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Abstract. The present paper is devoted to the research into
complexity of microblogging social networks regardless of their internal
structure. This approach assumes using the results of nonlinear dynam-
ical analysis of signals generated by the networks. The existence of the
main indicators of social network complexity, such as scale invariance,
tendency to unexpected and/or extraordinary events, non-equilibrium
state and emergent properties, are shown using the example of Twitter.
As a result, it is determined that the probability density function for a
Twitter time series is a q-exponential (Tsallis) distribution and that the
Kaulakys equation is the most adequate nonlinear random dynamical
system for modeling of signals in social networks.

1 Introduction

To begin with, let’s define system complexity, which is one of the fundamen-
tal concepts of the modern science. In synergetics [1], the system complexity
is considered as irreducibility of a system to a simple sum of its parts or even
existence of such features that haven’t appeared in its parts. The system com-
plexity is closely connected with nonlinearity. In fact, the superposition principle
is applicable to a linear system. There is also another concept correlated to the
first definition of the system complexity regardless of its internal structure. The
system is complex when it shows a nontrivial behavior, generating catastrophic
(i.e. unexpected or extraordinary) events. This interpretation of complexity is
the most relevant to our current research. For example, in case of Twitter it is
possible to consider aggregated signals of tweets and retweets – Twitter time
series (TTS).

Social networks have the longest history of various studies in comparison to
other network types. It is notable, that exactly in social networks D. Price [2]
has empirically discovered the power law of distribution of nodes by the number
of ties (which is one of the signs of network complexity) for the first time in
1965. In 1999 the physicists from the University of Notre Dame (USA) A.L.
Barabasi and R. Albert established [3,4], that in a large number of networks,
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the distribution of nodes tends to obey the power law (instead of the expected
probabilistic distribution of nodes by the Poisson’s law). Among the latest papers
related to our research, papers [5,6] can be mentioned. The comparison of the
results obtained in the above-mentioned papers to our research will be shown
later as required in the corresponding sections of the present paper. Some other
relevant works in this area are those of Refs. [7–11].

These papers are devoted to studies of network complexity, that were based
on their structural features (for example, see [8]): non-trivial topological features,
such as the lattices or random graphs. In our paper, we use simpler (considering
that it doesn’t require information about the network structure), and even more
substantial (in some sense) approach to the study of complexity. This approach
is based on the study of the above-mentioned features of system complexity by
means of research into the results of nonlinear-dynamical, statistical and spectral
analysis of signals (eg.: TTS for Twitter) in microblogging networks. In other
words, the key question of our study is the following one: Are the microblogging
networks complex in terms of the above-mentioned definition of complexity?
By “more substantial” we consider the possibility of building the qualitative
nonlinear-dynamical models of social networks, that have solutions in a form of
TTS.

Therefore, this paper is organized as follows. The key features of complexity
are considered in the 2nd section. The results of the nonlinear dynamical analysis
of the empirical TTS, probability density functions (PDFs) and periodograms
for the empirical TTS are presented in the 3rd section. In the 4th section we
show the results of nonlinear analysis and PDFs for a sample of 3-dimensional
nonlinear dynamical model of Twitter network as an open nonequilibrium system
[12], as well as comparison with empirical results. We provide the results of
nonlinear analysis and PDFs for the model of Twitter network as nonlinear
random dynamical system comparing them with empirical results and describe
the possibilities of applying the Tsallis entropy for analysis of TTS. The 5th

section includes the conclusions of this paper.

2 Key Features of Complexity

Complexity is closely connected with nonlinearity of a system from the math-
ematical point of view, but its description from the physical point of view is
usually possible just in such statistical terms as PDF, autocorrelation, power
spectral density (PSD), invariant measures of dynamical chaos, etc.

There are currently 3 paradigms in nonlinear dynamics. The first paradigm
is related to the research into the dissipative structures [13]; the second one
is based on studies of deterministic chaos [14]; the third one is devoted to the
analysis of complexity. Per Bak et al. pioneered the use of this paradigm [15–17].

The key features defining the system complexity are scale invariance, acci-
dent proneness (the possibility of the catastrophic events), nonequilibrium and
emergent behaviors [17].
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The scale invariance means that events or objects do not have their own
characteristic dimensions, duration, energy, etc. Such systems usually have a
power spectral density (PSD) of the following type:

S (f) ∼ f−β . (1)

The case of β = 1, or pink noise, is both the canonical case, and the one of most
interest, but the more general form, where 0 < β ≤ 3, is sometimes referred
to simply as 1/f . 1/fβ noise is of interest because it occurs in many different
systems, both in the natural world and in man-made processes. This PSD is an
evidence of a potential proneness of systems to the appearance of huge fluctua-
tions, i.e. the internal susceptibility to accidents. This allows to assume that the
system is in the neighborhood of a critical point. Mechanisms of self-organized
criticality in social knowledge creation process are presented in the paper [5].
It’s shown that the long-range correlations and the event clustering are primar-
ily determined by the universal social dynamics, providing the external driving of
the system by the arrival of new users. Authors [5] compare the social avalanches
to the avalanche sequences occurring in the field-driven physical model of disor-
dered solids, where the factors contributing to the collective dynamics are better
understood.

The statistical form of the scale invariance is a PDF of the following kind at
x → ∞:

p (x) ∼ x−(1+γ), γ > 0. (2)

The PDF (2) belongs to the class of the power law PDFs or the fat-tailed
PDFs. The fundamental difference of the PDF (2) from the compact distributions
is the fact, that those events, which fall on the distribution tail area, take place
not so rarely to be neglected.

The fractal structure of a system is another indicator of a scale invariance.
According to one of the definitions, a fractal is an object, where the Huasdorff–
Besicovitch dimension is higher than its topological dimension [18]. The studies
of Mandelbrot [18] have proved, that the fractals are the systems with the scale
invariance.

If a system is prone to accidents, then the small causes can lead to the big
consequences. This fact assumes the considerable nonequilibrium. Equilibrium
systems can’t be complex. In addition, the appearance of the catastrophes is
possible just in case of the emergent behavior of different system elements, i.e.
when the system has emergent features. The ability of the system to have a
“long” memory for its past, and the ability of the system elements to “feel” each
other wide-apart, can be considered by the emergent behavior. At the statistical
level the emergent behaviors are usually related to the long-range time and space
correlations. The matter concerns the time-series with the long memory, or those
time-series, autocorrelation of which decreases slowly. The expression “a long-
range dependence”, which is sometimes used to refer to 1/fβ noise, has also been
used in the other contexts with somewhat different meanings. “Long memory”
and other variants are also sometimes used in the same way.
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3 Analysis of Empirical Twitter Time Series

For analysis of empirical TTS, we chose the following time series obtained from
the resource Mozdeh “Big Data Text Analysis” (http://mozdeh.wlv.ac.uk/):
bbc breaking, from 16/05/29 to 17/05/26, with the 1 h step; cnn breaking, from
16/07/12 to 17/01/11, with the 1 h step; nasa, from 16/09/26 to 17/05/26, with
the 1 h step. It is clear, that these time series represent impulse-type signals with
integer values. TTS have non-continuous values from 0 to 15 for bbc breaking,
from 0 to 28 for cnn breaking and from 0 to 17 for nasa. Figure 1 provides an
example of empirical TTS.

Fig. 1. Twitter time series: (a) bbc breaking, (b) cnn breaking, (c) nasa

The nonlinear analysis was conducted for all chosen TTS. Such measures as
correlation dimension (D2), embedding dimension (m), Hurst exponents (H),
power of PSD (β) and fractal dimension (DF ) were calculated (Table 1).

Table 1. Results of nonlinear TTS analysis

User D2 m H β DF

cnn breaking 3.732 6 0.6648 2.329 1.3352

bbc breaking 3.984 6 0.6165 2.233 1.3835

nasa 4.202 6 0.6833 2.367 1.3167

Determination of the correlation dimension [19] for a supposed chaotic pro-
cess directly from experimental time series is often used to get information about
the nature of the underlying dynamics (see, for example, contributions in Ref.
[20]). In particular, such analysis has been made to support the hypothesis that
the time series are generated from the inherently low-dimensional chaotic process
[20]. The geometry of chaotic attractors can be complex and difficult to describe.
It is therefore useful to understand quantitative characterizations of such geo-
metrical objects. One of these characterizations is D2. D2 of the attractor of
dynamical system can be estimated using the Grassberger–Procaccia algorithm
[19].

D2 has several advantages in comparison to the other dimensional measures:

http://mozdeh.wlv.ac.uk/
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• if D2 is finite, then a TTS is a chaotic time series (generated by a dynamical
system);

• if D2 is infinite, then a TTS is a stochastic time series (generated by a purely
random process).

For calculation of DF we used the algorithm described in a paper [21]. If
DF > DT (DT is a topological dimension of the TTS, that equals 1 for all time
series), then the TTS is a random fractal.

A value of H = 2−DF allows to give a noise classification (1/f -classification,
where f is a signal frequency) of the TTS [22]:

• if 0 < H < 0.5, then the TTS is characterized by anti-persistence (the time
series changes the tendency more often, than a series of independent random
variables) and represents a process with 1/f noise or a pink noise;

• if 0.5 < H < 1, then the TTS is characterized by persistence (the time series
is characterized by the effect of the long memory and has an inclination to
follow the trends) and represents a process with 1/fβ (β > 2) noise or a black
noise;

• if H = 0.5, then TTS represents a process with the absence of memory or a
white noise.

Figure 2 provides periodograms as estimates of the spectral density of TTS.

Fig. 2. Periodograms of TTS: (a) bbc breaking, (b) cnn breaking, (c) nasa

Empirical TTS is a black random process. As it is shown at the Fig. 2, it
is clear that the spectral density predominantly has zero power excluding some
spikes. Most of the time series, which can be observed in existence, can usually
be related to one of the above-mentioned classes [23,24]. Thus, the time series
observed in turbulence processes, show the best correlation with the pink noise.
The black noises can be registered in floods, a solar activity, statistics of the nat-
ural and induced catastrophes. The black noise indicates long term persistence
and long memory.

There is a simple scaling relation, connecting β and H [22]: β = 2H +1. The
results for β are shown in a Table 1.

Apart from some features and a general form of PDF, nonlinear TTS anal-
ysis allows to define the main features of system complexity. Point and interval
estimates of the parameters of empirical PDF are the questions of statistical
analysis.
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Figure 3 provides PDFs for empirical TTS. Visually, these PDFs correspond
to the exponential (compact distribution) or to the generalized exponential fat-
tailed PDF (2), for example, the q-exponential distribution [25–27]:

p (x) = (2 − q) λ expq (−λx) , (3)

where expq (x) ≡ [1 + (1 − q) x]
1

1−q .
The distribution (3) is a two-parameter generalization (q <2 is a shape

parameter, λ>0 is a rate parameter) of the one-parameter exponential distribu-
tion. Table 2 contains the estimated values for parameters of PDF (3) obtained
by the maximum likelihood method [28].

Table 2. Point and interval estimations of the PDF (4) parameters and γ-parameters
of the PDF (2)

User q λ γ

cnn breaking 1.505± 0.005 1.980± 0.074 0.980

bbc breaking 1.675± 0.025 1.482± 0.086 0.481

Nasa 1.734± 0.038 1.362± 0.069 0.362

From the Table 2 we conclude that empirical PDF corresponds to q-
exponential distribution. Besides, the values of γ-parameters, calculated with
consideration of (2) and (3) are presented: γ = (2 − q)/(q − 1).

Fig. 3. Histograms of TTS: (a) bbc breaking, (b) cnn breaking, (c) nasa

Thus, according to the point values of measures, shown in the Table 1 and
the Table 2, the following conclusions can be made:

• TTS is a chaotic time series, i.e. it is generated by dynamical systems in a
phase space dimension that equals 6;

• TTS has a fractal structure (DF > DT );
• TTS represents processes with the long memory or long-range persistence

(0.5 < H < 1);
• TTS is a signal with 1/fβ noise (β-values vary from 2.233 to 2.367);
• PDF is a fat-tailed PDF ((1 + γ)-values vary from 1.362 to 1.980).

In a certain way similar results of analysis for the time series in ddDiggs and
Ubuntu chats data are shown in the paper [6].
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4 Twitter Time Series as a Realization of the Nonlinear
Dynamical System

The results of nonlinear and statistical analysis of TTS, which are shown in the
Sect. 3, allows to construct a qualitative model of Twitter. The solutions of these
models are time series with the established features.

Paper [12] proposes a model of Twitter social network as an open nonequilib-
rium system. Omitting the detailed construction of dynamical system, the model
of Twitter is described by the well-known Lorenz–Haken equation:

ẋt = −αxt + βyt, ẏt = −γyt + cytzt, żt = ε (I0 − zt) + kxtyt. (4)

In Eq. (4) xt = TRt − TReq represents the scaled deviation of number of tweets
and retweets (TRt) from the equilibrium value TReq; yt = It − Ieq is the scaled
deviation of aggregated internal amount of information (It) from equilibrium
value Ieq; zt = N

|u〉
t − N

|l〉
t is instantaneous difference in a number of users

between the state |u〉 and the state |l〉. According to the model, a particular user,
being in the|u〉-state, has enough information for sending tweet or retweet. If the
user is in a |l〉-state (so, he or she does not have enough amount of information),
then he or she will not send any tweets or retweets. Control parameter I0 shows
the intensity of external information flow.

The most important conclusions from the model implementation are:
impossibility of social network to be in an equilibrium state and occurrence of
low-dimensional chaos in social network for the significant intensity of external
information flow I0. Except for values of higher Lyapunov exponent [29] as one
of the measures of low-dimensional chaos, paper [12] does not contain calculated
fractal dimensions for observed TTS.

3-dimensional dynamical model (4) explains some properties of social network
functioning such as fractality (DF = 1.4972), chaotic nature (D2 = 1.896) and
absence of memory (H = 0.5028) of TTS. The weakness of this model lies in
significant discrepancy between empirical and theoretical trajectories of TTS.
Moreover, it is impossible to fit theoretical trajectories to observed data by
varying control parameters (in a range of chaotic state) of the dynamical system.
The dynamical system (4) has 3 equilibrium points for any values of control
parameters in a range of chaotic state. Therefore, theoretical PDF is a three-
modal distribution (three maxima of the PDF) and xt is a white random process.
This PDF is not fat-tailed distribution. The white noise signal is not a signal of
catastrophic events.

There are at least two possible ways to achieve the accordance between empir-
ical and theoretical TTS: by adding specific noise to dynamical system (4) or by
using a one-dimensional nonlinear random dynamical system [30] as a model of
Twitter network. According to the Table 1 at m = 6 the estimated value of corre-
lation dimension reaches its “saturation point” and stops changing significantly.
Because of that, the actual number of variables for constructing an adequate
model is 6, but not 3 as it is for model (4).



A Nonlinear Dynamical Approach 397

In 1998 Bronislovas Kaulakys et al. [31] proposed a nonlinear random dynam-
ical system (RDS) as a basic model generating signals with 1/fβ noise and fat-
tailed PDF:

dxt = σ2

(
η − 1

2
λ

)
(xt + x0)

2η−1
dt + σ (xt + x0)

η
dWt, (5)

where xt ≥ 0 is a signal, η 	= 1 is a power-law exponent of the multiplicative
noise, λ > 0 is a parameter defining the behavior of the stationary PDF, W is a
standard Wiener process, σ is a parameter of the multiplicative noise. Parameter
x0 limits the divergence of the power-series distribution xt by xt → 0. If x << x0,
then (5) generates a linear additive stochastic process (Brownian movement with
the stable drift); if x >> x0, then (5) generates a multiplicative process [32]. If
x0 = 1, then the stationary solution of the equation (5) takes the form of a
q-exponential distribution (3) by q = 1 + 1/λ [33]. Besides, some realizations of
the process (5) give a power spectral density in a form of 1/fβ . Therefore, the
random process (5) generates the time series with the long memory [34].

The random multiplicative process for the interevent time τk = tk+1 − tk [35]
is used as a basis for (5):

τk+1 = τk + γτ2μ−1
k + στμ

k εk. (6)

In the model the interevent time τk fluctuates due to the random perturbations
by a sequence of uncorrelated normally distributed random variables {εk} with
zero expectation and unit variance; σ is the standard deviation of the white
noise and γ << 1 is a coefficient of the nonlinear damping [35]. The existence
of the random fluctuating interevent time of TTS is determined by the fact,
that the empirical values of TTS take the non-continuous values from 0 to some
finite natural number in a random way. Therefore, despite the fact that empirical
values of TTS have a definite constant step (1 hour), appearance of the random
interevent time is determined by the random appearance of the zero-values of
TTS.

Thus, the random dynamical system (5) is the most adequate model of Twit-
ter.

q-exponential distribution takes place by the maximization of the Tsallis
entropy [36] considering definite limitations. Tsallis entropy as a non-additive
generalization of the Boltzmann–Gibbs entropy has the following form:

Tq =
1

q − 1

(
1 −

N∑
i=1

pq
i

)
(7)

The probability pi = Ni/N (ε) can be estimated in much the same way as that
one used in the Renyi entropy: Ni is a number of system elements for the i-
element of the ε-partition; N (ε) – is a full the given ε-cover. If q → 1, then
the entropy (6) transforms into the well-known Shannon entropy. In contrast
to all entropy types, the Tsallis entropy is nonadditive. Being applied to the
microblogging network (such as, for example, Twitter) it gives a possibility to
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correctly describe a social network, where any user interacts not only with the
nearest user or several nearest users, but also with the whole network or some of
its parts. Besides, from (6) it follows that Tq is concave by q > 0 and convex by
q < 0. For example, the non-additive entropy describes emotion dynamics that
is confirmed by computing the q-generalized Kolmogorov–Sinai entropy rate in
the empirical data of chats as well as in the simulations of interacting emotional
agents and Bots [6].

Thus, the entropy description of Twitter, based on Tsallis statistics is appro-
priate for studying of evolution of a social network that contains a large number
of users who interact with each other in a particular way and specifically every
user can interact not only with his or her nearest neighbors but also with remote
users.

5 Conclusions

As a result of the present study it can be noted, that the microblogging social
networks, and Twitter in particular, are the complex networks. The social net-
works are characterized by the non-trivial behavior, i.e. they are able to generate
the “catastrophic” (unexpected and/or extraordinary) cases. An example of such
an “accident” in case of Twitter is a transition of the network from the egocentric
into the polycentric state [37].

Microblogging social networks have all features of system complexity [15–17]:

• The scale invariance of the microblogging social networks. TTS represent
the random processes with 1/fβnoise, where β varies from 2.233 to 2.367
(Table 1), fat-tailed PDF with γ from 0.362 to 0.980 (Table 2) and a fractal
structure (DF > DT , see Table 1).

• Microblogging social networks can be considered as nonequilibrium open sys-
tems. The proof of this statement is shown in a paper [12]. In brief, the social
network includes users, who can have just two states: a ground state and an
excited state. Those users, who didn’t get sufficient amount of information
from the mass media and other sources to be able to send tweets, stay in the
ground state. Those users, who got sufficient amount of external information
to be able to send tweets, are in the excited state. By sending tweets the
network users transfer from the excited state to the ground state. This infor-
mation flow, in some sense, “pump up” the social network, making inverse
population of users. Taking into account continuous information pump-
ing, social network is always functioning in nonequilibrium state, making
“avalanches” of tweet and retweet. Due to information pumping, the equi-
librium state is almost unreachable. It is crucially important, that existence
of chaotic states is a fundamental property of nonequilibrium open systems
[38,39]. Indeed, TTS is a chaotic time series: D2 is finite (Table 1).

• Microblogging social networks have emergent properties. Indeed, TTS repre-
sents processes with the long memory or long-range persistence: 0.5 < H < 1
(Table 1).
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We have conducted a research into the empirical PDF of some TTS to construct
a model of the microblogging network in a form of one-dimensional non-linear
RDS (5). As a result, it has been recognized that the observable PDF has a
q-exponential distribution (Table 2). For such distribution, the one-dimensional
nonlinear RDS has been suggested. It has been shown, that in contrast to all
entropy types, the Tsallis entropy gives a possibility to correctly describe a
network, where any user interacts not only with the nearest user or several
nearest users, but also with the whole network or some of its parts. Use of the
Tsallis entropy allows to describe the macroscopic stability of a microblogging
network as well.
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