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Abstract. In this paper we present the results of nonlinear dynamical analysis 

of Twitter time series. According to these results we compare nonlinear dynam-

ical model and nonlinear random dynamical model of Twitter with observed da-

ta. From results of nonlinear analysis if observed Twitter time series and eval-

uation of their probability density functions we conclude, that the most ade-

quate forecasting model of social network is nonlinear random dynamical sys-

tem. We determine that observed TTS have q-exponential distribution 

with1 𝑓𝛽⁄  noise. Also we consider possible applications of Tsallis entropy and 

self-organized criticality for analysis of Twitter. 
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1 Introduction 

Microblogging is one of the most important instruments of business development 

nowadays. It is actively used for promotion of goods or services, making the positive 

opinion about the company and allows organizing and supporting customer relation-

ships processes. Corporate microblogging networks and services serve as a platform 

for business communications between the employees in companies on different 

scales. 

Modeling of processes taking place in microblogging social networks (one of the 

well-known examples is Twitter) is a complicated, but at the same time theoretically 

and practically important scientific problem. Results and conclusions that can be 

made by using such models allow us to identify whether the social network is able to 

remain stable under the internal and external informational influence, to define differ-

ent ways of local community formation and to find out the parametric terms of social 

network management. Such modeling may have a large variety of practical applica-

tions. Thus, it can be useful for decision-making processes during the development of 

short-term and long-term marketing strategies, development of recommender systems, 

demand forecasting, as well as tasks related to the national security. 

There are a number of works in the field of physical modeling of social networks. 

The main physical models of the social networks are following: Ising model [1-3], 

Bose-Einstein condensate model [4, 5], quantum walk model [6], ground state and 

community detection[7], etc. The other relevant works in this area are those of refs. 

[8-12]. 
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The weak point of the observed papers is that they do not cover nonlinear dynam-

ical analysis of aggregated twitter time series
1
 (TTS). Results of such analysis can 

provide a possibility to select the most appropriate prediction methods for TTS and 

give a general idea about adequate models of social networks generating these signals. 

Recently, more attention has been paid to the study of time series from the point of 

view of chaos theory. Research in this direction will reveal the nature and intercon-

nections between the hidden processes occurring in microblogging social networks, 

which will enable the construction of more adequate forecasting models for TTS and 

a deeper understanding of social networks functioning. 

Analysis of chaotic phenomena requires methods and techniques for identifying of 

time series that is chaotic or having a chaotic component, as well as for quantitative 

evaluation of chaotic characteristics and comparison of theoretical and experimental 

time series. Having these methods and techniques allows one to answer the following 

problems: 1) the number of variables essential for modeling of system dynamics; 2) 

relation between changes in characteristics and changes in dynamical behavior of the 

system. 

These methods and techniques are grouped into two different, but connected ap-

proaches. The first approach focuses on dynamical characteristics of chaos: the Lya-

punov exponents and entropy measures, power spectral density and autocorrelation 

function. The second approach represents the geometric nature of trajectories in the 

state space considering fractal and correlation dimensions. 

These two approaches complete each other. It is intuitively expected that they are 

closely interconnected. However, theoretical proof of such connection has not been 

developed yet. That is why we used several criteria of chaotic nature of time series. 

This paper is organized as follows. In section 2 we present the results of fractal 

analysis for empirical TTS with their interpretation. In section 3 we present the results 

of fractal analysis and probability density function (PDF) for a sample of 3-

dimensional nonlinear dynamical model of Twitter network as an open nonequilibri-

um system[13], as well as comparison with empirical results. In section 4 we provi-

dethe results of fractal analysis and PDF for the model of Twitter network as nonline-

ar random dynamical system comparing them with empirical resultsand describe the 

possibilities of applying theTsallis entropy and self-organized criticality for analysis 

of TTS. Section 5 contains the conclusions of this paper. 

2 Analysis of an Empirical Twitter Time Series 

Foranalysisofempirical TTS wechosethefollowingtimeseriesobtainedfromthere-

sourceMozdeh"BigDataTextAnalysis" (http://mozdeh.wlv.ac.uk/): 

 bbc_breaking,from 16/05/29 to 17/05/26, step 1 hour; 

 cnn_braeking, from 16/07/12 to 17/01/11, step 1 hour; 

 nasa, from 16/09/26 to 17/05/26, step 1 hour. 

                                                           
1 Series of tweet and retweet numbers indexed in time order, 𝑇𝑅𝑡. 
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Figure 1 shows the corresponding time series. 

 

Fig. 1.Twitter time series: (a) bbc_breaking, (b) cnn-breaking, (c) nasa 

It is clear, that these time series represent impulse-type signals with integer values. 

The nonlinear analysis was conducted for all chosen TTS. Such measures as corre-

lation dimension (𝐷2), embedding dimension (𝑚), Hurst exponent (𝐻) and fractal 

dimension (𝐷𝐹) were calculated (table 1). 

Table 1.Measures of chaos 

Time series 𝐷2 𝑚 𝐻 𝐷𝐹  

bbc_breaking 3.732 6 0.7648 1.2352 

cnn_breaking 3.984 6 0.8165 1.1835 

nasa 4.202 6 0.7833 1.2167 

Dynamical system 1.896 3 0.5328 1.4272 

Random dynamical system 4.619 5 0.7872 1.2128 

 

The determination of the correlation dimension [14] for a supposed chaotic process 

directly from experimental time series is often used to gain information about the 

nature of the underlying dynamics (see, for example, contributions in ref. [15]. In 

particular, such analysis has been made to support the hypothesis that the time series 

are generated from the inherently low-dimensional chaotic process [15]. The geome-
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try of chaotic attractors can be complex and difficult to describe. It is therefore useful 

to understand quantitative characterizations of such geometrical objects. One of these 

characterizations is 𝐷2. 𝐷2 has several advantages in comparison to the other dimen-

sional measures: 

 𝐷2 is easy to compute from the TTS; 

 If 𝐷2 is finite, then the TTS is a chaotic time series (generated by a dynamical sys-

tem); 

 If  𝐷2 → ∞, then the TTS is a stochastic time series (generated by a purely random 

process). 

The correlation dimension of the attractor of dynamical system can be estimated using 

the Grassberger–Procaccia algorithm [14]. 

For calculation of 𝐷𝐹we used the algorithm, described in a paper [16]. If 𝐷𝐹 > 𝑑𝑇  

(𝑑𝑇 is a topological dimension of the TTS, that equals 1 for all time series), then the 

TTS is a random fractal. A value of  𝐻 = 2 − 𝐷𝐹 characterizes the following features 

of the TTS: 

 If 𝐻 > 0.5, then the TTS represents a persistent process (a positive increment of a 

number of tweets and retweets in the past on the average means that there is a ten-

dency to further increase in future, and vice versa); 

 If 𝐻 < 0.5, then the TTS represents an anti-persistent process (a positive increment 

in a number of tweets and retweets in the past on the average means that there is a 

tendency to decrease in future, and vice versa); 

 If 𝐻 = 0.5, then the TTS represents an intermediate state between the persistent 

and anti-persistent processes (the TTS is a stochastic time series). 

In addition, the value of 𝐻 allows to give a noise classification (1 𝑓⁄ -classification, 

where 𝑓 is a signal frequency) of the TTS [17]: 

 If 0 < 𝐻 ≤ 0.5, then the TTS represents a process with the negative memory, 1 𝑓⁄  

noise or a pink noise (if there has been the positive increment in a number of 

tweets or retweets, then there is a high probability of appearance of the negative 

increment in future, and vice versa); 

 If 0.5 < 𝐻 ≤ 1 , then the TTS represents a process with a positive memory, 

1 𝑓𝛽⁄ (𝛽 > 2) noise or a brown noise (if there has been the positive increment in a 

number of tweets or retweets, then there is a high probability of appearance of the 

positive increment in future, and vice versa); 

 If 𝐻 = 0.5, then TTS represents a process with the absence of memory, 1 𝑓2⁄  noise 

or brown noise (the next increment in the number of tweets and retweets doesn’t 

depend on the previous increments). 

Thus, according to the point values of measures, shown in a table 1, the following 

conclusions can be made: 

 TTS is a chaotic time series, i.e. it is generated by dynamical systems in a phase 

space dimension that equals 6; 
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 TTS has a fractal structure; 

 TTS represents processes with the positive memory; 

 TTS represents the persistent process; 

 TTS is a signal with the 1 𝑓𝛽⁄  noise (in support of that, fig. 2 provides the spectral 

power density plots in log-log scale for corresponding TTS). 

 

Fig. 2.Power spectral density for TTS: (a) bbs_breaking, (b) cnn_breaking, (c) nasa 

3 Twitter Time Series as a Realization of the Nonlinear 

Dynamical System 

Paper [13] proposes a model of Twitter social network as an open nonequilibrium 

system. Omitting the detailed construction of dynamical system, the model of Twitter 

is described by well-known Lorenz–Haken equations: 

 �̇�1 = −𝛼𝑥1 + 𝛽𝑥2, �̇�2 = −𝛾𝑥2 + 𝑐𝑥2𝑥3, �̇�3 = 𝜀(𝐼0 − 𝑥3) + 𝑘𝑥1𝑥2 (1) 

In equation (1) 𝑥 = 𝑇𝑅(𝑡) − 𝑇𝑅𝑒𝑞 represents the scaled deviation of number of 

tweets and retweets (𝑇𝑅(𝑡)) from equilibrium value𝑇𝑅𝑒𝑞 ; 𝑥2(𝑡) = 𝐼(𝑡) − 𝐼𝑒𝑞 is the 

scaled deviation of aggregated internal amount of information (𝐼(𝑡)) from equilibrium 

value 𝐼𝑒𝑞 ; 𝑥3(𝑡) = 𝑁|𝑢〉(𝑡) − 𝑁|𝑙〉(𝑡) is instantaneous difference in number of users 

between state|𝑢〉andstate |𝑙〉. According to the model, a particular user, being|𝑢〉-state, 

has enough information for sending tweet or retweet. If the user is in|𝑙〉-state (so, he 
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or she does not have enough amount of information), then he or she will not send any 

tweets or retweets. Control parameter 𝐼0 is the intensity of external information flow. 

The most important conclusions from model implementation are: 1) impossibility 

of social network being in equilibrium state and occurrence of low-dimensional chaos 

[18] in social network for specific values of  𝐼0. Fig. 3 as hows integral trajectory of 

dynamical system (1) (𝑥1(𝑡)), demonstrating the existence of chaotic dynamics in 

case of significant intensity of external information flow. 

 

Fig. 3.Integral trajectory (a) and its histogram (b) 

Except for values of higher Lyapunov exponent [19] as one of the measures of 

low-dimensional chaos, paper [13] does not contain calculated fractal dimensions for 

observed TTS. 

Estimations of measures of the chaos for theoretical TTS (fig. 3a). Table 1 contains 

the estimated values for measures of chaos for the theoretical TTS (see dynamical 

system). Thus, 3-dimensional dynamical model of Twitter as open nonequilibrium 

system [13] explains some properties of social network functioning such as fractality, 

chaotic nature, persistency and positive memory of TTS. 

The weakness of this model lies in significant discrepancy between empirical (fig. 

1) and theoretical (fig. 3a) trajectories of TTS. Moreover, it is impossible to fit theo-

retical trajectories to observed data by varying control parameters (in range of chaotic 

state) of dynamical system [13]. As it shown on fig. 3b, this dynamical system has 3 

stable equilibrium points (three maxima of the histogram) for any values of control 

parameters in range of chaotic state. 

There are at least two possible ways to achieve the fitness between empirical and 

theoretical TTS: by adding specific noise to dynamical system [13] or by using one-

dimensional nonlinear random dynamical system [20] as a model of Twitter network. 

According to table 1 at 𝑛 = 6 the estimated value of correlation dimension reaches its 

"saturation point" and stops changing significantly. Because of that, the actual number 

of variables for constructing an adequate model is 6, but not 3 as it is for model [13]. 

We do not rule out, that six-dimensional model of Twitter network could explain 

existing experimental characteristics, including empirical PDF of Twitter time series. 
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4 Twitter Time Series as a Realization of the Nonlinear 

Random Dynamical System 

In such autonomous dynamical systems as  �̇� = 𝐅(𝐗), low-dimensional chaos can 

appear only at 𝑛 ≥ 3 [18]. Therefore, the one of opportunity to build an adequate 

model of a microblogging network is to consider it as a random dynamical system 

(RDS). In this case, the observable TTS is one of the realizations of  𝑥(𝑡) of a sto-

chastic differential equation of the following kind: 

 𝑑𝑥 = 𝑓(𝑥, 𝑡)𝑑𝑡 + 𝑔(𝑥, 𝑡)𝑑𝑊 (2) 

where 𝑊(𝑡) is a standard Wiener process. 

One of the ways to solve the equation (2) is to find its solution in a form of a prob-

ability density function (PDF) 𝑝(𝑥, 𝑡). In this case, the equation (2) can be trans-

formed into the Fokker-Planck equation [21], that represents a differential equation in 

partial derivatives of the following kind: 

 
𝜕𝑝(𝑥,𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝑓(𝑥)𝑝(𝑥, 𝑡)) +

1

2

𝜕2

𝜕𝑥2
(𝑔2(𝑥)𝑝(𝑥, 𝑡)) (3) 

In this case it is necessary to define the PDF for the empirical TTS (a stationary so-

lution of (3)). Having found out the explicit kind of PDF, we shall be able to find out 

the explicit kind of (1), describing the realizations of the empirical TTS. 

Figure4provides PDFs for empirical TTS, which form point to the fact that it is 𝑞-

exponential distribution [22-24]: 

 𝑝(𝑥) = (2 − 𝑞)𝜆exp𝑞(−𝜆𝑥) (4) 

whereexp𝑞(𝑥) = [1 + (1 − 𝑞)𝑥]
1

1−𝑞. 

 

(a)                                           (b) 
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(c) 

Fig. 4.Histograms of TTS: (a) bbc_breaking, (b) cnn_breaking, (c) nasa 

The distribution (4) is a two-parameter generalization (𝑞 < 2 is a shape parameter, 

𝜆 > 0 is a rate parameter) of a one-parameter exponential distribution. Table 2 con-

tains the estimated values for parameters of PDF (4) obtained by maximum likelihood 

method [25]. 

Table 2.Point and interval estimations of the PDF (4) parameters 

User 𝑞 𝜆 

bbc_breaking 1.202±0.005 1.980±0.074 

cnn_breaking 1.155±0.025 1.482±0.086 

nasa 1.184±0.038 1.362±0.069 

 

From table 2 we conclude that empirical PDF corresponds to 𝑞-exponential distri-

bution. 

Going back to the equation (2): a stationary probability density function of the TTS 

looks as (4) with the numerical parameter values shown in a table 2 and is a stationary 

solution of the equation (3). Therefore, the equation (3) should be of such kind, that 

gives the distribution (4) for all realizations of the random dynamical system. 

A group of researchers [26-28] has suggested the RDS in a view of a nonlinear sto-

chastic differential equation: 

 𝑑𝑥 = 𝜎2 (𝜂 −
1

2
𝜆) (𝑥 + 𝑥0)

2𝜂−1𝑑𝑡 + 𝜎(𝑥 + 𝑥0)
𝜂𝑑𝑊 (5) 

where 𝑥(𝑡) ≥ 0 is a signal, 𝜂 ≠ 1 is a power-law exponent of the multiplicative noise, 

𝜆 > 0 is a parameter, defining the behavior of stationary probability distribution, 𝑊 is 

a standard Wiener process, 𝜎 is a parameter of the multiplicative noise. Parameter 𝑥0 

limits the divergence of the power-series distribution 𝑥(𝑡) by 𝑥(𝑡) → 0. If 𝑥 ≪ 𝑥0 , 

then (5) generates a linear additive stochastic process (Brownian movement with the 

stable drift); if 𝑥 ≫ 𝑥0, then (5) generates a multiplicative process [27]. 

If 𝑥0 = 1, then the stationary solution of the equation (3) takes the form of an𝑞-

exponential distribution (4) by 𝑞 = 1 + 1 𝜆⁄ . Besides, some of realizations of the 

process (5) give a power spectral density in a form of 1 𝑓𝛽⁄ . 
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We have calculated estimations of the measures of chaos for some realizations of 

RDS (5). Table 1 contains the estimated values for measures of chaos for the theoreti-

cal TTS (see random dynamical system). 

Thus, the realizations of the RDS (5) have not only close measures to the observa-

ble fractal measures of the TTS (table 1) in comparison to the realizations of the dy-

namical system [13], but they also have an observable (table 2) 𝑞 -exponential distri-

bution. Therefore, the RDS (5) is more adequate model in comparison to the model in 

a form of the dynamical system [13]. 

𝑞-exponential distribution takes place by the maximization of the Tsallis entropy 

[29] considering definite limitations. Tsallis entropy as a non-additive generalization 

of the Boltzmann-Gibbs entropy has the following form: 

 𝑇𝑞 =
1

𝑞−1
(1 − ∑ 𝑝𝑖

𝑞𝑁
𝑖=1 ) (6) 

The probability 𝑝𝑖 = 𝑁𝑖 𝑁(𝜀)⁄  can be estimated in much the same way as that one 

used in the Renyi entropy: 𝑁𝑖 is a number of system elements for the i-element of the 

𝜀-partition; 𝑁(𝜀) – is a full number of elements of the given 𝜀-cover. If 𝑞 → 1, then 

the entropy (6) transforms into the well-known Shannon entropy. 

In contrast to all entropy types, the Tsallis entropy is nonadditive. Being applied to 

the microblogging network (such as, for example, Twitter) it gives a possibility to 

correctly describe a social network, where any user interacts not only with the nearest 

user or several nearest users, but also with the whole network or some of its parts. 

Besides, from (5) it follows that 𝑇𝑞 is concave by 𝑞 > 0 and convex by 𝑞 < 0. 

Thus, entropy description of Twitter based on Tsallis statistics is appropriate for 

studying of evolution of social network that contains large amount of users who inter-

act with each other in a particular way and, specifically, every user can interact not 

only with his or her nearest neighbors but also with remote users. 

There are a lot of practical application of Tsallis theory. Among them there are 

studies on the anomalous diffusion [30, 31], uniqueness theorem [32], sensitivity to 

initial conditions and entropy production at the edge of chaos [33] and many others 

(see ref. [34]). 

The fact, that the RDS (5) generates a signal with the power-series distribution (4) 

and with the occurrence of the 1 𝑓𝛽⁄  noise [35], is the important feature of the RDS 

(5). It is determined by the existence of the degree 2𝜂 − 1 in the drift term and degree 

𝜂 in the noise term. The same fact is observable for the empirical TTS as well. 

The existence of the power laws of signal distribution with the presence of the  

1 𝑓𝛽⁄  noises (see fig. 2) is a necessary condition of system complexity, its nontrivial 

behavior or presence of the catastrophic events (unexpected and/or extraordinary). 

There is a relatively new field in non-linear dynamics – a theory of the self-organized 

criticality [36]. It was created to explain similar phenomena in systems with the pow-

er-series distributions and 1 𝑓𝛽⁄  noises. 

The existence of the 1 𝑓𝛽⁄ noise in a system means the internal tendency to the cat-

astrophic cases in a system. The theory of the self-organized criticality studies the 

dynamical dissipative systems with the high range of discretion, which operate in the 

neighborhood of the critical point without the smallest external influence. If the sys-
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tem is in a critical configuration, than small fluctuations can lead to a random event of 

any “size” with the power-series distribution similar to (4): 

 𝑝(𝑠)~𝑠−𝜏 (7) 

Twitter as a self-organizing system generates signals with 1 𝑓⁄ noise, since the life-

time of event𝑠is related to its scale according to [36]: 

 𝑡1+𝛾 ≈ 𝑠 (8) 

where 𝛾 is the speed of event distribution in the system. 

5 Conclusion 

The main contributions of the present paper look as follows: 

 The three-dimensional model of the microblogging network [13] (such as, for ex-

ample, Twitter) as an open non-equilibrium system explains some features of so-

cial networks functionality, such as the fractality, chaotic state, persistence, as well 

as the positive memory of the TTS. But, at the same time, the dimension test of 

such dynamical system gives the negative result: empirical embedding dimension 

of all TTS equals to 6 (by 𝑛 = 6 the correlation dimension reaches the saturation 

and stops changing). This fact leads to the necessity of building a new model of a 

microblogging network in a form of nonlinear RDS. 

 We have conducted a research into the empirical PDF of some TTS to build a 

model of the microblogging network in a form of one-dimensional non-linear RDS. 

As a result it has been recognized that at the significance level equal to 0.05 the 

observable PDF has a 𝑞-exponential distribution. For such distribution, the one-

dimensional nonlinear RDS has been suggested. The fractal measures of its realiza-

tions are equivalent to the measures of the observable TTS. 

 It has been shown, that in contrast to all entropy types, the Tsallis entropy gives a 

possibility to correctly describe a network, where any user interacts not only with 

the nearest user or several nearest users, but also with the whole network or some 

of its parts. Use of the Tsallis entropy also allows to describe the macroscopic sta-

bility of a microblogging network. 

 It has also been mentioned, that because of the existence of the 1 𝑓𝛽⁄ noise and 

power series distribution, a social network may have a tendency to catastrophic 

events. If a social network keeps staying in a critical configuration, then small fluc-

tuations may lead to the random event of any scale. 

Despite the fact, that the results of the present study can be useful for the research into 

the fundamentals of the network functionality, we haven’t yet defined the physical 

meaning of parameters of the one-dimensional nonlinear RDS. That is the question of 

our further research. 
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