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Abstract We study a moduli problem on a nodal curve of arithmetic genus 1, whose
solution is an open subscheme in the zastava space for projective line. This moduli
space is equipped with a natural Poisson structure, and we compute it in a natural
coordinate system. We compare this Poisson structure with the trigonometric Poisson
structure on the transversal slices in an affine flag variety. We conjecture that certain
generalized minors give rise to a cluster structure on the trigonometric zastava.
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1 Introduction
1.1 Zastava and Euclidean monopoles

Let G be an almost simple simply connected algebraic group over C. We denote by B
the flag variety of G. Let us also fix a pair of opposite Borel subgroups B, B_ whose
intersection is a maximal torus 7. Let A denote the cocharacter lattice of T'; since G
is assumed to be simply connected, this is also the coroot lattice of G. We denote by
A4+ C A the sub-semigroup spanned by positive coroots.

It is well-known that H»(B,Z) = A and that an element « € H>(B, Z) is repre-

sentable by an effective algebraic curve if and only if @ € Ay. Let Z* denote the
space of maps C = P! — B of degree a sending 0o € P! to B_ € B.Itis known [10]
that this is a smooth symplectic affine algebraic variety, which can be identified with
the hyperkihler moduli space of framed G-monopoles on R? with maximal symmetry
breaking at infinity of charge o [15,16].

The monopole space Z* has a natural partial compactification Z* (zastava scheme).
Itcan be realized as the moduli space of based quasi-maps of degree «; set-theoretically
it can be described in the following way:

o
7Y = |_| 7P x AYF,

0=<B=a

where for y € A4 we denote by AV the space of all colored divisors > y;x; with
xi € A,y € Ay suchthat 3y = y.
The zastava space is equipped with a factorization morphism r,, : Z% — A% whose

restriction to Z* C Z“ has a simple geometric meaning: for a based map ¢ € Z¢
the colored divisor 7, (¢) is just the pullback of the colored Schubert divisor D C B

equal to the complement of the open B-orbit in 3. The morphism 7, : Z% — A% is
the Atiyah—Hitchin integrable system (with respect to the above symplectic structure):
all the fibers of 7, are Lagrangian.

o
A system of étale birational coordinates on Z* was introduced in [10]. Let us recall

the definition for G = SL(2). In this case Z* consists of all maps P! — P! of degree
« which send oo to 0. We can represent such a map by a rational function g where Q is
amonic polynomial of degree o and R is a polynomial of degree < «. Let wy, ..., wy
be the zeros of Q. Set y, = R(w,). Then the functions (y1, ..., Yo, W1, ..., Wy) form

o
a system of étale birational coordinates on Z%, and the above mentioned symplectic
form in these coordinates reads Qe = > dy"sﬂ.
For general G the definition of the above coordinates is quite similar. In this case
e}
given a point in Z* we can define polynomials R;, Q; where i runs through the set /

of vertices of the Dynkin diagram of G, & = >_ g;«;, and

(1) Q; is a monic polynomial of degree a;,
(2) R; is a polynomial of degree < q;.
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Hence, we can define (étale, birational) coordinates (y; ,, w; ) where i € I and
r =1,...,a;. Namely, w; , are the roots of Q;, and y; , = R;(w; ). The Poisson
brackets of these coordinates with respect to the above symplectic form are as follows:
{wir, wj,s}rat =0, {wi,r»)’j,s}rat = disijarsyj,h {Yirs yj,s}rat = (&t’&j)wfylrrfy,;,jj
for i # j, and finally {y; , yi s}t = 0. Here &; is a simple root, (, ) is the invariant
scalar product on (Lie T)* such that the square length of a short root is 2, and di =
(&, a;)/2.

Now recall that the standard rational r-matrix for g = Lie G gives rise to a Lie bial-
gebra structure on g[zil] corresponding to the Manin triple g[z], z_lg[z_l], g[zil].
This in turn gives rise to a Poisson structure on the affine Grassmannian Grg =
G[z*'1/G[z]. The transversal slices Wﬁ from a G[z]-orbit Grl; to another orbit Gr;
(here u < A are dominant coweights of G) are examples of symplectic leaves of the
above Poisson structure. According to [2], the zastava spaces are “stable limits” of
the above slices. More precisely, for « = A — u there is a birational Poisson map
sh Wﬁi — Z% (here A* := —woA, pu* = —wou, and wy is the longest element of

e
the Weyl group W = W (G, T)).

1.2 Trigonometric zastava and periodic monopoles

We have an open subset G% C A% (colored divisors not meeting 0 € A'), and we
introduce the open subscheme of trigonometric zastava 2% := n;'G% C Z%, and

its smooth open affine subvariety of periodic monopoles 7% := 7% N Z%. These
schemes are solutions of the following modular problems.

Let CT be an irreducible nodal curve of arithmetic genus 1 obtained by gluing
the points 0,00 € C = P!, so that 7: C — CT is the normalization. Let ¢ € CT
be the singular point. The moduli space Bun(} (C) of T-bundles on CT of degree 0
is canonically identified with the Cartan torus 7 itself. We fix a T-bundle Fr which

corresponds to a regular pointt € T™8. Then TZ% is the moduli space of the following
data:

(a) a trivialization 7. of the fiber of F7 at the singular point ¢ € CT;
T
(b) a B-structure ¢ in the induced G-bundle 7 = Fr x G of degree o which is
T
transversal to Fp = Fr X B atc.

The scheme "Z% is the moduli space of the similar data with the only difference: we
allow a B-structure in (b) to be generalized (i.e. to acquire defects at certain points of
C T), but require it to have no defect at c.

As a regular Cartan element ¢ varies, the above moduli spaces become fibers of a
single family. More precisely, we consider the following moduli problem:
(t) a T-bundle Fr of degree 0 on C' corresponding to a regular element of T';
(a,b) as above;
(c) atrivialization f, at ¢ of the T-bundle ¢ induced from the B-bundle ¢ in (b).

This moduli problem is represented by a scheme Y* C Y* (depending on whether the
B-structure in (b) is genuine or generalized). Note that Y ¢ is equipped with an action of
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[e]
T x T changing the trivializations in (a,c). We prove that Y* is a smooth affine variety
o o
equipped with a natural projection @ : Y* — Z%, and we construct a nondegenerate
]
bivector field on Y arising from a differential in a spectral sequence involving the

o
tangent and cotangent bundles of Y* (this construction is a trigonometric degenera-
tion of the construction [9] for elliptic curves; its rational analogue was worked out

o o el
in [10]). This bivector field descends to 'Z* under the projection w: Y¢ — 'Z¢
and gives rise to a nondegenerate Poisson structure, i.e. a symplectic form on

7% 1t would be interesting to obtain this symplectic form by the method of [24,

4.2]. The Poisson brackets of the coordinates on T%“ are as follows: {w; », wj s }uig =
0, {wir, yj,x}trig = di(sij(srs WjsYj.so irs Vij,s }trig = (&, &j)—(w"zr(;:)r]’_sl)uy;v’;)}]"v for
i # j,and finally {y; ;, yi s}uig = 0. In particular, the projection 7, : 7o Gy, is
the trigonometric Atiyah—Hitchin integrable system (for G = SL(2) this system goes
back at least to [8]).

Now recall that the standard trigonometric r-matrix for g gives rise to a Lie bialgebra
structure on g((z~!)) @ t which in turn gives rise to a Poisson structure on the affine
flag variety F¢g (the quotient of G[z*'] with respect to an Iwahori subgroup). The
intersections fﬂyw of the opposite Iwahori orbits (aka open Richardson varieties)
are Poisson subvarieties of F{g. Here w, y are elements of the affine Weyl group

W, = W x A. For dominant coweights © < A € A such that . — u = «, and the
longest element wq of the finite Weyl group W, the Richardson variety F Zﬁgiz*

* .
— Wﬁ* is an open embedding,

isa
wo X A*
wo X p1*

symplectic leaf of F{¢, the projection pr: F¢

.. * A* . . ..
and the composition sﬁ* opr: Flyo s i+ = Z%isasymplectomorphism onto its image

o
2% C Z* equipped with the trigonometric symplectic structure.

1.3 Cluster aspirations

It seems likely that the construction due to Leclerc [20] extends from the open Richard-
son varieties in the type ADE finite flag varieties to the case of the affine flag varieties,
and provides F. 65 with a cluster structure (even in the nonsimply laced case, cf. [22]).

% o
This structure can be transferred from F Zﬁgij‘ﬁ to 1Z% via the above symplectomor-

phism. If « is a dominant coweight of G, a reduced decomposition of wg x u* is
the beginning of a reduced decomposition of wy x A*, and the existence of cluster

wo x A*
structure on F€, "< .

In case of G = SL(2) the resulting cluster structure on the moduli space of periodic
monopoles was discovered in [12], which served as the starting point of the present
note. It seems likely that for general G the Gaiotto—Witten superpotential on Z¢ (see

is known for arbitrary symmetric affine Kac-Moody algebra.

.0
e.g. [4]) restricted to "Z* is totally positive in the above cluster structure (see Sect. 5
for details).
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Remark 1.4 Tmplicit in the above discussion when « is dominant (as a coweight of G)

is an affine open embedding T%"‘ - %"‘ < A2l into an affine space. Indeed, in this
case the lengths of the affine Weyl group elements satisfy £(wqo x u*)+£€(a*) = €(wo x
A*), and we are in the situation of [20, Sect. 5]; hence according to loc. cit. and [20,
Theorem 2.12], F Eﬁgiﬁi is an open subvariety of an affine space. Here is a modular
interpretation of the above open embedding: A%l is the moduli space of B-bundles
¢p on P! equipped with a trivialization (¢p)oo —5 B of the fiber at co € P!, such
that the induced 7'-bundle (under projection B — T') has degree «.

1.5 Relation to Coulomb branches of 4d A/ = 2 quiver gauge theories

Let G = SL(2), and @ = a € N. Then the methods of [1] establish an isomorphism

C[7Z%] ~ KCOL@O (Grgr () (Where O = C[[z]]). More generally, for G of type
ADE let us orient its Dynkin diagram, and for o = >, _; a;c; let us consider a
representation V of the Dynkin quiver such that dim V; = a;. The group GL(V) =
[lic; GL(Vi) actsinN = @i_”» Hom(V;, V;). Following [5] we consider the moduli
space R of triples (F, o, s) where F is a GL(V)-bundle on the formal disc D =
Spec C[[z]], o is its trivialization over the punctured disc D* = Spec C((z)), and s is
a section of the associated vector bundle F x ¢ N such that it is sent to a regular section
of the trivial bundle under o'. The group G L (V) acts naturally on R, and as in [5] one
can define the equivariant K -theory K ¢(Y)0 (R) and equip it with the convolution

o
algebra structure. Moreover, as in [6] one can establish an isomorphism C[ 7Z%] ~

K GL(V)o (R) such that the factorization morphism 7z, : 2% — G§, corresponds to the
embedding of the equivariant K -theory of the point: K ¢LV)0 (pr) s KGLV)IO(R).

Yet more generally, given a framing W;, dim W; = [;, we set A = > [;w; and
consider a representation N’ = N @ @; Hom(W;, V;) of GL(V). It gives rise to the
space R’ of triples as above, and one can prove as in [6] that the convolution algebra
KCGLV)o(R') is isomorphic to the coordinate ring of the moduli space TWIA; of the
triples (P, o, ¢) where P is a G-bundle on C; o is a trivialization of P off 1 € C
having a pole of degree < A* at 1 € C, and ¢ is a B-structure on P of degree —u
having the fiber B_ at oo € C and transversal to B at 0 € C (a trigonometric slice).
Note that the relation of TW/A; to the Richardson varieties JF Eyw of Sect. 1.2 is unclear

since the former “knows” about 3 points 0, 1, oo € P! while the latter only “knows”
about 2 points.

1.6 Contents

In Sect. 2 the moduli spaces Z% C Z% and Y* C Y are introduced. In Sect. 3

o el
a bivector field on Y is introduced and the resulting Poisson bracket {, }ig on A
is computed in coordinates (w; ., yi»). The technicalities of this computation occupy
the bulk of the present note. In Sect. 4 we compare the rational Poisson bracket on the

* . . . °
slices Wl);* C Grg with the Poisson bracket {, };5¢ on the monopole moduli space Z“.
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We also compare the trigonometric Poisson bracket on the slices F Eﬁgiz* C Flg

]
with the Poisson bracket {, }yg on the periodic monopole moduli space 7% Section 5
contains a few comments on the cluster structures. Finally, the “Appendix” by Galyna

Dobrovolska identifies our cluster structure on Z% for G = SL, with the one of [12].

2 Trigonometric zastava
2.1 Line bundles on a nodal curve C7

Let C' be an irreducible nodal curve of arithmetic genus 1, and let 7: C — CT be
its normalization. Then C is a projective line. We fix a coordinate function z on C
such that the preimage of the node ¢ € C consists of the points 0, co € C. We have
Pic’(C™) = G,,: any line bundle on C' is obtained by descent from the one on C
gluing its fibers at 0 and oo; a degree O line bundle on C is trivial, so its fibers at 0
and oo are canonically identified. Moreover, the above choice of a coordinate z on C
gives rise to an identification Pic" (ch = G, for anyn € Z:ifn > 0, and s is a
section of £ € Pic”(C™) not vanishing at ¢, then div(s) € Sym" (C o) = Sym"(G,,)
(this identification makes use of the coordinate z); we have a multiplication morphism
m: Sym™(G,,) — G,,, and finally £ +— m(div(s)) € G,, (the result is independent
of the choice of a section s). If £ € Pic" (CT) for n < 0, then £ goes to the inverse of
the class of £,
For the canonical line bundle w+, we have the following exact sequence:

0 = wcr = ({0} + foo}) L5 Cc — 0 2.1

where py(§) = Resp(§) + Resso(§). The line bundle w+ is trivial, with trivializing
section z~!dz. In what follows we will freely use the above identification o+ = O+

We define the theta-characteristic 6 € PicO(C yasa unique nontrivial line bundle
such that 6% = wc+. It enters the following exact sequence:

0= 6 — mewc(0) + {o0o)) 2= Ce — 0 (2.2)

where p—(§) = Resp(§) — Reso(§).
From the above two sequences we have the natural embeddings w.wc — wci —

e ({0}+{oo}) and m.woc — 0 — m.wc({0}+{00}). Noting that wc ({0} +{o0}) =
Oc¢ we combine the above embeddings into the following exact sequence:

0— muwc = 0@ wcy = 1.0c — 0 2.3)
We also have natural embeddings w,wc = 7, Oc¢ (—{0}—{o0}) — m, 7. Oc(—{0})

— 71,O0c¢ and m,wc = 1,O0c(—{0} — {o0}) — w7 Oc(—{o0}) — m.Oc. They
combine into the following exact sequence:

0 — muwc —> 1,8 — 1,0c — 0 2.4)

where E stands for O¢ (—{0}) & O¢ (—{00}).
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2.2 A group G

Let G be an almost simple simply connected algebraic group over C. We denote by B
the flag variety of G. Let us also fix a pair of opposite Borel subgroups B, B_ whose
intersection is a maximal torus 7' (thus we have B = G/B = G/B_). We denote by
T™& C T the open subset formed by the regular elements.

Let A (resp. AY) denote the cocharacter (resp. character) lattice of T'; since G
is assumed to be simply connected, this is also the coroot lattice of G. We denote
by A+ C A the sub-semigroup spanned by positive coroots. We say that « > S
(for o, B € A) if « — B € AL. The simple coroots are {&;};cs; the simple roots
are {®; };c;; the fundamental weights are {®;};c;. We consider the invariant bilinear
form (, ) on the weight lattice A such that the square length of a short simple root
(&, &) = 2. We set d; := (“’—2“’) We fix the Chevalley generators (E;, F;, H;);cy of
g. Anirreducible G-module with a dominant highest weight 1e AY is denoted Vi, we
fix its highest vector vy. For a weight ;i € A" the fi-weight subspace of a G-module
V is denoted V (i1). Finally, W is the Weyl group of G, T'; the simple reflections are
denoted s;, i € I, and wy € W is the longest element.

The identification Pic®(CT) = G,, (resp. Pic" (CT) = G,,, depending on the choice
of coordinate z) of Sect. 2.1 gives rise to the identification Bun(% (CTy = T (resp.
Bun§. (CT) = T). We denote by Bunr;g(CT) C Bun(% (CT) the open subset corre-
sponding to 7"¢ C T under the above identification.

2.3 The moduli space Y%

Given a T-bundle Fr € Bunr;g(C ) we denote by Fp (resp. F¢) the corresponding
induced B-bundle (resp. G-bundle).

Definition 2.4 Given o € A4, we define Y as the moduli space of the following
data:

(a) aregular T-bundle Fr € Bun,*(CT);

(b) a trivialization 7. of the fiber of Fr at ¢ € CT;

(c) a B-structure ¢ in F of degree « (that is, the induced T-bundle ¢ has degree
o), such that ¢ is transversal to Fp at c;

(d) atrivialization f. of the induced T -bundle ¢7 at c.

We also define Y* as the moduli space of the data (a—d) above where we allow a
B-structure in (c) to be generalized (see e.g. [2]) but require that it does not have a
defectat ¢ € CT.

We have a natural action of 7 x T on Y* C Y“: the first (resp. second) copy of T'
acts via the change of trivialization 7. (resp. f¢).

We also have a morphism (p, ¢): Y* — Bun%(C") x Buny;5(C") = T x T
sending (Fr, T¢, ¢, fo) to (p7, Fr).

Finally, we have a morphism @ : Y* — Z“ to the zastava space (see e.g. [4])
defined as follows. Recall that Z¢ is the moduli space of triples (]-"g , ¢£ ) where }-(C;
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is a G-bundle on C, while ¢€ (resp. d)E) is a U-structure in F, g (resp. a generalized B-
structure in F, g of degree «) such that qSJCr has no defect at oo € C, and is transversal to
¢C atoo € C.Now w sends (Fr, Tc, ¢, fo) toatriple fg =n*Fg, qﬁJCr = *¢,and
¢f defined as follows: .7-"8 is induced from .7-"% = 7* Fr, and the latter 7 -bundle is
trivial and trivialized at oo € 7 ~!(c). This trivialization extends uniquely to the whole
of C, and induces a trivialization of F g . Atlast, ¢ is a trivial U-structure in the trivial

G-bundle .7-'8 corresponding to the point 1 € G/U. Note that Y* = & ~!(Z%) (recall
that the open subset Z* C Z¢ is formed by the triples (]—'g , $$) such that qLCr has no

defect, i.e. is a usual as opposed to generalized B-structure. The moduli space Z* is
isomorphic to the moduli space of degree « based maps from (C, co) to (3, B_)).

Proposition 2.5 Y% is represented by a scheme.

Proof Recall the scheme éjﬁ‘s introduced in [3, 2.3]. It is the moduli space of degree «
generalized B-structures ¢ in the trivial G-bundle on C, equipped with a trivialization
Jfoo at 00 € C of the induced T-bundle ¢g . We claim that Y“ is a locally closed
subscheme in 778 x @g In effect, given a regular T-bundle Fr € Bunr;'g(C T) =
T8, its trivialization 7 at ¢ € CT gives rise to a trivialization 7o, of 7*Fr at oo € C
which extends uniquely to a trivialization of 7*F7 on C, and hence to a trivialization
of 7*Fg on C. Now ¢C := 7*¢ is a generalized B-structure in 7*Fg, and the
trivialization f, gives rise to a trivialization f, of q’)g at oo € C. Note that ¢ has
no defect neither at 0 € C nor at co € C, and its values ¢ (0), € (c0) € B are both
transversal to B € B. Conversely, given (t, ¢C, foo) € T8 x @“ such that ¢C has
no defect neither at 0 € C nor at 0o € C, and ¢ (0) = 1¢C (c0) € B is transversal to
B, we construct (Fr, ¢, ¢, fc) € Y¥ by descent from C to ct. O

2.6 A reduction of Y“

Recall the factorization morphism my: Z% — A% = (C \ {o0})¥ (see e.g. [4]). We
have an open embedding G% = (C \ {0, oo})* C A“.

Definition 2.7 We define the trigonometric zastava space as 'Z% := 7, 1(G%) C Z*.
We define the periodic monopole moduli space as 'Z% := 2% N Z%: a dense open

smooth subscheme of the trigonometric zastava Z¢.

Recall the action of 7 x T on Y%, and the morphism (p,¢q): Y* — T x T
introduced in Sect. 2.3. The action of 1 x T on Y is clearly free. The morphism
w:Y* — Z% of Sect. 2.3 is clearly (1 x T)-equivariant and gives rise to the same
named morphism @ : Y¥/(1 x T) — Z%. We fix 1y € T™¢.

Proposition 2.8 Forany ty € T™8 we have an isomorphismw : ¢~ (19)/ (1 x T) —>
7% and @ (¢ ' (19) N YY) /(1 x T) — Tz
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Proof The locally closed embedding Y* < T™& x @3 constructed in the proof
of Proposition 2.5 gives rise to the locally closed embedding ¢! (t))/(1 x T) —
{to} x QMG where QMG is the moduli space of degree « quasimaps from C to
B. More precisely, the image of q_l(to) /(1 x T) is the locally closed subscheme
QMG C QM¢ formed by the quasimaps that have no defects at 0, co € C, their
values ¢ (0) and ¢ (00) are both transversal to B, and ¢ (0) = 19 (00).

An open subset of 5 formed by the Borels transversal to B (the big Schubert cell)
is a free orbit U - {B_}, and we will identify it with U (the unipotent radical of B).
So for ¢€ € QM we have ¢C(00) = n - {B_} forn € U, and we will simply
write ¢€(00) = n € U. Note that G acts on QMY%, and U acts on ’OQM‘E, and
n~1pC(00) = B_,ie. n71¢pC € Z% is a based quasimap.

A moment of reflection shows that @ (tg, 7c, ¢, fo) = (¢€(00)) 1¢C, and the
condition of transversality of B and ¢ (0) guarantees that the value at 0 € C of
(€ (00))1¢C is also transversal to B, i.e. (¢€(00)) " '¢C € TZ*. Thus we have a
well defined morphism q_1 (ty)/(IxT) = ’OQ./\/lg — T7% and we have to prove that
it is an isomorphism, i.e. that for a based quasimap ¢: (C, oco) — (B, B_) without
defect at 0 € C with ¢(0) € U - {B_} C B there exists a unique ¢© € ’OQMg such
that ¢ = (¢ (00))'¢€.

Let ¢(0) = n’ - {B_} for some n’ € U. We are looking for the desired ¢ in the
form n_1<p, n € U. So we must have Ady, (n) = n~1n’, that is ton_lto_1 =nln &
[1, tp] = n’. It remains to recall the following well known

Lemma 2.9 Let tg € T™8. Then the commutator map U — U, n +— [n, ty] is an
isomorphism (of algebraic varieties).

Proof Filtering U by its lower central series, one can introduce a system of coor-

. 1Zj<b;
dinates (x; j),=/=,"

Zizp—; on the affine space U such that for the inversion morphism

U — U, nt n!wehave (x; )71 = (@), and y; j(x) = —x;; +

1<j'<b; . . T
P; j(x;r, j/)lglf,;.’ for a certain polynomial P; ;. Moreover, for the multiplication

morphism m: U x U — U we have m((xtf’j),(xlffj)) = (x;,;(x',x”)), and

. 0
xi g x") = x] x4+ Qi () X[ ) Ef,lfle '=/"="" for a certain polynomial
Q;, ;. Finally, for the adjoint action Ad,,: U — U we have Ad; (x; ;) = (w; (X)),
and w; j(x) = a;, jx; ; for a certain number a; ; # 1 (due to the regularity assumption
on fy).

Now given n’ = (xlf’ ;) € U we can construct a unique n = (x; ;) € U such that

[n, tp] = n’ recursively starting from i = 1, and going toi = h — 1. O
The proposition is proved. O

Corollary 2.10 Y% is an irreducible scheme with an open dense smooth subscheme

o

Y*

Proof We have seen that g : Y¢ — T™8 is a fibration with a smooth irreducible base
and a fiber F that is a T-torsor over 'Z%. Now Z% is open in the irreducible zastava
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scheme Z* possessing an open dense smooth subscheme Z*. Finally, g: Y% — T™¢

e}
is a fibration with a smooth irreducible base and a fiber F' that is a T -torsor over
fze = zon Tz, i

3 A trigonometric symplectic structure
3.1 Coordinates on Y*

Recall the locally closed embedding Y* — éj\\/l% introduced in the proof of Propo-

sition 2.5. Via the Pliicker embedding, éj\\/lg is a locally closed subscheme in
[Tic; Vo, ®T(C, Oc(a;)) (notations of Sect. 2.2) where o« = >, ; a;e;. In particular,
we have the coefficients Q;, R;, S;; € I'(C, Oc(a;)) of the highest, prehighest and
next highest vectors vy, , Fivg, , FjFivg,. Thus Q;, R;, S;; are the regular functions
on Y“ with coefficients in the space of degree < a; polynomials in z. The conditions
in Sect. 2.3(c) ensure that deg Q; = a;, and Q;(0) # 0.

It follows from [10, Remark 2] and Proposition 2.8 that (the coefficients of)
(Qi, R))ier form a rational coordinate system on Y“. Let us denote by B; (resp.
b;) the leading coefficient (resp. constant term) of Q;, so that Q; = B;jz% + --- + b;.
Similarly, we have R; = C;jz% + --- + ¢;. Note that B; # 0 # b;. Following [10,
3.3], we introduce a rational étale coordinate system on Y. Namely, (w;, ,)l.l 5{5“"
are the ordered roots of Q;, and y; , := B;” ! R; (w; ). The desired coordinate system

1<r<a

is formed by (B;, Ci, wj . yiy)icy ' It follows from [10, Remark 2] and Proposi-

tion 2.8 that these functions do lfglrm a coordinate system on an unramified covering
of the open subset of Y where all the roots of all the polynomials Q;, i € I, are
distinct.

We describe the 7' x T-action on Y%, and the morphisms (p,q): Y¢ —
T x T (see Sect. 2.3) in the above coordinates. Note that the collection of
fundamental weights ;: T — G, identifies T with G,In. We have (11,1) -

(Qi, Ri) = (@i(1h12) Qi, @i (112)&i (11) "' R;), and @ (p(Q;, Ri)ier) = BJ.‘lbj, and
aj(q(Qi, Rier) = BflcflbjCj.

3.2 The tangent bundle

o
Our goal in this section is to describe the tangent space 7),Y* at y = (Fr, 7¢, ¢, fo) €

Y“. We denote by g, b, u, t the Lie algebras of G, B, U, T. Given a T-bundle F7 we
denote the vector bundle associated to the adjoint action of 7" on g by g]: .Itis a direct
sum of two subbundles corresponding to the trivial (resp. nontrivial) eigenvalues of T
ong: g7 =t &7 Note that /" = t ® Oc+. A B-structure ¢ on F¢ gives rise to
a vector subbundle b® C g”. The adjoint action of B on u gives rise to a subbundle
u? C b?. We denote the quotient bundle by h? = h ® O+: a trivial bundle where
h = b/u is the abstract Cartan. The Killing form identifies the dual vector bundle b?*
with the quotient bundle g]: Ju? =: (g/u)®. For a vector bundle V on CT we denote
by V. the skyscraper quotient of V by the ideal sheaf of the point ¢ € CT.



Towards a cluster structure on trigonometric zastava 197

We consider the following complex K of coherent sheaves on C':itlives in degrees
—1,0, and Ky—l = (D h) Q@ mewc, while K;) = (g/w)?. The differential d: Ky—l —
KV is adirect sum of d’: t® muwc — (g/w)? and d”: h @ mewc — (g/w)?. Here d’
is the composition of t ® m.wc = t ® O¢r = - (see Sect. 2.1) and tF g}— —»
(g/w?, while d” is the composition h ® m.wc — h ® O+ = h? — (g/w)®.

Proposition 3.3 There is a canonical isomorphism T,Y* = H 0T, K 2

Proof We consider the following complex 'K y of coherent sheaves on C T+ it lives in
degrees —1, 0, and /K}T I'= p?, while 'K _8 = tf ® h‘f. The differential from ’Ky’ I'to
/K;) is a direct sum of d’: b® — t/ and d”: b? — f)‘f where d’ is the composition
09 — g7 - t© — t, and d” is the composition b® — h? — b‘f.

Then T,Y* = H(CT, 'K3). Now consider yet another complex K7 living in
degrees —1, 0 such that ”Ky_1 = ’Ky_1 and ”K;) = ’K;.) @ 7, and the differential
equals d’ + d” + d” where d”: b® — 7 is the composition b¢ — g7 — 7.
We have a canonical morphism "K'y — ‘K3 inducing an isomorphism on cohomol-
ogy HO(CT, "K?) — HO(CT, ’K3) since H*(CT,v7) = 0 due to the regularity
assumption on Fr.

Also we have a canonical quasiisomorphism "K'} — "K'} where ”’Ky_l = ”Ky_l @
t®h) @mwc,and”’K S = (tPHhH RO+ @t/ . The new components of the differential
are as follows: (t® h) @ m.wc — (LB h) ® Oc+ (see Sect. 2.1), and b? — h?, and
the composition b? < g7 — t7.

Finally, note that "K? = §? & g7, and (b* @ g7)/d(6?) = (g/w)?, so we have a
canonical quasiisomorphism "K'} — K3.

The composition of the morphisms induced on H(C, ?) by the above quasiiso-

morphisms is the desired isomorphism 7,Y* = H(C", K3) = HO(cT, K3). o

3.4 The cotangent bundle

Let us describe the Serre dual complex L; = DK ; It lives in degrees O, 1, and
Lg = b?, while L; = (t® h) @ m,.Oc. The differential d: Lg — L; is a direct
sum of d’: b® - t® 1,0c and d”: b® — b ® 7,Oc. Here d” is the composition
b? - b = h® O+ — bh ® mOc (see Sect. 2.1), while d’ is the composition
b > g7 >t =t® Oct — t® m,.Oc. Now Proposition 3.3 has the following
immediate

Corollary 3.5 There is a canonical isomorphism Ty* Y* = HO(CT, L3).
3.6 Some differentials

Here we describe the differentials of the morphism (p, ¢): Y* — T x T and of

the action of 7 x T on Y¥ introduced in Sect. 2.3.
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Note that for a regular T-bundle Fr on C' the tangent space TfTBuanCg(C )
is canonically isomorphic to HY(CT,¢%) = HY(CT t® Oct) = t (here the
second isomorhism is Id¢® Tr for the trace isomorphism Tr: H LT, Oct) =
H(CT, wct) —5 ©). The scalar product (,) on t* (Sect. 2.2) identifies t with
t*. Together with the Serre duality H'(CT, Oq+)* = HO(CT, O¢+) this gives rise
to a canonical isomorphism 7% Buny®(CT) = HO(CT,t ® O¢t) = t. Similarly,
for a degree o T-bundle ¢7 we have canonical isomorphisms T¢TBunOT‘(CT) =
H'(CT,§?) = H'(h ® O¢+) = h and T, Bun§.(C) = HO(CT, h ® Oc+) = b.

We have distinguished triangles (g/u)¢ — K; = (t®h) @mwc[l]and (t®hH) @
mOc[—1] — L} — b?. They give rise to a morphism

0,: T,Y* = HY(C", K}) - H'(CT, (t® b) ® mwc)
— H'(CT, (t®h) @ wci) — HY(CT, h @ wct) = Ty, Bun%(CT)

where the middle arrow arises from the natural morphism w.wc — o+ (see Sect. 2.1),
and the next arrow arises from the projection t & h — h. Similarly, we have

01 T,Y* = HY(CT K3) - H'(CT, (t® h) ® mee)

— H'(CT, t®h) @ wei) — HU(CT, t® o) = Tr,Buny(CY).
Dually, we have

o5 Ty Bung(CT) = HO(CT,h ® Oct) — HO(CT, (t@ b) ® Oct)

— H(C", (t@ h) ® 1,0c) — HO(C", L}) = Tyv*
and

;2 T3 Buny®(CY) = HO(CT,t® Oct) — HO(CT, (t@ h) ® Oc+)
— H(CT, (t® h) ® 7,.0¢) - H(CT, L}) = T;Y*.
We also have a morphism

a: T,T =t=H(CY, t® Ocr) = HO(CT, %) — HO(CT, (g/w)?)
— HOCT, K3 = T,Y*,
and
a: T,T =h=H(C".h ® Oct) = H'(CT,§?) - H(CT, (g/w?)

— H(CT, K}) =T, y*.
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Lemma 3.7 a) (a1, a2): t®h — T, Y% isthedifferential of the action T xT xY* —
Y (see Sect. 2.3);

b) (0,,0): TyY* — T4, Bun$(C") & Tr,Buny (C') is the differential of
(p.q): Y* — Bun%.(C") x Bunj(CY).

reg

c) (@,0%): Ty Bun.(C") @ T7 Buny*(CY) — TyY® is the codifferential of
(p,q): Y* —> Bun‘%(C%) X Buaneg(CT).

Proof Clear from the construction. O

3.8 A bivector field

We consider the following bicomplex My*:

b? — (t®h) ®mOc

I |

teh@moc —— VT OUSH RO S Orr) —— (t®h) ® 1,.0c

! l

t®h) ®mwe — (g/w?
3.1

Here the middle term lives in bidegree (0, 0), the first line is nothing but L§
of Sect. 3.4, while the last line is nothing but K ; of Sect. 3.2. The left vertical
arrow is the identity morphism, as well as the right vertical arrow. The middle line is
a direct sum of the complex consisting of v/ in degree 0, and of the exact com-
plex (2.3) tensored with t @ h. Note that the middle term can be rearranged as
h® @ g}— @ (td h) ® 6. Now the middle column is a direct sum of the complex
consisting of (t @ h) ® 6 in degree 0, and of the exact complex b? — h? @ g7 —
(g/w)?.

It follows (looking at the columns of (3.1)) that the total complex Tot My*
has only one cohomology in degree 0, and H°(Tot M;") = (tdh) ® 6. Since
H*(CT, (t® h) ® 0) = 0, we deduce that H*(C", Tot My'*) = 0. Now let us look
at the rows of My'®. The hypercohomology of C T with coefficients in the middle row
vanishes since H*(C f, o ) = 0 (due to the regularity assumption on F7). Hence
the second differential in the spectral sequence converging to H*(C, Tot M v =0

from the hypercohomology of C* with coefficients in the rows is dp : HO(CT, L$) =
HO(CT, K}).
Finally, due to Proposition 3.3 and Corollary 3.5 we can view the above differential

asdy: T)Y® —> T,Y°.
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3.9 Calculation of the bivector field: preparation

We follow the strategy of [10], and eventually reduce our calculation to the one
of loc. cit. The result of the somewhat lengthy calculation of d> is contained
in Lemma 3.10, Remark 3.11 and Proposition 3.17.

Given a character A € A", we consider the composed homomorphism B — T —

G, and denote the associated (to the B-torsor ¢) line bundle on C* by E?. For an
irreducible G-module Vj, the associated (to the G-torsor F¢) vector bundle on C Tis
denoted fo .If X is a fundamental weight w;, then we have an isomorphism Vg = Vi
for an involution I —> I, i > i*.If we extend the involution &; > @;= by linearity
to the weight lattice AY, A — A*, then this involution preserves the scalar product
(,) of Sect. 2.2.

We have a natural embedding of vector bundles on C: (g/u)? — Dic; VJ]: . ®
Cgi, and the dual surjection &, ., VZ),]: ® E(Lbf —» b?. They give rise to the following

morphisms of two-term complexes of coherent sheaves on C':

t®h ®mwc — (g/w)?
t®h @8 — (g/w? @ m,.Oc (3.2)

| l

t®h)®mE — @ VL, ®LE) ®mOc

(the upper vertical arrows arise from the morphisms w,wc — 74 E = 7 (Oc (—{0}) P
Oc(—{oo})) and O+ — m,.Oc¢ of Sect. 2.1), and dually

@i VI L) @ mwe —— (t@h) @78

| |

b? ® mewc — (t®h mTE (3.3)
b? —— (t®h) ®mTOc

Note that the top row of (3.2) coincides with the bottom row K3 of the bicomplex (3.1),
while the bottom row of (3.3) coincides with the top row L; of the bicomplex (3.1).
So composing the vertical arrows of (3.3), (3.2) with the vertical arrows of (3.1) we

o0

obtain a bicomplex 'My*:
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(®iel V;f ® E(ﬁ&)l) Qmuwc —— (DB h) @mE

l l

tehnemowc —— Y OUenN®O®0s) — (tdh) ®r0c

l l

toh@mE — @i V], ®LE) ®@mOc
34
Note that H*(CT, ¢ ® h) ® 7, E) = 0, so just as in Sect. 3.8, the second differential
in the spectral sequence converging to H*(C", Tot ’ 3'*) from the hypercohomology
of CT with coefficients in the rows is

& H'(CT, (@ Vi @ £?,) @ mwc) — HOCT, (@ VL, ® £2) @ 7.00).

iel iel
3.5
Lemma 3.10 The following diagram commutes:
HOCT, 1y «—— H'(CT (B, Vi © £7,,) ® maooc)
& 4
HO(CT, K}) —— HO(CT, (@) VI, ® £0) © 1.00)
Proof Clear. O

Remark 3.11 In what follows we will be occupied with the calculation of

ds: H' (CT, @PviZec’ e n*a)c)—> H° (CT, @Pvieche N*Oc).

iel iel
Let us presently comment in which sense does it calculate the desired dp : H(C™, L?)

— HO(CT, K?). Itis easy to see that for y € ;0‘ lying in the open subset U* C 10/“
formed by all the quadruples (F7, T, ¢, fc) such that tg: ﬂb? =0C gg: the morphism
HY(CT, (D, V;,i],;—@ﬁfd)i)@n*wc) — HY(CT, L$) is surjective, and the morphism
HO(CT, K;) — HO(CT, G Vd}),-—* ® EZI_) ® 7. Oc) is injective. Since we are only
going to calculate our d» generically, the only trouble is that for some « the open

subset U“ may happen to be empty. Indeed, for « = > ;; a;ja;, we have U* = ¢
iff a; = O for some i € I. So in what follows we assume a; > 0 Vi € I (otherwise

the moduli space Y essentially reduces to the one for a semisimple Lie algebra g’ of
smaller rank).

3.12 Reduction to a calculation on C

The goal of this section is a description of d), (3.5) in terms of C, see Corollary 3.15.
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Note that 7*(h* @ ¢7) = (h ® 9) ® Oc, and T*(t D h) ® 0) = (t® h) ® Oc.
Hence 7, 7*(h? @ g7 @ (1@ h) ®60) = (h ® g @ t ® b) ® 7,Oc. The morphisms

Toteneee0m=os" oten o6 > (tdh e O,
resp. U DD QOB O =h" g7 dtdh R0

N ( 14 ®£;’f}i)®n*(’)c
iel

of (3.4) factor through the canonical morphism

Wog otenN® > ra bl eos ©toh 0)
%(h@g@t@b)@n*(’)c

and
hoagdtdh) @m.Oc — (tdh) ®mOc,

resp. (h®gdtdh) @ .0c — (@Vdf* ®£2i)®n*(’)c.

iel

Hence we obtain a morphism from the bicomplex ‘M ; ** (3.4) to the following bicom-
plex "My*:

(@iel V:;f ® ﬁqig) ) Qmuwc ——> (P h) @mE

i

I l

tehmuwc —— Hogdtdh) mOc —— tdh m.Oc¢

l !

t®h) ®1,E —> (@ie, VI @ L;’f)l_) ® 1.0¢
(3.6)

(the morphisms from all the terms of 'My’® to the corresponding terms of "My’® except
for the middle ones are identities). Just as in Sect. 3.9 we obtain the second differential

dy: H' (C*, (EB Vil @ L‘f(b’_) ® n*wc) 3.7)

iel

— H° (ci( Vi ® agi) @n*oc) (3.8)
iel

in the spectral sequence converging to H*(C", Tot "M y'*) from the hypercohomology
of CT with coefficients in the rows. It follows that dy = dj of (3.5).
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Now the morphisms

(@ Vil ® E‘i;),.) ®mwc — (H® gDt h) ® 1.0c,
iel

resp. t @ H) @ muwe —> h D gDt h) @ . Oc¢
of (3.6) factor through the natural morphism
hogotdh)mE—> (hegdtdh ®@m.Oc

(see Sect. 2.1) and

(@V}ﬁ@ﬁf@)@n*wc —> (h®gdtdh) QmE,
iel

resp. @ h) Qmwc > (hDgdtdh) @ m,E.

Hence we obtain a morphism to the bicomplex "My® (3.4) to the following bicomplex
///M‘.),.:

(@iel V:{j ® ﬁi;,[) Q@ muwc ——> (O h @ mE

! l

t®h) @ mewe —— hdgdtdh) @m.E — (tdh) . O¢

l |

tOh)@TE — (@ie, Vi ® cji)f) ® 1.0¢
(3.9)

(the morphisms from all the terms of ”’M"* to the corresponding terms of "My* except
for the middle ones are identities). Just as in Sect. 3.9 we obtain the second differential

dy': H'(CT, (EB Vit e ,c"’g)[) ® mewc) — HO(CT, (EB VI ® £Z)® m.0c)

iel iel

(3.10)

in the spectral sequence converging to H*(C™, Tot "M y’*) from the hypercohomology
of CT with coefficients in the rows. It follows that dy = dj of (3.7).
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o0

Note that the bicomplex ’My* is obtained from the following bicomplex °My*:

(@i viF 0 L?y) @ms — (t@h e

i

! !

teh)@moc — GHOgOtdhH®mE —— (tdh mOc

| |

teh®mnE — (B VL L)) 8mE
(3.11)
by composing the vertical arrows of (3.11) with the vertical arrows of the following
commutative diagrams:

(@iel sz ® ‘qud)l) ® mywc —— (tDh) @1, B

l H (3.12)
(@iel ng ®£f,;) ) Q@nE —— (t®h) ®n,E

i

H | (3.13)
to) @ms —> (B VL, 8 L5) 8.0
Similarly to Lemma 3.10 we deduce the following

Lemma 3.13 The following diagram commutes:

H(C (Bre Vi @ £0,,) @m8) ——— HI(CT (B VT © £0,) @ mac)

i i i

d;l dﬁ”l
HO(CH, (@ie, Vi ® ﬁg,-) ®m,8) —— HO(CT, (@ie, Vi@ EZ,») ® 7.0¢)

where d H(CT, (@ie,vgf®£"jé) Q m.8) — HO(Cf,(@idVg* ®

i
Eg) ® &) is the second differential in the spectral sequence converging to
1

H*(CT, Tot ° v'*) from the hypercohomology of C T with coefficients in the rows.

By the projection formula,

(@0t )orocznr (@ 00t )n @ ores

iel iel iel
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and similarly

(@2 02 Jomazn (@ 0mct )oz).
iel iel
(@v7oe Jomoe=n (@i omer, Jouc)

iel iel

(@V£f®£qiéf)®”*5 ;ﬂ*(( Vg,-* ®n*£‘fd)l_)® E)
iel iel

Now since the upper-right and lower-left terms (t®h) ® .. E of the bicomplex (3.11)
are acyclic sheaves on C T the differential d; coincides with the second differential
from the spectral sequence arising from the following complex on C™:

(@vjf ® ,c"’;w)@ma — (h®gtHh) ®T,E — (EBVf ® Lgi)@m@
iel iel

(3.14)
which is by construction a direct sum of the one term complex (t® h) ® 7, E in degree

zero and the following complex:

(@V2f®ﬁf@,.)®n*5 — (h® 9 mE (@vf ®£Zl_)®n*8

iel iel
(3.15)
which in turn is nothing but the direct image 7. Ny of the following complex N} of
vector bundles on C: )

(@ Vi ® n*ﬁ‘f@)@a 8- (ho9®E — (@ Vi ® n*Lgi)@a E (3.16)

iel iel

Lemma 3.14 The following diagram commutes:

H(CT (@ viZ @ £0,) @ 7.E) H(C (@i v, @77, ) © )

4 4|

HO(C, (@ VI, © £1,) ® 7.E) H(C. @e Vi ®TLL) ® B)

WheredZC: H! (C’ (@iel VJ),'* ®T[*EZ,-) ® E) - HO(C’ (®i€1 V‘bi* ®n*£?)i)
® E) is the second differential in the spectral sequence converging to H®*(C, N3) from
the cohomology of C with coefficients in its terms.
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Recall that our goal is to compute the differential (3.5):

H! (c, (@ Vgi* ®ﬂ*g‘f@)®wc) =H! (cf’ (@ Vglf@ﬁid)i)@n*wc)
iel iel

d
= H° (CT, (@ vl ® EZI_) ® n*oc) =H° (c, Pvs,. n*cgl_).

iel iel
The bottom line of the present section is the following

Corollary 3.15 The following diagram commutes:

H'(C (B Vi, @772, Y@ 0c) —— H'(C. (@ye V5, © 720, ) @ B)

dél dy l

H° (C, Dicr Vo © ”*E?),-) — H° (C» (@iel Vi ® ”*Lgi) ® E)

3.16 Calculation on C

The differential d2C of Corollary 3.15 was computed in [10]. To formulate the result,
we introduce homogeneous coordinates z1, z» on C such thatz = z;/z2,sothatz; = 0
(resp. z2 = 0) is an equation of 0 € C (resp. oo € C). We also introduce another copy
of the curve C with homogeneous coordinates u1, uy, and u := u1/u>. The differential
d2C has “matrix elements”

5&)-5)-: H!

o HY(C Vg @n Ll @8) » HO(C. vy, @ 7L ®E).
Notethatw*L_; = OC(—ai),andn*Ec;)j = Oc(aj),while E = Oc(=1)®Oc(—1)
is Serre selfdual, so that

D, 5, € Vo ® Vg, ® H'(C, Oc(ai — 1) ® Oc(a; — 1))
®H(C.Oc(a; — 1) ® Oc(a; — 1)).

Decomposing Vg, ® V(;)j* according to the weights of 7', for % € AV we obtain a

matrix element 5A . which is defined as the weight )V»*—component of ﬁw ) Then
wj a)

according to [10, 3.8], thav)’ =0= ~§)Qigza’ and if i # j, then D,—twj_a’ =
0= D "% hile ' '

;|
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~éﬁi&;°‘i = di (Fi v, ® Vg — Vg © Firvg,)
i(z1, z2)Ri (w1, u2) — Ri(z1, iUy, u
®Q,(21 22)Ri(uy, uz) — Ri(z1,22) Qi (u1, uz) (3.17)
iUy — 22U
SO0 —G—d R
oy = Gy ) v
®Fi*Fj*szJj* + Fi*U(Z),-* ® Fj*v(;)j* + (Olj, &i)_le*F'i*Ucf)i* ® Uc{)j*)
®Ri(Z1, 22)Rj(u1, uz2) — Qi(z1, 22)Sji(ur, u2) — Sij(z1, 22) Qj (U1, u2) (3.18)

U2 — 22uU1

Here the homogeneous polynomials Q;, R;, S;; are but the homogenizations of the
same named polynomials of one variable introduced in Sect. 3.1, and the above
matrix coefficients are “scalar” 2 x 2-matrices with respect to the decomposition
E=0c(=1) & Oc(=1).

Now to compute the desired d it remains to describe the horizontal arrows of the
commutative diagram of Corollary 3.15. The lower one

H° (C, (@ Vi ® n*cgi) ® :) — H° (C, P vi. ® n*cg)
iel iel
arises from the surjection

HO(C. Oc(a; = 1) ® Oc(a; — 1) = H° (C.7* L], ® 8) — HO(C, 7"L8)
= H'(C. Oc(ai)

which takes a pair (P (z1, z2), P»(z1, z2)) of homogeneous degree a; — 1 polynomials
to z1 P1 + z2 P». The upper arrow

H! (C, (EB Vi, ® n*,c“’(,)i) ® wc) — H! (C, (EB Vi, ® n*ﬁd)&)i) ® :)
iel iel

arises from the dual embedding

HO(C, Oc(a)* = H! (c, L. ® wc) — H'(C, 7" L’ ®E)
= H(C.Oc(a; = 1) ® Oc(a; — 1)*.
Namely, if we think of H 0(C, Oc(a;))* as of the homogeneous degree a; differential

operators in (u1, u3), then an operator O goes to (01, O3) such that O1(P) := O (u> -
P)/2, while O2(P) := O(uy - P)/2.
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Composing Wigl the matrix elements of (3.17), (3.18) we obtain the corresponding
matrix elements /Dg)l.’d)j € Vo ® Vﬁy)j* ® H(C, Oc(a;)) ® HO(C, Oc(aj)) of dj:

/ﬁiwco_a = di (Fprvg, ® vg, — Vg, © Firvg,)
(21142 + 22u1)(Qi (21, 22)Ri (w1, u2) — Ri(z1, 22) Qi (u1, u2))
2(z1up — z2u1)

(3.19)

o~ —& . U
J);’d)jj Y = ap) (o, ag) T g,

®F i Fjrvg . + Fix vy ® Fjevg . + (o), &i)ile*Fi*Ud),-* ® Vi)
(Z1142+12M1)(R (z1, 22)Rj (w1, u2) — Qi (z1, 22)Sji (w1, u2) — S;j(z1, 22) Qj (U1, uz))
2(z1uz — z2u1)

(3.20)

Going back from the homogeneous polynomials in (z1, z2) (resp. (u1, u2)) to the
polynomials in z = z1/z2 (resp. u = u/uz) we arrive at the following

Proposition 3.17 The matrix elements of the differential d} (3.5) are

/Dzwl al = d (F*Ua)* ® Ua)* UCZ)-* ® Fi*vd)i*)

w;,w;
(z +u)(Qi(2)R;i(u) — R;i(z) Qi (u)) 321)
2(z —u)
l+ 1 v v —
Dz)’l wa/)] —&—a = (ai, o[j)((()ti, 0!]) U&’)’_* ® Fi*Fj*UJ)j*
+ Firvg, ® Fjevg, , + (o, &) Fjr Frrvg, ® vg,)

(z +u)(Ri(2)R;(u) — Qi(2)Sji(u) — Sij(2)Qj(u)) (3.22)

2(z — u) '

while /Dw'zw’ =0= /sz_v’v.za’ and if i # j, then /le_Jra_)’ o 0= D:j’t)w’ a’

J wj e

3.18 Calculation of the Poisson bracket

The differential d» (Sect. 3.8) defines a bivector field on 10/ % (i.e. a bidifferential opera-
tion on the coordinate ring of )O/“). We denote the bivector by B and the corresponding
bidifferential operation on the coordinate ring of 107"‘ simply by {-, -} (though it is not
a Poisson bracket on ; ).

Proposition 3.19 We have

{wi,ry wj,s} =0,

{wir, yjst =didijdrswi,yjs,
Wi+ Wjs

vl = (1 — 8 (&, &
{yz,r y],s} ( l])(al a])2( z,r_w],s)

YiorYj,s-
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Proof By Proposition 3.17 on Y* we have

{Qi(2), Qjw)} =0, (3.23)
{0i(2), Rj(w)} = —d;8; Z(Zt )(Q i(@DRju) — Ri()Q;w), (3.24)
v Z+u
{Ri(2), Rj(w)} = (1 — 5ij)(di,dj)m(Ri(Z)Rj(u)
—Qi(@)S;i(w) — S;j(2) Q;w)). (3.25)

The relation {w; ,, w; s} = 0 is obvious from (3.23). We have {B;, B;} = 0 and
{w;r, Bj} = 0from (3.23) as well. Substitutingu = w; ;t0(3.24), we get{B;, yj s} =

—@Biyj,s and {w; ,, yjs} = 3;8,~j8,sw,~,,yj,s. Finally, substituting z = w; ,, u =
e v L,r + 5

w; s to (3.25), we get {yir, yjs} = (1 = 8;)(a, aj)z(lzf_ww’”)y, rYjse O

The 1 x T action on Y“ preserves this bivector field, hence it gives a well-defined

bivector field on Y% /(1 x T). Moreover, the following is true:

Corollary 3.20 The map w : Y* — Z% agrees with the bivector field B on Y® (in
the sense that for fi, f» € C['Z%] we have {w*(f1), w*(f>)} = @*(f) for some
fe C[Z*1). So we get a bivector field on 7% = @ (Y9).

Proof Note that the functions w; ,, y; s form a (rational €tale) coordinate system on
7Z%. So the only thing to be checked is that the bracket of any pair of pullbacks of

these functions is a pullback of some function on "Z%. But this immediately follows
from Proposition 3.19. O

Slightly abusing notation we denote the image of 98 on "Z% also by 8.

Corollary 3.21 In the coordinates w; ,, yj s on 7% the bivector field reads

¥ 0 (al’a])wzr+ij 0
B = diw; ryi, VirVi
S ot TR S

0
ayj,s )

A\

Corollary 3.22 The bivector field B on 7% is Poisson, i.e. [2B, B] = 0. This Poisson
structure extends uniquely to "Z%.

Proof The first claim is immediate from the explicit formula of Corollary 3.21. We

have a smooth open subvariety 'Z% ¢ 7Z* < 7Z% formed by the based quasimaps
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with defect at most a simple coroot, see e.g. [2, proof of Proposition 5.1]. Its com-
plement has codimension 2 in 7Z%. Now Z% is normal by [2, Corollary 2.10], so it

. O °
suffices to check that the bivector field on Z% extends as a Poisson structure to 'Z¢.
Moreover, it suffices to check this at the generic points of the boundary components

7%\ 7% (given by equations y; , = 0) where the claim is evident from the explicit
formula of Corollary 3.21. O

Corollary 3.23 The Poisson structure B on "Z% is nondegenerate. The corresponding
symplectic form reads

Qtrig = %—l szylr/\dwlr Zz(a,,aj) w,r—l—u)]sdu)”/\dw”

ir diw; ryir i) rs 2dd Wir — Wjs Wi rWj,s

4 Transversal slices in the affine flag variety

4.1 Schubert cells in the affine flag varieties

We have an embedding of the affine Grassmannian of G (thin one: an ind-scheme)
into the Kashiwara affine Grassmannian (thick one: an infinite type scheme): Gr =
G((2))/Gllz]l = G[zt'1/G[z] = G((z™1))/Glz] = Gr. The subgroup of currents
GIlz]] (resp. G[[z~']]) taking value in B (resp. B_) at z = 0 (resp. z = 00) is the
Iwahori group Iw (resp. Iw_). The unipotent radical of Iw (resp. Iw_) is denoted N
(resp. N_). We have an embedding of the affine flag variety of G (thin one: an ind-
scheme) into the Kashiwara affine flag variety (thick one: an infinite type scheme):
Ft = G((2)/Iw = G[z¥'1/(Glz] N Tw) — G((z~1))/(G[z] N Iw) = FIL The
natural projection pr: FI — Gr (as well as its restriction pr: F¢ — Gr) is a fibration
with fibers 5.

The set of T-fixed points in F¢ (resp. Gr) is in a natural bijection with the affine
Weyl group W, = W x A (resp. the coweight lattice A). For w € W, we will denote
the corresponding 7T-fixed point by the same symbol w; its N-orbit (resp. N_-orbit)
will be denoted by F¢* C F¥ (resp. Fl,, C FIl): a thin (resp. thick) Schubert cell.
The intersection F¢y := F{¢" N Fly (an open Richardson variety, aka transversal
slice) is nonempty iff w > y in the Bruhat order. Similarly, for . € A C Gr the
N-orbit N - A (resp. N_-orbit) will be denoted by X* C Gr (resp. X;, C Gr): a thin
(resp. thick) Schubert cell. For a dominant coweight A € A+t C A the G((z))-orbit
Gr* := G((2)) - A is a union Gr* = Llewa XV

Recall the notations of [2,2.4]: G; C G[[z~']]is the kernel of evaluation at z = oo
and W, := G- C Gr for p € A.If pu is dominant, then W, = X,. If A >
is also dominant, then the transversal slice Wﬁ = Gr* n W, of loc. cit. is a union
W;)Z = leeW-A X'n XM'

Given a dominant n € AT C A C W,, we consider —7 as an element in the
affine Weyl group; it is the minimal length representative of its left W-coset, and the
maximal length representative of its right W-coset. Furthermore, n is the maximal
length representative of its left W-coset, and the minimal length representative of its
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right W-coset. The projection pr: W, = F¢T — Gr’ = A realizes A as the set
of left W-cosets in W,. Hence for a dominant A € W,/ W, the affine Weyl group
element wo(A) € A C W, (resp. wo(A) X wog = wo X A € WK A = W) is
the minimal length (resp. maximal length) representative of the left W-coset A. In
particular, pr: Fewo® =y X*, and pr: Fly AN X,..

Finally, forA > u € AT, the intersection X’\HX,L is openin the slice W)“ C Gr,and
pr is an open embedding of the open Richardson variety F¢ ﬁg ii; = Fewo X}‘ ] 3
into X* N X,,. Allin all,

pr: FeUot o Wi 4.1)

wo X (1

is an open embedding.

4.2 A modular interpretation

Recall the morphism s W)‘ — Z% of [2, Theorem 2.8] (here « = A — u, A* =

—woA, u* = —wop). Recall the open subscheme of periodic monopoles TZ"‘ c z¢
introduced in Definition 2.7.

Proposition 4.3 The composition sﬁi opr: J—'Eﬁgiﬁ* — Z% is an open embedding

with the image 2% C Z°.
Proof Recall from the proof of [2, Theorem 2.8] that the slice closure Wi‘; =

L [ < v <A* W/‘ii is the moduli space of the following data: (Fiiy BN Fg) where
F¢ is a G-bundle of isomorphism class u*, and o is an isomorphism from the trivial
G-bundle away from 0 € C with a pole of degree A* at 0, such that the value of the
Harder-Narasimhan flag of F at oo € C is compatible with the complete flag o (B_).
The bundle F¢ has a unique complete flag (B-structure) ¢ of degree wou™ = —u
with value B_ € B at oo € C (with respect to the trivialization o at co). This flag can
be transformed via o ~! to obtain a degree « generalized B- structure o 1¢ in Fiiv
without a pole but possibly with a defect at 0 € C. The morphism s W — Z¢

takes (Firiv BN Fg) to o 1¢. The open subset U C Wﬁ* given by the condition

that o ~!¢ has no defect at 0 € C, is mapped isomorphically onto Z%. We have a still
smaller open subset U’ C U given by the condition that the fiber of 0 ~!¢p at 0 € C
is transversal to the flag B € B. The open subset U’ is mapped isomorphically onto

7Z* . Thus we have to check pr: Feror =y,

wo X ¥
Recall the semiinfinite orbit S** (whose intersection with W is dense in W)‘ ). It

is formed by the data (Fiiy BN F) such that the transformation o ¢y of the trivial
complete flag with fibers B € B in Fyj, via o is a B-structure in Fg without defect at
0 € C. Note that U’ lies inside S*" N Wﬁi and is given there by the condition that the
fibers of o ¢yiy and of ¢ at 0 € C are transversal. According to [23, Theorem 3.2, (3.6)],
for v¥ < A* we have S*" N GrY" = ¢, and S N Grr = XM, It follows that
S n Wf; = X*" N X,+. It remains to check that the open subset pr(F¢“>*.) ¢

wo X [
X*" N X+ is nothing but U'.
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To this end recall the modular interpretation of our slices. First of all, Gr is the
moduli space of G-bundles F on C equipped with a trivialization ¢ in the formal
neighbourhood of co € C. Second, F1 is the moduli space of triples (Fg, ¢, F') where
(FG,¢) € Gr, and F is a B-structure in the fiber of Fg at 0 € C. Third, X;» =
W+ C Gr is formed by the pairs (Fg, ¢) such that the isomorphism type of Fg is
w*, and the value of the Harder-Narasimhan flag of g at co € C is compatible with
B_ e B (with respect to the trivialization ¢ at oo € C). Now Fly,,+ C Flis formed
by the triples (Fg, ¢, F) such that (Fg, ¢) € X», and F is the value ¢|p at 0 € C
of the unique degree wou™ = —pu complete flag ¢ in F¢ such that ¢p|ooc = B_ € B
(so that ¢ is the refinement of the Harder-Narasimhan flag of F). Furthermore, Gr is
the moduli space of G-bundles F on C equipped with a trivialization o over C \ 0,
while F¢ is the moduli space of triples (Fg, o, F) where (Fg,o0) € Gr, and F is a
B-structure in the fiber of g at 0 € C. The projection pr: ¢ — Gr admits a section
s over X** = 8§ N Gr*": we define F as the fiber at 0 € C of the transformation
0 @iy of the trivial B-structure B € B in the trivial G-bundle. Finally, 7 oA« Fy
is formed by the triples (Fg, o, F) such that (Fg,0) € X )‘*, and F is transversal to
s(Fg,0).

Thus pr(fﬁwoxxi) =U cx"n X,.+. The proposition is proved. O

wo X [

4.4 Stabilization

Let i, v € AT be dominant coweights. According to [18, 2E], we have the inclusion
of stabilizers St;, C St,, C G| C Gllz~!1], so the identity morphism G| — G
induces a morphism gﬁﬂ : Xy =Gy/Sty — G/ Sty = X 4. According to loc.
cit., g,’f Y restricts to the same named morphism Wl’} — Wﬁi‘\j for any AT 31> p.
Similarly, we have Sty C Stygxu+v) C N—, and the identity morphism N_ —
N_ induces a morphism a,’f+v: Flygxp = No/Stygxu — No/Stygxusr) =

wo XA N f-gwox(k—&-v)

Flyx (u+v) Which restricts to the same named morphism F¢,, %', wox (1)

for any AT 5 A > . The following diagram commutes:

nAtv

]:EWOX)» Ou fewox()ww)

wox s wox (u-4v)

prl prl 4.2)
pAv

Wi = Wil

Moreover, from the construction of sﬁi : Wﬁi — Z%in[2, Lemma 2.7, Theorem 2.8]
(where @« = X — p) it follows immediately that the following diagrams commute as
well:

wr ¥
YR A 4v*
Wie —— Wi,
4.3)
M* /l*+U*

Za _—— Za
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o—u*+v*
wox ¥ uF wo X (A*4+v¥)
fﬁwo xp* fgon(u*va*)
. o 4.4)
sﬁ* oprJr s;*i‘;*oprl
.0 o
A Tzol
. . wEv woxXA* wo X (A*+v*) . . .
It follows in particular thato .~ = F€,, °° . —> ]:Kwox(u*w*) is an isomorphism.

4.5 s,’; in coordinates

We will use the generalized minors of [18, 2A] to construct regular functions on the
open Richardson varieties. Namely, given an irreducible G-module V; with highest

weight X e AY and highest vector vy, its dual V.* is isomorphic to Vs, with the lowest
+ X 5 s

weight —J, and the lowest vector v_j such that (v_z,vy) = 1. Given w, y € W, we
define the following regular function on G

Ay (@) = (wu_3. gyvy) (4.5)

where w, y € G are the lifts of w, y defined in loc. cit.
Following loc. cit. we consider the regular functions Afji T s € Z,on G((z‘l))
defined as follows: N

Ay 8@ = DAY (s (4.6)

§=—00

More generally, to any v € V5 and 8 € V; we can assign the generalized minor

Agy(z) == (B, g(z)v). We also denote by A/(;,)v the coefficient at z~* of the power
series Ag y(2).

Recall from [2, 2.6] that St,, C G C Gl[z~"]] is the stabilizer ofue ATC A=
GrT. Similarly, for w € W, we denote by St,, C N_ the stabilizerof w € W, = FeT.
We have X, = G1/St,, and Fl,, = N_/St,,. In case w = wgy x u (see Sect. 4.1),
we have St;;, = G1 N Sty %y, and the natural morphism Fly, ., = N_/ Sty —
G1/St, = X, is an isomorphism. According to [18, Lemma 2.19], the functions
Agi)’d)i, AA('jL)T),',J)," s > 0, i € I restricted to Gy (resp. N_) are St -invariant (resp.
Sty x .-invariant); hence they may be viewed as the functions on Fly» . = X,.

Nowlet AT 5 A > p,and Ay > = Zie, a;o; »= ) — . Recall the isomorphism

* * ~ °
sﬁ* opr: F Eigiz* —> TZ% of Proposition 4.3. Recall also the regular polynomial-

valued functions Q;, R; on Z% (see e.g. [10, 3.3]): Q; = z% + qi,ui,lz“f_l + .-
(resp. R; = ri,aiflza"_l + -- ) is the highest (resp. prehighest) Pliicker coordinate
on the space of based quasimaps (in notations of loc. cit. Q; = ¢, R = ¢35~ ).
Following loc. cit. and Sect. 3.1 we also consider a rational étale coordinate system

on Z%. Namely, (wi,,)l.leflrsa" are the ordered roots of Q;, and y; , := R;(w; ).
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wo X A*

~ .O
T7za —
woxpt Z% we have Q; =

Proposition 4.6 Under the isomorphism sﬁi opr: FY
Z‘sli:O A(s) 4TS Ry = Z?i:o A(S) L g%,

wj,Wj 8 Wi, Wi

Proof Follows at once from the commutative diagram [2, (2.3)] (and the definition of
Ty, in [2, Lemma 2.7]). O

4.7 Rational Poisson bracket revisited

We fix a basis ey, e_q, h; in g where i € I, and o € R™ is a positive coroot (and the
weight of e, is the dual root ¢; in particular, ey, = E; of Sect. 2.2, and e_o, = cfi F)).
We assume (eq, e—o) = 1, (h;, hj) = §;;. Then the Lie bialgebra structure on a((z™")
is determined by the classical rational r-matrix

1
Frac(z, 1) == Z—_M (Z eq @e_qt+e_qgRey+ Zhi ® h,‘), 4.7

a>0 iel

see e.g. [7, Sect. 6.4]. This determines a Poisson group structure on G ((z~!)) such
that G is a Poisson subgroup.

Proposition 4.8 [18, Proposition 2.13] The rational Poisson bracket {, }a; of the func-
(s

tions A ﬂ’)v on the subgroup G is
{Aﬂlyvl (2), Aﬁz,vz (1) }rat

1
= (Z Aprevi DDy W) + D Ay ey (2 Apy ey ()

—Uu
< a>0 a>0

+ Z Apy.hiv (2) A, hivy (”))

iel

1
— (Z Ay 00 (D) De_yprvy @) + D Aoy py.0, (2) Dey v (1)

T a>0 a>0
+ Z Ahiﬂl,vl (Z)Ah,‘ﬂz,vz(u)) .
iel
According to [18], this Poisson structure on G| induces a Poisson structure on
transversal slices Wﬁ in the affine Grassmannian Gr = G((z~'))/G[z]. On the other

hand, recall a symplectic structure on Z% defined in [10]. It extends uniquely to a
Poisson bracket {, }%4, on Z% by the same argument as in the proof of Corollary 3.22.
The following theorem confirms expectations of [18, Remark 2.11].

Theorem 4.9 The map sﬁi : Wﬁi — Z% is Poisson.
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Proof The field of rational functions on Z* coincides with the field of rational func-
tions in the Fourier coefficients of the functions Q;(z), R;(z). Hence it is sufficient to
show that the Poisson bracket of the coefficients Q;(z), R;(z) is the same on VVA and
Z%. Let us introduce the following generalized minors: S;;(z) := A EjEv_g, v,
(EjEiv_g,, g(2)vg,). According to [10, (7) and (8)], the Poisson bracket of the
(polynomial-valued) functions Q;(z), R;(z) is given by

{0i(2), QW) =0, (4.8)
1
{0i (), Rjw)Z, = —d;5;; (—Q (DR; () = ——Ri (Z)Q,(u)) (4.9)

1
(Ri(2). Ry} = (1= 8i))((. &) — Ri(2) R;@)

vy 1 M|
+didjz__uQi(Z)Sji(u)) +didjz__usij(Z)Qj(U))~ (4.10)

On the other hand, the Fourier coefficients of the pullbacks (sﬁi)* 0 = 7% +
>, ASI) 5" and (s DR = >, AS})’_,J)I_ 7%~ obey the same relations by
Proposition 4.8. O

4.10 Trigonometric Poisson bracket

The standard Lie bialgebra structure on g((z‘1 ) @D t(seee.g.[7,6.2.1,6.5]) gives rise
to a Poisson structure on F1 such that the open Richardson varieties F Ef are Poisson
subvarieties of FI (cf. [21, Corollary 2.9]).

This Lie bialgebra structure on g((z~!)) @ t is determined by the classical r-matrix

Fig(z, u) 1= (Z(Zea@)e_a-f- Zh ® h;)
a>0 iel
1
—}—M(Ze_a@ea—l—thi@hi)), 4.11)
a>0 iel

see e.g. [7, (6.6)].

Proposition 4.11 The Poisson bracket of the functions AY ﬁ on the Iwahori subgroup
Iw_is

{Aﬂ|,v1 (Z)a Aﬁz,vz (u)}trig =

(Z z Apy.eav1 (2 Apye_qvy () -1 Z Apye_qv (2) Ay equy (1)

a>0 a>0

Z—u

Z+u
+ 2 ZAﬂl,hivl(Z)Aﬂz,h;vz(“))

iel
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(z D e @ Dy @) + 1 D Ae_ypy 0y (2) Ay .y (1)

a>0 a>0

+u
iB1, iB2,
iel

Proof This follows from the Belavin—Drinfeld formula for trigonometric »-matrix (see
e.g. [7, (6.6)]). Indeed, following [18, Proposition 2.13] we note that the cobracket on
g((z™1)) is coboundary, namely it is given by the map

Z—u

at) — [a() @ 1 + 1 ® au), ruig(z, w)],

where the 7-matrix is given by (4.11). By the standard procedure this gives a structure
of Poisson group on G ((z~')). We note that the Iwahori subgroup Iw_ C G((z™1))
is a Poisson subgroup, hence the bracket of any two functions on it is the restriction
of the bracket of any extensions of these functions to G ((z~!)). The rest of the proof
is a word-to-word repetition of that of [18, Proposition 2.13]. O

By an abuse of notation, we will denote the rational étale functions w; , o sﬁ: o

wo X A*

pr, yiro sﬁi o pr (notations of Sect. 4.5) on fﬁw " simply by w; », yi.r.

Proposition 4.12 We have

{wi,rv wj,s}trig =0,
{wir, Yjstuig = di6ijbrswi yjs,

Virs Yjishuig = (1 = 8;)(a&;, &)

Proof Consider the functions Q;(z) = AD Hfizl(z — w;i,), Ri(z) = A9

;i ,w; wj,w;

DIAEE ’#(QZ)(M According to Proposition 4.6 we have Q; = > Ag-)g)-

a,—v R _zal A(S)v . Zal-—s.

=0 "s; 7,
Set B; := A(O_)d)_ and recall the generalized minors S;;(z) introduced in the proof
of Theorem 4.9: §;;(2) = Ag;Ev_; v, = (EjEiv_g,, 8(2)vs,). Then by Proposi-
tion 4.11 we have

{0i(2), QjW)}uig = 0, (4.12)
{0i(2), Rj()}uig = —dii; (2( )Ql(z)R () — —R (z)Q,(u)), (4.13)
{Ri(2), Rj(u)}uig = (1 — U)((al,a,)z( t )R i (DR (u)

ji (4.14)

»
a0l
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The relation {w;,, w;js}uig = 0 is obvious from (4.12). Substituting u = wj

d,-é,-- Y
to (4.13), we get {Bi, yj s }uwig = _TJBiyj,s and {w; r, ¥jsluig = didijdrsWiryjs-
Finally, substituting z = w;,,u = w;j, to (4.14), we get {yi,, yjstuig = (1 —

(Sz/)(az»aj)z(wi‘r_wj,s)yt,ryj,s- ]

wo X A*

~ o
woxut — 7% of Proposition 4.3 is

Theorem 4.13 The isomorphism sﬁi opr: Ft
a symplectomorphism.

Proof Indeed, by Proposition 4.12 and Proposition 3.19 the Poisson brackets {-, -} on

° * . . .
7% and {-, Juigon F Eggiﬁ* are given by the same formulas on coordinate functions

wi,r, Yi,r» |:|

Remark 4.14 Note that the formulas (4.13) and (4.14) are different from (3.24) and

wo X A*

~ o
woxpt > 7% does not extend to a Poisson

(3.25), so the morphism sﬁi opr: Ft

o
morphism Iw_ — Y.

5 A speculation on cluster structure

5.1 An affine Lie algebra

Let g be the universal central extension of the polynomial loop algebra g[z*!]:

0>Co>g—glzt1—>0 (5.1

Let guf = g x Cd be the semidirect product of g with the degree operator. Then
gafr 1S an untwisted affine Kac-Moody Lie algebra. It has a triangular decomposition
Gatt = N_ @ tyr ® n where n_ = LieN_ N g[z™'], n = LieN N g[z], and tyy
is the affine Cartan subalgebra. The fundamental weights will be denoted w;, i €
1, := I U {ip}. The corresponding fundamental integrable representations (where n
acts locally nilpotently) will be denoted Vi, and their restricted duals (where n_
acts locally nilpotently) will be denoted V;}l,. We choose the highest weight vectors
Ve, € Vi, and the lowest weight vectors v_g; € VZ;’;[_ such that (v_z,;, v, ) = 1. Note
that the action of n_ (resp. n) on V;,'_ (resp. V4, ) integrates to the action of N_ (resp.
N). Given w, y € W, and i € I, we define the following regular function on N_ (a
generalized minor):

Aww,-,yw,- (g) = (wvfw'i ) g?”lm) (5.2)

where W, y € Gugr are the lifts of w, y defined similarly to [18, 2A].

5.2 An initial seed

B. Leclerc defines in [20] a cluster structure on the open Richardson varieties in the flag
varieties of simple Lie algebras of types ADE, but presumably the construction can
be extended to the affine Lie algebras of arbitrary types. Here we describe the initial
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seed for F 258“ following [20, Sect. 5, 4.8.3, Corollary 4.4]. We choose a reduced
expression in the affine Weyl group: A = s;, ...s;, where iy, ..., i € I, and ] = 2|A|
is the lengthof A € AT C AL C A C W, (for A = D ieq @i we have 2|A| =
2% c; ai).Notethati; = ig (the affine simple reflection). Then the initial seed consists
of all the (irreducible factors of the) generalized minors Awosl-l cesiy iy oy, s 1 ST S l
(they are well defined as functions on F Z%g“ according to loc. cit.). Among them,
those which divide [[;c; A(woxa)m;.wow; are the frozen variables.

5.3 An exchange matrix

The rows of the exchange matrix B are numbered by 1 < r < [, and the columns
are numbered by those 1 < s < [ for which there exists r > s such that i, = i
(the minimal among such r is denoted s ). The matrix entries are as follows: by ;+ =
—bg+ s = —l;andfors < r < sT suchthat forany r < r’ < s™ wehave i, # i, the
matrix entry by, = —Cj, ;., and b,y = C;, ;; (here (C; ;); jei, is the Cartan matrix
of g). All the other matrix entries are zero.

According to [20, Sect. 6], this cluster structure on F. Zﬁg“ is compatible with
the symplectic structure of Sect. 4.10 on }"Eﬁg“ in the sense of [11, Sect. 4.1].
Taking © = 0 and @ = A, and transferring the cluster structure via the isomorphism

* ~ ° . ° . . .
s())‘ opr: F Eﬁg”* —> 7% we obtain a cluster structure on 'Z% compatible with its
symplectic structure (see Theorem 4.13).

5.4 Destabilization

Let v € AT be a dominant coweight. Then the open Richardson variety Ezgiffﬂ)
also has a cluster structure with the initial cluster given by certain generalized minors,
and with the same exchange matrix as in Sect. 5.3. However, the stabilization map (4.4)

oy F s Feu 0 does not take the initial seed of F€20** o the initial

seed of ]—'Eﬁgiyw) (already in the simplest example of 2-dimensional slices for
g = sl where both variables are frozen, cf. [18, Example 2.12]).

We consider the following action of 7! on TZ%: the generator (0, ...,0,1,0,...,0)
(1 at the ith place) acts in the Pliicker coordinates (Q j, R;) jes of Sect. 4.5 by an auto-

morphism 7;(Q;, Rj) = (Q;, 2% Rj — 8;jri4;—10Q;) (it is easy to check that this is
o
indeed a biregular automorphism of 'Z%). The frozen variables of the cluster struc-

o
ture on TZ¢ are (Fa,qj,0)jer Where Fy is the equation of the boundary of zastava,
see e.g. [4, Sect. 5]. Clearly, n; takes (Fy, g;,0)jer tO (Fo,ql.%, qj,0)jer, i.€. does not
preserve the frozen variables. However, it seems likely that n; is an almost cluster trans-
formation: a composition of a few mutations, and the above change of frozen variables.
Furthermore, if we set n, := [[;¢; n:" for v = >",_; njc;, then the cluster structure

o % % * * ~ °
transferred to 7Z* from the isomorphism s*, ™" o pr: }'Ewox(); T 7 differs
p v p wo X v

* * ~ o
from the reference one (transferred from the isomorphism s(’)\ opr: Fe,0* —— 2
by the automorphism 7,+.
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55g=sl,

[e]
For g = sl», a positive coroot « is but a positive integer a, and a cluster structure on 'Z¢

was defined in [12, Sect. 5] (where 774 is denoted R,). According to Theorem 5.7, this
cluster structure is a particular case of the one of Sect. 5.4. In particular, the exchange
matrix B(e), (¢) = (2,0,...,0) of [12, (5.16)] coincides with the exchange matrix
of Sect. 5.3. Note that the cluster variables of [ 12] are certain minors of a Hankel matrix
composed of the coefficients of the formal series R(z)/Q(z) € C[[z~']] (where R, Q
are the Pliicker coordinates of Sect. 4.5). It would be nice to have such an explicit
formula for the cluster variables for general g. Also, the automorphism 7 of Sect. 5.4
is nothing but the shift of [12, Lemma 5.4.(1)] (a transformation from the type A,_1
Q-system, cf. the paragraph before [12, Remark 6.2]).

5.6 Gaiotto—Witten superpotential

Let K;(z), i € I, be a collection of monic polynomials, K;(z) = 2+ Ic,',li_lzl"fl +
-+ 4 «;0. The data of {K;(z)}ics 1S equivalent to the data of

(a) an ordered collection A of dominant coweights Ap, ..., Ay;
(b) an ordered configuration (z1, ..., zn) of points in Al

Namely, given the above data we set K;(z) := HISnSN (z — z,)? %) We denote by

A’ the moduli space of the above configurations of distinct points z,,.
Recall the Gaiotto—Witten superpotential WA a multivalued holomorphic func-

tion on hY x Z% x A (see e.g. [4, 1.8]). We will denote by WA the restriction of

o o
Wf\’a to 0 x Z% x A, In the coordinates wj r, yi.r of Sect. 4.5 we have

J— K (w;
W, y, K) = %Ifj;’)—logFa+ D e halogEm—z) (5.3)
i L,r

ir 1<m<n<N

where F, is the equation of the zastava boundary 0 Z% = Z%\ Z¥ (seee.g. [4, Sect. 5]).

Let Cllz~'11 > 48 = 3207 ) hi pz~"~". Then

WA, y, K) = > hipkip—log Fu+ D hm-hylogzm —22) (5.4)
Lp

1<m<n<N

In case g = slp, the boundary equation F, is a frozen cluster variable of the

cluster structure on 7Z% of [12, Sect. 5], and all the coefficients %, are cluster vari-

ables according to [12, Lemma 5.3, Proposition 5.4]. Hence wh-@ | k=K, 1s a constant
o

L(Kp) = Zlgm<n§N Am - Aplog(zo,m — z0,,) plus a totally positive function on fza

for a monic polynomial Ky with nonnegative coefficients «,. We expect a similar
positivity for general g (in particular, Fy is a frozen cluster variable). It would be
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interesting to study its tropicalization and the corresponding set of positive integral
tropical points, cf. [13].

Appendix: G = SL;: identification with the cluster structure of [12]
GALYNA DOBROVOLSKA
Recall that ;[2 has two fundamental representations, which we denote by V,;, and
Ve, 10 accordance with the notation of Sect. 5.1. Recall the generalized minors
Awos,-, - Siy T WO, from Sect. 5.2. Since for g = sl, we have wg = s1, these gener-
alized minors are of the form Ay, (sos;) oy ,51; ANd Ay, (so51) 0,51 w0+

Given a pair of polynomials Q(z) = z%4+qa—12* "'+ -4qo, R(z) = rqe_12*" '+

Fa—22°"2 4 .- +ro representing a point of T%“, we can find a unique pair of polyno-
mials F(z) = 2%+ fa12% '+ -+ fo, D(2) = dy_1z°" ' +---4+diz+dp such that
—a =

OF — RD = 7. Then both the matrix g(Q, R) := (i_;g i_agg;) e SL,
2790 —z7“D()
-7 9R(z) zz79F(2)
inN_ c SL, (notations of Sect. 5.1). Moreover, according to Proposition 4.6, we
have s())‘ opr(g(Q, R)) = (Q, R). Here 1 = a« is a multiple of the simple coroot of
slp,and g(Q, R) € }Y;:X“"‘ C Fl;, =N_ - 5 is the point g(Q, R) - 5.

On the other hand, following [12], we consider the Taylor expansion at co € P! of

% =2+ 2—5 +- 4 ;—’, + - --. We form the corresponding Hankel matrix using

the elements cg, ..., c24—2, namely the a X a matrix [c j+k]?;{1= o- We consider two
kinds of minors of this matrix, the principal minors Cy, ..., C, of sizes 1,...,a,
and the minors Dy, ..., D,_; of sizes 1,...,a — 1 which are obtained from the
principal minors of the same size by a shift of all entries by one unit to the right (or,
equivalently, by a shift of all entries by one unit down). We will also denote these
minors by C,(Q, R), D,(Q, R) when we want to stress the dependence on Q, R.
These Hankel minors (also called Hankel determinants) arise as cluster variables in
the cluster corresponding to (¢) = (2,0, ...,0) in [12, 5.2]. See also the survey [14]
for general properties of Hankel matrices.
In this appendix we prove the following theorem:

and its inverse matrix g(Q, R~ = ( ) € §Z2 actually lie

Theorem 5.7 (a) The generalized minor A, (sys,)" w510, (8(Q, R)) is equal (up to a
change of sign) to the Hankel minor C,(Q, R).

(b) The generalized minor Ay, (sys;) wy.s1w0(8(Q, R)) is equal (up to a change of sign)
to the Hankel minor D,.(Q, R).

Before starting the proof of Theorem 5.7, we will recall a theorem of Kronecker
which we will use.

First, for two polynomials Q(z) = z% 4+ qa—12°" '+ +qo, R(z) = re_1z° ' +
Fa—22%"% 4 -+ + ro we will write the 2a — 1) x 2a — 1) Sylvester matrix (the
determinant of which computes the resultant of Q and R) in the following form:
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1 qa—1 ... o q0 0 o ... 0 O
0 1 qa—1 - q1 q0 o ... 0 O
0 0 I ga—1 ... <o 41 qo
0 0 0 a1l Tq—2 oo ... Il 1o
0 0 Ta—1 Tq—2 ro O
0 Ta—1 ro 0 ... 0
| Ta—1  Ta—2 1o 0 0 .. 0]

Next we define for each i an odd sub-resultant R; (which coincides with the notion
of sub-resultant in [25, (2.6)]) to be the minor of the Sylvester matrix which is obtained
by removing the same number i of columns and rows at the top, the bottom, the right,
and the left. We also define an even sub-resultant S; to be the minor of the Sylvester
matrix obtained by removing the middle row, the same number i of rows at the top
and the bottom, and removing i columns at the left, and i + 1 columns at the right.

Now we can state the following formula of Kronecker [19] (cf. [25, Corollary 3.2]
for a modern reference) expressing sub-resultants in terms of Hankel determinants of
the Taylor expansion of the ratio of two polynomials:

Proposition 5.8 (L. Kronecker) R; = C,_;.

We will also recall some facts from the theory of infinite-dimensional Lie algebras
which we will need in the course of the proof (we will follow the exposition in [17]
and use the notation of loc. cit.).

We start with an infinite-dimensional vector space vector space V = @ ;Cv;. For
each m € 7 we have the infinite-dimensional vector space F ™ with a vacuum vector
Yim = Uy AVUp—1 A--- and a basis given by v;y Av;_; A--- (suchthatip >i_1 > ---
and iy = k+m for k < 0). We define a group G L as the group of invertible infinite
matrices withentries @; ; (i, j € Z)such thatall but finitely many of a; ; —§;, ; are zero.
The group G L acts in F™ as follows: AWig Avi AL = Avig ANAv (AL =

i det.AlJ%"lj‘jl”'_':.v.,'O AVj A, where ADU 1 denotes the matrix located
on the intersection of the rows jg, j—1, ... and columns i, i_1, ... of the matrix A.

Consider the standard n-dimensional representation U of sl,, with basis uy, u», ...,
u,, (in this appendix we will only use n = 2). Note that according to [17, (9.8)], one can
define an action of ;[n on V in the following way, where anelement A = > i Ai e ;[n
acts as the infinite matrix below (note that this action is obtained from the representation
Ulz*!"] of s, by identifying a basis element v; of V with ZF - u, where j = kn +r,
andr € {1,2,...,n}):
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Note that the images of the matrices in ?[ obtained in this way have finitely many
non-zero diagonals. Therefore by [17, Sect. 4.4] the action of 5[ in FM is given by the

same formulaas for G Lo, namely A (vig Avi_y A-++) = )R detAlJ((’)lj oA
Vi, - for A € sl,. This way form = 0,1,2,...,n — 1 we obtain all the

fundamental representations Vg, , where Vy;  is the 1rredu01ble sub- representatlon of
5[ in F™ which is generated by the vacuum vector ¥, = v, A Vy—1 A -

Finally, note that the action of n_ in F is not integrable (in general, 8Uip A
v;_; A --- is aninfinite sum for an element g € N_). However, for any basis element
Vjg Avj_; A---of F its coefficient in the (infinite) expansion of 8Uig AVi_; A-e-
in the elements of the basis of F is well-defined and can be computed by the

same formula as for g € G L, namely it is equal to detA’]%’l]T_ll":.. Note that here

fo. l]_ll " in the following way. By definition there exists N such that

fork < N we have jk = ix = k 4+ m; then detAlj% 1711-»- detAl(()) l]' ] , which
is a finite determinant. The justification for this formula is that the mﬁmte matrix
with rows jo, j—1, ... and columns ig, i1, ... can be divided into four blocks, where
the two diagonal blocks are the finite block with rows jo, j_1, ..., jy and columns
i0,i—1, ..., iy and the inifinite lower-triangular block with 1’s on the diagonal with
TowWS jN—1, jN—2, ... and columns iy_1,iN—_2, .. ..

Now we are ready to prove our theorem.

we caculate detA .

Proof of Theorem 5.7 Using exterior powers, the computation of generalized minors
reduces to the computation of finite minors because the infinite matrices we use are
upper triangular up to a finite portion. As a result we obtain finite minors which stand
in certain rows and columns of the infinite matrix, depending on the element of the
Weyl group which appears in the definition of a particular generalized minor.

For example, for the element of the Weyl group given by sos;sos; and the funda-
mental representation Vy;,, we obtain the following minors:

-5 —4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-5 1 7
—4 0 1
-3 fafl dq—1 1
-2 Ta—1 qa-1 0 1
-1 fa72 dq—2 fafl daq—1 1
0 Ta=2 ga—2 Ta-1 Qa-1 0 1
1 fa—3 dg—3 fa—2 dq—2 fn—l dq—1 1
2| ra-3 Ga-3 Ta—2 Qa2 Ta1 Ca-1 O 1
3 fa—4 da-4 fa—3 dg-3 fu—z da—2 fa—l dg—1 1
4 Ta—4  qa—4 Ta-3 (qa-3 Ta-2 {a-2 7Ta-1 (a-1 0 1
5 fufS da—s faf4 da74 faf3 daq-3 fafZ da72 fuf] dg—1 1
6 Ta=5 qa-5 Ta—4 Qa—d4 Ta-3 Qa3 Ta—2 Qa2 Ta—1 qa—1 0O 1
7 fu76 da—6 fa75 dq-s fa74 dg—a fa73 dq—3 fu72 dq—2 fafl dq—1 1
8 L ra—6 Ga—6 Ta—5 qa—5 Ta—4 qa—4 Ta=3 Ga—3 Ta—2 Ga—2 Ta—1 qa—1 0 1]

After we collect the entries at the intersections of the marked rows and columns, we
obtain the following submatrix (which after transposing it and exchanging the order
and the signs of some the rows will be exactly the (¢ — 3)-th sub-resultant R,_3 for
the polynomials Q and R):
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0 1
Fa—1 {qa-1 0 1
Fa—2 qa-2 Ta—1 Ya-1 1
Fa—3 qda-3 Ta—2 YGa-2 Ya—1
Fa—4 q4a-4 Tag-3 qa-3 YGa-2

We see that the finite minors we obtain up to permutation of rows and transposition
are exactly the sub-resultants in the case of odd number of rows. Indeed, for the element
of the Weyl group given by (sps1)" and the fundamental representation V,;, we obtain
that the finite minor consists of 2r + 1 rows numbered 2r + 2, 2r, ..., —2r + 2 and
2r 4+ 1 columns numbered 2, 0, —1, ..., —2r + 2. If we permute the columns so that
the odd rows stand on the left in the same order as they were before and even rows
stand on the right in the same order as they were before, we obtain exactly an odd sub-
resultant as defined above. Now we use the above theorem of Kronecker to conclude
that the generalized minors for the fundamental representation Vg, of sl are equal to
the corresponding principal Hankel minors.

Now we turn to the generalized minors of the basic representation Vi, . For example,
for the element sos1s9s1 of the Weyl group and the fundamental representation Vi,
we have the following submatrix:

=5 —4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-5 1 -
—4 0 1
-3 fa—l da—l 1
-2 Fa—1  qa-—1 0 1
-1 lefZ dg—2 faf] da—l 1
0| ra—2 Ga—2 Ta-1 Qa1 O 1
1 fu73 dq—3 fu72 dq—> fafl dq—1 1
2 Ta=3 qa-3 Ta—2 Qa—2 Ta—1 Qa-1 O 1
3 fa74 dg—a fa73 dq—3 fa72 dq—> fafl dq—1 1
4 Ta—4 qa—4 Ta-3 Qa-3 Ta—2 Qa—2 Ta—1 Ga—1 0 1
5 fa75 dg—s fa74 dq—4 fnf3 dq—3 fa72 dq—2 fafl daq—1 1
6 ra-5 4a-5 Ta—4 YGa—4 Va3 Yqa-3 Ta-2 Yqa-2 Ta—1 Ya-1 0 1
7 fa—6 da—(y fu—S da—S fu—4 da—4 fa—3 da—S fa—2 da—2 fa—l da—l 1
8L ra—6 qa—6 Ta-5 Ga-5 Ta—4 Ga—4 Ta—3 qa-3 Ta—2 qa-2 Ta—1 qa—1 O 1]

After we collect the entries at the intersections of the marked rows and columns we
obtain the following submatrix (which after transposing and exchanging the order of
the rows is the (a — 3)-th sub-resultant S, _3 for the polynomials Q and R):

0
Ta—1
Fa—2
ra—3
Fa—4

1
da—1
qa-2
da-3
da—4

0

Fa—1
ra—2
rq—3

1
da—1
a2
da—3

More generally, for the element of the Weyl group given by (sos1)” and the fun-
damental representation V,;, we obtain that the finite minor consists of 2r + 1 rows
numbered 2r, 2r — 2, ..., —2r +2 and 2r rows numbered 0, —1, ..., —2r + 1. If we
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permute the columns so that the odd rows stand on the left in the same order as they
were before and even rows stand on the right in the same order as they were before,
we obtain exactly an even sub-resultant as defined above.

Finally, we can reduce the case of even number of rows to the case of odd number
of rows in the following way. Note that the even sub-resultant S; of the polynomials
R(z) and Q(z) is equal to a usual sub-resultant (cf. [25, (2.6)]) of the polynomials
R(z) and zQ(z). We claim that this (usual) sub-resultant of the polynomials R(z) and
7Q(z) is equal to the determinant of the original Hankel minor D,_;_. Indeed, by the
theorem of Kronecker mentioned above, the usual sub-resultants of R(z) and zQ(z)
equal the corresponding (principal) Hankel minors for R(z) and zQ(z). To conclude,
we notice that the equality R(z)/Q(z) = z(R(z)/(zQ(z))) implies that the principal
Hankel minors for R(z), zQ(z) are equal to the Hankel minors for R(z), Q(z) which
are obtained by shifting the corresponding principal Hankel minors by one unit to the
right. O
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