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Abstract We study a moduli problem on a nodal curve of arithmetic genus 1, whose
solution is an open subscheme in the zastava space for projective line. This moduli
space is equipped with a natural Poisson structure, and we compute it in a natural
coordinate system. We compare this Poisson structure with the trigonometric Poisson
structure on the transversal slices in an affine flag variety. We conjecture that certain
generalized minors give rise to a cluster structure on the trigonometric zastava.
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1 Introduction

1.1 Zastava and Euclidean monopoles

Let G be an almost simple simply connected algebraic group over C. We denote by B
the flag variety of G. Let us also fix a pair of opposite Borel subgroups B, B− whose
intersection is a maximal torus T . Let � denote the cocharacter lattice of T ; since G
is assumed to be simply connected, this is also the coroot lattice of G. We denote by
�+ ⊂ � the sub-semigroup spanned by positive coroots.

It is well-known that H2(B, Z) = � and that an element α ∈ H2(B, Z) is repre-

sentable by an effective algebraic curve if and only if α ∈ �+. Let
◦
Zα denote the

space of maps C = P
1 → B of degree α sending ∞ ∈ P

1 to B− ∈ B. It is known [10]
that this is a smooth symplectic affine algebraic variety, which can be identified with
the hyperkähler moduli space of framed G-monopoles onR

3 with maximal symmetry
breaking at infinity of charge α [15,16].

Themonopole space
◦
Zα has a natural partial compactification Zα (zastava scheme).

It can be realized as themoduli space of basedquasi-maps of degreeα; set-theoretically
it can be described in the following way:

Zα =
⊔

0≤β≤α

◦
Zβ × A

α−β,

where for γ ∈ �+ we denote by A
γ the space of all colored divisors

∑
γi xi with

xi ∈ A
1, γi ∈ �+ such that

∑
γi = γ .

The zastava space is equipped with a factorizationmorphismπα : Zα → A
α whose

restriction to
◦
Zα ⊂ Zα has a simple geometric meaning: for a based map ϕ ∈ ◦

Zα

the colored divisor πα(φ) is just the pullback of the colored Schubert divisor D ⊂ B
equal to the complement of the open B-orbit in B. The morphism πα : ◦

Zα → A
α is

the Atiyah–Hitchin integrable system (with respect to the above symplectic structure):
all the fibers of πα are Lagrangian.

A system of étale birational coordinates on
◦
Zα was introduced in [10]. Let us recall

the definition for G = SL(2). In this case
◦
Zα consists of all maps P

1 → P
1 of degree

α which send∞ to 0.We can represent such amap by a rational function R
Q where Q is

a monic polynomial of degree α and R is a polynomial of degree< α. Letw1, . . . , wα

be the zeros of Q. Set yr = R(wr ). Then the functions (y1, . . . , yα,w1, . . . , wα) form

a system of étale birational coordinates on
◦
Zα , and the above mentioned symplectic

form in these coordinates reads 	rat = ∑α
r=1

dyr ∧dwr
yr

.
For general G the definition of the above coordinates is quite similar. In this case

given a point in
◦
Zα we can define polynomials Ri , Qi where i runs through the set I

of vertices of the Dynkin diagram of G, α = ∑
aiαi , and

(1) Qi is a monic polynomial of degree ai ,
(2) Ri is a polynomial of degree < ai .
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Hence, we can define (étale, birational) coordinates (yi,r , wi,r ) where i ∈ I and
r = 1, . . . , ai . Namely, wi,r are the roots of Qi , and yi,r = Ri (wi,r ). The Poisson
brackets of these coordinates with respect to the above symplectic form are as follows:
{wi,r , w j,s}rat = 0, {wi,r , y j,s}rat = ďiδi jδrs y j,s, {yi,r , y j,s}rat = (α̌i , α̌ j )

yi,r y j,s
wi,r −w j,s

for i 	= j , and finally {yi,r , yi,s}rat = 0. Here α̌i is a simple root, (, ) is the invariant
scalar product on (Lie T )∗ such that the square length of a short root is 2, and ďi =
(α̌i , α̌i )/2.

Now recall that the standard rational r -matrix for g = Lie G gives rise to a Lie bial-
gebra structure on g[z±1] corresponding to the Manin triple g[z], z−1g[z−1], g[z±1].
This in turn gives rise to a Poisson structure on the affine Grassmannian GrG =
G[z±1]/G[z]. The transversal slicesWλ

μ from a G[z]-orbit GrμG to another orbit GrλG
(here μ ≤ λ are dominant coweights of G) are examples of symplectic leaves of the
above Poisson structure. According to [2], the zastava spaces are “stable limits” of
the above slices. More precisely, for α = λ − μ there is a birational Poisson map
sλ∗
μ∗ : Wλ∗

μ∗ → Zα (here λ∗ := −w0λ, μ∗ = −w0μ, and w0 is the longest element of
the Weyl group W = W (G, T )).

1.2 Trigonometric zastava and periodic monopoles

We have an open subset G
α
m ⊂ A

α (colored divisors not meeting 0 ∈ A
1), and we

introduce the open subscheme of trigonometric zastava †Zα := π−1
α G

α
m ⊂ Zα , and

its smooth open affine subvariety of periodic monopoles †
◦
Zα := †Zα ∩ ◦

Zα . These
schemes are solutions of the following modular problems.

Let C† be an irreducible nodal curve of arithmetic genus 1 obtained by gluing
the points 0,∞ ∈ C = P

1, so that π : C → C† is the normalization. Let c ∈ C†

be the singular point. The moduli space Bun0T (C†) of T -bundles on C† of degree 0
is canonically identified with the Cartan torus T itself. We fix a T -bundle FT which

corresponds to a regular point t ∈ T reg. Then †
◦
Zα is the moduli space of the following

data:

(a) a trivialization τc of the fiber of FT at the singular point c ∈ C†;

(b) a B-structure φ in the induced G-bundle FG = FT
T× G of degree α which is

transversal to FB = FT
T× B at c.

The scheme †Zα is the moduli space of the similar data with the only difference: we
allow a B-structure in (b) to be generalized (i.e. to acquire defects at certain points of
C†), but require it to have no defect at c.

As a regular Cartan element t varies, the above moduli spaces become fibers of a
single family. More precisely, we consider the following moduli problem:
(t) a T -bundle FT of degree 0 on C† corresponding to a regular element of T ;
(a,b) as above;
(c) a trivialization fc at c of the T -bundle φT induced from the B-bundle φ in (b).

This moduli problem is represented by a scheme
◦
Y α ⊂ Y α (depending on whether the

B-structure in (b) is genuine or generalized). Note that Y α is equippedwith an action of
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T × T changing the trivializations in (a,c). We prove that
◦
Y α is a smooth affine variety

equipped with a natural projection  : ◦
Y α → †

◦
Zα , and we construct a nondegenerate

bivector field on
◦
Y α arising from a differential in a spectral sequence involving the

tangent and cotangent bundles of
◦
Y α (this construction is a trigonometric degenera-

tion of the construction [9] for elliptic curves; its rational analogue was worked out

in [10]). This bivector field descends to †
◦
Zα under the projection  : ◦

Y α → †
◦
Zα

and gives rise to a nondegenerate Poisson structure, i.e. a symplectic form on
†
◦
Zα . It would be interesting to obtain this symplectic form by the method of [24,

4.2]. The Poisson brackets of the coordinates on †
◦
Zα are as follows: {wi,r , w j,s}trig =

0, {wi,r , y j,s}trig = ďiδi jδrsw j,s y j,s, {yi,r , y j,s}trig = (α̌i , α̌ j )
(wi,r +w j,s )yi,r y j,s

2(wi,r −w j,s )
for

i 	= j , and finally {yi,r , yi,s}trig = 0. In particular, the projection πα : †
◦
Zα → G

α
m is

the trigonometric Atiyah–Hitchin integrable system (for G = SL(2) this system goes
back at least to [8]).

Now recall that the standard trigonometric r -matrix forggives rise to aLie bialgebra
structure on g((z−1)) ⊕ t which in turn gives rise to a Poisson structure on the affine
flag variety F�G (the quotient of G[z±1] with respect to an Iwahori subgroup). The
intersections F�w

y of the opposite Iwahori orbits (aka open Richardson varieties)
are Poisson subvarieties of F�G . Here w, y are elements of the affine Weyl group
Wa = W � �. For dominant coweights μ ≤ λ ∈ � such that λ − μ = α, and the
longest element w0 of the finite Weyl group W , the Richardson variety F�

w0×λ∗
w0×μ∗ is a

symplectic leaf of F�G , the projection pr : F�
w0×λ∗
w0×μ∗ → Wλ∗

μ∗ is an open embedding,

and the composition sλ∗
μ∗ ◦pr : F�

w0×λ∗
w0×μ∗ → Zα is a symplectomorphism onto its image

†
◦
Zα ⊂ Zα equipped with the trigonometric symplectic structure.

1.3 Cluster aspirations

It seems likely that the construction due to Leclerc [20] extends from the openRichard-
son varieties in the type ADE finite flag varieties to the case of the affine flag varieties,
and providesF�w

y with a cluster structure (even in the nonsimply laced case, cf. [22]).

This structure can be transferred from F�
w0×λ∗
w0×μ∗ to †

◦
Zα via the above symplectomor-

phism. If α is a dominant coweight of G, a reduced decomposition of w0 × μ∗ is
the beginning of a reduced decomposition of w0 × λ∗, and the existence of cluster
structure on F�

w0×λ∗
w0×μ∗ is known for arbitrary symmetric affine Kac-Moody algebra.

In case of G = SL(2) the resulting cluster structure on the moduli space of periodic
monopoles was discovered in [12], which served as the starting point of the present
note. It seems likely that for general G the Gaiotto–Witten superpotential on Zα (see

e.g. [4]) restricted to †
◦
Zα is totally positive in the above cluster structure (see Sect. 5

for details).
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Remark 1.4 Implicit in the above discussion when α is dominant (as a coweight of G)

is an affine open embedding †
◦
Zα ⊂ ◦

Zα ↪→ A
2|α| into an affine space. Indeed, in this

case the lengths of the affineWeyl group elements satisfy �(w0×μ∗)+�(α∗) = �(w0×
λ∗), and we are in the situation of [20, Sect. 5]; hence according to loc. cit. and [20,
Theorem 2.12], F�

w0×λ∗
w0×μ∗ is an open subvariety of an affine space. Here is a modular

interpretation of the above open embedding: A
2|α| is the moduli space of B-bundles

φB on P
1 equipped with a trivialization (φB)∞

∼−→ B of the fiber at ∞ ∈ P
1, such

that the induced T -bundle (under projection B � T ) has degree α.

1.5 Relation to Coulomb branches of 4d N = 2 quiver gauge theories

Let G = SL(2), and α = a ∈ N. Then the methods of [1] establish an isomorphism

C[ †◦
Za] � K GL(a)O (GrGL(a)) (where O = C[[z]]). More generally, for G of type

ADE let us orient its Dynkin diagram, and for α = ∑
i∈I aiαi let us consider a

representation V of the Dynkin quiver such that dim Vi = ai . The group GL(V ) :=∏
i∈I GL(Vi ) acts inN = ⊕

i→ j Hom(Vi , Vj ). Following [5] we consider the moduli
space R of triples (F , σ, s) where F is a GL(V )-bundle on the formal disc D =
SpecC[[z]], σ is its trivialization over the punctured disc D∗ = SpecC((z)), and s is
a section of the associated vector bundleF×G N such that it is sent to a regular section
of the trivial bundle under σ . The group GL(V )O acts naturally onR, and as in [5] one
can define the equivariant K -theory K GL(V )O (R) and equip it with the convolution

algebra structure. Moreover, as in [6] one can establish an isomorphism C[ †◦
Zα] �

K GL(V )O (R) such that the factorizationmorphismπα : †
◦
Zα → G

α
m corresponds to the

embedding of the equivariant K -theory of the point: K GL(V )O (pt) ↪→ K GL(V )O (R).
Yet more generally, given a framing Wi , dim Wi = li , we set λ = ∑

liωi and
consider a representation N′ = N ⊕ ⊕

i Hom(Wi , Vi ) of GL(V ). It gives rise to the
space R′ of triples as above, and one can prove as in [6] that the convolution algebra
K GL(V )O (R′) is isomorphic to the coordinate ring of the moduli space †Wλ∗

μ∗ of the
triples (P, σ, φ) where P is a G-bundle on C; σ is a trivialization of P off 1 ∈ C
having a pole of degree ≤ λ∗ at 1 ∈ C , and φ is a B-structure on P of degree −μ

having the fiber B− at ∞ ∈ C and transversal to B at 0 ∈ C (a trigonometric slice).
Note that the relation of †Wλ∗

μ∗ to the Richardson varieties F�w
y of Sect. 1.2 is unclear

since the former “knows” about 3 points 0, 1,∞ ∈ P
1 while the latter only “knows”

about 2 points.

1.6 Contents

In Sect. 2 the moduli spaces †
◦
Zα ⊂ †Zα and

◦
Y α ⊂ Y α are introduced. In Sect. 3

a bivector field on
◦
Y α is introduced and the resulting Poisson bracket {, }trig on †

◦
Zα

is computed in coordinates (wi,r , yi,r ). The technicalities of this computation occupy
the bulk of the present note. In Sect. 4 we compare the rational Poisson bracket on the

slicesWλ∗
μ∗ ⊂ GrG with the Poisson bracket {, }rat on the monopole moduli space

◦
Zα .
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We also compare the trigonometric Poisson bracket on the slices F�
w0×λ∗
w0×μ∗ ⊂ F�G

with the Poisson bracket {, }trig on the periodic monopole moduli space †
◦
Zα . Section 5

contains a few comments on the cluster structures. Finally, the “Appendix” by Galyna

Dobrovolska identifies our cluster structure on †
◦
Zα for G = SL2 with the one of [12].

2 Trigonometric zastava

2.1 Line bundles on a nodal curve C†

Let C† be an irreducible nodal curve of arithmetic genus 1, and let π : C → C† be
its normalization. Then C is a projective line. We fix a coordinate function z on C
such that the preimage of the node c ∈ C† consists of the points 0,∞ ∈ C . We have
Pic0(C†) = Gm : any line bundle on C† is obtained by descent from the one on C
gluing its fibers at 0 and ∞; a degree 0 line bundle on C is trivial, so its fibers at 0
and ∞ are canonically identified. Moreover, the above choice of a coordinate z on C
gives rise to an identification Picn(C†) ∼= Gm for any n ∈ Z: if n > 0, and s is a
section ofL ∈ Picn(C†) not vanishing at c, then div(s) ∈ Symn(C† \ c) = Symn(Gm)

(this identification makes use of the coordinate z); we have a multiplication morphism
m : Symn(Gm) → Gm , and finally L �→ m(div(s)) ∈ Gm (the result is independent
of the choice of a section s). If L ∈ Picn(C†) for n < 0, then L goes to the inverse of
the class of L−1.

For the canonical line bundle ωC† , we have the following exact sequence:

0 → ωC† → π∗ωC ({0} + {∞}) ρ+−→ Cc → 0 (2.1)

where ρ+(ξ) = Res0(ξ) + Res∞(ξ). The line bundle ωC† is trivial, with trivializing
section z−1dz. In what follows we will freely use the above identification ωC† ∼= OC† .

We define the theta-characteristic θ ∈ Pic0(C†) as a unique nontrivial line bundle
such that θ2 = ωC† . It enters the following exact sequence:

0 → θ → π∗ωC ({0} + {∞}) ρ−−→ Cc → 0 (2.2)

where ρ−(ξ) = Res0(ξ) − Res∞(ξ).
From the above two sequences we have the natural embeddings π∗ωC ↪→ ωC† ↪→

π∗ωC ({0}+{∞}) andπ∗ωC ↪→ θ ↪→ π∗ωC ({0}+{∞}). Noting thatωC ({0}+{∞}) =
OC we combine the above embeddings into the following exact sequence:

0 → π∗ωC → θ ⊕ ωC† → π∗OC → 0 (2.3)

We also have natural embeddingsπ∗ωC = π∗OC (−{0}−{∞}) ↪→ π∗π∗OC (−{0})
↪→ π∗OC and π∗ωC = π∗OC (−{0} − {∞}) ↪→ π∗π∗OC (−{∞}) ↪→ π∗OC . They
combine into the following exact sequence:

0 → π∗ωC → π∗� → π∗OC → 0 (2.4)

where � stands for OC (−{0}) ⊕ OC (−{∞}).
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2.2 A group G

Let G be an almost simple simply connected algebraic group over C. We denote by B
the flag variety of G. Let us also fix a pair of opposite Borel subgroups B, B− whose
intersection is a maximal torus T (thus we have B = G/B = G/B−). We denote by
T reg ⊂ T the open subset formed by the regular elements.

Let � (resp. �∨) denote the cocharacter (resp. character) lattice of T ; since G
is assumed to be simply connected, this is also the coroot lattice of G. We denote
by �+ ⊂ � the sub-semigroup spanned by positive coroots. We say that α ≥ β

(for α, β ∈ �) if α − β ∈ �+. The simple coroots are {αi }i∈I ; the simple roots
are {α̌i }i∈I ; the fundamental weights are {ω̌i }i∈I . We consider the invariant bilinear
form (, ) on the weight lattice �∨ such that the square length of a short simple root
(α̌i , α̌i ) = 2. We set ďi := (α̌i ,α̌i )

2 . We fix the Chevalley generators (Ei , Fi , Hi )i∈I of

g. An irreducible G-module with a dominant highest weight λ̌ ∈ �∨+ is denoted V
λ̌
; we

fix its highest vector v
λ̌
. For a weight μ̌ ∈ �∨ the μ̌-weight subspace of a G-module

V is denoted V (μ̌). Finally, W is the Weyl group of G, T ; the simple reflections are
denoted si , i ∈ I , and w0 ∈ W is the longest element.

The identification Pic0(C†) = Gm (resp. Picn(C†) ∼= Gm , depending on the choice
of coordinate z) of Sect. 2.1 gives rise to the identification Bun0T (C†) = T (resp.
Bunα

T (C†) ∼= T ). We denote by BunregT (C†) ⊂ Bun0T (C†) the open subset corre-
sponding to T reg ⊂ T under the above identification.

2.3 The moduli space Yα

Given a T -bundle FT ∈ BunregT (C†) we denote by FB (resp. FG) the corresponding
induced B-bundle (resp. G-bundle).

Definition 2.4 Given α ∈ �+, we define
◦
Y α as the moduli space of the following

data:

(a) a regular T -bundle FT ∈ BunregT (C†);
(b) a trivialization τc of the fiber of FT at c ∈ C†;
(c) a B-structure φ in FG of degree α (that is, the induced T -bundle φT has degree

α), such that φ is transversal to FB at c;
(d) a trivialization fc of the induced T -bundle φT at c.

We also define Y α as the moduli space of the data (a–d) above where we allow a
B-structure in (c) to be generalized (see e.g. [2]) but require that it does not have a
defect at c ∈ C†.

We have a natural action of T × T on
◦
Y α ⊂ Y α: the first (resp. second) copy of T

acts via the change of trivialization τc (resp. fc).
We also have a morphism (p, q) : Y α → Bunα

T (C†) × BunregT (C†) ∼= T × T reg

sending (FT , τc, φ, fc) to (φT ,FT ).
Finally, we have a morphism  : Y α → Zα to the zastava space (see e.g. [4])

defined as follows. Recall that Zα is the moduli space of triples (FC
G , φC±) where FC

G
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is a G-bundle on C , while φC− (resp. φC+) is aU -structure inFC
G (resp. a generalized B-

structure inFC
G of degree α) such that φC+ has no defect at∞ ∈ C , and is transversal to

φC− at∞ ∈ C . Now sends (FT , τc, φ, fc) to a tripleFC
G := π∗FG, φC+ := π∗φ, and

φC− defined as follows: FC
G is induced from FC

T := π∗FT , and the latter T -bundle is
trivial and trivialized at∞ ∈ π−1(c). This trivialization extends uniquely to the whole
ofC , and induces a trivialization ofFC

G . At last, φC− is a trivialU -structure in the trivial

G-bundle FC
G corresponding to the point 1 ∈ G/U . Note that

◦
Y α = −1(

◦
Zα) (recall

that the open subset
◦
Zα ⊂ Zα is formed by the triples (FC

G , φC±) such that φC+ has no

defect, i.e. is a usual as opposed to generalized B-structure. The moduli space
◦
Zα is

isomorphic to the moduli space of degree α based maps from (C,∞) to (B, B−)).

Proposition 2.5 Y α is represented by a scheme.

Proof Recall the scheme Q̂Mα
g introduced in [3, 2.3]. It is themoduli space of degreeα

generalized B-structuresφC in the trivialG-bundle onC , equippedwith a trivialization
f∞ at ∞ ∈ C of the induced T -bundle φC

T . We claim that Y α is a locally closed

subscheme in T reg × Q̂Mα
g. In effect, given a regular T -bundle FT ∈ BunregT (C†) =

T reg, its trivialization τc at c ∈ C† gives rise to a trivialization τ∞ of π∗FT at ∞ ∈ C
which extends uniquely to a trivialization of π∗FT on C , and hence to a trivialization
of π∗FG on C . Now φC := π∗φ is a generalized B-structure in π∗FG , and the
trivialization fc gives rise to a trivialization f∞ of φC

T at ∞ ∈ C . Note that φC has
no defect neither at 0 ∈ C nor at ∞ ∈ C , and its values φC (0), φC (∞) ∈ B are both
transversal to B ∈ B. Conversely, given (t, φC , f∞) ∈ T reg × Q̂Mα such that φC has
no defect neither at 0 ∈ C nor at ∞ ∈ C , and φC (0) = tφC (∞) ∈ B is transversal to
B, we construct (FT , τc, φ, fc) ∈ Y α by descent from C to C†. ��

2.6 A reduction of Yα

Recall the factorization morphism πα : Zα → A
α = (C \ {∞})α (see e.g. [4]). We

have an open embedding G
α
m = (C \ {0,∞})α ⊂ A

α .

Definition 2.7 We define the trigonometric zastava space as †Zα := π−1
α (Gα

m) ⊂ Zα .

We define the periodic monopole moduli space as †
◦
Zα := †Zα ∩ ◦

Zα: a dense open
smooth subscheme of the trigonometric zastava †Zα .

Recall the action of T × T on Y α , and the morphism (p, q) : Y α → T × T reg

introduced in Sect. 2.3. The action of 1 × T on Y α is clearly free. The morphism
 : Y α → Zα of Sect. 2.3 is clearly (1 × T )-equivariant and gives rise to the same
named morphism  : Y α/(1 × T ) → Zα . We fix t0 ∈ T reg.

Proposition 2.8 For any t0 ∈ T reg we have an isomorphism  : q−1(t0)/(1×T )
∼−→

†Zα , and  : (q−1(t0) ∩ ◦
Y α)/(1 × T )

∼−→ †
◦
Zα .
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Proof The locally closed embedding Y α ↪→ T reg × Q̂Mα
g constructed in the proof

of Proposition 2.5 gives rise to the locally closed embedding q−1(t0)/(1 × T ) ↪→
{t0} × QMα

g where QMα
g is the moduli space of degree α quasimaps from C to

B. More precisely, the image of q−1(t0)/(1 × T ) is the locally closed subscheme
t0QMα

g ⊂ QMα
g formed by the quasimaps that have no defects at 0,∞ ∈ C , their

values φC (0) and φC (∞) are both transversal to B, and φC (0) = t0φC (∞).
An open subset of B formed by the Borels transversal to B (the big Schubert cell)

is a free orbit U · {B−}, and we will identify it with U (the unipotent radical of B).
So for φC ∈ t0QMα

g we have φC (∞) = n · {B−} for n ∈ U , and we will simply
write φC (∞) = n ∈ U . Note that G acts on QMα

g, and U acts on t0QMα
g, and

n−1φC (∞) = B−, i.e. n−1φC ∈ Zα is a based quasimap.
A moment of reflection shows that (t0, τc, φ, fc) = (φC (∞))−1φC , and the

condition of transversality of B and φC (0) guarantees that the value at 0 ∈ C of
(φC (∞))−1φC is also transversal to B, i.e. (φC (∞))−1φC ∈ †Zα . Thus we have a
well defined morphism q−1(t0)/(1×T ) ∼= t0QMα

g → †Zα , and we have to prove that
it is an isomorphism, i.e. that for a based quasimap ϕ : (C,∞) → (B, B−) without
defect at 0 ∈ C with ϕ(0) ∈ U · {B−} ⊂ B there exists a unique φC ∈ t0QMα

g such
that ϕ = (φC (∞))−1φC .

Let ϕ(0) = n′ · {B−} for some n′ ∈ U . We are looking for the desired φC in the
form n−1ϕ, n ∈ U . So we must have Adt0(n) = n−1n′, that is t0n−1t−1

0 = n−1n′ ⇔
[n, t0] = n′. It remains to recall the following well known

Lemma 2.9 Let t0 ∈ T reg. Then the commutator map U → U, n �→ [n, t0] is an
isomorphism (of algebraic varieties).

Proof Filtering U by its lower central series, one can introduce a system of coor-
dinates (xi, j )

1≤ j≤bi
1≤i≤h−1 on the affine space U such that for the inversion morphism

U → U, n �→ n−1 we have (xi, j )
−1 = (yi, j (x)), and yi, j (x) = −xi, j +

Pi, j (xi ′, j ′)
1≤ j ′≤bi ′
1≤i ′<i for a certain polynomial Pi, j . Moreover, for the multiplication

morphism m : U × U → U we have m((x ′
i, j ), (x ′′

i, j )) = (xi, j (x ′, x ′′)), and

xi, j (x ′, x ′′) = x ′
i, j +x ′′

i, j +Qi, j (x ′
i ′, j ′ , x ′′

i ′′, j ′′)
1≤ j ′≤bi ′ ,1≤ j ′′≤bi ′′
1≤i ′,i ′′<i for a certain polynomial

Qi, j . Finally, for the adjoint action Adt0 : U → U we have Adt0(xi, j ) = (wi, j (x)),
andwi, j (x) = ai, j xi, j for a certain number ai, j 	= 1 (due to the regularity assumption
on t0).

Now given n′ = (x ′
i, j ) ∈ U we can construct a unique n = (xi, j ) ∈ U such that

[n, t0] = n′ recursively starting from i = 1, and going to i = h − 1. ��
The proposition is proved. ��

Corollary 2.10 Y α is an irreducible scheme with an open dense smooth subscheme
◦
Y α .

Proof We have seen that q : Y α → T reg is a fibration with a smooth irreducible base
and a fiber F that is a T -torsor over †Zα . Now †Zα is open in the irreducible zastava



196 M. Finkelberg et al.

scheme Zα possessing an open dense smooth subscheme
◦
Zα . Finally, q : ◦

Y α → T reg

is a fibration with a smooth irreducible base and a fiber
◦
F that is a T -torsor over

†
◦
Zα = ◦

Zα ∩ †Zα . ��
3 A trigonometric symplectic structure

3.1 Coordinates on Yα

Recall the locally closed embedding Y α ↪→ Q̂Mα
g introduced in the proof of Propo-

sition 2.5. Via the Plücker embedding, Q̂Mα
g is a locally closed subscheme in∏

i∈I Vω̌i ⊗�(C,OC (ai )) (notations of Sect. 2.2) where α = ∑
i∈I aiαi . In particular,

we have the coefficients Qi , Ri , Si j ∈ �(C,OC (ai )) of the highest, prehighest and
next highest vectors vω̌i , Fivω̌i , Fj Fivω̌i . Thus Qi , Ri , Si j are the regular functions
on Y α with coefficients in the space of degree ≤ ai polynomials in z. The conditions
in Sect. 2.3(c) ensure that deg Qi = ai , and Qi (0) 	= 0.

It follows from [10, Remark 2] and Proposition 2.8 that (the coefficients of)
(Qi , Ri )i∈I form a rational coordinate system on Y α . Let us denote by Bi (resp.
bi ) the leading coefficient (resp. constant term) of Qi , so that Qi = Bi zai + · · · + bi .
Similarly, we have Ri = Ci zai + · · · + ci . Note that Bi 	= 0 	= bi . Following [10,
3.3], we introduce a rational étale coordinate system on Y α . Namely, (wi,r )

1≤r≤ai
i∈I

are the ordered roots of Qi , and yi,r := B−1
i Ri (wi,r ). The desired coordinate system

is formed by (Bi , Ci , wi,r , yi,r )
1≤r≤ai
i∈I . It follows from [10, Remark 2] and Proposi-

tion 2.8 that these functions do form a coordinate system on an unramified covering

of the open subset of
◦
Y α where all the roots of all the polynomials Qi , i ∈ I , are

distinct.
We describe the T × T -action on Y α , and the morphisms (p, q) : Y α →

T × T (see Sect. 2.3) in the above coordinates. Note that the collection of
fundamental weights ω̌i : T → Gm identifies T with G

I
m . We have (t1, t2) ·

(Qi , Ri ) = (ω̌i (t1t2)Qi , ω̌i (t1t2)α̌i (t1)−1Ri ), and ω̌ j (p(Qi , Ri )i∈I ) = B−1
j b j , and

α̌ j (q(Qi , Ri )i∈I ) = B−1
j c−1

j b j C j .

3.2 The tangent bundle

Our goal in this section is to describe the tangent space Ty
◦
Y α at y = (FT , τc, φ, fc) ∈

◦
Y α . We denote by g, b, u, t the Lie algebras of G, B, U, T . Given a T -bundle FT we
denote the vector bundle associated to the adjoint action of T on g by gF . It is a direct
sum of two subbundles corresponding to the trivial (resp. nontrivial) eigenvalues of T
on g : gF = tF ⊕ rF . Note that tF = t ⊗ OC† . A B-structure φ on FG gives rise to
a vector subbundle bφ ⊂ gF . The adjoint action of B on u gives rise to a subbundle
uφ ⊂ bφ . We denote the quotient bundle by hφ = h ⊗ OC† : a trivial bundle where
h = b/u is the abstract Cartan. The Killing form identifies the dual vector bundle bφ∗
with the quotient bundle gF/uφ =: (g/u)φ . For a vector bundle V on C† we denote
by Vc the skyscraper quotient of V by the ideal sheaf of the point c ∈ C†.
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We consider the following complex K •
y of coherent sheaves onC†: it lives in degrees

−1, 0, and K −1
y = (t⊕ h) ⊗ π∗ωC , while K 0

y = (g/u)φ . The differential d : K −1
y →

K 0
y is a direct sum of d ′ : t⊗ π∗ωC → (g/u)φ and d ′′ : h⊗ π∗ωC → (g/u)φ . Here d ′

is the composition of t ⊗ π∗ωC ↪→ t ⊗ OC† = tF (see Sect. 2.1) and tF ↪→ gF �
(g/u)φ , while d ′′ is the composition h ⊗ π∗ωC ↪→ h ⊗ OC† = hφ ↪→ (g/u)φ .

Proposition 3.3 There is a canonical isomorphism Ty
◦
Y α ∼= H0(C†, K •

y ).

Proof We consider the following complex ′K •
y of coherent sheaves on C†: it lives in

degrees −1, 0, and ′K −1
y = bφ , while ′K 0

y = tFc ⊕ h
φ
c . The differential from

′K −1
y to

′K 0
y is a direct sum of d ′ : bφ → tFc and d ′′ : bφ → h

φ
c where d ′ is the composition

bφ ↪→ gF � tF � tFc , and d ′′ is the composition bφ � hφ � h
φ
c .

Then Ty
◦
Y α = H0(C†, ′K •

y ). Now consider yet another complex ′′K •
y living in

degrees −1, 0 such that ′′K −1
y = ′K −1

y and ′′K 0
y = ′K 0

y ⊕ rF , and the differential

equals d ′ + d ′′ + d ′′′ where d ′′′ : bφ → rF is the composition bφ ↪→ gF � rF .
We have a canonical morphism ′′K •

y → ′K •
y inducing an isomorphism on cohomol-

ogy H0(C†, ′′K •
y )

∼−→ H0(C†, ′K •
y ) since H•(C†, rF ) = 0 due to the regularity

assumption on FT .
Also we have a canonical quasiisomorphism ′′′K •

y → ′′K •
y where

′′′K −1
y = ′′K −1

y ⊕
(t⊕h)⊗π∗ωC , and ′′′K 0

y = (t⊕h)⊗OC†⊕rF . The new components of the differential
are as follows: (t ⊕ h) ⊗ π∗ωC ↪→ (t ⊕ h) ⊗ OC† (see Sect. 2.1), and bφ � hφ , and
the composition bφ ↪→ gF � tF .

Finally, note that ′′′K 0
y = hφ ⊕ gF , and (hφ ⊕ gF )/d(bφ) ∼= (g/u)φ , so we have a

canonical quasiisomorphism ′′′K •
y → K •

y .
The composition of the morphisms induced on H0(C†, ?) by the above quasiiso-

morphisms is the desired isomorphism Ty
◦
Y α = H0(C†, ′K •

y )
∼= H0(C†, K •

y ). ��

3.4 The cotangent bundle

Let us describe the Serre dual complex L•
y := DK •

y . It lives in degrees 0, 1, and
L0

y = bφ , while L1
y = (t ⊕ h) ⊗ π∗OC . The differential d : L0

y → L1
y is a direct

sum of d ′ : bφ → t ⊗ π∗OC and d ′′ : bφ → h ⊗ π∗OC . Here d ′′ is the composition
bφ � hφ = h ⊗ OC† ↪→ h ⊗ π∗OC (see Sect. 2.1), while d ′ is the composition
bφ ↪→ gF � tF = t ⊗ OC† ↪→ t ⊗ π∗OC . Now Proposition 3.3 has the following
immediate

Corollary 3.5 There is a canonical isomorphism T ∗
y

◦
Y α ∼= H0(C†, L•

y).

3.6 Some differentials

Here we describe the differentials of the morphism (p, q) : ◦
Y α → T × T reg and of

the action of T × T on
◦
Y α introduced in Sect. 2.3.
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Note that for a regular T -bundle FT on C† the tangent space TFT Bun
reg
T (C†)

is canonically isomorphic to H1(C†, tF ) = H1(C†, t ⊗ OC†) ∼= t (here the
second isomorhism is Idt⊗Tr for the trace isomorphism Tr : H1(C†,OC†) =
H1(C†, ωC†)

∼−→ C). The scalar product (, ) on t∗ (Sect. 2.2) identifies t with
t∗. Together with the Serre duality H1(C†,OC†)∗ = H0(C†,OC†) this gives rise
to a canonical isomorphism T ∗

FT
BunregT (C†) ∼= H0(C†, t ⊗ OC†) ∼= t. Similarly,

for a degree α T -bundle φT we have canonical isomorphisms TφT Bun
α
T (C†) ∼=

H1(C†, hφ) = H1(h ⊗ OC†) = h and T ∗
φT
Bunα

T (C†) ∼= H0(C†, h ⊗ OC†) = h.

We have distinguished triangles (g/u)φ → K •
y → (t⊕h)⊗π∗ωC [1] and (t⊕h)⊗

π∗OC [−1] → L•
y → bφ . They give rise to a morphism

dp : Ty
◦
Y α = H0(C†, K •

y ) → H1(C†, (t ⊕ h) ⊗ π∗ωC )

→ H1(C†, (t ⊕ h) ⊗ ωC†) → H1(C†, h ⊗ ωC†) = TφT Bun
α
T (C†)

where themiddle arrowarises from the naturalmorphismπ∗ωC → ωC† (see Sect. 2.1),
and the next arrow arises from the projection t ⊕ h → h. Similarly, we have

dq : Ty
◦
Y α = H0(C†, K •

y ) → H1(C†, (t ⊕ h) ⊗ π∗ωC )

→ H1(C†, (t ⊕ h) ⊗ ωC†) → H1(C†, t ⊗ ωC†) = TFT Bun
reg
T (C†).

Dually, we have

d∗
p : T ∗

φT
Bunα

T (C†) = H0(C†, h ⊗ OC†) → H0(C†, (t ⊕ h) ⊗ OC†)

→ H0(C†, (t ⊕ h) ⊗ π∗OC ) → H0(C†, L•
y) = T ∗

y

◦
Y α

and

d∗
q : T ∗

FT
BunregT (C†) = H0(C†, t ⊗ OC†) → H0(C†, (t ⊕ h) ⊗ OC†)

→ H0(C†, (t ⊕ h) ⊗ π∗OC ) → H0(C†, L•
y) = T ∗

y

◦
Y α.

We also have a morphism

a1 : TeT = t = H0(C†, t ⊗ OC†) = H0(C†, tF ) → H0(C†, (g/u)φ)

→ H0(C†, K •
y ) = Ty

◦
Y α,

and

a2 : TeT ∼= h = H0(C†, h ⊗ OC†) = H0(C†, hφ) → H0(C†, (g/u)φ)

→ H0(C†, K •
y ) = Ty

◦
Y α.
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Lemma 3.7 a) (a1, a2) : t⊕h → Ty
◦
Y α is the differential of the action T ×T × ◦

Y α →
◦
Y α (see Sect. 2.3);

b) (dp, dq) : Ty
◦
Y α → TφT Bun

α
T (C†) ⊕ TFT Bun

reg
T (C†) is the differential of

(p, q) : ◦
Y α → Bunα

T (C†) × BunregT (C†).

c) (d∗
p, d

∗
q) : T ∗

φT
Bunα

T (C†) ⊕ T ∗
FT

BunregT (C†) → T ∗
y

◦
Y α is the codifferential of

(p, q) : ◦
Y α → Bunα

T (C†) × BunregT (C†).

Proof Clear from the construction. ��

3.8 A bivector field

We consider the following bicomplex M•,•
y :

bφ −−−−→ (t ⊕ h) ⊗ π∗OC
⏐⏐�

⏐⏐�

(t ⊕ h) ⊗ π∗ωC −−−−→ rF ⊕ (t ⊕ h) ⊗ (θ ⊕ OC†) −−−−→ (t ⊕ h) ⊗ π∗OC
⏐⏐�

⏐⏐�

(t ⊕ h) ⊗ π∗ωC −−−−→ (g/u)φ

(3.1)

Here the middle term lives in bidegree (0, 0), the first line is nothing but L•
y

of Sect. 3.4, while the last line is nothing but K •
y of Sect. 3.2. The left vertical

arrow is the identity morphism, as well as the right vertical arrow. The middle line is
a direct sum of the complex consisting of rF in degree 0, and of the exact com-
plex (2.3) tensored with t ⊕ h. Note that the middle term can be rearranged as
hφ ⊕ gF ⊕ (t ⊕ h) ⊗ θ . Now the middle column is a direct sum of the complex
consisting of (t ⊕ h) ⊗ θ in degree 0, and of the exact complex bφ → hφ ⊕ gF →
(g/u)φ .

It follows (looking at the columns of (3.1)) that the total complex Tot M•,•
y

has only one cohomology in degree 0, and H0(Tot M•,•
y ) = (t ⊕ h) ⊗ θ . Since

H•(C†, (t ⊕ h) ⊗ θ) = 0, we deduce that H•(C†,Tot M•,•
y ) = 0. Now let us look

at the rows of M•,•
y . The hypercohomology of C† with coefficients in the middle row

vanishes since H•(C†, rF ) = 0 (due to the regularity assumption on FT ). Hence
the second differential in the spectral sequence converging to H•(C†,Tot M•,•

y ) = 0

from the hypercohomology ofC† with coefficients in the rows is d2 : H0(C†, L•
y)

∼−→
H0(C†, K •

y ).
Finally, due to Proposition 3.3 and Corollary 3.5 we can view the above differential

as d2 : T ∗
y

◦
Y α ∼−→ Ty

◦
Y α .
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3.9 Calculation of the bivector field: preparation

We follow the strategy of [10], and eventually reduce our calculation to the one
of loc. cit. The result of the somewhat lengthy calculation of d2 is contained
in Lemma 3.10, Remark 3.11 and Proposition 3.17.

Given a character λ̌ ∈ �∨, we consider the composed homomorphism B → T →
Gm , and denote the associated (to the B-torsor φ) line bundle on C† by Lφ

λ̌
. For an

irreducible G-module V
λ̌
, the associated (to the G-torsor FG) vector bundle on C† is

denotedVF
λ̌
. If λ̌ is a fundamental weight ω̌i , thenwe have an isomorphism V ∗

ω̌i
∼= Vω̌i∗

for an involution I
∼−→ I, i �→ i∗. If we extend the involution ω̌i �→ ω̌i∗ by linearity

to the weight lattice �∨, λ̌ �→ λ̌∗, then this involution preserves the scalar product
(, ) of Sect. 2.2.

We have a natural embedding of vector bundles on C† : (g/u)φ ↪→ ⊕
i∈I VF

ω̌i∗
⊗

Lφ

ω̌i
, and the dual surjection

⊕
i∈I V∗F

ω̌i∗
⊗Lφ

−ω̌i
� bφ . They give rise to the following

morphisms of two-term complexes of coherent sheaves on C†:

(t ⊕ h) ⊗ π∗ωC −−−−→ (g/u)φ

⏐⏐�
⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→ (g/u)φ ⊗ π∗OC
∥∥∥

⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→ (
⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i
) ⊗ π∗OC

(3.2)

(the upper vertical arrows arise from themorphismsπ∗ωC → π∗� = π∗(OC (−{0})⊕
OC (−{∞})) and OC† → π∗OC of Sect. 2.1), and dually

(
⊕

i∈I V∗F
ω̌i∗

⊗ Lφ

−ω̌i
) ⊗ π∗ωC −−−−→ (t ⊕ h) ⊗ π∗�

⏐⏐�
∥∥∥

bφ ⊗ π∗ωC −−−−→ (t ⊕ h) ⊗ π∗�
⏐⏐�

⏐⏐�

bφ −−−−→ (t ⊕ h) ⊗ π∗OC

(3.3)

Note that the top row of (3.2) coincides with the bottom row K •
y of the bicomplex (3.1),

while the bottom row of (3.3) coincides with the top row L•
y of the bicomplex (3.1).

So composing the vertical arrows of (3.3), (3.2) with the vertical arrows of (3.1) we
obtain a bicomplex ′M•,•

y :
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(
⊕

i∈I V∗F
ω̌i∗

⊗ Lφ

−ω̌i
) ⊗ π∗ωC −−−−→ (t ⊕ h) ⊗ π∗�

⏐⏐�
⏐⏐�

(t ⊕ h) ⊗ π∗ωC −−−−→ rF ⊕ (t ⊕ h) ⊗ (θ ⊕ OC†) −−−−→ (t ⊕ h) ⊗ π∗OC
⏐⏐�

⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→ (
⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i
) ⊗ π∗OC

(3.4)
Note that H•(C†, (t ⊕ h) ⊗ π∗�) = 0, so just as in Sect. 3.8, the second differential
in the spectral sequence converging to H•(C†,Tot ′M•,•

y ) from the hypercohomology
of C† with coefficients in the rows is

d ′
2 : H1(C†, (

⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i
) ⊗ π∗ωC ) → H0(C†, (

⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i
) ⊗ π∗OC ).

(3.5)

Lemma 3.10 The following diagram commutes:

H0(C†, L•
y) ←−−−− H1(C†,

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗ωC )

d2

⏐⏐� d ′
2

⏐⏐�

H0(C†, K •
y ) −−−−→ H0(C†,

(⊕
i∈I VF

ω̌i∗
⊗ Lφ

ω̌i

)
⊗ π∗OC )

Proof Clear. ��
Remark 3.11 In what follows we will be occupied with the calculation of

d ′
2 : H1

(
C†, (

⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i
) ⊗ π∗ωC

)
→ H0

(
C†, (

⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i
) ⊗ π∗OC

)
.

Let us presently comment in which sense does it calculate the desired d2 : H0(C†, L•
y)

→ H0(C†, K •
y ). It is easy to see that for y ∈ ◦

Y α lying in the open subset Uα ⊂ ◦
Y α

formed by all the quadruples (FT , τc, φ, fc) such that tFc ∩bφ
c = 0 ⊂ gFc themorphism

H1(C†, (
⊕

i∈I V∗F
ω̌i∗

⊗Lφ

−ω̌i
)⊗π∗ωC ) → H0(C†, L•

y) is surjective, and themorphism

H0(C†, K •
y ) → H0(C†, (

⊕
i∈I VF

ω̌i∗
⊗Lφ

ω̌i
) ⊗ π∗OC ) is injective. Since we are only

going to calculate our d2 generically, the only trouble is that for some α the open
subset Uα may happen to be empty. Indeed, for α = ∑

i∈I aiαi , we have Uα = ∅
iff ai = 0 for some i ∈ I . So in what follows we assume ai > 0 ∀i ∈ I (otherwise

the moduli space
◦
Y α essentially reduces to the one for a semisimple Lie algebra g′ of

smaller rank).

3.12 Reduction to a calculation on C

The goal of this section is a description of d ′
2 (3.5) in terms of C , see Corollary 3.15.
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Note that π∗(hφ ⊕ gF ) ∼= (h ⊕ g) ⊗ OC , and π∗((t ⊕ h) ⊗ θ) ∼= (t ⊕ h) ⊗ OC .
Hence π∗π∗(hφ ⊕ gF ⊕ (t ⊕ h) ⊗ θ) ∼= (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC . The morphisms

rF ⊕ (t ⊕ h) ⊗ (θ ⊕ OC†) = hφ ⊕ gF ⊕ (t ⊕ h) ⊗ θ → (t ⊕ h) ⊗ π∗OC ,

resp. rF ⊕ (t ⊕ h) ⊗ (θ ⊕ OC†) = hφ ⊕ gF ⊕ (t ⊕ h) ⊗ θ

→
(

⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗OC

of (3.4) factor through the canonical morphism

hφ ⊕ gF ⊕ (t ⊕ h) ⊗ θ → π∗π∗(hφ ⊕ gF ⊕ (t ⊕ h) ⊗ θ)

∼= (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC

and

(h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC → (t ⊕ h) ⊗ π∗OC ,

resp. (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC →
(

⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗OC .

Hence we obtain a morphism from the bicomplex ′M•,•
y (3.4) to the following bicom-

plex ′′M•,•
y :

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗ωC −−−−→ (t ⊕ h) ⊗ π∗�

⏐⏐�
⏐⏐�

(t ⊕ h) ⊗ π∗ωC −−−−→ (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC −−−−→ (t ⊕ h) ⊗ π∗OC
⏐⏐�

⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗OC

(3.6)

(the morphisms from all the terms of ′M•,•
y to the corresponding terms of ′′M•,•

y except
for the middle ones are identities). Just as in Sect. 3.9 we obtain the second differential

d ′′
2 : H1

(
C†,

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗ωC

)
(3.7)

→ H0

(
C†,

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗OC

)
(3.8)

in the spectral sequence converging to H•(C†,Tot ′′M•,•
y ) from the hypercohomology

of C† with coefficients in the rows. It follows that d ′′
2 = d ′

2 of (3.5).
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Now the morphisms

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗ωC → (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC ,

resp. (t ⊕ h) ⊗ π∗ωC → (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC

of (3.6) factor through the natural morphism

(h ⊕ g ⊕ t ⊕ h) ⊗ π∗� → (h ⊕ g ⊕ t ⊕ h) ⊗ π∗OC

(see Sect. 2.1) and

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗ωC → (h ⊕ g ⊕ t ⊕ h) ⊗ π∗�,

resp. (t ⊕ h) ⊗ π∗ωC → (h ⊕ g ⊕ t ⊕ h) ⊗ π∗�.

Hence we obtain a morphism to the bicomplex ′′M•,•
y (3.4) to the following bicomplex

′′′M•,•
y :

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗ωC −−−−→ (t ⊕ h) ⊗ π∗�

⏐⏐�
⏐⏐�

(t ⊕ h) ⊗ π∗ωC −−−−→ (h ⊕ g ⊕ t ⊕ h) ⊗ π∗� −−−−→ (t ⊕ h) ⊗ π∗OC
⏐⏐�

⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗OC

(3.9)

(themorphisms from all the terms of ′′′M•,•
y to the corresponding terms of ′′M•,•

y except
for the middle ones are identities). Just as in Sect. 3.9 we obtain the second differential

d ′′′
2 : H1(C†,

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗ωC ) → H0(C†,

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗OC )

(3.10)

in the spectral sequence converging to H•(C†,Tot ′′′M•,•
y ) from the hypercohomology

of C† with coefficients in the rows. It follows that d ′′′
2 = d ′′

2 of (3.7).
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Note that the bicomplex ′′′M•,•
y is obtained from the following bicomplex ◦M•,•

y :

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗� −−−−→ (t ⊕ h) ⊗ π∗�

⏐⏐�
⏐⏐�

(t ⊕ h) ⊗ π∗ωC −−−−→ (h ⊕ g ⊕ t ⊕ h) ⊗ π∗� −−−−→ (t ⊕ h) ⊗ π∗OC
⏐⏐�

⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗�

(3.11)
by composing the vertical arrows of (3.11) with the vertical arrows of the following
commutative diagrams:

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗ωC −−−−→ (t ⊕ h) ⊗ π∗�

⏐⏐�
∥∥∥

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗� −−−−→ (t ⊕ h) ⊗ π∗�

(3.12)

(t ⊕ h) ⊗ π∗� −−−−→
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗�

∥∥∥
⏐⏐�

(t ⊕ h) ⊗ π∗� −−−−→
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗OC

(3.13)

Similarly to Lemma 3.10 we deduce the following

Lemma 3.13 The following diagram commutes:

H1(C†,
(⊕

i∈I V∗F
ω̌i∗

⊗ Lφ

−ω̌i

)
⊗ π∗�) ←−−−− H1(C†,

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗ωC )

d◦
2

⏐⏐� d ′′′
2

⏐⏐�

H0(C†,
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗�) −−−−→ H0(C†,

(⊕
i∈I VF

ω̌i∗
⊗ Lφ

ω̌i

)
⊗ π∗OC )

where d◦
2 : H1(C†,

(⊕
i∈I V∗F

ω̌i∗
⊗ Lφ

−ω̌i

)
⊗ π∗�) → H0(C†, (

⊕
i∈I VF

ω̌i∗
⊗

Lφ

ω̌i
) ⊗ π∗�) is the second differential in the spectral sequence converging to

H•(C†,Tot ◦M•,•
y ) from the hypercohomology of C† with coefficients in the rows.

By the projection formula,

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗OC ∼= π∗π∗

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
= π∗

⊕

i∈I

Vω̌i∗ ⊗ π∗Lφ

ω̌i
,



Towards a cluster structure on trigonometric zastava 205

and similarly

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗� ∼= π∗

((
⊕

i∈I

Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
⊗ �

)
,

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗ωC ∼= π∗

((
⊕

i∈I

V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i

)
⊗ ωC

)
,

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗� ∼= π∗

((
⊕

i∈I

V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i

)
⊗ �

)
.

Nowsince the upper-right and lower-left terms (t⊕h)⊗π∗� of the bicomplex (3.11)
are acyclic sheaves on C†, the differential d◦

2 coincides with the second differential
from the spectral sequence arising from the following complex on C†:

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗π∗� → (h⊕g⊕ t⊕h)⊗π∗� →

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗π∗�

(3.14)
which is by construction a direct sum of the one term complex (t⊕h)⊗π∗� in degree
zero and the following complex:

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗� → (h ⊕ g) ⊗ π∗� →

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗�

(3.15)
which in turn is nothing but the direct image π∗N •

y of the following complex N •
y of

vector bundles on C :

(
⊕

i∈I

V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i

)
⊗� → (h⊕g)⊗� →

(
⊕

i∈I

Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
⊗� (3.16)

Lemma 3.14 The following diagram commutes:

H1
(

C†,
(⊕

i∈I V∗F
ω̌i∗

⊗ Lφ

−ω̌i

)
⊗ π∗�

)
H1

(
C,

(⊕
i∈I V ∗

ω̌i∗
⊗ π∗Lφ

−ω̌i

)
⊗ �

)

d◦
2

⏐⏐� dC
2

⏐⏐�

H0
(

C†,
(⊕

i∈I VF
ω̌i∗

⊗ Lφ

ω̌i

)
⊗ π∗�

)
H0(C, (

⊕
i∈I Vω̌i∗ ⊗ π∗Lφ

ω̌i
) ⊗ �)

where dC
2 : H1

(
C,

(⊕
i∈I Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
⊗ �

)
→ H0(C, (

⊕
i∈I Vω̌i∗ ⊗π∗Lφ

ω̌i
)

⊗�) is the second differential in the spectral sequence converging to H•(C, N •
y ) from

the cohomology of C with coefficients in its terms.
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Recall that our goal is to compute the differential (3.5):

H1

(
C,

(
⊕

i∈I

V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i

)
⊗ ωC

)
= H1

(
C†,

(
⊕

i∈I

V∗F
ω̌i∗ ⊗ Lφ

−ω̌i

)
⊗ π∗ωC

)

d ′
2−→ H0

(
C†,

(
⊕

i∈I

VF
ω̌i∗ ⊗ Lφ

ω̌i

)
⊗ π∗OC

)
= H0

(
C,

⊕

i∈I

Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
.

The bottom line of the present section is the following

Corollary 3.15 The following diagram commutes:

H1
(

C,
(⊕

i∈I V ∗
ω̌i∗

⊗ π∗Lφ

−ω̌i

)
⊗ ωC

)
−−−−→ H1

(
C,

(⊕
i∈I V ∗

ω̌i∗
⊗ π∗Lφ

−ω̌i

)
⊗ �

)

d ′
2

⏐⏐� dC
2

⏐⏐�

H0
(

C,
⊕

i∈I Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
←−−−− H0

(
C,

(⊕
i∈I Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
⊗ �

)

3.16 Calculation on C

The differential dC
2 of Corollary 3.15 was computed in [10]. To formulate the result,

we introduce homogeneous coordinates z1, z2 onC such that z = z1/z2, so that z1 = 0
(resp. z2 = 0) is an equation of 0 ∈ C (resp. ∞ ∈ C). We also introduce another copy
of the curveC with homogeneous coordinates u1, u2, and u := u1/u2. The differential
dC
2 has “matrix elements”

D̃ω̌i ,ω̌ j : H1
(

C, V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i
⊗ �

)
→ H0

(
C, Vω̌ j∗ ⊗ π∗Lφ

ω̌ j
⊗ �

)
.

Note thatπ∗L−ω̌i
∼= OC (−ai ), andπ∗Lω̌ j

∼= OC (a j ),while� ∼= OC (−1)⊕OC (−1)
is Serre selfdual, so that

D̃ω̌i ,ω̌ j ∈ Vω̌i∗ ⊗ Vω̌ j∗ ⊗ H0(C,OC (ai − 1) ⊕ OC (ai − 1))

⊗H0(C,OC (a j − 1) ⊕ OC (a j − 1)).

Decomposing Vω̌i∗ ⊗ Vω̌ j∗ according to the weights of T , for λ̌ ∈ �∨ we obtain a

matrix element D̃λ̌
ω̌i ,ω̌ j

which is defined as the weight λ̌∗-component of D̃ω̌i ,ω̌ j . Then

according to [10, 3.8], D̃
ω̌i +ω̌ j

ω̌i ,ω̌ j
= 0 = D̃2ω̌i −2α̌i

ω̌i ,ω̌i
, and if i 	= j , then D̃

ω̌i +ω̌ j −α̌i

ω̌i ,ω̌ j
=

0 = D̃
ω̌i +ω̌ j −α̌ j

ω̌i ,ω̌ j
, while
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D̃2ω̌i −α̌i
ω̌i ,ω̌i

= ďi (Fi∗vω̌i∗ ⊗ vω̌i∗ − vω̌i∗ ⊗ Fi∗vω̌i∗ )

⊗ Qi (z1, z2)Ri (u1, u2) − Ri (z1, z2)Qi (u1, u2)

z1u2 − z2u1
(3.17)

D̃
ω̌i +ω̌ j −α̌i −α̌ j

ω̌i ,ω̌ j
= (α̌i , α̌ j )(〈αi , α̌ j 〉−1vω̌i∗

⊗Fi∗ Fj∗vω̌ j∗ + Fi∗vω̌i∗ ⊗ Fj∗vω̌ j∗ + 〈α j , α̌i 〉−1Fj∗ Fi∗vω̌i∗ ⊗ vω̌ j∗ )

⊗ Ri (z1, z2)R j (u1, u2) − Qi (z1, z2)S ji (u1, u2) − Si j (z1, z2)Q j (u1, u2)

z1u2 − z2u1
(3.18)

Here the homogeneous polynomials Qi , Ri , Si j are but the homogenizations of the
same named polynomials of one variable introduced in Sect. 3.1, and the above
matrix coefficients are “scalar” 2 × 2-matrices with respect to the decomposition
� ∼= OC (−1) ⊕ OC (−1).

Now to compute the desired d ′
2 it remains to describe the horizontal arrows of the

commutative diagram of Corollary 3.15. The lower one

H0

(
C,

(
⊕

i∈I

Vω̌i∗ ⊗ π∗Lφ

ω̌i

)
⊗ �

)
→ H0

(
C,

⊕

i∈I

Vω̌i∗ ⊗ π∗Lφ

ω̌i

)

arises from the surjection

H0(C,OC (ai − 1) ⊕ OC (ai − 1)) ∼= H0
(

C, π∗Lφ

ω̌i
⊗ �

)
→ H0(C, π∗Lφ

ω̌i
)

∼= H0(C,OC (ai ))

which takes a pair (P1(z1, z2), P2(z1, z2)) of homogeneous degree ai −1 polynomials
to z1P1 + z2P2. The upper arrow

H1

(
C,

(
⊕

i∈I

V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i

)
⊗ ωC

)
→ H1

(
C,

(
⊕

i∈I

V ∗
ω̌i∗ ⊗ π∗Lφ

−ω̌i

)
⊗ �

)

arises from the dual embedding

H0(C,OC (ai ))
∗ ∼= H1

(
C, π∗Lφ

−ω̌i
⊗ ωC

)
→ H1(C, π∗Lφ

−ω̌i
⊗ �)

∼= H0(C,OC (ai − 1) ⊕ OC (ai − 1))∗.

Namely, if we think of H0(C,OC (ai ))
∗ as of the homogeneous degree ai differential

operators in (u1, u2), then an operator O goes to (O1, O2) such that O1(P) := O(u2 ·
P)/2, while O2(P) := O(u1 · P)/2.
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Composing with the matrix elements of (3.17), (3.18) we obtain the corresponding
matrix elements ′D̃ω̌i ,ω̌ j ∈ Vω̌i∗ ⊗ Vω̌ j∗ ⊗ H0(C,OC (ai )) ⊗ H0(C,OC (a j )) of d ′

2:

′D̃2ω̌i −α̌i
ω̌i ,ω̌i

= ďi (Fi∗vω̌i∗ ⊗ vω̌i∗ − vω̌i∗ ⊗ Fi∗vω̌i∗ )

⊗ (z1u2 + z2u1)(Qi (z1, z2)Ri (u1, u2) − Ri (z1, z2)Qi (u1, u2))

2(z1u2 − z2u1)
(3.19)

′D̃ω̌i +ω̌ j −α̌i −α̌ j

ω̌i ,ω̌ j
= (α̌i , α̌ j )(〈αi , α̌ j 〉−1vω̌i∗

⊗Fi∗ Fj∗vω̌ j∗ + Fi∗vω̌i∗ ⊗ Fj∗vω̌ j∗ + 〈α j , α̌i 〉−1Fj∗ Fi∗vω̌i∗ ⊗ vω̌ j∗ )

⊗ (z1u2 + z2u1)(Ri (z1, z2)R j (u1, u2) − Qi (z1, z2)S ji (u1, u2) − Si j (z1, z2)Q j (u1, u2))

2(z1u2 − z2u1)

(3.20)

Going back from the homogeneous polynomials in (z1, z2) (resp. (u1, u2)) to the
polynomials in z = z1/z2 (resp. u = u1/u2) we arrive at the following

Proposition 3.17 The matrix elements of the differential d ′
2 (3.5) are

′D̃2ω̌i −α̌i
ω̌i ,ω̌i

= ďi (Fi∗vω̌i∗ ⊗ vω̌i∗ − vω̌i∗ ⊗ Fi∗vω̌i∗ )

⊗ (z + u)(Qi (z)Ri (u) − Ri (z)Qi (u))

2(z − u)
(3.21)

′D̃ω̌i +ω̌ j −α̌i −α̌ j

ω̌i ,ω̌ j
= (α̌i , α̌ j )(〈αi , α̌ j 〉−1vω̌i∗ ⊗ Fi∗ Fj∗vω̌ j∗

+ Fi∗vω̌i∗ ⊗ Fj∗vω̌ j∗ + 〈α j , α̌i 〉−1Fj∗ Fi∗vω̌i∗ ⊗ vω̌ j∗ )

⊗ (z + u)(Ri (z)R j (u) − Qi (z)S ji (u) − Si j (z)Q j (u))

2(z − u)
(3.22)

while ′D̃ω̌i +ω̌ j

ω̌i ,ω̌ j
= 0 = ′D̃2ω̌i −2α̌i

ω̌i ,ω̌i
, and if i 	= j , then ′D̃ω̌i +ω̌ j −α̌i

ω̌i ,ω̌ j
= 0 = ′D̃ω̌i +ω̌ j −α̌ j

ω̌i ,ω̌ j
.

3.18 Calculation of the Poisson bracket

The differential d2 (Sect. 3.8) defines a bivector field on
◦
Y α (i.e. a bidifferential opera-

tion on the coordinate ring of
◦
Y α). We denote the bivector byB and the corresponding

bidifferential operation on the coordinate ring of
◦
Y α simply by {·, ·} (though it is not

a Poisson bracket on
◦
Y α).

Proposition 3.19 We have

{wi,r , w j,s} = 0,

{wi,r , y j,s} = ďiδi jδrswi,r y j,s,

{yi,r , y j,s} = (1 − δi j )(α̌i , α̌ j )
wi,r + w j,s

2(wi,r − w j,s)
yi,r y j,s .
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Proof By Proposition 3.17 on
◦
Y α we have

{Qi (z), Q j (u)} = 0, (3.23)

{Qi (z), R j (u)} = −ďiδi j
z + u

2(z − u)
(Qi (z)R j (u) − Ri (z)Q j (u)), (3.24)

{Ri (z), R j (u)} = (1 − δi j )(α̌i , α̌ j )
z + u

2(z − u)
(Ri (z)R j (u)

−Qi (z)S ji (u) − Si j (z)Q j (u)). (3.25)

The relation {wi,r , w j,s} = 0 is obvious from (3.23). We have {Bi , B j } = 0 and
{wi,r , B j } = 0 from (3.23) aswell. Substituting u = w j,s to (3.24), we get {Bi , y j,s} =
− ďi δi j

2 Bi y j,s and {wi,r , y j,s} = ďiδi jδrswi,r y j,s . Finally, substituting z = wi,r , u =
w j,s to (3.25), we get {yi,r , y j,s} = (1 − δi j )(α̌i , α̌ j )

wi,r +w j,s
2(wi,r −w j,s )

yi,r y j,s . ��

The 1 × T action on
◦
Y α preserves this bivector field, hence it gives a well-defined

bivector field on
◦
Y α/(1 × T ). Moreover, the following is true:

Corollary 3.20 The map  : ◦
Y α → †

◦
Zα agrees with the bivector field B on

◦
Y α (in

the sense that for f1, f2 ∈ C[ †◦
Zα] we have { ∗( f1), ∗( f2)} =  ∗( f ) for some

f ∈ C[ †◦
Zα]). So we get a bivector field on †

◦
Zα = (

◦
Y α).

Proof Note that the functions wi,r , y j,s form a (rational étale) coordinate system on
†
◦
Zα . So the only thing to be checked is that the bracket of any pair of pullbacks of

these functions is a pullback of some function on †
◦
Zα . But this immediately follows

from Proposition 3.19. ��

Slightly abusing notation we denote the image of B on †
◦
Zα also by B.

Corollary 3.21 In the coordinates wi,r , y j,s on †
◦
Zα the bivector field reads

B =
∑

i,r

ďiwi,r yi,r
∂

∂wi,r
∧ ∂

∂yi,r
+

∑

i 	= j

∑

r,s

(α̌i , α̌ j )

2

wi,r + w j,s

wi,r − w j,s
yi,r y j,s

∂

∂yi,r

∧ ∂

∂y j,s
.

Corollary 3.22 The bivector field B on †
◦
Zα is Poisson, i.e. [B,B] = 0. This Poisson

structure extends uniquely to †Zα .

Proof The first claim is immediate from the explicit formula of Corollary 3.21. We

have a smooth open subvariety †
◦
Zα ⊂ †

•
Zα ⊂ †Zα formed by the based quasimaps
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with defect at most a simple coroot, see e.g. [2, proof of Proposition 5.1]. Its com-
plement has codimension 2 in †Zα . Now †Zα is normal by [2, Corollary 2.10], so it

suffices to check that the bivector field on †
◦
Zα extends as a Poisson structure to †

•
Zα .

Moreover, it suffices to check this at the generic points of the boundary components
†
•
Zα \ †

◦
Zα (given by equations yi,r = 0) where the claim is evident from the explicit

formula of Corollary 3.21. ��

Corollary 3.23 The Poisson structureB on †
◦
Zα is nondegenerate. The corresponding

symplectic form reads

	trig := B−1 =
∑

i,r

dyi,r ∧ dwi,r

ďiwi,r yi,r
+

∑

i 	= j

∑

r,s

(α̌i , α̌ j )

2ďi ď j

wi,r + w j,s

wi,r − w j,s

dwi,r ∧ dw j,s

wi,rw j,s
.

4 Transversal slices in the affine flag variety

4.1 Schubert cells in the affine flag varieties

We have an embedding of the affine Grassmannian of G (thin one: an ind-scheme)
into the Kashiwara affine Grassmannian (thick one: an infinite type scheme): Gr =
G((z))/G[[z]] ∼= G[z±1]/G[z] ↪→ G((z−1))/G[z] = Gr. The subgroup of currents
G[[z]] (resp. G[[z−1]]) taking value in B (resp. B−) at z = 0 (resp. z = ∞) is the
Iwahori group Iw (resp. Iw−). The unipotent radical of Iw (resp. Iw−) is denoted N
(resp. N−). We have an embedding of the affine flag variety of G (thin one: an ind-
scheme) into the Kashiwara affine flag variety (thick one: an infinite type scheme):
F� = G((z))/Iw ∼= G[z±1]/(G[z] ∩ Iw) ↪→ G((z−1))/(G[z] ∩ Iw) = Fl. The
natural projection pr : Fl → Gr (as well as its restriction pr : F� → Gr) is a fibration
with fibers B.

The set of T -fixed points in F� (resp. Gr) is in a natural bijection with the affine
Weyl group Wa = W � � (resp. the coweight lattice �). For w ∈ Wa we will denote
the corresponding T -fixed point by the same symbol w; its N-orbit (resp. N−-orbit)
will be denoted by F�w ⊂ F� (resp. Flw ⊂ Fl): a thin (resp. thick) Schubert cell.
The intersection F�w

y := F�w ∩ Fly (an open Richardson variety, aka transversal
slice) is nonempty iff w ≥ y in the Bruhat order. Similarly, for λ ∈ � ⊂ Gr the
N-orbit N · λ (resp. N−-orbit) will be denoted by Xλ ⊂ Gr (resp. Xλ ⊂ Gr): a thin
(resp. thick) Schubert cell. For a dominant coweight λ ∈ �+ ⊂ � the G((z))-orbit
Grλ := G((z)) · λ is a union Grλ = ⊔

ν∈W ·λ Xν .
Recall the notations of [2, 2.4]: G1 ⊂ G[[z−1]] is the kernel of evaluation at z = ∞,

and Wμ := G1 · μ ⊂ Gr for μ ∈ �. If μ is dominant, then Wμ = Xμ. If λ ≥ μ

is also dominant, then the transversal slice Wλ
μ := Grλ ∩ Wμ of loc. cit. is a union

Wλ
μ = ⊔

ν∈W ·λ Xν ∩ Xμ.
Given a dominant η ∈ �+ ⊂ � ⊂ Wa , we consider −η as an element in the

affine Weyl group; it is the minimal length representative of its left W -coset, and the
maximal length representative of its right W -coset. Furthermore, η is the maximal
length representative of its left W -coset, and the minimal length representative of its
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right W -coset. The projection pr : Wa = F�T → GrT = � realizes � as the set
of left W -cosets in Wa . Hence for a dominant λ ∈ Wa/W , the affine Weyl group
element w0(λ) ∈ � ⊂ Wa (resp. w0(λ) × w0 = w0 × λ ∈ W � � = Wa) is
the minimal length (resp. maximal length) representative of the left W -coset λ. In
particular, pr : F�w0(λ) ∼−→ Xλ, and pr : Flw0×λ

∼−→ Xλ.
Finally, forλ ≥ μ ∈ �+, the intersection Xλ∩Xμ is open in the sliceWλ

μ ⊂ Gr, and

pr is an open embedding of the open Richardson varietyF�
w0×λ
w0×μ = F�w0×λ ∩Flw0×μ

into Xλ ∩ Xμ. All in all,
pr : F�

w0×λ
w0×μ ↪→ Wλ

μ (4.1)

is an open embedding.

4.2 A modular interpretation

Recall the morphism sλ∗
μ∗ : Wλ∗

μ∗ → Zα of [2, Theorem 2.8] (here α = λ − μ, λ∗ =
−w0λ, μ∗ = −w0μ). Recall the open subscheme of periodic monopoles †

◦
Zα ⊂ Zα

introduced in Definition 2.7.

Proposition 4.3 The composition sλ∗
μ∗ ◦ pr : F�

w0×λ∗
w0×μ∗ → Zα is an open embedding

with the image †
◦
Zα ⊂ Zα .

Proof Recall from the proof of [2, Theorem 2.8] that the slice closure Wλ∗
μ∗ =

⊔
μ∗≤ν∗≤λ∗ Wν∗

μ∗ is the moduli space of the following data: (Ftriv
σ−→ FG) where

FG is a G-bundle of isomorphism class μ∗, and σ is an isomorphism from the trivial
G-bundle away from 0 ∈ C with a pole of degree λ∗ at 0, such that the value of the
Harder-Narasimhan flag ofFG at∞ ∈ C is compatible with the complete flag σ(B−).
The bundle FG has a unique complete flag (B-structure) φ of degree w0μ

∗ = −μ

with value B− ∈ B at ∞ ∈ C (with respect to the trivialization σ at ∞). This flag can
be transformed via σ−1 to obtain a degree α generalized B-structure σ−1φ in Ftriv
without a pole but possibly with a defect at 0 ∈ C . The morphism sλ∗

μ∗ : Wλ∗
μ∗ → Zα

takes (Ftriv
σ−→ FG) to σ−1φ. The open subset U ⊂ Wλ∗

μ∗ given by the condition

that σ−1φ has no defect at 0 ∈ C , is mapped isomorphically onto
◦
Zα . We have a still

smaller open subset U ′ ⊂ U given by the condition that the fiber of σ−1φ at 0 ∈ C
is transversal to the flag B ∈ B. The open subset U ′ is mapped isomorphically onto
†
◦
Zα . Thus we have to check pr : F�

w0×λ∗
w0×μ∗

∼−→ U ′.
Recall the semiinfinite orbit Sλ∗

(whose intersection withWλ∗
μ∗ is dense inWλ∗

μ∗ ). It

is formed by the data (Ftriv
σ−→ FG) such that the transformation σφtriv of the trivial

complete flag with fibers B ∈ B in Ftriv via σ is a B-structure in FG without defect at
0 ∈ C . Note that U ′ lies inside Sλ∗ ∩Wλ∗

μ∗ and is given there by the condition that the
fibers of σφtriv and ofφ at 0 ∈ C are transversal. According to [23, Theorem3.2, (3.6)],
for ν∗ < λ∗ we have Sλ∗ ∩ Grν

∗ = ∅, and Sλ∗ ∩ Grλ
∗ = Xλ∗

. It follows that
Sλ∗ ∩ Wλ∗

μ∗ = Xλ∗ ∩ Xμ∗ . It remains to check that the open subset pr(F�
w0×λ∗
w0×μ∗) ⊂

Xλ∗ ∩ Xμ∗ is nothing but U ′.



212 M. Finkelberg et al.

To this end recall the modular interpretation of our slices. First of all, Gr is the
moduli space of G-bundles FG on C equipped with a trivialization ς in the formal
neighbourhood of∞ ∈ C . Second, Fl is the moduli space of triples (FG, ς, F) where
(FG, ς) ∈ Gr, and F is a B-structure in the fiber of FG at 0 ∈ C . Third, Xμ∗ =
Wμ∗ ⊂ Gr is formed by the pairs (FG, ς) such that the isomorphism type of FG is
μ∗, and the value of the Harder-Narasimhan flag of FG at ∞ ∈ C is compatible with
B− ∈ B (with respect to the trivialization ς at ∞ ∈ C). Now Flw0×μ∗ ⊂ Fl is formed
by the triples (FG, ς, F) such that (FG, ς) ∈ Xμ∗ , and F is the value φ|0 at 0 ∈ C
of the unique degree w0μ

∗ = −μ complete flag φ in FG such that φ|∞ = B− ∈ B
(so that φ is the refinement of the Harder-Narasimhan flag of FG). Furthermore, Gr is
the moduli space of G-bundles FG on C equipped with a trivialization σ over C \ 0,
while F� is the moduli space of triples (FG, σ, F) where (FG, σ ) ∈ Gr, and F is a
B-structure in the fiber ofFG at 0 ∈ C . The projection pr : F� → Gr admits a section
s over Xλ∗ = Sλ∗ ∩ Grλ

∗
: we define F as the fiber at 0 ∈ C of the transformation

σφtriv of the trivial B-structure B ∈ B in the trivial G-bundle. Finally,F�w0×λ∗ ⊂ F�

is formed by the triples (FG, σ, F) such that (FG, σ ) ∈ Xλ∗
, and F is transversal to

s(FG, σ ).
Thus pr(F�

w0×λ∗
w0×μ∗) = U ′ ⊂ Xλ∗ ∩ Xμ∗ . The proposition is proved. ��

4.4 Stabilization

Let μ, ν ∈ �+ be dominant coweights. According to [18, 2E], we have the inclusion
of stabilizers Stμ ⊂ Stμ+ν ⊂ G1 ⊂ G[[z−1]], so the identity morphism G1 → G1

induces a morphism ς
μ+ν
μ : Xμ = G1/Stμ → G1/Stμ+ν = Xμ+ν . According to loc.

cit., ςμ+ν
μ restricts to the same named morphismWλ

μ → Wλ+ν
μ+ν for any �+ � λ ≥ μ.

Similarly, we have Stw0×μ ⊂ Stw0×(μ+ν) ⊂ N−, and the identity morphism N− →
N− induces a morphism σ

μ+ν
μ : Flw0×μ = N−/Stw0×μ → N−/Stw0×(μ+ν) =

Flw0×(μ+ν) which restricts to the same named morphism F�
w0×λ
w0×μ → F�

w0×(λ+ν)
w0×(μ+ν)

for any �+ � λ ≥ μ. The following diagram commutes:

F�
w0×λ
w0×μ

σ
μ+ν
μ−−−−→ F�

w0×(λ+ν)
w0×(μ+ν)

pr
⏐⏐� pr

⏐⏐�

Wλ
μ

ς
μ+ν
μ−−−−→ Wλ+ν

μ+ν

(4.2)

Moreover, from the construction of sλ∗
μ∗ : Wλ∗

μ∗ → Zα in [2, Lemma 2.7, Theorem 2.8]
(where α = λ − μ) it follows immediately that the following diagrams commute as
well:

Wλ∗
μ∗

ς
μ∗+ν∗
μ∗−−−−→ Wλ∗+ν∗

μ∗+ν∗

sλ∗
μ∗

⏐⏐� sλ∗+ν∗
μ∗+ν∗

⏐⏐�

Zα Zα

(4.3)
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F�
w0×λ∗
w0×μ∗

σ
μ∗+ν∗
μ∗−−−−→ F�

w0×(λ∗+ν∗)
w0×(μ∗+ν∗)

sλ∗
μ∗◦pr

⏐⏐� sλ∗+ν∗
μ∗+ν∗◦pr

⏐⏐�

†
◦
Zα †

◦
Zα

(4.4)

It follows in particular that σμ∗+ν∗
μ∗ : F�

w0×λ∗
w0×μ∗

∼−→ F�
w0×(λ∗+ν∗)
w0×(μ∗+ν∗) is an isomorphism.

4.5 sλμ in coordinates

We will use the generalized minors of [18, 2A] to construct regular functions on the
open Richardson varieties. Namely, given an irreducible G-module V

λ̌
with highest

weight λ̌ ∈ �∨+ and highest vector v
λ̌
, its dual V ∗

λ̌
is isomorphic to V

λ̌∗ with the lowest

weight −λ̌, and the lowest vector v−λ̌
such that 〈v−λ̌

, v
λ̌
〉 = 1. Given w, y ∈ W , we

define the following regular function on G

Δ
wλ̌,yλ̌

(g) := 〈wv−λ̌
, gyv

λ̌
〉 (4.5)

where w, y ∈ G are the lifts of w, y defined in loc. cit.
Following loc. cit. we consider the regular functions Δ

(s)
wλ̌,yλ̌

, s ∈ Z, on G((z−1))

defined as follows:

Δ
wλ̌,yλ̌

(g(z)) =
∞∑

s=−∞
Δ

(s)
wλ̌,yλ̌

(g(z))z−s (4.6)

More generally, to any v ∈ V
λ̌
and β ∈ V ∗

λ̌
we can assign the generalized minor

Δβ,v(z) := 〈β, g(z)v〉. We also denote by Δ
(s)
β,v the coefficient at z−s of the power

series Δβ,v(z).
Recall from [2, 2.6] that Stμ ⊂ G1 ⊂ G[[z−1]] is the stabilizer of μ ∈ �+ ⊂ � =

GrT . Similarly, forw ∈ Wa we denote by Stw ⊂ N− the stabilizer ofw ∈ Wa = F�T .
We have Xμ = G1/Stμ, and Flw = N−/Stw. In case w = w0 × μ (see Sect. 4.1),
we have Stμ = G1 ∩ Stw0×μ, and the natural morphism Flw0×μ = N−/Stw0×μ →
G1/Stμ = Xμ is an isomorphism. According to [18, Lemma 2.19], the functions

Δ
(s)
ω̌i ,ω̌i

, Δ
(s)
si ω̌i ,ω̌i

, s > 0, i ∈ I restricted to G1 (resp. N−) are Stμ-invariant (resp.
Stw0×μ-invariant); hence they may be viewed as the functions on Flw0×μ

∼= Xμ.
Now let�+ � λ ≥ μ, and�+ � α = ∑

i∈I aiαi := λ−μ. Recall the isomorphism

sλ∗
μ∗ ◦ pr : F�

w0×λ∗
w0×μ∗

∼−→ †
◦
Zα of Proposition 4.3. Recall also the regular polynomial-

valued functions Qi , Ri on Zα (see e.g. [10, 3.3]): Qi = zai + qi,ai −1zai −1 + · · ·
(resp. Ri = ri,ai −1zai −1 + · · · ) is the highest (resp. prehighest) Plücker coordinate

on the space of based quasimaps (in notations of loc. cit. Qi = φ
−ω̌i
ω̌i

, Ri = φ
α̌i −ω̌i
ω̌i

).
Following loc. cit. and Sect. 3.1 we also consider a rational étale coordinate system
on Zα . Namely, (wi,r )

1≤r≤ai
i∈I are the ordered roots of Qi , and yi,r := Ri (wi,r ).



214 M. Finkelberg et al.

Proposition 4.6 Under the isomorphism sλ∗
μ∗ ◦ pr : F�

w0×λ∗
w0×μ∗

∼−→ †
◦
Zα we have Qi =

∑ai
s=0 Δ

(s)
ω̌i ,ω̌i

zai −s, Ri = ∑ai
s=0 Δ

(s)
si ω̌i ,ω̌i

zai −s .

Proof Follows at once from the commutative diagram [2, (2.3)] (and the definition of
πμ,n in [2, Lemma 2.7]). ��

4.7 Rational Poisson bracket revisited

We fix a basis eα, e−α, hi in g where i ∈ I , and α ∈ R+ is a positive coroot (and the
weight of eα is the dual root α̌; in particular, eαi = Ei of Sect. 2.2, and e−αi = ďi Fi ).
We assume (eα, e−α) = 1, (hi , h j ) = δi j . Then the Lie bialgebra structure on g((z−1))

is determined by the classical rational r -matrix

rrat(z, u) := 1

z − u

(
∑

α>0

eα ⊗ e−α + e−α ⊗ eα +
∑

i∈I

hi ⊗ hi

)
, (4.7)

see e.g. [7, Sect. 6.4]. This determines a Poisson group structure on G((z−1)) such
that G1 is a Poisson subgroup.

Proposition 4.8 [18, Proposition 2.13] The rational Poisson bracket {, }rat of the func-
tions Δ

(s)
β,v on the subgroup G1 is

{Δβ1,v1(z),Δβ2,v2(u)}rat
= 1

z − u

(
∑

α>0

Δβ1,eαv1(z)Δβ2,e−αv2(u) +
∑

α>0

Δβ1,e−αv1(z)Δβ2,eαv2(u)

+
∑

i∈I

Δβ1,hi v1(z)Δβ2,hi v2(u)

)

− 1

z − u

(
∑

α>0

Δeαβ1,v1(z)Δe−αβ2,v2(u) +
∑

α>0

Δe−αβ1,v1(z)Δeαβ2,v2(u)

+
∑

i∈I

Δhi β1,v1(z)Δhi β2,v2(u)

)
.

According to [18], this Poisson structure on G1 induces a Poisson structure on
transversal slicesWλ

μ in the affine GrassmannianGr = G((z−1))/G[z]. On the other
hand, recall a symplectic structure on

◦
Zα defined in [10]. It extends uniquely to a

Poisson bracket {, }Z
rat on Zα by the same argument as in the proof of Corollary 3.22.

The following theorem confirms expectations of [18, Remark 2.11].

Theorem 4.9 The map sλ∗
μ∗ : Wλ∗

μ∗ → Zα is Poisson.
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Proof The field of rational functions on Zα coincides with the field of rational func-
tions in the Fourier coefficients of the functions Qi (z), Ri (z). Hence it is sufficient to
show that the Poisson bracket of the coefficients Qi (z), Ri (z) is the same onWλ

μ and
Zα . Let us introduce the following generalized minors: Si j (z) := ΔE j Ei v−ω̌i

,vω̌i
=

〈E j Eiv−ω̌i , g(z)vω̌i 〉. According to [10, (7) and (8)], the Poisson bracket of the
(polynomial-valued) functions Qi (z), Ri (z) is given by

{Qi (z), Q j (u)}Z
rat = 0, (4.8)

{Qi (z), R j (u)}Z
rat = −ďiδi j

(
1

z − u
Qi (z)R j (u) − 1

z − u
Ri (z)Q j (u)

)
, (4.9)

{Ri (z), R j (u)}Z
rat = (1 − δi j )((α̌i , α̌ j )

1

z − u
Ri (z)R j (u)

+ ďi ď j
1

z − u
Qi (z)S ji (u)) + ďi ď j

1

z − u
Si j (z)Q j (u)). (4.10)

On the other hand, the Fourier coefficients of the pullbacks (sλ∗
μ∗)∗Qi = zai +

∑ai
s=1 Δ

(s)
ω̌i ,ω̌i

zai −s and (sλ∗
μ∗)∗ Ri = ∑ai

s=1 Δ
(s)
si ω̌i ,ω̌i

zai −s obey the same relations by
Proposition 4.8. ��

4.10 Trigonometric Poisson bracket

The standard Lie bialgebra structure on g((z−1))⊕ t (see e.g. [7, 6.2.1, 6.5]) gives rise
to a Poisson structure on Fl such that the open Richardson varieties F�w

y are Poisson
subvarieties of Fl (cf. [21, Corollary 2.9]).

This Lie bialgebra structure on g((z−1))⊕ t is determined by the classical r -matrix

rtrig(z, u) := 1

z − u

(
z(

∑

α>0

eα ⊗ e−α + 1

2

∑

i∈I

hi ⊗ hi )

+ u

(
∑

α>0

e−α ⊗ eα + 1

2

∑

i∈I

hi ⊗ hi

))
, (4.11)

see e.g. [7, (6.6)].

Proposition 4.11 The Poisson bracket of the functions Δ
(s)
β,v on the Iwahori subgroup

Iw− is

{Δβ1,v1(z),Δβ2,v2(u)}trig =
1

z − u

(
z
∑

α>0

Δβ1,eαv1(z)Δβ2,e−αv2(u) + u
∑

α>0

Δβ1,e−αv1(z)Δβ2,eαv2(u)

+ z + u

2

∑

i∈I

Δβ1,hi v1(z)Δβ2,hi v2(u)

)
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− 1

z − u

(
z
∑

α>0

Δeαβ1,v1(z)Δe−αβ2,v2(u) + u
∑

α>0

Δe−αβ1,v1(z)Δeαβ2,v2(u)

+ z + u

2

∑

i∈I

Δhi β1,v1(z)Δhi β2,v2(u)

)

Proof This follows from theBelavin–Drinfeld formula for trigonometric r -matrix (see
e.g. [7, (6.6)]). Indeed, following [18, Proposition 2.13] we note that the cobracket on
g((z−1)) is coboundary, namely it is given by the map

a(t) �→ [a(z) ⊗ 1 + 1 ⊗ a(u), rtrig(z, u)],

where the r -matrix is given by (4.11). By the standard procedure this gives a structure
of Poisson group on G((z−1)). We note that the Iwahori subgroup Iw− ⊂ G((z−1))

is a Poisson subgroup, hence the bracket of any two functions on it is the restriction
of the bracket of any extensions of these functions to G((z−1)). The rest of the proof
is a word-to-word repetition of that of [18, Proposition 2.13]. ��

By an abuse of notation, we will denote the rational étale functions wi,r ◦ sλ∗
μ∗ ◦

pr, yi,r ◦ sλ∗
μ∗ ◦ pr (notations of Sect. 4.5) on F�

w0×λ∗
w0×μ∗ simply by wi,r , yi,r .

Proposition 4.12 We have

{wi,r , w j,s}trig = 0,

{wi,r , y j,s}trig = ďiδi jδrswi,r y j,s,

{yi,r , y j,s}trig = (1 − δi j )(α̌i , α̌ j )
wi,r + w j,s

2(wi,r − w j,s)
yi,r y j,s .

Proof Consider the functions Qi (z) = Δ
(0)
ω̌i ,ω̌i

∏ai
r=1(z − wi,r ), Ri (z) = Δ

(0)
ω̌i ,ω̌i∑ai

r=1 yi,r
Qi (z)

(z−wi,r )Q′
i (wi,r )

. According to Proposition 4.6 we have Qi = ∑ai
s=0 Δ

(s)
ω̌i ,ω̌i

zai −s, Ri = ∑ai
s=0 Δ

(s)
si ω̌i ,ω̌i

zai −s .

Set Bi := Δ
(0)
ω̌i ,ω̌i

and recall the generalized minors Si j (z) introduced in the proof
of Theorem 4.9: Si j (z) := ΔE j Ei v−ω̌i

,vω̌i
= 〈E j Eiv−ω̌i , g(z)vω̌i 〉. Then by Proposi-

tion 4.11 we have

{Qi (z), Q j (u)}trig = 0, (4.12)

{Qi (z), R j (u)}trig = −ďiδi j

(
z + u

2(z − u)
Qi (z)R j (u) − u

z − u
Ri (z)Q j (u)

)
, (4.13)

{Ri (z), R j (u)}trig = (1 − δi j )((α̌i , α̌ j )
z + u

2(z − u)
Ri (z)R j (u)

+ ďi ď j
z

z − u
Qi (z)S ji (u) + ďi ď j

u

z − u
Si j (z)Q j (u)). (4.14)
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The relation {wi,r , w j,s}trig = 0 is obvious from (4.12). Substituting u = w j,s

to (4.13), we get {Bi , y j,s}trig = − ďi δi j
2 Bi y j,s and {wi,r , y j,s}trig = ďiδi jδrswi,r y j,s .

Finally, substituting z = wi,r , u = w j,s to (4.14), we get {yi,r , y j,s}trig = (1 −
δi j )(α̌i , α̌ j )

wi,r +w j,s
2(wi,r −w j,s )

yi,r y j,s . ��

Theorem 4.13 The isomorphism sλ∗
μ∗ ◦ pr : F�

w0×λ∗
w0×μ∗

∼−→ †
◦
Zα of Proposition 4.3 is

a symplectomorphism.

Proof Indeed, by Proposition 4.12 and Proposition 3.19 the Poisson brackets {·, ·} on
†
◦
Zα and {·, ·}trig on F�

w0×λ∗
w0×μ∗ are given by the same formulas on coordinate functions

wi,r , yi,r . ��
Remark 4.14 Note that the formulas (4.13) and (4.14) are different from (3.24) and

(3.25), so the morphism sλ∗
μ∗ ◦ pr : F�

w0×λ∗
w0×μ∗

∼−→ †
◦
Zα does not extend to a Poisson

morphism Iw− → ◦
Y α .

5 A speculation on cluster structure

5.1 An affine Lie algebra

Let ĝ be the universal central extension of the polynomial loop algebra g[z±1]:

0 → C → ĝ → g[z±1] → 0 (5.1)

Let gaff = ĝ � Cd be the semidirect product of ĝ with the degree operator. Then
gaff is an untwisted affine Kac-Moody Lie algebra. It has a triangular decomposition
gaff = n− ⊕ taff ⊕ n where n− = LieN− ∩ g[z−1], n = LieN ∩ g[z], and taff
is the affine Cartan subalgebra. The fundamental weights will be denoted i , i ∈
Ia := I � {i0}. The corresponding fundamental integrable representations (where n
acts locally nilpotently) will be denoted Vi , and their restricted duals (where n−
acts locally nilpotently) will be denoted V ∗

i
. We choose the highest weight vectors

vi ∈ Vi and the lowest weight vectors v−i ∈ V ∗
i

such that 〈v−i , vi 〉 = 1. Note
that the action of n− (resp. n) on V ∗

i
(resp. Vi ) integrates to the action of N− (resp.

N). Given w, y ∈ Wa and i ∈ Ia we define the following regular function on N− (a
generalized minor):

Δwi ,yi (g) := 〈wv−i , gyvi 〉 (5.2)

where w, y ∈ Gaff are the lifts of w, y defined similarly to [18, 2A].

5.2 An initial seed

B. Leclerc defines in [20] a cluster structure on the openRichardson varieties in the flag
varieties of simple Lie algebras of types ADE , but presumably the construction can
be extended to the affine Lie algebras of arbitrary types. Here we describe the initial
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seed for F�w0×λ
w0

following [20, Sect. 5, 4.8.3, Corollary 4.4]. We choose a reduced
expression in the affine Weyl group: λ = si1 . . . sil where i1, . . . , il ∈ Ia , and l = 2|λ|
is the length of λ ∈ �+ ⊂ �+ ⊂ � ⊂ Wa (for λ = ∑

i∈I aiαi we have 2|λ| =
2

∑
i∈I ai ).Note that i1 = i0 (the affine simple reflection). Then the initial seed consists

of all the (irreducible factors of the) generalizedminorsΔw0si1 ···sir ir ,w0ir
, 1 ≤ r ≤ l

(they are well defined as functions on F�w0×λ
w0

according to loc. cit.). Among them,
those which divide

∏
i∈Ia

Δ(w0×λ)i ,w0i are the frozen variables.

5.3 An exchange matrix

The rows of the exchange matrix B are numbered by 1 ≤ r ≤ l, and the columns
are numbered by those 1 ≤ s ≤ l for which there exists r > s such that ir = is

(the minimal among such r is denoted s+). The matrix entries are as follows: bs,s+ =
−bs+,s = −1; and for s < r < s+ such that for any r < r ′ < s+ we have ir 	= ir ′ , the
matrix entry bs,r = −Cis ,ir , and br,s = Cir ,is (here (Ci, j )i, j∈Ia is the Cartan matrix
of ĝ). All the other matrix entries are zero.

According to [20, Sect. 6], this cluster structure on F�w0×λ
w0

is compatible with
the symplectic structure of Sect. 4.10 on F�w0×λ

w0
in the sense of [11, Sect. 4.1].

Taking μ = 0 and α = λ, and transferring the cluster structure via the isomorphism

sλ∗
0 ◦ pr : F�w0×λ∗

w0

∼−→ †
◦
Zα we obtain a cluster structure on †

◦
Zα compatible with its

symplectic structure (see Theorem 4.13).

5.4 Destabilization

Let ν ∈ �+ be a dominant coweight. Then the open Richardson variety F�
w0×(λ+ν)
w0×ν

also has a cluster structure with the initial cluster given by certain generalized minors,
andwith the same exchangematrix as in Sect. 5.3. However, the stabilizationmap (4.4)
σν
0 : F�w0×λ

w0

∼−→ F�
w0×(λ+ν)
w0×ν does not take the initial seed of F�w0×λ

w0
to the initial

seed of F�
w0×(λ+ν)
w0×ν (already in the simplest example of 2-dimensional slices for

g = sl2 where both variables are frozen, cf. [18, Example 2.12]).

We consider the following action ofZI on †
◦
Zα: the generator (0, . . . , 0, 1, 0, . . . , 0)

(1 at the i th place) acts in the Plücker coordinates (Q j , R j ) j∈I of Sect. 4.5 by an auto-
morphism ηi (Q j , R j ) = (Q j , zδi j R j − δi j ri,ai −1Q j ) (it is easy to check that this is

indeed a biregular automorphism of †
◦
Zα). The frozen variables of the cluster struc-

ture on †
◦
Zα are (Fα, q j,0) j∈I where Fα is the equation of the boundary of zastava,

see e.g. [4, Sect. 5]. Clearly, ηi takes (Fα, q j,0) j∈I to (Fαqdi
i,0, q j,0) j∈I , i.e. does not

preserve the frozen variables.However, it seems likely thatηi is an almost cluster trans-
formation: a composition of a fewmutations, and the above change of frozen variables.
Furthermore, if we set ην := ∏

i∈I η
ni
i for ν = ∑

i∈I niαi , then the cluster structure

transferred to †
◦
Zλ from the isomorphism sλ∗+ν∗

ν∗ ◦ pr : F�
w0×(λ∗+ν∗)
w0×ν∗

∼−→ †
◦
Zλ differs

from the reference one (transferred from the isomorphism sλ∗
0 ◦pr : F�w0×λ∗

w0

∼−→ †
◦
Zλ)

by the automorphism ην∗ .
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5.5 g = sl2

For g = sl2, a positive corootα is but a positive integer a, and a cluster structure on †
◦
Za

was defined in [12, Sect. 5] (where †
◦
Za is denotedRa). According to Theorem 5.7, this

cluster structure is a particular case of the one of Sect. 5.4. In particular, the exchange
matrix B(ε), (ε) = (2, 0, . . . , 0) of [12, (5.16)] coincides with the exchange matrix
of Sect. 5.3. Note that the cluster variables of [12] are certainminors of aHankelmatrix
composed of the coefficients of the formal series R(z)/Q(z) ∈ C[[z−1]] (where R, Q
are the Plücker coordinates of Sect. 4.5). It would be nice to have such an explicit
formula for the cluster variables for general g. Also, the automorphism η of Sect. 5.4
is nothing but the shift of [12, Lemma 5.4.(i)] (a transformation from the type Aa−1
Q-system, cf. the paragraph before [12, Remark 6.2]).

5.6 Gaiotto–Witten superpotential

Let Ki (z), i ∈ I , be a collection of monic polynomials, Ki (z) = zli + κi,li −1zli −1 +
· · · + κi,0. The data of {Ki (z)}i∈I is equivalent to the data of

(a) an ordered collection � of dominant coweights λ1, . . . , λN ;
(b) an ordered configuration (z1, . . . , zN ) of points in A

1.

Namely, given the above data we set Ki (z) := ∏
1≤n≤N (z − zn)

〈λn ,α̌i 〉. We denote by
◦
A

� the moduli space of the above configurations of distinct points zn .
Recall the Gaiotto–Witten superpotential W�,α

− : a multivalued holomorphic func-

tion on h∨ × ◦
Zα × ◦

A
� (see e.g. [4, 1.8]). We will denote by W�,α

− the restriction of

W�,α
− to 0 × ◦

Zα × ◦
A

�. In the coordinates wi,r , yi,r of Sect. 4.5 we have

W�,α
− (w, y, K ) =

∑

i,r

yi,r Ki (wi,r )

Q′
i (wi,r )

− log Fα +
∑

1≤m<n≤N

λm ·λn log(zm − zn) (5.3)

where Fα is the equation of the zastava boundary ∂ Zα = Zα \ ◦
Zα (see e.g. [4, Sect. 5]).

Let C[[z−1]] � Ri (z)
Qi (z)

=: ∑∞
p=0 hi,pz−p−1. Then

W�,α
− (w, y, K ) =

∑

i,p

hi,pκi,p − log Fα +
∑

1≤m<n≤N

λm · λn log(zm − zn) (5.4)

In case g = sl2, the boundary equation Fa is a frozen cluster variable of the

cluster structure on †
◦
Za of [12, Sect. 5], and all the coefficients h p are cluster vari-

ables according to [12, Lemma 5.3, Proposition 5.4]. HenceW�,α
− |K=K0 is a constant

�(K0) := ∑
1≤m<n≤N λm · λn log(z0,m − z0,n) plus a totally positive function on †

◦
Za

for a monic polynomial K0 with nonnegative coefficients κp. We expect a similar
positivity for general g (in particular, Fα is a frozen cluster variable). It would be
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interesting to study its tropicalization and the corresponding set of positive integral
tropical points, cf. [13].

Appendix: G = SL2: identification with the cluster structure of [12]
GALYNA DOBROVOLSKA

Recall that ŝl2 has two fundamental representations, which we denote by V1 and
V0 in accordance with the notation of Sect. 5.1. Recall the generalized minors
Δw0si1 ...sir ir ,w0ir

from Sect. 5.2. Since for g = sl2 we have w0 = s1, these gener-
alized minors are of the form Δs1(s0s1)r 1,s11 and Δs1(s0s1)r 0,s10 .

Given a pair of polynomials Q(z) = za +qa−1za−1+· · ·+q0, R(z) = ra−1za−1+
ra−2za−2 + · · · + r0 representing a point of †

◦
Za , we can find a unique pair of polyno-

mials F(z) = za + fa−1za−1+· · ·+ f0, D(z) = da−1za−1+· · ·+d1z +d0 such that

QF − RD = z2a . Then both the matrix g(Q, R) :=
(

z−a F(z) z−a D(z)
z−a R(z) z−a Q(z)

)
∈ ŜL2

and its inverse matrix g(Q, R)−1 =
(

z−a Q(z) −z−a D(z)
−z−a R(z) z−a F(z)

)
∈ ŜL2 actually lie

in N− ⊂ ŜL2 (notations of Sect. 5.1). Moreover, according to Proposition 4.6, we
have sλ

0 ◦ pr(g(Q, R)) = (Q, R). Here λ = aα is a multiple of the simple coroot of
sl2, and g(Q, R) ∈ F�s1×aα

s1 ⊂ Fls1 = N− · s1 is the point g(Q, R) · s1.
On the other hand, following [12], we consider the Taylor expansion at ∞ ∈ P

1 of
R(z)
Q(z) = c0

z + c1
z2

+ · · · + c j

z j + · · · . We form the corresponding Hankel matrix using

the elements c0, . . . , c2a−2, namely the a × a matrix [c j+k]a−1
j,k=0. We consider two

kinds of minors of this matrix, the principal minors C1, . . . ,Ca of sizes 1, . . . , a,
and the minors D1, . . . ,Da−1 of sizes 1, . . . , a − 1 which are obtained from the
principal minors of the same size by a shift of all entries by one unit to the right (or,
equivalently, by a shift of all entries by one unit down). We will also denote these
minors by Cr (Q, R), Dr (Q, R) when we want to stress the dependence on Q, R.
These Hankel minors (also called Hankel determinants) arise as cluster variables in
the cluster corresponding to (ε) = (2, 0, . . . , 0) in [12, 5.2]. See also the survey [14]
for general properties of Hankel matrices.

In this appendix we prove the following theorem:

Theorem 5.7 (a) The generalized minor Δs1(s0s1)r 1,s11(g(Q, R)) is equal (up to a
change of sign) to the Hankel minor Cr (Q, R).

(b) The generalized minor Δs1(s0s1)r 0,s10(g(Q, R)) is equal (up to a change of sign)
to the Hankel minor Dr (Q, R).

Before starting the proof of Theorem 5.7, we will recall a theorem of Kronecker
which we will use.

First, for two polynomials Q(z) = za + qa−1za−1 +· · ·+ q0, R(z) = ra−1za−1 +
ra−2za−2 + · · · + r0 we will write the (2a − 1) × (2a − 1) Sylvester matrix (the
determinant of which computes the resultant of Q and R) in the following form:
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 qa−1 . . . . . . q0 0 0 . . . 0 0
0 1 qa−1 . . . q1 q0 0 . . . 0 0
...

. . .
. . .

0 0 . . . 1 qa−1 . . . . . . q1 q0
0 0 . . . 0 ra−1 ra−2 . . . . . . r1 r0
0 0 . . . ra−1 ra−2 . . . . . . r0 0
... . . .

...

0 ra−1 . . . . . . r0 0 . . . . . . 0
ra−1 ra−2 . . . r0 0 0 . . . . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next we define for each i an odd sub-resultant Ri (which coincides with the notion
of sub-resultant in [25, (2.6)]) to be theminor of the Sylvester matrix which is obtained
by removing the same number i of columns and rows at the top, the bottom, the right,
and the left. We also define an even sub-resultant Si to be the minor of the Sylvester
matrix obtained by removing the middle row, the same number i of rows at the top
and the bottom, and removing i columns at the left, and i + 1 columns at the right.

Now we can state the following formula of Kronecker [19] (cf. [25, Corollary 3.2]
for a modern reference) expressing sub-resultants in terms of Hankel determinants of
the Taylor expansion of the ratio of two polynomials:

Proposition 5.8 (L. Kronecker) Ri = Ca−i .

We will also recall some facts from the theory of infinite-dimensional Lie algebras
which we will need in the course of the proof (we will follow the exposition in [17]
and use the notation of loc. cit.).

We start with an infinite-dimensional vector space vector space V = ⊕ j Cv j . For
each m ∈ Z we have the infinite-dimensional vector space F (m) with a vacuum vector
ψm = vm ∧vm−1 ∧· · · and a basis given by vi0 ∧vi−1 ∧· · · (such that i0 > i−1 > · · ·
and ik = k + m for k � 0). We define a group GL∞ as the group of invertible infinite
matriceswith entries ai, j (i, j ∈ Z) such that all but finitelymany of ai, j −δi, j are zero.
The group GL∞ acts in F (m) as follows: A(vi0 ∧ vi−1 ∧ . . .) = Avi0 ∧ Avi−1 ∧ . . . =
∑

j0> j−1>... detA
i0,i−1,...

j0, j−1,...
v j0 ∧ v j−1 ∧ . . ., where Ai0,i−1,...

j0, j−1,...
denotes the matrix located

on the intersection of the rows j0, j−1, . . . and columns i0, i−1, . . . of the matrix A.
Consider the standard n-dimensional representationU of sln with basis u1, u2, . . . ,

un (in this appendixwewill only use n = 2). Note that according to [17, (9.8)], one can
define an action of ŝln onV in the followingway,where an element A = ∑

i Ai zi ∈ ŝln
acts as the infinitematrix below (note that this action is obtained from the representation
U [z±1] of ŝln by identifying a basis element v j of V with zk · ur where j = kn + r ,
and r ∈ {1, 2, . . . , n}):

⎡

⎢⎢⎢⎢⎣

. . . . . . . . . . . . . . . . . .

. . . A−1 A0 A1 . . . . . .

. . . . . . A−1 A0 A1 . . .

. . . . . . . . . A−1 A0 . . .

. . . . . . . . . . . . . . . . . .

⎤

⎥⎥⎥⎥⎦
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Note that the images of the matrices in ŝln obtained in this way have finitely many
non-zero diagonals. Therefore by [17, Sect. 4.4] the action of ŝln in F (m) is given by the
same formula as forGL∞, namely A(vi0∧vi−1∧· · · ) = ∑

j0> j−1>... detA
i0,i−1,...

j0, j−1,...
v j0∧

v j−1 ∧ · · · for A ∈ ŝln . This way for m = 0, 1, 2, . . . , n − 1 we obtain all the
fundamental representations Vm , where Vm is the irreducible sub-representation of
ŝln in F (m) which is generated by the vacuum vector ψm = vm ∧ vm−1 ∧ · · · .

Finally, note that the action of n− in F (m) is not integrable (in general, gvi0 ∧
vi−1 ∧ · · · is an infinite sum for an element g ∈ N−). However, for any basis element
v j0 ∧ v j−1 ∧ · · · of F (m) its coefficient in the (infinite) expansion of gvi0 ∧ vi−1 ∧ · · ·
in the elements of the basis of F (m) is well-defined and can be computed by the
same formula as for g ∈ GL∞, namely it is equal to detAi0,i−1,...

j0, j−1,...
. Note that here

we caculate detAi0,i−1,...

j0, j−1,...
in the following way. By definition there exists N such that

for k < N we have jk = ik = k + m; then detAi0,i−1,...

j0, j−1,...
= detAi0,i−1,..., jN

j0, j−1,..., jN
, which

is a finite determinant. The justification for this formula is that the infinite matrix
with rows j0, j−1, . . . and columns i0, i−1, . . . can be divided into four blocks, where
the two diagonal blocks are the finite block with rows j0, j−1, . . . , jN and columns
i0, i−1, . . . , iN and the inifinite lower-triangular block with 1’s on the diagonal with
rows jN−1, jN−2, . . . and columns iN−1, iN−2, . . ..

Now we are ready to prove our theorem.

Proof of Theorem 5.7 Using exterior powers, the computation of generalized minors
reduces to the computation of finite minors because the infinite matrices we use are
upper triangular up to a finite portion. As a result we obtain finite minors which stand
in certain rows and columns of the infinite matrix, depending on the element of the
Weyl group which appears in the definition of a particular generalized minor.

For example, for the element of the Weyl group given by s0s1s0s1 and the funda-
mental representation V1 , we obtain the following minors:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

−5 1
−4 0 1
−3 fa−1 da−1 1
−2 ra−1 qa−1 0 1
−1 fa−2 da−2 fa−1 da−1 1
0 ra−2 qa−2 ra−1 qa−1 0 1
1 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
2 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1
3 fa−4 da−4 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
4 ra−4 qa−4 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1
5 fa−5 da−5 fa−4 da−4 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
6 ra−5 qa−5 ra−4 qa−4 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1
7 fa−6 da−6 fa−5 da−5 fa−4 da−4 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
8 ra−6 qa−6 ra−5 qa−5 ra−4 qa−4 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After we collect the entries at the intersections of the marked rows and columns, we
obtain the following submatrix (which after transposing it and exchanging the order
and the signs of some the rows will be exactly the (a − 3)-th sub-resultant Ra−3 for
the polynomials Q and R):
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⎡

⎢⎢⎢⎢⎣

0 1
ra−1 qa−1 0 1
ra−2 qa−2 ra−1 qa−1 1
ra−3 qa−3 ra−2 qa−2 qa−1
ra−4 qa−4 ra−3 qa−3 qa−2

⎤

⎥⎥⎥⎥⎦

We see that the finite minors we obtain up to permutation of rows and transposition
are exactly the sub-resultants in the case of odd number of rows. Indeed, for the element
of the Weyl group given by (s0s1)r and the fundamental representation V1 we obtain
that the finite minor consists of 2r + 1 rows numbered 2r + 2, 2r, . . . ,−2r + 2 and
2r + 1 columns numbered 2, 0,−1, . . . ,−2r + 2. If we permute the columns so that
the odd rows stand on the left in the same order as they were before and even rows
stand on the right in the same order as they were before, we obtain exactly an odd sub-
resultant as defined above. Now we use the above theorem of Kronecker to conclude
that the generalized minors for the fundamental representation V1 of ŝl2 are equal to
the corresponding principal Hankel minors.

Nowwe turn to the generalizedminors of the basic representationV0 . For example,
for the element s0s1s0s1 of the Weyl group and the fundamental representation V0

we have the following submatrix:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

−5 1
−4 0 1
−3 fa−1 da−1 1
−2 ra−1 qa−1 0 1
−1 fa−2 da−2 fa−1 da−1 1
0 ra−2 qa−2 ra−1 qa−1 0 1
1 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
2 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1
3 fa−4 da−4 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
4 ra−4 qa−4 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1
5 fa−5 da−5 fa−4 da−4 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
6 ra−5 qa−5 ra−4 qa−4 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1
7 fa−6 da−6 fa−5 da−5 fa−4 da−4 fa−3 da−3 fa−2 da−2 fa−1 da−1 1
8 ra−6 qa−6 ra−5 qa−5 ra−4 qa−4 ra−3 qa−3 ra−2 qa−2 ra−1 qa−1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After we collect the entries at the intersections of the marked rows and columns we
obtain the following submatrix (which after transposing and exchanging the order of
the rows is the (a − 3)-th sub-resultant Sa−3 for the polynomials Q and R):

⎡

⎢⎢⎢⎢⎣

0 1
ra−1 qa−1 0 1
ra−2 qa−2 ra−1 qa−1
ra−3 qa−3 ra−2 qa−2
ra−4 qa−4 ra−3 qa−3

⎤

⎥⎥⎥⎥⎦

More generally, for the element of the Weyl group given by (s0s1)r and the fun-
damental representation V0 we obtain that the finite minor consists of 2r + 1 rows
numbered 2r, 2r − 2, . . . ,−2r + 2 and 2r rows numbered 0,−1, . . . ,−2r + 1. If we
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permute the columns so that the odd rows stand on the left in the same order as they
were before and even rows stand on the right in the same order as they were before,
we obtain exactly an even sub-resultant as defined above.

Finally, we can reduce the case of even number of rows to the case of odd number
of rows in the following way. Note that the even sub-resultant Si of the polynomials
R(z) and Q(z) is equal to a usual sub-resultant (cf. [25, (2.6)]) of the polynomials
R(z) and zQ(z). We claim that this (usual) sub-resultant of the polynomials R(z) and
zQ(z) is equal to the determinant of the original Hankel minor Da−i−1. Indeed, by the
theorem of Kronecker mentioned above, the usual sub-resultants of R(z) and zQ(z)
equal the corresponding (principal) Hankel minors for R(z) and zQ(z). To conclude,
we notice that the equality R(z)/Q(z) = z(R(z)/(zQ(z))) implies that the principal
Hankel minors for R(z), zQ(z) are equal to the Hankel minors for R(z), Q(z) which
are obtained by shifting the corresponding principal Hankel minors by one unit to the
right. ��
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