . , lr ), bi ..= l−1
i l, b(i) ..= gcd(bj ; j �= i).

Theorem 5.3 Let R(A, P0) be of Type 2 and consider the action of the unit component
H0
0 ⊆ H0 of the quasitorus H0 = SpecC[K0] on X = Spec R(A, P0). Then the

smooth projective curve Y with function field C(Y ) = C(X)H
0
0 is of genus

g(Y ) = l0 · · · lr
2l

(

(r − 1) −
r
∑

i=0

b(i)

li

)

+ 1.

Lemma 5.4 Let R(A, P0) be of Type 2, consider the degree u ..= deg(g0) ∈ K0 of
the defining relations and the subgroup

K0(u) ..= {w ∈ K0; αw ∈ Zu for some α ∈ Z>0
} ⊆ K0.

Then the Veronese subalgebra R(A, P0)(u) of R(A, P0) associated with K0(u) of K0

is generated by the monomials T l0/l0
0 , . . . , T lr /lr

r .

Proof First, observe that every element of R(A, P0)(u) is a polynomial in the variables
Ti j . Now consider a monomial T l in the Ti j of degree w ∈ K0(u), where l ∈ Z

n+m.
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Thenαw ∈ β0u holds for someα ∈ Z>0 andβ0 ∈ Z.Moreover, there areβ1, . . . , βr ∈
Z with

αl = β0l
′
0 + β1(l

′
0 − l ′1) + · · · + βr (l

′
0 − l ′r ),

where l ′i ..= li1ei1+· · ·+ lini eini , reflecting the fact that αl−β0l ′0 lies in the row space
of P0. Consequently, we obtain l = β ′

0l
′
0 + · · · + β ′

r l
′
r for suitable β ′

i ∈ Q. Since l has
only non-negative integer entries, we conclude that every β ′

i is a non-negative integral

multiple of l−1
i . Thus, T l is a monomial in the T li /li

i . The assertion follows. 
�
Proof of Theorem 5.3 The curveY occurs as aGIT-quotient: Y = X ss(u0)/H0

0 , where
u0 ∈ X(H0

0 ) represents the character induced by u = deg(g0) ∈ K0 = X(H0). In
other words, we have Y = Proj R(A, P0)(u0) with the Veronese subalgebra defined
by u0. We may replace u0 with

w0 ..= 1

l
u0 ∈ X(H0

0 ).

Then R(A, P0)(u0) is replaced with R(A, P0)(w0) which in turn equals the Veronese
subalgebra treated in Lemma 5.4. Moreover, the generators T li /li

i ∈ R(A, P0)(w0) are
of degree biw0 ∈ X(H0

0 ), respectively. We obtain a closed embedding into a weighted
projective space

Y = V (h0, . . . , hr−2) ⊆ P(b0, . . . , br ), hi ..= det

[

T li
i T li+1

i+1 T li+2
i+2

ai ai+1 ai+2

]

,

where the hi generate the ideal of relations among the generators of the Veronese
subalgebra R(A, P0)(w0). The idea is now to construct a ramified covering Y ′ → Y
with a suitable curve Y ′ and then to compute the genus of Y via the Hurwitz formula.
Consider

Y ′ = V (h′
0, . . . , h

′
r−2) ⊆ Pr , h′

i
..= det

[

T l
i T l

i+1 T l
i+2

ai ai+1 ai+2

]

.

The Y ′ ⊆ Pr is a smooth complete intersection curve. Computing the genus of Y ′
according to [17], we obtain

g(Y ′) = 1

2

(

(r − 1)l r − (r + 1)l r−1)+ 1.

The morphism Pr → P(b0, . . . , br ) sending [z0, . . . , zr ] to [zb00 , . . . , zbrr ] restricts
to a morphism Y ′ → Y of degree b0 · · · br . The intersection Y ∩ Ui with the i-th
coordinate hyperplane Ui ⊆ Pr contains precisely l r−1 points and each of these
points has ramification order bi ·b(i) − 1. Outside the Ui , the morphism Y ′ → Y is
unramified. The Hurwitz formula then gives g(Y ). 
�
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We now use Theorem 5.3 to characterize rationality of X = Spec R(A, P0). For the
special case of Pham–Brieskorn surfaces, the following statement has been obtained
in [5].

Proposition 5.5 Let R(A, P0) be of Type 2 with r = 2, that means that X =
Spec R(A, P0) is given as

X ∼= V
(

T l01
01 · · · T l0n0

0n0
+ T l11

11 · · · T l1n1
1n1

+ T l21
21 · · · T l2n2

2n2

) ⊆ C
n.

Then the hypersurface X is rational if and only if one of the following conditions
holds:

(i) there are pairwise coprime positive integers c0, c1, c2 and a positive integer s
such that, after suitable renumbering, one has

gcd(c2, s) = 1, l0 = sc0, l1 = sc1, l2 = c2;

(ii) there are pairwise coprime positive integers c0, c1, c2 such that

l0 = 2c0, l1 = 2c1, l2 = 2c2.

Lemma 5.6 For i = 0, 1, 2, let li = (li1, . . . , lini ) be tuples of positive integers.
Define l, li and li j as in Definition 5.2 for r = 2. Then the following statements are
equivalent.

(i) We have l(ll01l02l12 − (l01 + l02 + l12)) = −2.
(ii) One of the following two conditions holds:

(a) there are pairwise coprime positive integers c0, c1, c2 and a positive integer s
such that, after suitable renumbering, one has

gcd(c2, s) = 1, l0 = sc0, l1 = sc1, l2 = c2;

(b) there are pairwise coprime positive integers c0, c1, c2 such that

l0 = 2c0, l1 = 2c1, l2 = 2c2.

Proof If (ii) holds, then a simple computation shows that (i) is valid. Now, assume
that (i) holds. Then the following cases have to be considered.

Case 1. We have l = 1. Then l01(l02l12 − 1) = l02 + l12 − 2 holds. From this we
deduce

l01(l02l12 − 1) = (l01 − 1)(l02l12 − 1) + (l02 − 1)(l12 − 1) + l02 + l12 − 2

� l02 + l12 − 2,
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where equality holds if and only if at least two of l01, l02, l12 equal one. So, we arrive
at condition (a).

Case 2. We have l = 2. Then we have l01(2l02l12−1)+1 = l02+ l12. In this situation,
we conclude

l01(2l02l12 − 1) + 1 = (l01 − 1)(2l02l12 − 1) + l02l12

+ (l02 − 1)(l12 − 1) + l02 + l12 − 1

� l02 + l12,

where equality holds if and only if we have l01 = l02 = l12 = 1. Thus, we arrive at
condition (b). 
�
Proof of Proposition 5.5 First, observe that X is rational if and only if Y is rational
or, in other words, of genus zero. For r = 2, Theorem 5.3 gives

g(Y ) = l

2
(ll01l02l12 − l01 − l02 − l12) + 1.

Thus, according to Lemma 5.6, condition g(Y ) = 0 holds if and only if (i) or (ii) of
the proposition holds. 
�
Remark 5.7 If the defining polynomial in Proposition 5.5 is classically homogeneous,
then it defines a projective hypersurface X ′ ⊆ P

n−1 and the following statements are
equivalent.

(i) X ′ is rational.
(ii) Cl(X ′) is finitely generated.
(iii) Condition 5.5 (i) or (ii) holds.

Corollary 5.8 Let R(A, P0) be of Type 2. Then X = Spec R(A, P0) is rational if and
only if one of the following conditions holds:

(i) We have gcd(li , l j ) = 1 for all 0 � i < j � r , in other words, R(A, P0) is
factorial.

(ii) There are 0 � i < j � r with gcd(li , l j ) > 1 and gcd(lu, lv) = 1 whenever
v /∈ {i, j }.

(iii) There are 0 � i < j < k � r with gcd(li , l j ) = gcd(li , lk) = gcd(l j , lk) = 2
and gcd(lu, lv) = 1 whenever v /∈ {i, j, k}.

Lemma 5.9 Let A, P0 be defining data of Type 2, enhance A to A′ by attaching a
further column and P0 to P ′

0 by attaching lr+1 to l0, . . . , lr . If gcd(li , lr+1) = 1 holds
for i = 0, . . . , r , then we have g(Y ) = g(Y ′) for the curves associated with R(A, P)

and R(A′, P ′
0) respectively.

Proof Denote the numbers arising from P ′ in the sense of Definition 5.2 by l′i , l′ etc.
Then we have

l′ = llr+1, b′(i) = gcd(l, l′/l j ; j �= i) = b(i), i = 0, . . . , r,
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b(r +1) = gcd(l′/l0, . . . , l′/lr ) = lr+1.

Plugging these identities into the genus formula of Theorem 5.3, we directly obtain
g(Y ′) = g(Y ). 
�
Lemma 5.10 Let R(A, P0) be of Type 2 and assume that the curve Y associated with
R(A, P) is of genus zero. Then there are 0 � i � j � k � r with gcd(lu, lv) = 1
whenever v /∈ {i, j, k}.
Proof According to Theorem 5.3, the fact that the curve Y associated with R(A, P)

is of genus zero implies

r
∑

i=0

b(i)

li
= (r − 1) + 2l

l0 · · · lr > r − 1.

As b(i) divides li , we see that b(i) �= li can happen at most three times. Moreover,
b(i) = li is equivalent to gcd(li , l j ) = 1 for all j �= i . 
�
Proof of Corollary 5.8 We may assume that the indices i, j and k of Lemma 5.10
are 0, 1 and 2. Then Lemma 5.9 says that X is rational if and only if the trinomial
hypersurface defined by the exponent vectors l0, l1, l2 is rational. Thus, Proposition 5.5
gives the assertion. 
�
Corollary 5.11 Let R(A, P0) be a platonic ring of Type 2. Then X = Spec R(A, P0)
is rational.

Remark 5.12 It may happen that for a rational T -variety X of complexity one, the
total coordinate space X is rational, but the total coordinate space of X not any more.
For instance consider

X3
..= V (T 4

1 + T 4
2 + T 4

3 ) ⊆ C
3.

Then, according to Proposition 5.5, the surface X3 is not rational. Moreover, X3 is the
total coordinate space of an affine rational C

∗-surface X2 with defining matrix

P2 =
⎡

⎣

−4 4 0
−4 0 4
−3 1 1

⎤

⎦ .

The divisor class group of X2 is Cl(X2) = Z/4Z×Z/4Z and the Cl(X2)-grading of
the Cox ring R(X2) = C[T1, T2, T3]/〈T 4

1 + T 4
2 + T 4

3 〉 is given by

deg(T1) = (1, 1), deg(T2) = (1, 2), deg(T3) = (2, 1).

For an equation for X2, compute the degree zero subalgebra of R(X2): it has three
generators S1, S2, S3 and S31 + S32 + S43 as defining relation. Thus,

X2 ∼= V (S31 + S32 + S43 ) ⊆ C
3.
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To obtain a rational affine C
∗-surface having X2 as its total coordinate space, we take

X1, defined by

P1 ..=
⎡

⎣

−3 3 0
−3 0 4
−2 1 1

⎤

⎦ .

The divisor class group of X1 is Cl(X1) = Z/3Z and the Cl(X1)-grading of the Cox
ring R(X1) = C[S1, S2, S3]/〈S31 + S32 + S43 〉 is given by

deg(T1) = 1, deg(T2) = 2, deg(T3) = 0.

We have constructed a chain of total coordinate spaces X3 → X2 → X1, where X1
is a rational affine C

∗-surface, X2 is rational and X3 not.

Finally, we determine the factor group of themaximal quasitorus by its unit component
acting on a given trinomial hypersurface; the proof is a direct consequence of the
subsequent lemma.

Proposition 5.13 Let R(A, P) be any ring of Type 2, where r = 2. Then, for the
quasitorus H0 acting on the corresponding trinomial hypersurface

X ∼= V
(

T l01
01 · · · T l0n0

0n0
+ T l11

11 · · · T l1n1
1n1

+ T l21
21 · · · T l2n2

2n2

) ⊆ C
n,

the factor group H0/H0
0 by the unit component H0

0 ⊆ H0 is isomorphic to the product
of cyclic groups C(l)×C(ll01l02l12).

Lemma 5.14 Consider a matrix P0 with m = 0 and r = 2 as in Type 2 of Construc-
tion 2.2:

P0 =
[−l0 l1 0

−l0 0 l2

]

.

As earlier, set li = gcd(li1, . . . , lni ). Then, with li j = gcd(li , l j ) and l =
gcd(l0, l1, l2), we obtain

K tors
0 = (Zn/im(P∗

0 ))tors ∼= C(l)×C(ll01l02l12).

Proof Suitable elementary column operations to P0 transform the entries li to
(li , 0, . . . , 0). Thus, K tors

0
∼= (Z3/im(P∗

1 ))tors holds with the 2×3 matrix

P1 ..=
[−l0 l1 0

−l0 0 l2

]

.

The determinantal divisors of P0 are gcd(l0, l1, l2) and gcd(l0l1, l0l2, l1l2). Thus, the
invariant factors of P0 are l and ll01l02l12; see [27]. 
�
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6 Proof of Theorems 1.5 and 1.6

We are ready to prove our first main results. The proof of Theorem 1.5 will be in fact
constructive in the sense that it allows to compute the defining equations of the Cox
ring in every iteration step; see Proposition 6.6.

Remark 6.1 Let R(A, P) resp. R(A, P0) be a ring of Type 2. Applying suitable
admissible operations, one achieves that P resp. P0 (is ordered in the sense that
li1 � . . . � lini for all i = 0, . . . , r and l01 � · · · � lr1 hold. For an ordered P
resp. P0, the ring R(A, P) resp. R(A, P0) is platonic if and only if (l01, l11, l21) is a
platonic triple and li1 = 1 holds for i � 3.

Definition 6.2 The leading platonic triple of a ring R(A, P) resp. R(A, P0) of Type 2
is the triple (l01, l11, l21) obtained after ordering P resp. P0.

Lemma 6.3 Let R(A, P0) be of Type 2 and platonic such that li1 � . . . � lini
holds for all i and li1 = 1 for i � 3. Moreover, assume gcd(l1, l2) = l. Then, with
K0 = Z

n+m/im(P∗
0 ), the kernel of Z

n+m → K0/K tors
0 is generated by the rows of

the matrix

P1 ..=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
gcd(l0,l1)

l0
1

gcd(l0,l1)
l1 0 · · · 0 0 · · · 0

−1
gcd(l0,l2)

l0 0 1
gcd(l0,l2)

l2 0 0

−l0 0 1 0
...

...
...

...
. . .

...

−l0 0 · · · 0 1 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where, as before, the symbols 1 indicate vectors of length ni with all entries equal to
one.

Proof Observe that the rows of P0 generate a sublattice of finite index in the row
lattice P1. Thus, we have a commutative diagram

K0 K0/K tors
0 .

Z
n+m/im(P∗

1 )

It suffices to show, that Z
n+m/im(P∗

1 ) is torsion free. Applying suitable elementary
column operations to P1, reduces the problem to showing that for the 2×3 matrix

[ l0
gcd(l0,l1)

l1
gcd(l0,l1)

0
l0

gcd(l0,l2)
0 l2

gcd(l0,l1)

]

,
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all determinantal divisors equal one. The entries of the above matrix are coprime and
its 2×2 minors are

l0l2

gcd(l0, l1) gcd(l0, l2)
,

l1l2

gcd(l0, l1) gcd(l0, l2)
,

l0l1

gcd(l0, l1) gcd(l0, l2)
.

up to sign. By assumption, we have gcd(l1, l2) = l. Consequently, we obtain

gcd(l0l2, l0l1, l1l2) = gcd(l0l, l1l2) = gcd(l0, l1) gcd(l0, l2)

and therefore the second determinantal divisor equals one. As remarked, the first one
equals one as well and the assertion follows. 
�
Lemma 6.4 Let R(A, P0) be of Type 2 and X = Spec R(A, P0). Then, for any gen-
erator T01 of R(A, P0), we have

V (X , T01) ∼= V (T01) ∩ V
(

T l1
1 − T li

i ; i = 2, . . . , r
) ⊆ C

n+m.

In particular, the number of irreducible components of V (X , T01) equals the product
of the invariant factors of the matrix

⎡

⎢

⎣

−l1 l2 0
...

. . .

−l1 0 lr

⎤

⎥

⎦
.

Proof First observe that the ideal 〈T01, g0, . . . , gr−2〉 ⊆ C[Ti j , Sk] is generated by
binomials which can be brought into the above form by scaling the variables appro-
priately. Now consider the homomorphism of tori

π : T
n1+···+nr → T

r−1, (t1, . . . , tr ) �→
(

t l22
t l11

, . . . ,
t lrr

t l11

)

.

Then the number of connected components of ker(π) equals the product of the invari-
ant factors of the above matrix. Moreover, T

n0−1× ker(π)×T
m is isomorphic to

V (X , T01) ∩ T
n+m. Finally, one directly checks that V (X , T01) has no further irre-

ducible components outside T
n+m. 
�

Lemma 6.5 Let R(A, P0) be of Type 2 and platonic. Assume that P0 is ordered. Then
the number c(i) of irreducible components of V (X , Ti j ) is given as

i 0 1 2 � 3

c(i) gcd(l1, l2) gcd(l0, l2) gcd(l0, l1) l2l01l02l12

Proof Suitable admissible operations turn Ti j to T01. Then the number of components
is computed via Lemma 6.4. 
�
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Proposition 6.6 Let R(A, P0) be of Type 2, platonic and non-factorial. Assume that
P0 is ordered and let P1 be as in Lemma 6.3. Set

ni,1, . . . , ni,c(i) ..= ni , li j,1, . . . , li j,c(i) ..= gcd((P1)1,i j , . . . , (P1)r,i j ).

The li,α ..= (li1,α, . . . , lini ,α) ∈ Z
ni,α build up an r ′×(n′+m) matrix P ′

0, where
n′ ..= c(0)n0 + · · · + c(r)nr . With a suitable matrix A′, the following holds.
(i) The affine variety Spec R(A′, P ′

0) is the total coordinate space of the affine variety
Spec R(A, P0),

(ii) The leading platonic triple (l.p.t.) of R(A′, P ′
0) can be expressed in terms of that

of R(A, P0) as

l.p.t. of R(A, P0) l.p.t. of R(A′, P ′
0)

(4, 3, 2) (3, 3, 2)

(3, 3, 2) (2, 2, 2)

(y, 2, 2) (z, z, 1) or
( y
2 , 2, 2

)

(x, y, 1)
( x
gcd(l0,l1)

,
y

gcd(l0,l1)
, 1
)

Proof We compute the Cox ring of X = Spec R(A, P0) according to [3, Theo-
rem 4.4.1.6]; use [22, Corollary 1.9] to obtain the statement given there also in the
affine case. That means that we have to figure out which invariant divisors are identi-
fied under the rational map onto the curve Y with function field C(X)H

0
0 and we have

to determine the orders of isotropy groups of invariant divisors.
Let P1 be as in Lemma 6.3. Then the torus H0

0 acts diagonally on C
n+m with

weights provided by the projection Q1 : Z
n+m → K 0

0 , where K 0
0 = Z

n+m/im(P∗
1 )

equals the character group of H0
0 . Consider the commutative diagram

X0 ⊆ C
n+m
0

X0/H0
0 ⊆ C

n+m
0 /H0

0

Y ⊆ P

where X0 ⊆ X and C
n+m
0 ⊆ C

n+m denote the open H0
0 -invariant subsets obtained

by removing all coordinate hyperplanes V (Sk) and all intersections V (Ti1 j1 , Ti2 j2)
with (i1, j1) �= (i2, j2) from C

n+m. Moreover, the geometric quotient spaces in the
middle row are possibly non-separated and the maps to the lower row are separation
morphisms.

We determine the orders of isotropy groups. Every point in T
n+m has trivial H0

0 -
isotropy. Thus, we only have to look what happens on the sets V (Ti j ) ∩ C

n+m
0 .
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According to [3, Proposition 2.1.4.2], the order of isotropy group of H0
0 at any point

x ∈ V (Ti j ) ∩ C
n+m
0 equals the greatest common divisor of the entries of the i j-th

column of P1:

|H0
0,x | = l ′i j ..= gcd((P1)1,i j , . . . , (P1)r,i j ) for all x ∈ V (Ti j ) ∩ C

n+m
0 .

Now we figure out which H0
0 -invariant divisors of X0 are identified under the map

X0 → Y . Lemma 6.5 provides us explicit numbers c(0), . . . , c(r) such that for fixed
i and j = 1, . . . , ni , we have the decomposition into prime divisors

V (X , Ti j ) = Di j,1 ∪ · · · ∪ Di j,c(i),

in particular, the number c(i) does not depend on the choice of j . The components
Di j,1, . . . , Di j,c(i) lie in the common affine chart W0 ⊆ X0 obtained by localizing
at all Ti ′j ′ different from Ti j . Their images thus lie in the affine chart W0/H0

0 ⊆
X0/H0

0 . Consequently, the Di j,1, . . . , Di j,c(i) have pairwise disjoint images under the
composition X0 → X0/H0

0 → Y .
On the other hand, V (X , Ti j ) and V (X , Ti j ′) are identified isomorphically under

the separation map X0/H0
0 → Y Thus, suitably numbering, we obtain for every i ,

and α = 1, . . . , c(i) a chain

Di1,α, . . . , Dini ,α,

of divisors identified under the morphism X0/H0
0 → Y . The order of isotropy for any

x ∈ Di j,α equals l ′i j . Now, using [3, Theorem 4.4.1.6], we can compute the defining

relations of the Cox ring of X , which establishes the two assertions. 
�
Remark 6.7 Let R(A, P0) be a non factorial platonic ring with ordered P0 and leading
platonic triple (l01, l11, l21). Denote by R(A′, P ′

0) the Cox ring of Spec R(A, P0). Then
the exponents of the defining relations of R(A′, P ′

0) are listed in the following table,
where 1n1 denotes the vector of length ni with all entries equal to one.

leading plat. triple exponents in R(A′, P ′
0)

(4, 3, 2) l1, l1, l0/2, 1n2 and 2×1ni for i � 3

(3, 3, 2) l2, l2, l2, 1n0 , 1n1 and 3×1ni for i � 3

(x, 2, 2) and l = 2 l0/2, l0/2, 2×1n1 , 2×1n2 and 4×1ni for i � 3

(x, 2, 2) and 2 � l0 l0, l0, 1n1 , 1n2 and 2×1ni for i � 3

(x, 2, 2) and l2 = 1 l0/2, l2, l2, 1n1 and 2×1ni for i � 3

(x, y, 1) l0
gcd(l0,l1)

, l1
gcd(l0,l1)

, gcd(l0, l1)×1ni for i � 2
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Proof of Theorem 1.5 We start with a rational, normal, affine, log terminal X1 of
complexity one. According to Theorem 1.3, the Cox ring R2 of X1 is a platonic ring.
If the greatest common divisors of pairs li , l j of R2 all equal one, then R2 is factorial
by [20, Theorem 1.1] and we are done. If not, then we pass to the Cox ring R3 of
X2

..= Spec R2 and so on. Proposition 6.6 ensures that this procedure terminates with
a factorial platonic ring Rp. 
�
Proof of Theorem 1.6 Let X1 be any rational, normal, affine variety with a torus action
of complexity one of Type 2 and at most log terminal singularities. Then Theorem 1.5
provides us with a chain of quotients

Xp
//Hp−1

Xp−1
//Hp−2 · · · //H3

X3
//H2

X2
//H1

X1,

such that Xi = Spec Ri holdswith a platonic ring Ri when i � 2, the ring Rp is factorial
and each Xi+1 → Xi is the total coordinate space. The idea is to construct stepwise
solvable linear algebraic groups Gi ⊆ Aut(Xi+1) acting algebraically on Xi+1 such
that the unit component G0

i ⊆ Gi is a torus, Gi contains Hi as a normal subgroup,
Gi−1 = Gi/Hi holds and we have G1 = H1.

Start with G1
..= H1, acting on X2. According to [3, Theorem 2.4.3.2], there exists

an (effective) action of a torus G1 on X3 lifting the action of G0
1 on X2 and commuting

with the action of H2 on X3. Moreover, [4, Theorem 5.1] provides us with an exact
sequence of groups

1 H2 Aut(X3, H2)
π

Aut(X2) 1,

where Aut(X3, H2) denotes the group of automorphisms of X3 normalizing the qua-
sitorus H2. Set G2

..= π−1(G1). Then H0
2 G1, as a factor group of the torus H0

2 ×G1
by a closed subgroup, is an algebraic torus and it is of finite index in G2. Thus, G2 is
an affine algebraic group with G0

2 = H0
2 G1 being a torus. By construction, H2 ⊆ G2

is the kernel of α1
..= π |G2 and hence a normal subgroup. Moreover, G2 is solvable

and acts algebraically on X3. Iterating this procedure gives a sequence

Gp−1
αp−2

Gp−2
αp−3 · · · α2

G2
α1

G1
α0 1

of group epimorphisms, where, as wanted, Gi is a solvable reductive group acting
algebraically on Xi+1 such that Hi = ker(αi−1) is the characteristic quasitorus of
Xi . In particular, the group G ..= Gp−1 ⊆ Aut(Xp) satisfies the first assertion of the
theorem.

We turn to the second assertion. From [3, Proposition 1.6.1.6], we infer that G1 =
H1 acts freely on the preimage U2 ⊆ X2 of the set of smooth points U1 ⊆ X1 and
moreover, the complement X2\U2 is of codimension at least two in X2. LetU3 ⊆ X3
be the preimage of U2 ⊆ X2. Again, the complement of U3 is of codimension at least
two in X3 and, as U2 consists of smooth points of X2, the quasitorus H2 acts freely
on U3. Because of G2/H2 = G1, we conclude that U3 is G2-invariant and G2 acts
freely on U2. Repeating this procedure, we end up with an open set Up ⊆ Xp having
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complement of codimension at least two such that G acts freely on Up. Thus, G acts
strongly stably on Xp. Now consider

G = D0 ⊇ D1 ⊇ · · · ⊇ Dp−2 ⊇ Dp−1 = 1, Di
..= ker(αi ◦ · · · ◦αp−2).

Thenwe have Xi = Xp//Di−1 and Hi = Di−1/Di .Moreover for eachDi , its action on
Xp is strongly stable, as remarked before, and Xp is G-factorial because it is factorial.
Using [4, Proposition 3.5], we obtain a commutative diagram

Xp//[Di ,Di ]

//Di /[Di ,Di ]

β
Xp//Di+1

//Di /Di+1

Xp//Di

where the left downward map is a total coordinate space. As Di/Di+1 = Hi+1
is abelian, [Di ,Di ] is contained in Di+1 and we have the horizontal morphism β.
Since the right hand side is a total coordinate space as well, we infer from [3, Sec-
tion 1.6.4] that β is an isomorphism. This implies Di+1 = [Di ,Di ], proving the
second assertion. 
�

7 Compound du Val singularities

Between the Gorenstein terminal and canonical threefold singularities lie the com-
pound du Val singularities, introduced by Miles Reid in [29], see also [24,26,30]. We
discuss compound du Val singularities in the context of T -varieties of complexity one
and provide first constraints on the defining data for affine threefolds, preparing the
proof of our classification results.

Definition 7.1 ([29, Definition 2.1], [24, Theorem 5.34, Corollary 2.3.2]) A normal,
canonical, Gorenstein threefold singularity x ∈ X is called compound du Val, if one
of the following equivalent criteria is satisfied:

(i) For a general hypersurface Y ⊆ X with x ∈ Y , the point x is a du Val surface
singularity of Y .

(ii) Near x , the threefold X is analytically isomorphic to a hypersurface of the fol-
lowing shape

V
(

f (T1, T2, T3) + g(T1, T2, T3, T4)T4
) ⊆ C

4,

where f is a defining polynomial for a du Val surface singularity in C
3 and g is

any polynomial in T1, T2, T3, T4.
(iii) For every resolutionϕ : X ′ → X of singularities and every irreducible exceptional

divisor E ⊆ ϕ−1(x), the discrepancy of E is greater than zero.
(vi) There is a resolution ϕ : X ′ → X of singularities such that every irreducible

exceptional divisor E ⊆ ϕ−1(x) is of discrepancy greater than zero.
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For an affine toric threefold X , condition 7.1 (iv) means the following: X is defined
by the cone over �×{1} with a hollow lattice polytope � ⊆ Q

2, where hollow means
that � has no lattice points in its interior. Based on this characterization, one obtains
the list of toric compound du Val singularities provided in [10]:

Proposition 7.2 Let X be an affine toric variety with a compound du Val singularity.
Then X ∼= X (σ ) holds with a cone σ ⊆ Q

3 generated by the columns of one of the
following matrices

(a)

⎡

⎣

0 0 k
0 1 0
1 1 1

⎤

⎦ , k ∈ Z�2, (b)

⎡

⎣

0 0 k1 k2
0 1 0 1
1 1 1 1

⎤

⎦ , k1, k2 ∈ Z�1, (c)

⎡

⎣

0 0 2
0 2 0
1 1 1

⎤

⎦ .

Proof After removing the third row from the matrices, we find in their columns the
vertices of the hollow polytopes � ⊆ Q

2; see [31]. 
�
We turn to affine T -varieties X of complexity one. As the toric case is settled, we can
concentrate on the varieties X = X (A, P) ofType 2. The basic tool is the anticanonical
complex Ac

X , described in Proposition 3.8. The following statement specifies a bit
more.

Proposition 7.3 Let X = X (A, P) be an affine Gorenstein, log-terminal threefold of
Type 2 such that P is in the form of Proposition 4.3. Consider the intersections

∂Ac
X (λ) ..= ∂Ac

X ∩ λ, ∂Ac
X (λi )

..= ∂Ac
X ∩ λi , ∂Ac

X (λi , τ ) ..= ∂Ac
X (λi ) ∩ τ,

where ∂Ac
X is the relative boundary of the anticanonical complex, λ ⊆ trop(X) the

lineality part, λ0, . . . , λr ⊆ trop(X) are the leaves and τ is any P-elementary cone.

(i) Let x1, . . . , xr+2 be the standard coordinates on the column space Q
r+2 of P

and set x0 ..= −x1 − · · · − xr . Then xi , xr+1, xr+2 are linear coordinates on the
three-dimensional vector space LinQ(λi ) and we have

∂Ac
X (λi ) = Ac

X ∩ λi ∩ Hi ⊆ LinQ(λi )

with the planeHi
..= V (ζX xr+2+μi xi − ıX ) ⊆ LinQ(λi ), whereμi is the integer

defined in Remark 4.5. In particular, for fixed i , the columns vi j of P lie on the
half plane λi ∩ Hi .

(ii) The set Ac
X ∩ τ is a two-dimensional and ∂Ac

X ∩ τ a one-dimensional polyhedral
complex. Furthermore, ∂Ac

X (λi , τ ) is a line segment.

Proof We show (i). Let σ ⊆ Q
r+2 be the cone over the columns of P . Then the set

∂Ac
X (λi ) equals ∂Ac

X ∩ σ ∩ λi . By the assumption on P , the equation from Proposi-
tion 3.8 (ii) gives the assertion.

For (iii), write τ = cone(w0, . . . , wr ) with wi ∈ λi . Observe that Ac
X ∩ τ ∩ λi has

the vertices 0, wi , v(τ )′ and is thus two-dimensional. Only wi and v(τ)′ satisfy the
equation ζX xr+2 + μi xi = ıX . Thus Ac

X ∩ τ is two-dimensional and ∂Ac
X ∩ τ as well

as ∂Ac
X (λi , τ ) are one-dimensional. 
�
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The following figures visualize the situation of Proposition 7.3 for the case r = 2. The
first one shows the leaves λi , the second one the half planes λi ∩Hi , the third one all
Ac
X (λi ) and the last one all Ac

X (λi , τ ) for a given P-elementary cone τ .

The following statement shows that the relative boundary ∂Ac
X of the anticanonical

complex replaces the lattice polytope � from the toric setting discussed before.

Proposition 7.4 Let X = X (A, P) be an affine Gorenstein, log terminal threefold of
Type 2. Then X has at most compound du Val singularities if and only if there are no
integral points in the relative interior of ∂Ac

X .

Lemma 7.5 Let X = X (A, P,�), denote by � the fan of the minimal toric ambient
variety Z of X and let σ ∈ � be a big cone.

(i) The toric orbit TZ ·zσ ⊆ Z corresponding to the cone σ ∈ � is contained in
X ⊆ Z.

(ii) If TZ ·zσ ⊆ X contains a singular point of X, then every point of TZ ·zσ is singular
in X.

Proof We show (i). By the structure of the defining relations gi , the corresponding
statement holds for X ⊆ Z = C

n+m. Passing to the quotient by the characteristic
quasitorus H gives the assertion.

We turn to (ii). Let z ∈ ̂X be a point mapping to TZ ·zσ . Using once more the
specific shape of the defining relations gi , we see that if the point z ∈ ̂X is singular in
X , then every point of T

n+m ·z is singular in X . Thus, the assertion follows from [3,
Corollary 3.3.1.12]. 
�

123



Log terminal singularities, platonic tuples and iteration of Cox rings 283

Proof of Proposition 7.4 Since X is Gorenstein and log terminal, it is canonical. Let
Z be the minimal toric ambient variety of X . Recall that Z is the affine toric vari-
ety defined by the cone σ over the columns of P and that the toric fixed point
x ∈ Z belongs to X . For any point x ′ ∈ X different from x , we infer from
Lemma 7.5 and [3, 3.4.4.6] that, if x ′ is singular in X , then it belongs to a curve
consisting of singular points of X . According to [24, Corollary 5.4], the point x ′
is at most a compound du Val singularity. Thus, X has at most compound du
Val singularities if and only if every prime divisor E ⊆ ϕ−1(x) has positive dis-
crepancy; use condition 7.1 (iv). By Proposition 3.2, the latter holds if and only if
there are no integral points in ∂Ac

X ∩ σ ◦, which in turn is the relative interior of
∂Ac

X . 
�
Definition 7.6 Let the matrix P be of Type 2 and ordered in the sense of Remark 6.1.
By the leading block of P , we mean the matrix [v01, . . . , vr1].
Lemma 7.7 Let X = X (A, P) be an affine, Gorenstein, log terminal threefold of
canonical multiplicity one of Type 2.

(i) By admissible operations one achieves that P is ordered in the sense of
Remark 6.1, in the form of Corollary 4.6 and the entry di sitting in column vi1
and row number r + 1 of P satisfies di = 0 whenever i � 3.

(ii) In the situation of (i), the leading block of the matrix P is fully determined by the
data (l01, l11, l21; d0, d1, d2).

Proof The leading block contains the leading platonic triple (l01, l11, l21). All other li1
must be equal to one. Due to Corollary 4.6, the last row of P is determined by these
data. Subtracting the di -fold of the i-th from the (r +1)-th row, we obtain di = 0 for
i � 3. Thus apart from l01, l11, l21, the only free parameters in the leading block are
d0, d1, d2. 
�
Definition 7.8 In the situation of Lemma 7.7 (i), we call (l01, l11, l21; d0, d1, d2) the
leading block data of P .

Proposition 7.9 Let X = X (A, P) be an affine Gorenstein log terminal threefold
of Type 2 and canonical multiplicity one in the form of Lemma 7.7. By admissible
operations, keeping the form of Lemma 7.7, we achieve that the leading block has one
of the following data:

(i) (5, 3, 2; 0, 0, 0), (ii) (4, 3, 2; 0, 0, 0), (iii) (4, 3, 2; 1, 0, 0),
(iv) (3, 3, 2; 0, 0, 0), (v) (3, 3, 2; 1, 0, 0), (vi) (l01, 2, 2; 0, 0, 0),
(vii) (l01, 2, 2; 1, 0, 0), (viii) (l01, 2, 2; 0, 1, 0), (ix) (l01, l11, 1; d0, 0, 0).

Proof We go through all possible leading platonic triples and explicitly list the admis-
sible operations on P that produce the desired leading block data. First, we modify P
by subtracting the i-th row from the last for i � 3. Then we have

ν01 = 1 − l01, ν11 = ν21 = 1, νi1 = di = 0, i = 3, . . . , r.
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In the sequel, by “applying a = (a1, a2, a3)” we mean performing the following
sequence of admissible operations on P: add the a1-fold of the first, the a2-fold of the
second and the a3-fold of the last to the penultimate row of P .

Case 1: The leading platonic triple is (5, 3, 2). We arrive at case (i) by applying

a =(2d0 + 3d1 + 5d2, 3d0 + 5d1 + 7d2, −6d0 − 10d1 − 15d2
)

.

Case 2: The leading platonic triple is (4, 3, 2). If d0 ≡ d2 mod 2 holds, then we arrive
at case (ii) by applying

a =
(

d0 + d1 + 2d2,
3

2
d0 + 2d1 + 5

2
d2, −3d0 − 4d1 − 6d2

)

.

If d0 ≡ d2 + 1mod 2 holds, then we arrive at case (iii) by applying

a =
(

d0 + d1 + 2d2 − 1,
3

2
d0 + 2d1 + 5

2
d2 − 3

2
, −3d0 − 4d1 − 6d2 + 3

)

.

Case 3: The leading platonic triple is (3, 3, 2). We distinguish the cases d0 ≡ d1 mod 3
and d0 ≡ d1 + 1mod 3 (if d0 ≡ d1 − 1mod 3, then exchange the data of the blocks 0
and 1 of P). We arrive at cases (iv) and (v) by applying respectively

a =
(

2

3
d0 + 1

3
d1 + d2, d0 + d1 + d2, −2d0 − 2d1 − 3d2

)

,

a =
(

2

3
d0 + 1

3
d1 + d2 − 2

3
, d0 + d1 + d2 − 1, −2d0 − 2d1 − 3d2 + 2

)

.

Case 4: The leading platonic triple is (l01, 2, 2). We distinguish several subcases and
will work with

a =
(

1

2
d0+ l01 − 2

4
d1+ l0 j0

4
d2,

1

2
d0+ l01

4
d1+ l01 − 2

4
d2, −d0 − l01

2
(d1 + d2)

)

.

4.1: We have l01 ≡ 1mod 4.

4.1.1: d1 ≡ d2 mod 4. If d0 is even, then applying a, we arrive at case (vi). If d0 is odd,
then applying a + (−1/2,−1/2, 1), we arrive at case (vii).
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4.1.2: d1 ≡ d2 + 1mod 4. If d0 is even, then applying a + (1/4,−1/4, 1/2) leads to
case (viii). If d0 is odd, then applying a + (−1/4, 1/4, 1/2) and exchanging the data
of column blocks 1 and 2 leads to case (viii).

4.1.3: d1 ≡ d2 − 1mod 4. Exchanging the data of column blocks 1 and 2, we are in
4.1.2 and thus arrive at case (viii).

4.1.4: d1 ≡ d2 + 2mod 4. If d0 is odd, then applying a, we arrive at case (vi). If d0 is
even, then applying a + (−1/2,−1/2, 1) leads to case (vii).

4.2: We have l01 ≡ 2mod 4.

4.2.1: d0 ≡ d1 ≡ d2 mod 2. Applying a, we arrive at case (vi).

4.2.2: d0 ≡ d1 �≡ d2 mod 2. Applying a + (0,−1/2, 1), we arrive at case (viii).

4.2.3: d0 ≡ d2 �≡ d1 mod 2. Exchanging the data of column blocks 1 and 2, we are in
4.2.2 and thus arrive at case (viii).

4.2.4: d0 �≡ d1 ≡ d2 mod 2. Applying a + (−1/2,−1/2, 1), we arrive at case (vii).

4.3 and 4.4: l01 ≡ 3mod 4 or l01 ≡ 3mod 4, respectively. These cases are settled by
similar arguments as 4.1 and 4.2. That means that the same admissible operations are
applied after, if necessary exchanging the data of column blocks 1 and 2.

Case 5: The leading platonic triple is (l01, l11, 1). Applying (0, d1 − d2,−d1), we
arrive at case (ix).

Finally, in each of the cases (i) to (ix), we modify the matrix P obtained so far by
adding the i-th row to the last one for i = 3, . . . , r . This brings P again into the form
of Lemma 7.7 (i). 
�

8 Proof of Theorems 1.8 and 1.9

In Propositions 8.1, 8.3 and 8.4, we classify the compound du Val singularities admit-
ting a torus action of complexity one and list their defining matrices P , numerated
according to their appearance in Theorem 1.8. We begin with the case of Q-factorial
non-toric threefolds of canonical multiplicity one.

Proposition 8.1 Let X be a non-toric affine threefold of Type 2. Assume that X is Q-
factorial, of canonical multiplicity one and has at most compound du Val singularities.
Then X, for suitable A, is isomorphic to X (A, P), where P is one of the following
matrices:
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(8)

⎡

⎢

⎢

⎣

−5 3 0 0
−5 0 2 0
0 0 0 1

−4 1 1 1

⎤

⎥

⎥

⎦

, (7)

⎡

⎢

⎢

⎣

−4 3 0 0
−4 0 2 0
0 0 0 1

−3 1 1 1

⎤

⎥

⎥

⎦

,

(18)

⎡

⎢

⎢

⎣

−4 −1 3 0
−4 −1 0 2
1 3 0 0

−3 0 1 1

⎤

⎥

⎥

⎦

, (6)

⎡

⎢

⎢

⎣

−3 3 0 0
−3 0 2 0
0 0 0 1

−2 1 1 1

⎤

⎥

⎥

⎦

,

(15)

⎡

⎢

⎢

⎣

−3 −1 3 0
−3 −1 0 2
1 2 0 0

−2 0 1 1

⎤

⎥

⎥

⎦

, (17)

⎡

⎢

⎢

⎣

−3 −2 3 0
−3 −2 0 2
1 1 0 0

−2 −1 1 1

⎤

⎥

⎥

⎦

,

(4)

⎡

⎢

⎢

⎣

−k 2 0 0
−k 0 2 0
0 0 0 1

1 − k 1 1 1

⎤

⎥

⎥

⎦

, (12-e-e)

⎡

⎢

⎢

⎣

−k1 −k2 2 0
−k1 −k2 0 2

0 1 0 0
1 − k1 1 − k2 1 1

⎤

⎥

⎥

⎦

,

(5-o)

⎡

⎢

⎢

⎣

−k 2 0 0
−k 0 2 0
1 0 0 0

1 − k 1 1 1

⎤

⎥

⎥

⎦

, (11)

⎡

⎢

⎢

⎣

−k 2 1 0
−k 0 0 2
1 0 0 0

1 − k 1 1 1

⎤

⎥

⎥

⎦

,

(12-o-e/o)

⎡

⎢

⎢

⎣

−2k1 −2k2 − 1 2 0
−2k1 −2k2 − 1 0 2

0 k1 − k2 1 0
1 − 2k1 −2k2 1 1

⎤

⎥

⎥

⎦

, (16)

⎡

⎢

⎢

⎣

−4 2 1 0
−4 0 0 2
0 1 2 0

−3 1 1 1

⎤

⎥

⎥

⎦

,

(5-e)

⎡

⎢

⎢

⎣

−2k − 1 2 0 0
−2k − 1 0 2 0

0 1 0 k + 1
−2k 1 1 1

⎤

⎥

⎥

⎦

, (10-o)

⎡

⎢

⎢

⎣

−2k − 1 2 1 0
−2k − 1 0 0 2

0 1
⌈ 2k+1

4

⌉

0
−2k 1 1 1

⎤

⎥

⎥

⎦

where the parameters k, k1, k2 are positive integers and in (4), (5-o) and (11), we have
k � 2. Moreover, (12-e-e) indicates that the two exponents in the defining equation of
Theorem 1.8 (12) are even, in (5-o) the exponent is odd etc.

Proof We may assume that P is irredundant and in the form of Proposition 7.9. As X
is Q-factorial, the matrix P has precisely r + 2 columns, i.e., is a square matrix, see
Corollary 2.13. Since we assume P to be irredundant and li j = 1 holds for i � 3,
we must have ni � 2 for i � 3. This forces r � 3. The strategy is now to compute
suitable parts of ∂Ac

X explicitly according to Proposition 3.8 and to use the fact that
they do not contain interior lattice points, as guaranteed by Proposition 7.4.

Consider the case r = 3. Here, we have n0 = n1 = n2 = 1 and n3 = 2. Moreover,
(l01, l11, l21) is a platonic triple with l21 > 1 and l3 = (1, 1) holds. The column apart
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from the leading block of P is v32 = (0, 0, 1, t, 0), where we may assume that t is a
positive integer. The vertices of ∂Ac

X (λ) thus are

(

0, 0, 0,
α

β
, 1

)

,

(

0, 0, 0,
α + t l01l11l21

β
, 1

)

,

where

α ..= d0l11l21 + d1l01l21 + d2l01l11, β ..= l11l21 + l01l21 + l01l11 − l01l11l21.

Since l01, l11, l21 all differ from one, t l01l11l21/β � 2 holds and thus ∂Ac
X (λ) contains

an integral point in its relative interior. Consequently r = 3 is impossible.
We are left with the case r = 2. Here, P is a 4×4matrix, the leading block columns

are v01, v11, v21 and the column v of P apart from these three is one of

v02 = (−k,−k, t, 1 − k), v12 = (k, 0, 0, t, 1),

v22 = (0, k, t, 1), v1 = (0, 0, t, 1).

We now go through the list of all possible leading block data provided by Proposi-
tion 7.9. We will often compute the line segment ∂Ac

X (λ) ⊆ Q
4 from Proposition 7.3

explicitly. According to Proposition 3.8, the P-elementary cone spanned by the
columns of the leading block produces the first vertex w1 of ∂Ac

X (λ) and the sec-
ond vertex w2 either arises from a (unique) second P-elementary cone or one has
w2 = v = v1.

Let P have the leading block data (5, 3, 2; 0, 0, 0). Then the first vertex of ∂Ac
X (λ)

is w1 = (0, 0, 0, 1). Consider the case that the additional column v lies in the relative
interior λ◦

0 ⊆ λ0. Then v = v02 = (−k,−k, t, 1− k) with 1 � k � 5, where we may
assume t > 0. We compute w2 = (0, 0, 6t/(6 − k), 1). The following figures show
∂Ac

X (λ0) ⊆ H0 with the lower edge being ∂Ac
X (λ), where the planeH0 is defined as

in Proposition 7.3:

v01
v02

w1 w2
k = 5 4 3 2 1 0

v1

where the last figure indicates the case of the additional column lying in λ, treated
below. Now, because of 6t/(6− k) � 6/5, we find the point (0, 0, 1, 1) in the relative
interior of ∂Ac

X (λ) and hence in the relative interior of ∂Ac
X . According to Proposi-

tion 7.4, we leave the compound du Val case here.
We proceed in a more condensed way. Assume v ∈ λ◦

1. Then v = v12 = (k, 0, t, 1)
with 1 � k � 3 andwe can assume t > 1.Weobtainw2 = (0, 0, 10t/(10−3k), 1).We
find again (0, 0, 1, 1) in ∂Ac

X (λ)◦ and thus leave the compound du Val case. Assume
v ∈ λ◦

2. Then v = v22 = (0, k, t, 1) with 1 � k � 2 and we can assume t > 1. We
obtain w2 = (0, 0, 15t/(15 − 7k, 1). Once more, (0, 0, 1, 1) shows up in ∂Ac

X (λ)◦
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and we leave the compound du Val case. Finally, assume v = v1 = (0, 0, t, 1). We
may assume t > 0. Only for t = 1 there are no lattice points in ∂Ac

X (λ)◦. Moreover,
if t = 1, then all ∂Ac

X (λi ) are hollow polytopes of the first type of Proposition 7.2 and
we arrive at matrix (8) from the assertion defining the compound du Val singularity
E8×C.

Let P have the leading block data (4, 3, 2; 0, 0, 0). Also here, the first vertex of
∂Ac

X (λ) isw1 = (0, 0, 0, 1). Assume v ∈ λ◦
0. Then v = v02 = (−k,−k, t, 1−k)with

1 � k � 4, where we may assume t > 0. We obtain w2 = (0, 0, 6t/(6− k), 1). Thus,
(0, 0, 1, 1) lies in ∂Ac

X (λ)◦ and we leave the compound du Val case. Assume v ∈ λ◦
1.

Then v = v12 = (k, 0, t, 1), where 1 � k � 3 and we can assume t > 0. We obtain
w2 = (0, 0, 4t/(4 − k), 1) and find (0, 0, 1, 1) in the relative interior of ∂Ac

X (λ) and
thus leave the compound du Val case. Assume v ∈ λ◦

2. Then v = v22 = (0, k, t, 1)
with k = 1, 2 and we can assume t > 0. We obtain w2 = (0, 0, 12t/(12 − 5k), 1)
and see that (0, 0, 1, 1) lies in ∂Ac

X (λ)◦. Thus, we leave the compound du Val case.
Finally, assume v = v1 = (0, 0, t, 1). For t > 1, we find (0, 0, 1, 1) in ∂Ac

X (λ)◦. The
case t = 1 gives matrix (7), defining the compound du Val singularity E7×C.

Let P have the leading block data (4, 3, 2; 1, 0, 0). Here, the first vertex of ∂Ac
X (λ)

is w1 = (0, 0, 3, 1). To visualize the setting, consider the P-elementary cone τ ⊆ Q
4

generated by the columns v01, v11, v21 of the leading block and the line segments
∂Ac

X (λi , τ ) ⊆ Hi , where i = 0, 1, 2, from Proposition 7.3:
v01

∂AcX (λ0, τ )

v11

∂AcX (λ1, τ )

v21

∂AcX (λ2, τ )

Note that the additional column v is represented in the above figures by a lattice point
not contained in ∂Ac

X (λi , τ ), indicated by the black line. Going through the cases,
we will also have to look at the polytopes ∂Ac

X (λi ) and will encounter the following
situations:

∂AcX (λ0) ∂AcX (λ1)

v22

∂AcX (λ2)

Assume v ∈ λ◦
0. Then v = v02 = (−k,−k, t, 1 − k) with 1 � k � 4. The second

vertex of ∂Ac
X (λ) is w2 = (0, 0, 6t/(6 − k), 1). We find one of the points (0, 0, 4, 1)

or (0, 0, 2, 1) in ∂Ac
X (λ)◦ for k = 2, 4. Moreover, for k = 3, we find (−1,−1, 3, 0) in

∂Ac
X (λ0)

◦. Thus, we end up with non compound du Val singularities for k = 2, 3, 4.
In the case k = 1, we may assume t > 2. Only for t = 3, no lattice points are inside
∂Ac

X
◦. For t > 3, the point (−1,−1, 3, 0) lies in ∂Ac

X (λ0)
◦. So with t = 3, we obtain

matrix (18), defining a compound du Val singularity.
We show that the remaining possible locations of v all lead to non compound du Val

singularities. Assume v ∈ λ◦
1. Then v = v12 = (k, 0, t, 1) ∈ λ◦

1 with 1 � k � 3. The
second vertex of ∂Ac

X (λ) isw2 = (0, 0, (k+4t)/(4−k), 1). Thus, either (0, 0, 2, 1) or
(0, 0, 4, 1) lies in ∂Ac

X (λ)◦. Assume v ∈ λ◦
2. Then v = v22 = (0, k, t, 1)with k = 1, 2,
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where we can assume t > 1 or t > 0 accordingly. The second vertex of ∂Ac
X (λ) is

w2 = (0, 0, (3k + 12t)/(12 − 5k), 1). For k = 2, we find (0, 0, 4, 1) in ∂Ac
X (λ)◦.

For k = 1, the segment ∂Ac
X (λ) is of length (12t − 18)/7. Thus, for t � 3, we find

a lattice point in ∂Ac
X (λ)◦. For t = 2, we look at ∂Ac

X (λ0)
◦ and see that it contains

(−1,−1, 3, 0); see the figure above. Finally, if v = v1 ∈ λ, one finds (−1,−1, 3, 0)
in ∂Ac

X (λ0)
◦.

Let P have the leading block data (3, 3, 2; 0, 0, 0). Then the first vertex of ∂Ac
X (λ)

isw1 = (0, 0, 0, 1). Assume v = (−k,−k, t, 1−k) ∈ λ◦
0 or v = (k, 0, t, 1) ∈ λ◦

1 with
k = 1, 2, 3. Then we can assume t > 0. We obtain w2 = (0, 0, 6t/(6 − k), 1), find
(0, 0, 1, 1) in ∂Ac

X (λ)◦ and thus leave the compound du Val case. If v = (0, k, t, 1) ∈
λ◦
2, with k = 1, 2, we can assume t > 0.We obtainw2 = (0, 0, 3t/(3−k), 1) and find

(0, 0, 1, 1) in ∂Ac
X (λ)◦. Thus also here, we leave the compound du Val case. Finally,

if v = (0, 0, t, 1) ∈ λ, then we end up with t = 1 and the matrix (6), defining the
compound du Val singularity E6×C.

Let P have the leading block data (3, 3, 2; 1, 0, 0). Then the first vertex of ∂Ac
X (λ)

is w1 = (0, 0, 2, 1). We will take a look at the leaves:

v01

∂AcX (λ0, τ )

v11

∂AcX (λ1, τ )

v21

∂AcX (λ2, τ )

Assume v ∈ λ◦
0. Then v = v01 = (−k,−k, t, 1 − k) with k = 1, 2, 3. We obtain

w2 = (0, 0, 6t/(6 − k), 1). In the case k = 3 as well as in the case k = 2 with t �= 1,
we find one of (0, 0, 1, 1) and (0, 0, 3, 1) in ∂Ac

X (λ)◦ and leave the compound du
Val case. For k = 2 and t = 1, there are no lattice points in ∂Ac

X and the resulting
matrix is (15), defining a compound du Val singularity. If k = 1 and t �= 2, we find
(0, 0, 1, 1) or (0, 0, 3, 1) in ∂Ac

X (λ)◦. The case t = 2 leads to the matrix (7), defining
a compound du Val singularity. The case of v ∈ λ◦

1 can be reduced by means of
admissible operations to the previous case. We show that for the remaining possible
locations of v, we leave the compound du Val case. If v = (0, k, t, 1) ∈ λ◦

2, then
w2 = (0, 0, (3t + k)/(3− k), 1) and we find (0, 0, 1, 1) or (0, 0, 3, 1) in ∂Ac

X (λ)◦. If
v = (0, 0, t, 1) ∈ λ, then (−1,−1, 2, 0) or (1, 0, 1, 1) lies in ∂Ac

X (λ)◦.
Let P have the leading block data (l01, 2, 2; 0, 0, 0). Then the first vertex of

∂Ac
X (λ) is (0, 0, 0, 1). Assume v ∈ λ◦

0. Then v = v02 = (−k,−k, t, 1 − k) with
1 � k � l01, where we can assume t > 0. We have w2 = (0, 0, t, 1). For t > 1, we
obtain (0, 0, 1, 1) ∈ ∂Ac

X (λ)◦ and thus leave the compound du Val case. For t = 1,
the resulting singularity is compound du Val for every k and has defining matrix
(12-e-e) with k1 � k2. Assume v ∈ λ◦

1. Then v = v12 = (k, 0, t, 1) with k = 1, 2. We
can assume l01 > 2 and t > 0. For k = 1 we have w2 = (0, 0, 2tl01/(2+ l01), 1) and
for k = 2, we havew2 = (0, 0, tl01/2, 1). In both cases, ∂Ac

X (λ)◦ contains (0, 0, 1, 1)
and we obtain a non compound du Val singularity. The case of v ∈ λ◦

2 can be trans-
formed via exchanging the data of blocks 1 and 2 into the previous one. Finally, if
v = (0, 0, t, 1) ∈ λ, then we must have t = 1 and this gives the compound du Val
singularity Dl01+2×C, defined by the matrix (4).
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Let P have the leading block data (l01, 2, 2; 1, 0, 0). Then the first vertex of ∂Ac
X (λ)

is (0, 0, 1, 1). Assume v ∈ λ◦
0. Then v = v02 = (−k,−k, t, 1 − k) with 1 � k � l01.

We can assume t < 1. For t < 0, we have (0, 0, 0, 1) ∈ ∂Ac
X (λ)◦. For t = 0, we

obtain a matrix (12-e-e) as in the case of leading block data (l01, 2, 2; 0, 0, 0), now
with k1 � k2. Assume v ∈ λ◦

1. The case l01 = 2 can be transformed via admissible
operations into the case of leading block data (l01, 2, 2; 0, 1, 0) and an additional
column in λ◦

0, which is discussed below. So, let l01 > 2. Then v = (k, 0, t, 1), where
k = 1, 2. For k = 2, we can assume t > 0. We obtain w2 = (0, 0, 1 + tl01/2, 1)
and (0, 0, 2, 1) ∈ ∂Ac

X (λ)◦ and thus leave the compound du Val case. Now let k = 1.
Here, t may be any integer and we obtain w2 = (0, 0, 2(1 + l01t)/(2 + l01), 1). Only
for t = 0, 1 there are no lattice points in ∂Ac

X (λ)◦. Both cases lead by admissible
operations to the compound du Val singularity with defining matrix (11). The case
of v ∈ λ◦

2 can be transformed to the previous one by exchanging the data of column
blocks 1 and 2. Finally, if v ∈ λ, then it equals either (0, 0, 0, 1) or (0, 0, 2, 1). Both
cases lead to the compound du Val singularity with defining matrix (5o).

Let P have leading block data (l01, 2, 2; 0, 1, 0). Then the first vertex of ∂Ac
X (λ)

is w1 = (0, 0, l01/2, 1).

Case 1: The exponent l01 is even. Assume v ∈ λ. Then v = v1 = w2 = (0, 0, t, 1).
Exchanging the data of blocks 0 and 1 transforms the case l01 = 2 into the corre-
sponding case with leading block data (l01, 2, 2; 1, 0, 0) treated before. So, let l01 > 2.
Having no lattice points in ∂Ac

X (λ)◦ implies t = l01/2± 1. But then, there are integer
points in ∂Ac

X (λ0)
◦: for t = l01/2 + 1 we find

(

−1,−1,
l01
2

, 0

)

= 1

l01
v01 + 1

2
w1 +

(

1

2
− 1

l01

)

w2

and for t = l01/2 − 1 we find

(

−1,−1,
l01
2

− 1, 0

)

= 1

l01
v01 +

(

1

2
− 2

l01

)

w1 +
(

1

l01
+ 1

2

)

w2.

Assume v ∈ λ◦
0. Then v = v02 = (−k,−k, t, 1 − k) with 1 � k � l01. The second

vertex of ∂Ac
X (λ) is w2 = (0, 0, t + k/2, 1). If k is even, then having no lattice points

in ∂Ac
X (λ)◦ implies t = (l01 − k)/2± 1. Again there are integer points in ∂Ac

X (λ0)
◦:

for t = (l01 − k)/2 + 1 we find

(

−1,−1,
l01
2

, 0

)

= 1

k
v02 + 1

2
w1 +

(

1

2
− 1

k

)

w2

and for t = (l01 − k)/2 − 1 we find

(

−1,−1,
l01
2

− 1, 0

)

= 1

k
v02 + 1

2
w1 +

(

1

2
− 1

k

)

w2.
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If k is odd, then having no lattice points in ∂Ac
X (λ)◦ implies t = (l01 − k ± 1)/2. For

both choices of t , this setting produces a compound du Val singularity with matrix
(12-o-e/o) and parameters k1 � k2.

Before entering the discussion of the cases v ∈ λ◦
i with i = 1, 2, the parameter k

occurring in v might be k = 1, 2 and the vertex w2 is given by

w2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

0, 0,
2tl01

2l01 + 2k − kl01
, 1

)

, v = (k, 0, t, 1) ∈ λ◦
1,

(

0, 0,
2tl01 + kl01

2l01 + 2k − kl01
, 1

)

, v = (0, k, t, 1) ∈ λ◦
2.

Case 1.1: We have l01 ≡ 0mod 4. If v ∈ λ◦
2 or v = (2, 0, t, 1) ∈ λ◦

1, then we find one
of (0, 0, l01/2 ± 1, 1) in ∂Ac

X (λ)◦. Thus, we are left with v ∈ λ◦
1 and k = 1. For any

t �= l01/4+ 1, we find the lattice point (1, 0, l01/4+ 1, 1) in ∂Ac
X (λ1)

◦. Thus, we end
up with

v = (k, 0, t, 1) =
(

1, 0,
l01
4

+ 1, 1

)

, w2 =
(

0, 0, l01
l01 + 4

2l01 + 4
, 1

)

.

Note that the segment ∂Ac
X (λ) contains no lattice points, because its length equals

l01/(l01 + 2) < 1. Taking a look at λ0, we observe

(

−1,−1,
l01
2

, 0

)

∈ ∂Ac
X (λ0)

◦ ⇐⇒ l01
l01 + 2

>
l01

2(l01 − 1)
⇐⇒ l01 > 4.

Thus, to obtain compound duVal singularities, wemust have l01 � 4.As l01 ≡ 0mod 4
holds, only l01 = 4 is left and, indeed, this leads to the compound du Val singularity
with defining matrix (16).

Case 1.2: We have l01 ≡ 2mod 4. If v ∈ λ◦
1 or v = (0, 2, t, 1) ∈ λ◦

2, then we find one
of (0, 0, l01/2 ± 1, 1) in ∂Ac

X (λ)◦. Thus, we are left with v ∈ λ◦
2 and k = 1. For any

t �= l01/4 + 1/2, we find the lattice point (0, 1, l01/4 + 1/2, 1) in ∂Ac
X (λ2)

◦. We end
up with

v = (0, k, t, 1) =
(

0, 1,
l01
4

+ 1

2
, 1

)

∈ λ◦
2.

Similarly to Case 1.1, we obtain that (−1,−1, l01/2, 0) ∈ ∂Ac
X (λ0)

◦ as soon as
l01 > 4. Thus, only l01 = 2 might lead to a compound du Val singularity. In this
case, we exchange the data of blocks 0 and 2 and land in case of leading block data
(l01, 2, 2; 0, 1, 0) and an additional column in λ◦

0.

Case 2: The exponent l01 is odd. If v ∈ λ, then v = v1 = w2 = (0, 0, (l01 + 1)/2, 1)
holds and we arrive at the compound du Val singularity with defining matrix (5e).
If v ∈ λ◦

0 holds, then the arguing runs similar as in Case 1. Only for k odd and
v = v02 = (−k,−k, (l01 − k + 1)/2, 1− k), there are no lattice points in the relative
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interior of ∂Ac
X (λ)◦ and we end up with the matrix (12-o-e/o) as in Case 1, but now

with parameters k1 � k2.
Assume v ∈ λ◦

1. Then v = v12 = (k, 0, t, 1) with k = 1, 2. The case k = 2
gives w2 = (0, 0, tl01/2, 1), the point (0, 0, (l01 ± 1)/2, 1) lies ∂Ac

X (λ)◦ and thus we
leave the compound du Val case. So, let k = 1. Then we have v = (1, 0, t, 1) ∈ λ◦

1.
Moreover, w1 = (0, 0, l01/2, 1) and w2 = (0, 0, 2tl01/(2 + l01), 1). Now, as l01 is
odd, we see that ∂Ac

X (λ) to have no lattice points in the relative interior means

1

2
�
∣

∣

∣

∣

2tl01
2 + l01

− l01
2

∣

∣

∣

∣

.

If l01 ≡ 1mod 4, this is only fulfilled for t = (l01 + 3)/4. If l01 ≡ 3mod 4, it is only
fulfilled for t = (l01 + 1)/4. Altogether, it is fulfilled for t = �l01/4�. This leads to
the compound du Val singularity with defining matrix (10o).

The case v ∈ λ◦
2 can be transformed by suitable admissible operations to the case

v ∈ λ◦
1 just discussed.

Let P have leading block data (l01, l11, 1; d0, 0, 0). As P is irredundant, the addi-
tional column is forced to be (0, 1, t, 1) ∈ λ◦

2 and we have l01, l11 � 2. The vertices
of ∂Ac

X (λ) turn out to be

w1 =
(

0, 0,
d0l11

l01 + l11
, 1

)

, w2 =
(

0, 0,
d0l11 + tl01l11

l01 + l11
, 1

)

.

We have 0 < t l01l11/(l01 + l11) � 1 only for t = 1 and l01 = l11 = 2. In this
case, the second inequality becomes an equality and thus w1 is integral w1 which
implies d0 = 0. We arrive at the compound du Val singularity with matrix (12-e-e)
and parameters k1 = k2 = 1. 
�
We turn to the non-toric non-Q-factorial threefolds, still of canonical multiplicity one.
The following observation provides the link to the Q-factorial case. Given defining
data A, P for a ring R(A, P) of Type 2,wewill have to dealwith quadratic submatrices
P ′ of P , obtained by erasing columns and rows from P . The corresponding submatrix
A′ of A gathers all columns ai of A such that at least one column vi j is not erased
from P when passing to P ′.

Lemma 8.2 Let X = X (A, P) be a compound du Val threefold of Type 2 and canon-
ical multiplicity ζX with P irredundant in the form of Proposition 4.3 and ordered in
the sense of Remark 6.1.

(i) Let P ′ be an (r + 2)×(r + 2) submatrix of P such that for any i = 0, . . . , r at
least one vi j is not erased from P.

(a) A′ = A and P ′ are defining data of Type 2 in the sense of Construction 2.2;
moreover, P ′ is in the form of Proposition 4.3.

(b) X ′ = X (A′, P ′) is a Q-factorial threefold with at most compound du Val
singularities of canonical multiplicity ζX ′ = ζX .

Moreover, one always finds a submatrix P ′ as above being ordered and having
the same leading block as P.
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(ii) Every P ′ as in (i) admits a 4×4 submatrix P ′′ with the same leading block as P ′
such that

(a) A′′ and P ′′ are defining data of Type 2 in the sense of Construction 2.2, the
matrix P ′′ is ordered and the form of Proposition 4.3.

(b) The varieties X ′ = X (A′, P ′) and X ′′ = X (A′′, P ′′) are equivariantly isomor-
phic to each other.

(iii) If the leading platonic triple of P is different from (x, y, 1), then r = 2 holds.
(iv) One always finds P ′ and P ′′ as in (ii) with the same leading block as P such that

(a) in case of the leading platonic triple of P differing from (x, y, 1), up to admis-
sible operations, P ′′ is one of the matrices from Proposition 8.1.

(b) in case of the leading platonic triple of P equal to (x, y, 1), we have n′′
2 = 2

for P ′′.

Proof We verify (i). Note that each column of P ′ is as well a column of P . By
Proposition 2.12, the columns of P generate the extremal rays of a full dimensional
cone σ ⊆ Q

r+2. Thus, also the columns of P ′ generate the extremal rays of a cone
σ ′ ⊆ Q

r+2. We show that σ ′ is full dimensional. If P ′ has a column v1 ∈ λ, then,
using Proposition 3.8 (iii) we see that the remaining r + 1 columns of P ′ are linearly
independent and v1 does not lie in their linear span. If P ′ has no column inside λ,
then we can form two different P-elementary cones τ1 and τ2 out of columns of P ′.
The corresponding vτi ∈ τ ◦

i generate the pointed two-dimensional cone σ ′ ∩ λ and we
see that the columns of P generate Q

r+2. Thus, we can conclude that P ′ satisfies the
conditions of Type 2 of Construction 2.2 and, together with A′ = A gives defining
data. Observe that X ′ = X (A′, P ′) is Q-factorial by construction. Using Remark 4.4,
we obtain ζX ′ = ζX and see that P ′ still is in the form of Proposition 4.3. Using
Remark 4.5, conclude ıX ′ = ıX = 1. Moreover, according to Proposition 3.8, the
anticanonical complex Ac

X ′ is a subcomplex of Ac
X and the same holds for ∂Ac

X ′ and
∂Ac

X. Thus, Proposition 7.4 shows that X ′ inherits from X the property of having at
most compound du Val singularities. The supplement is obvious.

We prove (ii). For r = 2, there is nothing to show. So, assume r � 3. If P ′ has
a column vk ∈ λ, then we have ni = li1 = 1 for i � 3 and Remark 2.4, applied
r − 2 times, yields the desired 4×4 matrix P ′′. We turn to the case that P ′ has no
column in λ. Then nk = 2 for some 0 � k � r and all other ni equal one. If k � 2
holds, then we have ni = li1 = 1 for i � 3 and proceed as before to obtain P ′′. We
discuss k = 3. First assume that the leading platonic triple of P ′ equals (x, y, 1).
Then, exchanging the data of column blocks 3 and 2 of P ′, we are in the case k � 2
just treated. If the leading platonic triple of P ′ differs from (x, y, 1) then, applying
r −3 times Remark 2.4, we arrive at an irredundant 5×5 matrix P ′′ defining a variety
X ′′ = X (A′′, P ′′) isomorphic to X ′ = X (A′, P ′); a contradiction to Proposition 8.1.
Finally, if k � 4, then we exchange the data of column blocks k and 3 of P ′ and are
in the case k = 3. This proves (ii).

We turn to (iii). Assume r � 3. Since P is irredundant and ordered in the sense of
Remark 6.1, we have ni � 2 and li j = 1 for i � 3. Consider the submatrices

P ′ ..= [v01, v11, v21, v31, v32, v41, . . . , vr1], P∼ ..= [v01, v11, v21, v31, v32].
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Let P ′′ be the matrix obtained by erasing from P∼ erasing all but the first three and
the last two rows. Then P ′′ is an irredundant 5×5 matrix and X ′′ = X (A′′, P ′′) is
isomorphic to X ′ = X (A′, P ′); a contradiction to Proposition 8.1.

Finally, we show (iv). For (a), observe that because of ıX ′′ = ıX = 1, Proposition 4.7
gives ζX ′′ = ζX = 1. Thus X ′′ is Q-factorial compound du Val and P ′′ must, up to
admissible operations, be one of the matrices from Proposition 8.1. We turn to (b).
For any i � 2, we have ni � 2, because P is irredundant. Consider the submatrices

P ′ ..= [v01, v11, v21, v22, v31, . . . , vr1], P∼ ..= [v01, v11, v21, v22].

Then we obtain the desired P ′′ from P∼ by erasing all but the first two and the last
two rows. 
�

Proposition 8.3 Let X = X (A, P) be a non-toric affine threefold of Type 2. Assume
that X is not Q-factorial, of canonical multiplicity one and has at most compound du
Val singularities. Then P can be assumed to be the matrix

(10-e)

⎡

⎢

⎢

⎣

−k 2 1 0 0
−k 0 0 2 1
1 0 0 0 0

1 − k 1 1 1 1

⎤

⎥

⎥

⎦

, k ∈ Z�2.

Proof The strategy is to look first for not necessarily irredundant matrices P ′′ with
r ′′ = 2 defining a Q-factorial X ′′ = X (A′′, P ′′) of canonical multiplicity one with at
most compound du Val singularities. Then we obtain, up to admissible operations, all
matrices P with X (A, P) satisfying the assumptions of the proposition by enlarging
the P ′′ in the sense of Lemma 8.2. We organize the subsequent discussion according
to the possible leading block data, as listed in Proposition 7.9, and treat pairs P ′′, P
sharing the same leading block data. Note that we have r = 2 for P whenever the
leading platonic triple differs from (x, y, 1).

Consider the leading block data (5, 3, 2; 0, 0, 0). Proposition 8.1 tells us that after
suitable admissible operations, we have

P ′′ =

⎡

⎢

⎢

⎣

−5 3 0 0
−5 0 2 0
0 0 0 1

−4 1 1 1

⎤

⎥

⎥

⎦

.

After performing the corresponding admissible operations on P , we find P ′′ as a
submatrix of P . Moreover, P has at least one further column and thus a submatrix

P ′′′ =

⎡

⎢

⎢

⎣

−5 3 0 ∗
−5 0 2 ∗
0 0 0 ∗

−4 1 1 ∗

⎤

⎥

⎥

⎦

.
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Lemma 8.2 (i) says that X ′′′ = X (A′′′, P ′′′) isQ-factorial, of canonical multiplicity one
and with at most compound du Val singularities. Thus, up to admissible operations,
P ′′′ occurs in the list of Proposition 8.1. So, the last column must be one of

(0, 0, 1, 1), (0, 0,−1, 1)

The first case is impossible, because the columns of the defining matrix P are pairwise
different. For (0, 0,−1, 1) as last column, the point (0, 0, 0, 1) lies in ∂Ac

X (λ)◦; a
contradiction to Proposition 7.4.

The case of leading block data (4, 3, 2; 0, 0, 0) is treated by exactly the same argu-
ments as the preceding case.

Consider the leading block data (4, 3, 2; 1, 0, 0). Again, Proposition 8.1 tells us
that, up to admissible operations, we have

P ′′ =

⎡

⎢

⎢

⎣

−4 −1 3 0
−4 −1 0 2
1 3 0 0

−3 0 1 1

⎤

⎥

⎥

⎦

.

Adapting P by admissible operations, it comprises P ′′ as a submatrix. As before, we
obtain a matrix P ′′′ by enhancing the leading block with a further column of P , which
this time must be one of

(−1,−1, 3, 0), (−1,−1, 2, 0).

The first leads to two identical columns of P and this is excluded. For the second we
find (0, 0, 3, 1) inside ∂Ac

X (λ)◦ and leave the compound du Val case.
The case of leading block data (3, 3, 2; 0, 0, 0) runs exactly as the case of

(5, 3, 2; 0, 0, 0).
Consider the leading block data (3, 3, 2; 1, 0, 0). Here Proposition 8.1 leaves us

with two possibilities for the submatrix P ′′ of the accordingly adapted P . The first
possibility is

P ′′ =

⎡

⎢

⎢

⎣

−3 −2 3 0
−3 −2 0 2
1 1 0 0

−2 −1 1 1

⎤

⎥

⎥

⎦

(5)

with columns v01, v02, v11, v21. Using as above Proposition 8.1, we arrive at three pos-
sibilities for submatrices P ′′′ = [v01, v11, v21, ∗]; with σ = cone(v01, v02, v11, v21),
we find the following situation in the ∂Ac

X (λi ) ∩ σ :
v01

v02

∂AcX (λ0) ∩ σ

v11

∂AcX (λ1) ∩ σ

v21

∂AcX (λ2) ∩ σ
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where the circles indicate the prospective columns ∗ of P ′′′ leading to compound
du Val singularities X (A′′′, P ′′′) of canonical multiplicity one. They are

(−1,−1, 2, 0) ∈ λ0, (1, 0, 1, 1), (2, 0, 1, 1) ∈ λ1.

The lower one in the middle picture is contained in σ which is not possible. The other
two force (0, 0, 2, 1) to lie in ∂Ac

X (λ)◦ which is as well impossible. So, (5) does not
occur as a submatrix of P . The second possibility is

P ′′ =

⎡

⎢

⎢

⎣

−3 −1 3 0
−3 −1 0 2
1 2 0 0

−2 0 1 1

⎤

⎥

⎥

⎦

.

Here we proceed analogously as with (5) and see the only possible additional column
in P is (1, 0, 1, 1). In this case again (0, 0, 2, 1) lies in ∂Ac

X (λ)◦ and we leave the
compound du Val case.

Consider the leading block data (l01, 2, 2; 0, 0, 0). Here Proposition 8.1 tells us that
the submatrix P ′′ of the accordingly adapted P is

P ′′ =

⎡

⎢

⎢

⎣

−k1 −k2 2 0
−k1 −k2 0 2

0 1 0 0
1 − k1 1 − k2 1 1

⎤

⎥

⎥

⎦

,

where we allow k2 = 0 here and in this case change the second and fourth column
to have a proper defining matrix. A possible further column for P ′′′ must have the
form (−k3,−k3, t, 1 − k3) with t = ±1. For t = 1, one of (−k2,−k2, 1, 1 − k2)
or (−k3,−k3, 1, 1 − k3) does not give an extremal ray of the cone spanned by the
columns of P . For t = −1, the point (0, 0, 0, 1) lies in ∂Ac

X (λ)◦ and we leave the
compound du Val case.

Consider the leading block data (l01, 2, 2; 1, 0, 0). Proposition 8.1 allows two
choices for the submatrix P ′′ of the accordingly adapted P . The first one is

P ′′ =

⎡

⎢

⎢

⎣

−k 2 0 0
−k 0 2 0
1 0 0 0

1 − k 1 1 1

⎤

⎥

⎥

⎦

.

We check the possible further columns of P . A column in λwould lead to (0, 0, 1, 1) ∈
∂Ac

X (λ)◦ and this is impossible. For any P ′′′ sharing the first three columns with P ′′,
the additional column, due to Proposition 8.1, must be (1, 0, t, 1) or (0, 1, t, 1), where
t = 0, 1. For t = 0, such column would not generate an extremal ray of the cone
spanned by the columns of P . For t = 1, we obtain (0, 0, 1, 1) ∈ ∂Ac

X (λ)◦ and we
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leave the compound du Val case. The second choice is

P ′′ =

⎡

⎢

⎢

⎣

−k 2 1 0
−k 0 0 2
1 0 0 0

1 − k 1 1 1

⎤

⎥

⎥

⎦

.

Proposition 8.1 tells us that (1, 0, t, 1) or (0, 1, t, 1)with t = 0, 1 are the only possible
further columns of P . But (1, 0, 0, 1) is impossible, since this column already exists in
P and for (1, 0, 1, 1), we obtain (0, 0, 1, 1) ∈ ∂Ac

X (λ)◦. The sameholds for (0, 1, 1, 1).
For (0, 1, 0, 1), the line segment ∂Ac

X (λ) has, in addition to w1 = (0, 0, 1, 1), the
vertex

w2 =
(

0, 0,
1

1 + k
, 1

)

.

If we have a look at the leaves, we see that we get a compound du Val singularity with
defining matrix (10-e):

∂AcX (λ0) ∂AcX (λ1) ∂AcX (λ2)

Consider the leading block data (l01, 2, 2; 0, 1, 0). Proposition 8.1 allows four pos-
sible submatrices P ′′ of the suitably adapted P . We distinguish the following cases.

Case 1: The exponent l01 is odd. First assume P has after suitable admissible operations
a submatrix

P ′′ =

⎡

⎢

⎢

⎢

⎣

−2k1 − 1 −2k2 2 0

−2k1 − 1 −2k2 0 2

0 k1−k2+1
2 1 0

−2k1 1 − 2k2 1 1

⎤

⎥

⎥

⎥

⎦

.

Assume the matrix P has a further column (−k,−k, t, 1 − k) in λ0. We regard the
submatrix containing this further column as well as the last two columns of P ′′ and
either the first (if k odd) or the second (if k even) of P ′′. This matrix does not show up
in Proposition 8.1 and we leave the compound du Val case. So P can have no further
column (−k,−k, t, 1 − k).

Also an additional column (0, 0, t, 1) in the lineality part is impossible, because due
to Proposition 8.1, the only possibilities are t = k1 and t = k1 + 1. But these would
either not give an extremal ray of the cone spanned by the columns of P (for t = k1+1)
or (−1,−1, k1, 0)would showup in ∂Ac

X (λ0)
◦.Now the last possibility is an additional

column (1, 0, t, 1) inλ1 or (0, 1, t, 1) inλ2.But the possible values of t , i.e. those giving
a compound du Val submatrix of type (10-o) from Proposition 8.1, either generate
no extremal ray of the cone spanned by the columns of P or (−1,−1, k1, 0) is an
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interior point of ∂Ac
X (λ0). Thus assume P has, after suitable admissible operations,

no submatrix of the above form and one

P ′′ =

⎡

⎢

⎢

⎢

⎣

−2k − 1 2 1 0

−2k − 1 0 0 2

0 1
⌈ 2k+1

4

⌉

0

−2k 1 1 1

⎤

⎥

⎥

⎥

⎦

.

Now, the submatrix of P given by the first, second and third column of this submatrix
and one further column must as well be of this form after suitable admissible opera-
tions. So the only possible additional column is (0, 1, �(2k + 1)/4� − 1, 1) in λ2, but
then (−1,−1, k1, 0) is an inner point of ∂Ac

X (λ0) and we leave the compound du Val
case.

Case 2: The exponent l01 equals 4. After suitable admissible operations, the matrix P
has a submatrix

P ′′ =

⎡

⎢

⎢

⎣

−4 2 1 0
−4 0 0 2
0 1 2 0

−3 1 1 1

⎤

⎥

⎥

⎦

.

A further column must, together with the first two and the last row of P ′′, give a
compound du Val submatrix P ′′′ of P as well. So due to Proposition 8.1, the only
possible further column is (1, 0, 1, 1). But with this, the point (0, 0, 2, 1) is an inner
point of ∂Ac

X (λ) and we leave the compound du Val case.
Consider the leading block data (l01, l11, 1; d0, 0, 0). Note that here, we also have

to take care about redundant matrices P ′′. Proposition 8.1 provides us with one irre-
dundant matrix

P ′′ =

⎡

⎢

⎢

⎣

−2 2 0 0
−2 0 1 1
0 0 0 1

−1 1 0 0

⎤

⎥

⎥

⎦

.

The only possible further columns of P are of the form (−2,−2, t0,−1), (2, 0, t1, 1)
or (0, 1, t2, 0). Each of them would stretch the segment ∂Ac

X (λ)which already has the
vertices (0, 0, 0, 1) and (0, 0, 1, 1).

Now we treat the redundant P ′′, which means to deal with l11 = 1. Due to
Lemma 8.2 (iv) (b), after suitable admissible operations, the matrix P has a submatrix

P ′′ =

⎡

⎢

⎢

⎣

−l01 1 0 0
−l01 0 1 1

d0 0 0 t2
1 − l01 1 1 1

⎤

⎥

⎥

⎦

.
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But since P is irredundant, it must have a further submatrix

P ′′′ =

⎡

⎢

⎢

⎣

−l01 1 1 0 0
−l01 0 0 1 1

d0 0 t1 0 t2
1 − l01 1 1 1 1

⎤

⎥

⎥

⎦

comprising P ′′ and one further column in λ1. For this matrix and the vertices of the
respective ∂Ac

X ′′′(λ), we have

w1 =
(

0, 0,
d0

l01 + 1
, 1

)

, w2 =
(

0, 0,
d0 + (t1 + t2)l01

l01 + 1
, 1

)

,

But (t1 + t2)l01/(l01 + 1) � 1 only for t1 = t2 = l01 = 1. But as P is irredundant, it
must have a sixth column (−1,−1, d0 + t0, 0) in P . The distance between the vertices
of ∂Ac

X (λ) becomes

t0 + t1 + t2
2

� 3

2
.

Thus, ∂Ac
X (λ)◦ contains an integral point. So we obtain no compound du Val singu-

larity in this case. 
�
Finally, we have to deal with the non-toric threefolds of canonical multiplicity greater
than one.

Proposition 8.4 Let X = X (A, P) be a non-toric affine threefold of Type 2. Assume
that X is of canonical multiplicity greater than one and has at most compound du Val
singularities. Then one may assume P to be one of the following matrices:

(9)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−k −k ζX − k ζX − k 0 0 · · · 0 0

−k −k 0 0 1 1 0 0
...

...
...

...
. . .

−k −k 0 0 0 0 1 1

0 d0 0 d1 0 d2 · · · 0 dr
1−μk

ζX

1−μk
ζX

1−μk
ζX

+ μ
1−μk

ζX
+ μ 0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(13-e)

⎡

⎢

⎢

⎣

−2ζX + 1 1 1 0 0
−2ζX + 1 0 0 1 1

0 0 1 0 1
2 0 0 0 0

⎤

⎥

⎥

⎦

, (13-o)

⎡

⎢

⎢

⎣

−2ζX + 2 2 0 0
−2ζX + 2 0 1 1

0 0 0 1
ζX −1 0 0

⎤

⎥

⎥

⎦

, (14)

⎡

⎢

⎢

⎣

−3 3 0 0
−3 0 1 1
0 0 0 1

−1 2 0 0

⎤

⎥

⎥

⎦

.

In (9), r � 2 holds, the integers ζX � 2 and k � 1 are coprime and μ is the unique
integer 1 � μ < ζX with ζX |(1 − μk). Moreover di ∈ Z�1 holds for i � 0 and if
k � 2 (ζX − k � 2), then one may erase the second (fourth) column of the matrix. In
(13-e), we have ζX � 2. In (13-o), we have ζX � 3 odd. In (14), we have ζX = 2.
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Proof The strategy is similar to that of the proof of Proposition 8.3. We look first
for not necessarily irredundant matrices P ′′ with r = 2 and n′′

2 = 2 defining a Q-
factorial X ′′ = X (A′′, P ′′)with atmost compound duVal singularities and of canonical
multiplicity bigger than one. Lemma 8.2 then ensures that for X = X (A, P) satisfying
the assumptions of the proposition, the matrix P contains, after suitable admissible
operations, one of our P ′′ as a submatrix with the same leading platonic triple as P .
In other words, we can construct the possible P by suitably enlarging P ′′.

The matrix P ′′ we are looking for is 4×4. Since ζX ′′ > 1 holds, we are in the
setting of Proposition 4.7 and because of ıX ′′ = 1, we end up in Proposition 4.7 (vi).
In addition to the leading block, we have the extra column v22 in P ′′. Moreover, the
integer μ ..= (1− ν01ζX ′′)/ l01 as well as l01 and l11 must all be coprime to ζX ′′ , since
we have the integer entries ν01 = (1− μl01)/ζX ′′ and ν11 = (1+ μl11)/ζX ′′ . We also
see that ζX ′′ divides l01 + l11 by subtracting ν01 and ν11 from each other. Now let

k0 ..=
⌊

l01
ζX ′′

⌋

, k1 ..=
⌈

l11
ζX ′′

⌉

, δ ..= l01 − k0ζX ′′ .

Furthermore, let in this proof di j be the third entry of the column vi j of P ′′. With these
definitions, our matrix has the following shape:

P ′′ =

⎡

⎢

⎢

⎢

⎢

⎣

−(k0ζX ′′ + δ) k1ζX ′′ − δ 0 0

−(k0ζX ′′ + δ) 0 1 1

d01 d11 0 d22
1−μδ
ζX ′′ − μk0

1−μδ
ζX ′′ + μk1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

where we achieve 1 � μ < ζX ′′ by subtracting the �μ/ζX ′′ �-fold of the first from the
last row, simultaneously. Moreover, we achieve d01 = 0 by subtracting the d01ζX ′′ -
fold of the last and the d01μ-fold of the first from the penultimate row. Exchanging, if
necessary, the data of column blocks 0 and 1, we achieve k1 > k0 � 0. We now figure
out those P ′′ defining a compound du Val singularity. For this, we consider several
constellations of k0 and k1.

Case 1: We have k0 = 0 and k1 = 1. Here we can also achieve d11 = 0 by subtracting
the d11(1−μδ)/ζX ′′ -fold of the first and the d11δ-fold of the last from the penultimate
row. The vertices of ∂Ac

X ′′(λ) are

w1 =
(

0, 0, 0,
1

ζX ′′

)

, w2 =
(

0, 0,
d22δ(ζX ′′ − δ)

ζX ′′
,

1

ζX ′′

)

.
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We illustrate the situation for the case δ = 2, ζX ′′ = 5, d22 = 2 below; observe that
the lineality part λ contains no integer points and the union of the λi ∩ Hi ∩ Z

4 for
i = 0, 1 is a sublattice

v01

v11

w1 w2
∂AcX ′′ (λ)

∂AcX ′′ (λ0)

∂AcX ′′ (λ1)

v21 v22

w1 w2
∂Ac

X ′′ (λ)

∂Ac
X ′′ (λ2)

The polytope ∂Ac
X ′′(λ0) does not contain integer points (−k,−k, t, (1−μk)/ζX ′′)

in its relative interior as for such integer points k < δ and (1− μk)/ζX ′′ integral must
hold, but δ is minimal with the second property. The same holds for ∂Ac

X ′′(λ1) and
∂Ac

X ′′(λ2) respectively. All points in ∂Ac
X ′′(λ) have 1/ζX ′′ as last coordinate, thus are

not integral. So, there is no integral point in the relative interior of ∂Ac
X ′′ . Thus P ′′

defines a Q-factorial compound du Val singularity and meanwhile looks as follows:

⎡

⎢

⎢

⎢

⎢

⎣

−δ ζX ′′ − δ 0 0

−δ 0 1 1

0 0 0 d22
1−μδ
ζX ′′

1−μδ
ζX ′′ + μ 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, gcd(δ, ζX ′′) = 1, d22 ∈ Z>0. (7)

Now we check the possibilities of enlarging P ′′ in the sense of Lemma 8.2 to a matrix
P defining a non-Q-factorial X (A, P) as in the proposition. As further columns we
can insert one or both of

v02 =
(

−δ,−δ, d02,
1 − μδ

ζX ′′

)

, v12 =
(

ζX ′′ − δ, 0, d12,
1 − μδ

ζX ′′
+ μ

)

,

with di2 ∈ Z>0 arbitrary. We cannot add other columns (−k,−k, 0, (1−μk)/ζX ′′) in
λ0. This is because first, k � δ must hold since (δ, ζX ′′ − δ, 1) is the leading platonic
triple. Second, k = k′ζX ′′ + δ with k′ � 0 must hold. So we get k = δ. But then one
of the columns
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(

−δ,−δ, d01,
1 − μδ

ζX ′′

)

,

(

−δ,−δ, d02,
1 − μδ

ζX ′′

)

,

(

−δ,−δ, d03,
1 − μδ

ζX ′′

)

lies in the cone spanned by the other two. It can give no extremal ray of the cone
spanned by the columns of P; a contradiction. Exactly the same argument shows that
no more columns can be added in λ1 and λ2.

Moreover, we can increase r from two to arbitrary to get P from P ′′. The leaves
λ0, . . . , λ2 stay untouched, we add new columns in leaves λ3, . . . , λr . First we have
li j = 1, ni � 2 for i � 3 due to log-terminality and irredundancy. Second, by the same
argument as above for λ0, . . . , λ2, we have ni � 2. Thus ni = 2 holds for i � 3. So
λi for i � 3 must have the same structure as λ2 with two columns ei and ei +di2er+1.
Here di2 ∈ Z>0 is arbitrary and ej denotes the j-th basis vector. The distances di2
between vi1 and vi2 for 0 � i � r and in consequence between w1 and w2 may vary.
Nevertheless, all polytopes ∂Ac

X (λi ) are subsets of polytopes of the second type of
Proposition 7.2 as also the following exemplary picture shows:

v01 v02

v11 v12

w1 w2
∂AcX (λ)

∂AcX (λ0)

∂AcX (λ1)

i � 2

vi1 vi2

w1 w2
∂AcX (λ)

∂AcX (λi )

i � 2

So for any P of this form, there are no integral points in the relative interior of ∂Ac
X .

Furthermore, as we have seen above, no more columns can be added in any leaf. In
total, we get the series (9) of defining matrices P of compound du Val singularities.

Case 2: We have k1 � 2. Recall that we have P ′′ of shape (6) with d01 = 0. Let
x1, . . . , x4 be the standard coordinates on the column space Q

4 of P ′′. Consider the
line segments ∂Ac

X ′′(λ) and

L0,X ′′ ..= ∂Ac
X ′′(λ0) ∩ {x1 = x2 = −δ},

L1,X ′′ ..= ∂Ac
X ′′(λ1) ∩ {x1 = ζX − δ, x2 = 0}.

Let w1, w2 denote the vertices of ∂Ac
X ′′(λ). Moreover, let ω01, ω02 be the vertices of

L0,X ′′ and ω11, ω12 the vertices of L1,X ′′ . Then we have

w1 =
(

0, 0,
d11(k0ζX ′′ + δ)

ζX ′′(k1 + k0)
,

1

ζX ′′

)

,

w2 = w1 + d22
(k0ζX ′′ + δ)(k1ζX ′′ − δ)

ζX ′′(k1 + k0)
e3,

ω01 =
(

−δ,−δ,
d11k0ζX ′′

ζX ′′(k1 + k0)
,
1 − μδ

ζX ′′

)

,

ω02 = ω01 + d22
(k1ζX ′′ − δ)k0

k1 + k0
e3,
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ω11 =
(

ζX ′′ − δ, 0, d11
ζX ′′k1 − δk0 + ζX ′′k1k0 − δ

(k1ζX ′′ − δ)(k1 + k0)
,
1 − μδ

ζX ′′
+ μ

)

,

ω12 = ω11 + d22
(k0ζX ′′ + δ)(k1 − 1)

k1 + k0
e3.

Since there must be no integral point in the relative interior of the line segments L0,X ′′
and L1,X ′′ , we at least require

d22
(k1ζX ′′ − δ)k0

k1 + k0
� 1, d22

(k0ζX ′′ + δ)(k1 − 1)

k1 + k0
� 1. (8)

These inequalities will be observed in the following different cases.

Case 2.1: We have k0 = 0. Here, the inequalities (8) ease to d22δ(k1 − 1)/k1 � 1. We
distinguish between δ = 1 and δ > 1.

Case 2.1.1: We have δ = 1. Here the matrix P ′′ is redundant. So any matrix P with
such submatrix must have an additional column in λ0. We move on to a matrix P also
containing this additional column. Such matrix is of the form

P =

⎡

⎢

⎢

⎣

−1 −1 k1ζX − 1 0 0
−1 −1 0 1 1
0 d02 d11 0 d22
0 0 k1 0 0

⎤

⎥

⎥

⎦

,

where we can assume d02 > 0. But here the length of the line segment L1,X is

(d2 + d02)(k1 − 1)

k1
,

which is less or equal to one—which must hold if it does not contain an integral
point—only for d02 = d22 = 1 and k1 = 2. Thus by adding multiples of the last to
the penultimate row, we can assume that d11 equals one or zero. If d11 = 1, then the
line segment L1,X has the vertices

(

ζX − 1, 0,
2ζX + 1

4ζX − 2
, 1

)

,

(

ζX − 1, 0,
2ζX + 1

4ζX − 2
+ 1, 1

)

.

So it contains an integer point in its relative interior, since (2ζX + 1)/(4ζX − 2) is not
integral. If d11 = 0, then L1,X has the vertices

(ζX − 1, 0, 0, 1), (ζX − 1, 0, 1, 1)

and thus contains no integer points. Since L◦
1,X is the only subset of ∂Ac

X
◦ that may

contain integer points, we get the series of defining matrices (13e) with arbitrary ζX
from this.

Such P cannot again be the submatrix of a non-Q-factorial matrix with possibly
larger r . This is because for any additional column in λ0, . . . , λ2, the line segment L1,X
would be stretched and then contain one its the former integral vertices (ζX−1, 0, 0, 1)
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and (ζX − 1, 0, 1, 1). The same holds for additional leaves, which by irredundancy
must contain at least two columns and also would lead to a stretching of L1,X .

Case 2.1.2: We have δ > 1. Here d22δ(k1 − 1)/k1 � 2(k1 − 1)/k1 holds. Thus (8) is
fulfilled only for k1 = δ = 2 and d22 = 1. Moreover ζX ′′ must be odd since l01 = 2 is
even. Also μ = (ζX ′′ + 1)/2 holds, i.e. we have the matrix

P ′′ =

⎡

⎢

⎢

⎣

−2 2ζX ′′ − 2 0 0
−2 0 1 1
0 d11 0 1

−1 ζX ′′ 0 0

⎤

⎥

⎥

⎦

.

By admissible operations, again d11 can be assumed to be equal to zero or one. For
d11 = 1, the line segment L1,X ′′ has the vertices

(

ζX ′′ − 2, 0,
ζX ′′ − 1

ζX ′′ − 2
,
ζX ′′ − 1

2

)

,

(

ζX ′′ − 2, 0,
ζX ′′ − 1

ζX ′′ − 2
+ 1,

ζX ′′ − 1

2

)

,

which have an integer point inbetween due to (ζX ′′ − 1)/(ζX ′′ − 2) not being integral.
In case d11 equals zero, the segment L1,X ′′ has the vertices

(

ζX ′′ − 2, 0, 0,
ζX ′′ − 1

2

)

,

(

ζX ′′ − 2, 0, 1,
ζX ′′ − 1

2

)

.

Since again L◦
1,X ′′ is the only subset of ∂Ac

X ′′ ◦ that may contain integer points, we get
a compound du Val series with defining matrices (13-o) and odd ζX ′′ . With exactly the
same argument as in Case 2.1.1, these matrices cannot serve as submatrices for other
compound du Val defining matrices.

Case 2.2: We have k0 � 1. Here, the first inequality of (8) leads to

1 � k0 � k1
k1ζX ′′ − δ − 1

�⇒ 0 � k1(ζX ′′ − 1) − δ − 1. (9)

Case 2.2.1: We have k1 � 3. Remembering δ < ζX ′′ , we in total require δ < ζX ′′ �
(δ + 4)/3 from the above inequality (9), leading to 1 = δ < ζ � 5/3. This gives a
contradiction, since ζX ′′ is integral.

Case 2.2.2: We have k1 = 2. The inequality (9) gives δ < ζX ′′ � (δ + 3)/2 here,
leading to δ < 3. While δ = 2 leads to ζX ′′ � 5/2, which contradicts δ < ζX ′′ ,
the case δ = 1 allows ζX ′′ = 2. The first inequality of (8) can only be fulfilled for
d2 = k0 = 1 here. Furthermore, μ = 1 must hold and inserting everything in (6), we
get a defining matrix

P ′′ =

⎡

⎢

⎢

⎣

−3 3 0 0
−3 0 1 1
0 d11 0 1

−1 2 0 0

⎤

⎥

⎥

⎦

.
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Here in a first step, by admissible operations we can assume d11 ∈ {0, 1, 2}. In a
second step, the vertices

ω11 =
(

1, 0, d11
2

3
, 1

)

, ω12 =
(

1, 0, d11
2

3
+ 1, 1

)

of the line segment L1,X ′′ are integer only for d11 = 0. Exactly the same holds for
L0,X ′′ . So in this case, P ′′ itself gives the compound du Val defining matrix (14). By
the same arguments as in Case 2.1.1, these matrix cannot serve as submatrix for other
compound du Val defining matrices. 
�
We now provide the necessary input for establishing the defining equation in C

4 of
our compound du Val singularities. Recall that the Cox ringR(X) of X = X (A, P) is
determined by the defining data, where generators and relations are read off directly
and the degree matrix Q of R(X), listing the generator degrees in Cl(X) = K , needs
to be computed.

Proposition 8.5 Consider X = X (A, P) as in case (9) of Proposition 8.4 with the
defining matrix P and the parameters therein. As indicated there, we have four sub-
cases:

(9a) P =

⎡

⎢

⎢

⎣

k ζ − k 0 0
k 0 1 1
0 0 0 d

1−μk
ζ

1−μk
ζ

+ μ 0 0

⎤

⎥

⎥

⎦

,

(9b) P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−k ζX − k 0 0 · · · 0 0

−k 0 1 1 0 0
...

...
. . .

−k 0 0 0 1 1

0 0 0 d2 · · · 0 dr
1−μk

ζX

1−μk
ζX

+ μ 0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(9c) P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−k ζX − k ζX − k 0 0 · · · 0 0

−k 0 0 1 1 0 0
...

...
...

. . .

−k 0 0 0 0 1 1

0 0 d1 0 d2 · · · 0 dr
1−μk

ζX

1−μk
ζX

+ μ
1−μk

ζX
+ μ 0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(9d) P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−k −k ζX − k ζX − k 0 0 · · · 0 0

−k −k 0 0 1 1 0 0
...

...
...

...
. . .

−k −k 0 0 0 0 1 1

0 d0 0 d1 0 d2 · · · 0 dr
1−μk

ζX

1−μk
ζX

1−μk
ζX

+ μ
1−μk

ζX
+ μ 0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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According to these subcases, the divisor class group Cl(X) and the degree matrix Q
of the Cox ring R(X) are given as follows:

(9a) one has Cl(X) = Z/dZ and Q = [0 0 1 −1],
(9b) with d ..= gcd(d2, . . . , dr ) and integers αi such that α2d2 + · · · + αrdr = d

holds, one has Cl(X) = Z
r−2×Z/dZ and

Q =

⎡

⎢

⎢

⎢

⎣

0 0 −d3 d3 d2 −d2 0 0
...

...
...

...
. . .

−dr dr 0 0 d2 −d2
0 0 −α2 α2 −α3 α3 · · · −αr αr

⎤

⎥

⎥

⎥

⎦

,

(9c) with d ..= gcd(d1, . . . , dr ) and integers αi such that α1d1 + · · · + αrdr = d
holds, one has Cl(X) = Z

r−1×Z/dZ and

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 d2 −d2 −d1 d1
−d3 d3 d2 −d2 0 0

...
...

...
. . .

−dr dr 0 0 d2 −d2
0 −α1 α1 −α2 α2 −α3 α3 · · · −αr αr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(9d) with d ..= gcd(d0, . . . , dr ) and integers αi such that α0d0 + · · · + αrdr = d
holds, one has Cl(X) = Z

r×Z/dZ and

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d2 −d2 0 0 −d0 d0
0 0 d2 −d2 −d1 d1

−d3 d3 d2 −d2 0 0
...

...
. . .

−dr dr 0 0 d2 −d2
−α0 α0 −α1 α1 −α2 α2 −α3 α3 · · · −αr αr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof Let P∗ be the transpose of P . Then we have Cl(X) ∼= Z
n+m/im(P∗) and

Q : Z
n+m → Z

n+m/im(P∗) is the projection, seeConstruction 2.2. To describeCl(X)

and Q explicitly, choose unimodular matrices V andW such that S ..= V ·P∗·W is in
Smith Normal Form, let β1, . . . , βν denote the elementary divisors and β the number
of zero rows of S. Then

Cl(X) ∼= Z
β ⊕Z/β1Z⊕ · · · ⊕Z/βνZ.

Moreover, the matrix Q is basically the stack of the last ν + β rows of V . Now, we
elaborate this explicitly for case (9d). Set κ1 ..= (kμ − 1)/ζX − μ and κ2

..= ζX − k.
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Then

V ..=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

κ1 0 1−kμ
ζX

0 kκ1 0 kκ1 0 · · · kκ1 0

1 0
1 0

. . .

1 0
κ2 0 k 0 kκ2 0 kκ2 0 · · · kκ2 0
d2 −d2 0 0 −d0 d0
0 0 d2 −d2 −d1 d1

−d3 d3 d2 −d2 0 0
.
.
.

.

.

.
. . .

−dr dr 0 0 d2 −d2
−α0 α0 −α1 α1 −α2 α2 −α3 α3 · · · −αr αr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, W ..=
⎡

⎣

Er 0 0
0 0 1
0 1 0

⎤

⎦

are both unimodular matrices and turn the matrix P∗ into Smith Normal Form: we
have

V ·P∗·W =
⎡

⎣

Er+1 0
0 d
0 0

⎤

⎦ .

This proves the assertion for case (9d). The other cases run similarly and will be
presented elsewhere. 
�
Proposition 8.6 Consider X = X (A, P) with the defining matrix P and the param-
eters therein as in Propositions 7.2, 8.1, 8.3 and 8.4, except case 8.4 (9). Then the
divisor class group Cl(X) and the degree matrix Q of the Cox ring R(X) are given as
follows.

P Cl(X) Q

7.2 (1) Z/kZ [1 0 k − 1]
7.2 (2) Z×Z/kZ

[

k2 −k1 −k2 k1
−α1 −α2 α1 α2

]

k ..= gcd(k1, k2) α1k1 + α2k2 = k

7.2 (3) Z/2Z×Z/2Z

[

1 0 1
0 1 1

]

8.1 (4)
k even

Z/2Z×Z/2Z

[

1 0 1 0
0 1 1 0

]

8.1 (4)
k odd

Z/4Z [2 1 3 0]
8.1 (5-e) Z/2Z [0 k + 1 k 1]
8.1 (5-o) Z/2Z×Z/2Z

[

0 1 0 1
0 1 1 0

]

8.1 (6) Z/3Z [1 2 0 0]
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P Cl(X) Q

8.1 (7) Z/2Z [1 0 1 0]
8.1 (8) {0} —

8.3 (10-e) Z [0 1 −2 −1 2]
8.1 (10-o) {0} —

8.1 (11) Z/2Z [0 1 0 1]
8.1 (12-e-e)
k1 even

Z/2Z×Z/2Z

[

1 0 1 0
0 0 1 1

]

8.1 (12-e-e)
k1 odd

Z/4Z [2 0 3 1]
8.1 (12-o-e/o) Z/2Z [1 0 0 1]
8.4 (13-e) Z×Z/2Z

[

0 1 −1 −1 1
1 1 0 1 0

]

8.4 (13-o) Z/2Z [1 1 0 0]
8.4 (14) Z/3Z [1 2 0 0]
8.1 (15, 17, 18) {0} —

8.1 (16) Z/2Z [1 0 0 1]

Proof The arguing is the same as for Proposition 8.5 and will be explicitly presented
elsewhere. Note that the cases without parameters can easily be settled by computer,
e.g. using [19]. 
�
Proof of Theorem 1.8 Propositions 7.2, 8.1, 8.3 and 8.4 provide us with the defining
matrices P of the compound du Val threefold singularities X of complexity one. This
gives in particular their Cox rings R(X) = R(A, P). The grading of the Cox ring by
Cl(X) = K is given by the degreematrices Q provided in Propositions 8.5 and 8.6.We
have X = Spec R(A, P)0 and will obtain the describing equation for X ⊆ C

4 from a
suitable presentation of the degree zero part R(A, P)0 of R(A, P) by generators and
relations.

We exemplarily carry this procedure out for case (9d) from Proposition 8.5. A
glance at the degree matrix Q given in Proposition 8.5 (9d) shows that the following
monomials are of K -degree zero:

xi ..= Ti1Ti2, i = 0, . . . , r, xr+1
..= T d0

01 · · · T dr
r1 , xr+2

..= T d0
02 · · · T dr

r2 .

Obviously, any monomial h in the Ti j is a product of powers of x0, . . . , xr+2 and
a monomial h′ depending of at most one variable Ti j per i and at most on r − 1
variables in total. By the shape of Q, such a monomial h′ is of degree zero if and only
if it is constant. We conclude that x0, . . . , xr+2 generate R(A, P)0. Now consider the
morphism
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π : C
n → C

r+3, z �→ (x0(z), . . . , xr+2(z)).

Then X = Spec R(A, P)0 is the image of X = Spec R(A, P) under π . We claim that
X = π(X) ⊆ C

r+3 is contained in the zero set of the polynomials

xr+1xr+2 − xd00 · · · xdrr ,

xk0 + xζ−k
1 + x2, xζ−k

1 + 2x2 + x3,

x2 + 3x3 + x4, . . . , xr−2 + (r − 1)xr−1 + xr .

Indeed, the first polynomial is an obvious relation between the xi and the remaining
ones pull back via π to the Cox ring relations given by the matrix P . The above
relations allow elimination of variables x3, . . . , xr : starting with the last relation, we
successively plug these into the first one and arrive at

xr+1xr+2 − xd00 xd11

r
∏

i=2

(

ai x
k
0 + bi x

ζ−k
1

)di,

where we can by a suitable coordinate change achieve that ai = i −1 and bi = 2i −3
hold for all i = 2, . . . , r . Thus, X can be realized as a closed subset inside the
hypersurface X ′ ⊆ C

4 defined by the above polynomial. As the latter is irreducible,
we conclude X = X ′, which proves the assertion in case (9d).

For the other non-factorial compound du Val singularities, one argues analogously;
we present this elsewhere. In the cases (9a), (9b) and (9c), we obtain the following
invariants xi and relations among them:

Case
Invariant monomials

x0, . . . , xν
Relations among xi

(9a) T d
21, T

d
22, T21T22, T01, T11

x0x1 − xd2
xk3 + xζ−k

4 + x2

(9b)
T01, T11, T21T22, . . . , Tr1Tr2,

T d2
21 · · · T dr

r1 , T d2
22 · · · T dr

r2

xr+1xr+2 − xd22 · · · xdrr
xk0 + xζ−k

1 + x2
...

xr−2 + (r − 1)xr−1 + xr

(9c)
T01, T11T12, T21T22, . . . , Tr1Tr2,

T d1
11 · · · T dr

r1 , T d1
12 · · · T dr

r2

xr+1xr+2 − xd11 · · · xdrr
xk0 + xζ−k

1 + x2
...

xr−2 + (r − 1)xr−1 + xr

For the cases different from (9), we list the relevant data in the following table; note
that the cases without parameters can be settled by computer, e.g., using [19]:
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Case Relations in R(X)
Invariant monomials

x1, . . . , xν
Relations among xi

(1) T k
1 , T k

3 , T1T3, T2 x1x2 − xk3

(2) T k1
1 T k2

2 , T k1
3 T k2

4 ,
T1T3, T2T4

x1x2 − xk13 xk24

(3) T1T2T3, T 2
1 , T 2

2 , T 2
3 x21 − x2x3x4

(4) T k
1 + T 2

2 + T 2
3

k even
T1T2T3, T 2

1 , T 2
2 , T 2

3 , T4
x21 − x2x3x4

xk/22 + x3 + x4

(4) T k
1 + T 2

2 + T 2
3

k odd
T 4
2 , T 4

3 , T1T 2
2 , T1T 2

3 ,

T2T3, T 2
1 , T4

x1x2 − x45
x (k−1)/2
6 x3 + x2 + x25
x (k−1)/2
6 x4 + x1 + x24
x (k+1)/2
6 + x3 + x4

(5-e) T 2k+1
1 + T 2

2 + T 2
3 T 2

4 , T 2
2 , T2T4, T1, T3

x1x2 − x23
x2k+1
4 + x25 + x2

(5-o) T k
1 + T 2

2 + T 2
3 T2T3T4, T 2

2 , T 2
3 , T 2

4 , T1
x21 − x2x3x4
xk5 + x2 + x3

(6) T 3
1 + T 3

2 + T 2
3 T 3

1 , T 3
2 , T1T2, T3, T4

x1x2 − x33
x1 + x2 + x24

(7) T 4
1 + T 3

2 + T 2
3 T 2

1 , T 2
3 , T1T3, T2, T4

x1x2 − x23
x21 + x34 + x2

(10-e) T k
1 + T 2

2 T3 + T 2
4 T5

T 2
2 T3, T

2
4 T5,

T2T4, T3T5, T1
x1x2 − x23 x4
xk5 + x1 + x2

(11) T k
1 + T 2

2 T3 + T 2
4 T 2

2 , T 2
4 , T2T4, T1, T3

x1x2 − x23
xk4 + x1x5 + x2

(12-e-e) T k1
1 T k2

2 + T 2
3 + T 2

4
k1 even

T1T3T4, T 2
1 , T 2

3 , T 2
4 , T2

x21 − x2x3x4
xk1/22 xk25 + x3 + x4

(12-e-e) T k1
1 T k2

2 + T 2
3 + T 2

4
k1 odd

T 4
3 , T 4

4 , T 2
3 T1, T

2
4 T1,

T3T4, T 2
1 , T2

x1x2 − x45
x (k−1)/2
6 xk27 x3 + x2 + x25
x (k−1)/2
6 xk27 x4 + x1 + x24
x (k+1)/2
6 xk27 + x3 + x4

(12-o-e/o) T 2k1
1 T 2k2+1

2 + T 2
3 + T 2

4 T 2
1 , T 2

4 , T1T4, T2, T3
x1x2 − x23

xk11 x2k2+1
4 + x25 + x2
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Case Relations in R(X)
Invariant monomials

x1, . . . , xν
Relations among xi

(13-e) T 2ζ−1
1 + T2T3 + T4T5

T 2
2 T

2
3 , T 2

4 T
2
5 , T1T2T3,

T1T4T5, T 2
1 , T2T4, T3T5

x3x4 − x5x6x7
x1x2 − x26 x

2
7

x23 − x5x1
x24 − x5x2

xζ
5 + x3 + x4

xζ−1
5 x3 + x1 + x6x7
xζ−1
5 x4 + x2 + x6x7

(13-o) T 2ζ−2
1 + T 2

2 + T3T4 T 2
1 , T 2

2 , T1T2, T3, T4
x1x2 − x23

xζ−1
1 + x2 + x4x5

(14) T 3
1 + T 3

2 + T3T4 T 3
1 , T 3

2 , T1T2, T3, T4
x1x2 − x33

x4x5 + x1 + x2

(16) T 4
1 + T 2

2 T3 + T 2
4 T 2

1 , T 2
4 , T1T4, T2, T3

x1x2 − x23
x21 + x24 x5 + x2

Proof of Theorem 1.9 Theorem 1.8 gives us all compound duVal singularities of com-
plexity one. The respective Cox rings finally can be computed using Remark 6.7. 
�
Acknowledgements We would like thank the referee for carefully reading the manuscript and for many
helpful remarks.
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