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1. Introduction

1.1. The Toda lattice

Let G ⊃ B ⊃ T be a reductive group with a Borel subgroup and a Cartan subgroup; 
let U be the unipotent radical of B, and let n be the Lie algebra of U . Let ψ : U(n) →
C be a regular character. Let D(G) be the ring of differential operators on G. The 
action of n by the left-invariant (resp. right-invariant) vector fields on G gives rise to 
the homomorphism U(n) ⊗ U(n) → D(G). The ring T(G) is defined as the quantum 
hamiltonian reduction D(G)/ /(U ×U ; ψ, −ψ). It comes equipped with a homomorphism 
from the ring ZU(g) of biinvariant differential operators on G. The action of U × U

on the big Bruhat cell Cw0 = U · T · ẇ0 · U is free, and the quantum hamiltonian 
reduction D(Cw0)/ /(U×U ; ψ, −ψ) is isomorphic to the ring D(T ) of differential operators 
on T . Thus we obtain a localization homomorphism T(G) ↪→ D(T ), and the composed 
embedding ZU(g) ↪→ T(G) ↪→ D(T ). This is the classical construction of the quantum 
open Toda lattice due to Kazhdan–Kostant.

At the quasiclassical level, we denote by Z(G) the symplectic variety obtained by the 
hamiltonian reduction of the cotangent bundle of G : Z(G) = T ∗G/ /(U × U ; ψ, −ψ). It 
is equipped with a lagrangian projection onto SpecZU(g) = h∗/W where ZU(g) is the 
Harish-Chandra center, h is the Lie algebra of T , and W is the Weyl group of (G, T ). 
Furthermore, Z(G) contains an open symplectic subvariety T ∗T (the cotangent bundle 
to the torus T ), and thus we obtain the composed lagrangian projection πG : T ∗T ↪→
Z(G) → h∗/W (Poisson commuting Toda hamiltonians).

1.2. Multiplicative structure

In case G = GL(n), there is the following explicit construction of the Toda hamil-
tonians (see e.g. [7, Section 2] and references therein). Let t1, . . . , tn be the diagonal 
matrix elements coordinates on the diagonal torus T ⊂ GL(n). Let w1, . . . , wn be the 
corresponding coordinates on the dual Lie algebra h∗. For r = 1, . . . , n we consider the 

local Lax matrix Lr(z) =
(
z − wr tr
−t−1

r 0

)
∈ SL(2, C[z]), and form the complete mon-

odromy matrix L(z) = L1(z) · · ·Ln(z) =
(
Q(z) R′(z)
R(z) Q′(z)

)
. Then the Toda hamiltonians 

πGL(n)(t1, w1, . . . , tn, wn) are nothing but the coefficients of the polynomial Q(z).1
Our note stems from a simple observation that the above multiplicative structure 

of type A Toda hamiltonians arises from the associative multiplication Z(GL(k)) ×

1 Realizing Sp(2n) as the folding of GL(2n) and identifying the Siegel Levi subgroup with GL(n), we 
deduce that the Toda hamiltonians πSp(2n)(t1, w1, . . . , tn, wn) are nothing but the (even degree) coef-

ficients of Q(z) where 
(

Q(z) R′(z)
R(z) Q′(z)

)
= L1(z) · · ·Ln(z)L′

n(z) · · ·L′
1(z), and L′

r(z) =
(

z + wr t−1
r

−tr 0

)
∈

SL(2, C[z]), r = 1, . . . , n.
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Z(GL(l)) → Z(GL(k + l)) that can be quantized to a coassociative comultiplication 
T(GL(k + l)) → T(GL(k)) ⊗ T(GL(l)). More generally, for any pair of Levi subgroups 
T ⊂ M ⊂ L ⊂ G we have a homomorphism T(L) → T(M) satisfying the obvious tran-
sitivity relations, see Section 2.2. Turning back to the type A case, note that Z(GL(n))
is isomorphic to the open zastava space 

◦
Zn of degree n based maps from (P1, ∞) to 

(P1, ∞), aka moduli space of euclidean SU(2)-monopoles of topological charge n. Under 
this isomorphism, the above complete monodromy matrix goes to the scattering matrix, 
and the Toda multiplication goes to the zastava multiplication [4, 2(vi, xi, xii)] which 
we learned of from D. Gaiotto and T. Dimofte, see Theorem 2.8.

1.3. Shifted Yangians

According to [4, Appendix B], the quantization T(GL(n)) of C[Z(GL(n))] is a certain 
explicit quotient of the shifted Yangian Y−2n(sl2). One of our main results is that the 
above comultiplication T(GL(k + l)) → T(GL(k)) ⊗ T(GL(l)) descends from a comulti-
plication Y−2k−2l(sl2) → Y−2k(sl2) ⊗ Y−2l(sl2), see Theorem 6.12.

Much of this paper is concerned with the study of comultiplication for shifted Yangians 
(beyond sl2). In Theorem 4.12, we establish the existence of such a coproduct for any 
simply-laced Lie algebra g. This generalizes the coproduct on shifted gln-Yangians defined 
in [5, Theorem 11.9], which is analogous to the dominant type A case of our construction 
(see Remark 4.13). We also study the corresponding multiplicative structure on the 
classical limit of shifted Yangians, which are the moduli spaces Wμ which we introduced 
in [4], see Section 5.

We must admit that the identification of the quantum Toda for GL(n) and the shifted 
Yangian for sl2 (purely algebraic objects) goes through a topological medium: equivariant 
homology of the affine Grassmannian of GL(n). According to [4, Appendix A], the latter 
convolution ring has a natural representation in the difference operators on h∗. As a 
bonus we obtain a bispectrality result in Proposition 2.15.
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2. Quantum Toda for Levi subgroups

2.1. Quantum Toda lattice

Let G ⊃ B ⊃ T be a reductive group with a Borel and Cartan subgroup. Let T ⊂
B− ⊂ G be the opposite Borel subgroup; let U (resp. U−) be the unipotent radical of 
B (resp. B−). The Lie algebra of G (resp. U−) will be denoted by g (resp. n−). Let 
U�(g), U�(n−) stand for the �-universal enveloping algebras of g, n−. Let ψ : U�(n−) →
C[�] be a homomorphism such that ψ(fα) = 1 for any simple root α (we fix a root 
generator fα ∈ n− ⊂ U�(n−)). Let D�(G) stand for the global sections of the sheaf of 
�-differential operators on G: it is the smash product of U�(g) and C[G]. The action 
of n− by the left-invariant (resp. right-invariant) vector fields on G gives rise to the 
homomorphism l (resp. r) : U�(n−) → D�(G). Let Iψ ⊂ D�(G) be the left ideal generated 
by the �-differential operators of the sort l(x1) −ψ(x1) +r(x2) +ψ(x2), x1, x2 ∈ U�(n−). 
We consider the quantum hamiltonian reduction

T�(G) := (D�(G)/Iψ)U−×U−

where the first (resp. second) copy of U− acts on G (and hence on D�(G)) by the left (resp. 
right) translations: (u1, u2) · g := u1gu

−1
2 . It is an algebra containing the center ZU�(g)

via the embedding ZU�(g) ↪→ D�(G) as both left- and right-invariant �-differential 
operators. This is the classical Kazhdan–Kostant construction of the quantum Toda 
lattice, see [14].

2.2. Comparison with the Toda lattice for a Levi subgroup

For each element w of the Weyl group W = NG(T )/T we choose its lift ẇ into the 
normalizer NG(T ). Let w0 be the longest element of W . The action of U− × U− on the 
big Bruhat cell Cw0 := U− · T · ẇ0 · U− = U− · T · ẇ−1

0 · U− ⊂ G is free, and hence the 
quantum hamiltonian reduction of D�(Cw0) is isomorphic to D�(T ) = T�(T ), a certain 
localization of T�(G). Thus we have an embedding ZU�(g) ↪→ T�(G) ↪→ D�(T ).2

More generally, let T ⊂ L ⊂ P ⊃ B be a Levi subgroup of a parabolic subgroup of G; 
let P− ⊃ B− be the opposite parabolic subgroup. We denote by l, p, p− the Lie algebras 
of L, P, P−. We denote by UL (resp. UL

−) the intersection L ∩ U (resp. L ∩ U−), and 
we denote by UP (resp. UP

− ) the unipotent radical of P (resp. P−). Finally, we denote 
by nL−, n

P
−, n

P the Lie algebras of UL
−, U

P
− , UP . We will also need the subgroups UP

w0
:=

ẇ0U
P ẇ−1

0 , UL
w0

:= ẇ0U
Lẇ−1

0 and their Lie algebras nPw0
, nLw0

. The restriction of ψ to 
U�(nP−) (resp. U�(nPw0

), U�(nL−), U�(nLw0
)) will be denoted by ψP (resp. ψP

w0
, ψL, ψL

w0
). 

Let ẇL
0 be a lift of wL

0 (the longest element in the parabolic Weyl subgroup WL ⊂ W ) 
into the normalizer NG(T ). Let CWLw0 ⊂ G be an affine open subvariety equal to the 
2 Quite often the term quantum Toda lattice refers to the composite embedding ZU�(g) ↪→ D�(T ).
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union of all the Bruhat cells Cww0 where w ∈ WL (it is the preimage of the big Bruhat cell 
(B · ẇ0Pẇ−1

0 )/ẇ0Pẇ−1
0 in the partial flag variety G/ẇ0Pẇ−1

0 ). The action of UP
− ×UP

w0

on CWLw0 is free, and a closed embedding ıGL : L ↪→ CWLw0 , g 	→ gẇL
0 ẇ

−1
0 , is a cross 

section of this action giving rise to an isomorphism

L× UP
− × UP

w0

∼−→CWLw0 , (g, x1, x2) 	→ x1gẇ
L
0 ẇ

−1
0 x−1

2 , (2.1)

and hence to L ∼−→CWLw0/(UP
− × UP

w0
). Hence

(D�(CWLw0)/IψP ,ψP
w0

)U
P
−×UP

w0
∼−→D�(L),

where IψP ,ψP
w0

⊂ D�(CWLw0) is the left ideal generated by the �-differential oper-
ators of the sort l(x1) − ψP (x1) + r(x2) + ψP

w0
(x2), x1 ∈ U�(nP−), x2 ∈ U�(nPw0

). 
Indeed, (2.1) gives rise to an isomorphism D�(CWLw0)

∼−→D�(UP
− ) ⊗D�(L) ⊗D�(UP

w0
), 

but (D�(UP
− )/IψP )U

P
− 
 C, and (D�(UP

w0
)/IψP

w0
)U

P
w0 
 C.

Composing the above isomorphism with the restriction to the open subset D�(G) →
D�(CWLw0) we obtain a homomorphism

(D�(G)/IψP ,ψP
w0

)U
P
−×UP

w0 → D�(L).

Furthermore, we obtain a composed homomorphism

τLG : T�(G) =
(
(D�(G)/IψP ,ψP

w0
)U

P
−×UP

w0/IψL,ψL
w0

)UL
−×UL

w0

→ (D�(L)/IψL,ψL
w0

)U
L
−×UL

w0 = T�(L).

For a pair of Levi subgroups M ⊂ L ⊂ G we have ıGM = ıGL ◦ıLM , and hence τMG = τLG ◦τML .

2.3. Type A

For G = GL(n) we will denote T�(GL(n)) by Tn
�

for short. We view GL(n) as the group 
of invertible n ×n-matrices. Let T be the diagonal subgroup, and let U (resp. U−) be the 
subgroup of lower (resp. upper) triangular matrices with 1’s on the main diagonal. We 
choose a lift W → NG(T ), w 	→ ẇ representing each w ∈ W = Sn by the corresponding 
permutation matrix. In particular, for any Levi L, we have (ẇL

0 )2 = 1. Let L be the 
subgroup of block matrices with blocks of sizes k, l such that k + l = n. Then τk,l := τLG
is a homomorphism from T�(G) = Tk+l

�
to T�(L) = Tk

�
⊗Tl

�
. We obtained a coassociative 

comultiplication on 
⊕

n T
n
�
.

Let V�1 = V = C
n be the standard (tautological) representation of GL(n) and 

V ∗
�1

be its dual representation. Let v1, . . . , vn ∈ V�1 be the standard basis (so that 
vn ∈ V U

�1
, v1 ∈ V

U−
�1 ). Let v∗1 , . . . , v∗n ∈ V ∗

�1
be the dual basis (so that v∗1 ∈ (V ∗

�1
)U , v∗n ∈
(V ∗
�1

)U−). Then the functions Δ′(g) := 〈gv1, v∗n〉 and Δ(g) := 〈g−1v1, v∗n〉 on G are 



354 M. Finkelberg et al. / Advances in Mathematics 327 (2018) 349–389
U− × U−-invariant hence survive after Hamiltonian reduction. We denote their images 
in Tn

�
by the same symbols Δ′ and Δ for brevity.

Any central element C ∈ U�(g) is naturally a bi-invariant �-differential operator on 
G hence survives after Hamiltonian reduction as well. We denote by C1 and C2 the 

images in Tn
�

of the linear central element 
n∑

i=1
eii and the quadratic central element 

1
2

n∑
i,j=1

(eiiejj − eijeji), respectively.

Proposition 2.4. We have τk,l(Δ′) = 1 ⊗Δ′, τk,l(Δ) = Δ ⊗ 1, τk,l(C1) = C1 ⊗ 1 +1 ⊗C1, 
τk,l(C2) = C2 ⊗ 1 + 1 ⊗ C2 + C1 ⊗ C1 −Δ′ ⊗Δ − l�

2 C1 ⊗ 1 + k�
2 1 ⊗ C1.

Proof. Straightforward check. �
2.5. Equivariant homology of an affine Grassmannian

Let G be as in Section 2.1, let G∨ be its Langlands dual group, and let GrG∨ = G∨
K/G∨

O

be its affine Grassmannian; here K = C((z)) ⊃ C[[z]] = O. The affine Grassmannian is 
acted upon by a proalgebraic group G∨

O�C
× (the second factor acts by loop rotations). 

The equivariant homology HG∨
O�C

×

• (GrG∨) forms a convolution algebra, and an isomor-
phism β : HG∨

O�C
×

• (GrG∨) ∼−→T�(G) was constructed in [2, Theorem 3].3 In particular, 
β−1(�) is a generator of H•

C×(pt), and β−1(ZU�(g)) = H•
G∨

O�C×(pt) ⊂ H
G∨

O�C
×

• (GrG∨).
For a dominant coweight λ of G∨ the corresponding G∨

O-orbit closure in GrG∨ is 
denoted by GrλG∨ , and its intersection cohomology sheaf is denoted by ICλ. Let dλ stand 
for dim GrλG∨ . We have a canonical morphism from the shifted constant sheaf on GrλG∨

to the intersection cohomology sheaf:

CGrλ
G∨

[dλ] → ICλ, (2.2)

and hence H•+dλ(GrλG∨) → H•(GrλG∨ , ICλ) inducing isomorphism in the top and lowest 
cohomology. The geometric Satake isomorphism is an identification H•(GrλG∨ , ICλ) ∼= Vλ

with an irreducible representation of G with highest weight λ. Note that Vλ comes 
equipped with a highest weight vector vλ and a lowest weight vector vw0λ arising from 
the top and lowest fundamental classes in the cohomology H•+dλ(GrλG∨). Hence the dual 
G-module V ∗

λ comes equipped with a highest weight vector v∗−w0λ
and a lowest weight 

vector v∗−λ.
We consider the fundamental cycle [GrλG∨ ] ∈ H

G∨
O�C

×

• (GrG∨). We want to describe 
β[GrλG∨ ] ∈ T�(G). To this end note that the matrix coefficient 〈gvw0λ, v

∗
−λ〉 ∈ C[G] is 

U− × U−-invariant and hence gives rise to the same named element in T�(G).

3 An isomorphism β was constructed in [2] for semisimple groups, but the argument works word for word 

for reductive groups.
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Lemma 2.6. β[GrλG∨ ] = 〈gvw0λ, v
∗
−λ〉 ∈ T�(G).

Proof. Dually to (2.2), we have a canonical morphism from the intersection cohomology 
sheaf to the shifted dualizing sheaf ICλ → ωGrλ

G∨
[−dλ] and hence

c : H•
G∨

O�C×(GrλG∨ , ICλ) → H•+dλ

G∨
O�C×(GrλG∨ ,ωGrλ

G∨
) →

→ H•+dλ

G∨
O�C×(GrG∨ ,ωGrG∨ ) = H

G∨
O�C

×

•+dλ
(GrG∨). (2.3)

According to [2, Section 3.2, Lemma 1], H•
G∨

O�C×(GrλG∨ , ICλ) contains a H•
G∨

O�C×(pt)-
submodule H•

G∨
O�C×(pt) ⊗ Cvw0λ, and c(1 ⊗ vw0λ) = [GrλG∨ ].

Recall the functor F of [2, 6.4] from the equivariant derived category DG∨
O�C×(GrG∨)

to the category of asymptotic Harish-Chandra U�(g)-bimodules. It takes ICλ to the 
free bimodule U�(g) ⊗ Vλ, and ωGrG∨ to the hamiltonian reduction K = κ�(U�(g) ⊗
C[G]) (see [2, Proposition 4]). Furthermore, it takes the composed morphism ICλ →
ωGrλ

G∨
[−dλ] → ωGrG∨ [−dλ] to the morphism b : U�(g) ⊗ Vλ → K arising from U�(g) ⊗

Vλ � u ⊗v 	→ u ⊗v⊗v∗−λ ∈ U�(g) ⊗Vλ⊗V ∗
λ ⊂ U�(g) ⊗C[G]. Finally, it takes the induced 

morphism on the equivariant cohomology to κ�(b) : κ�(U�(g) ⊗ Vλ) → κ�(K). Hence
1 ⊗vw0λ goes to the image of 1 ⊗vw0λ⊗v∗−λ in κ�(K), that is to 〈gvw0λ, v

∗
−λ〉 ∈ T�(G). �

2.7. The classical limit

The quotient algebra T(G) := T�(G)/� is a Poisson algebra containing a maximal Pois-
son commutative subalgebra ZU�(g)/� (classical Toda lattice). We denote the spectrum 
of the commutative algebra T(G) by Z(G). The homomorphism τLG of Section 2.2 reduced 
modulo � gives rise the same named homomorphism τLG : T(G) → T(L) and a morphism 
zGL : Z(L) → Z(G). In the setup of Section 2.3 we have Tn = T(GL(n)), Zn = SpecTn, 
and we obtain a morphism zk,l : Zk × Zl → Zk+l.

The isomorphism β of Section 2.5 reduced modulo � gives rise to the same named 
isomorphism β : HGO• (GrG) ∼−→Tn (cf. also [1, Theorem 2.12] and [19, Theorem 6.3]). We 

also have an isomorphism Ξ: C[ ◦Zn] ∼−→HGO• (GrG) of [4, Theorem 3.1] where 
◦
Zn stands 

for the open zastava space of degree n based maps from (P1, ∞) to the flag variety of 
SL(2) with a marked point of the upper triangular Borel subgroup. Let ι : ◦

Zn ∼−→ ◦
Zn be 

the Cartan involution of [3, 1.4(3)]. We denote the composition of the above isomorphisms 
at the level of spectra by Υ = ι ◦ SpecΞ ◦ Specβ : Zn ∼−→ ◦

Zn.

In elementary terms, ◦
Zn is the moduli space of pairs of relatively prime polyno-

mials (Q, R) ∈ C[z] such that Q is monic of degree n, and deg(R) < n. The em-
◦
bedding Ψ: Zn ↪→ SL(2, C[z]) of [4, 2(xi), 2(xii)] takes (Q, R) to a unique matrix 
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(
Q R′

R Q′

)
of determinant 1 such that degR′ < n, degQ′ < n − 1. The Cartan invo-

lution ι is intertwined by Ψ with the matrix transposition. The multiplication morphism 

μ : ◦
Zk × ◦

Zl → ◦
Zk+l of [4, 2(vi)] is intertwined by Ψ with the matrix multiplication: 

Ψ (μ((Q1, R1), (Q2, R2))) = Ψ(Q1, R1) ·Ψ(Q2, R2). We have the factorization projection 

π : ◦
Zn → A

(n), (Q, R) 	→ Q, to the configuration space of unordered roots of Q. The 

subalgebra C[A(n)] ⊂ C[ ◦Zn] corresponds under Υ to the maximal Poisson commutative 

subalgebra ZU(gln) ⊂ Tn. More precisely, let (e, h, f) be an sl2-triple in g = gln such 

that e =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠, and h is diagonal. Let Zg(f) be the centralizer of f in g, 

and let Σn = e + Zg(f) ⊂ g be a Kostant slice. Let ZG
g be the universal centralizer: the 

moduli space of pairs of commuting matrices (x, g) such that x ∈ Σn, and g is invertible. 
We have an isomorphism ζ : ZG

g

∼−→ ◦
Zn taking a pair (x, g) to (Q, R) where Q is the 

characteristic polynomial of x, and R is a unique polynomial of degree less than n such 
that R′(x) = g. In particular,

R′(z) = gn1z
n−1 + gn−1,1z

n−1 + . . . + g21z + g11. (2.4)

We also have an isomorphism η : ZG
g

∼−→Zn constructed as follows. The Killing form 
identifies e ∈ n with ψ ∈ n∗−. Under this identification, ZG

g ⊂ G × g 
 G × g∗ =
T ∗G (left-invariant identification) lies in the moment level μ−1(ψ, −ψ) of the moment 
map μ : T ∗G → n∗− × n∗−. The composed projection ZG

g ↪→ μ−1(ψ, −ψ) � T ∗G/ /(U− ×
U−; ψ, −ψ) = Zn is the desired isomorphism η. Finally, Υ = ζ ◦ η−1 : Zn ∼−→ ◦

Zn.

Theorem 2.8. The following diagram commutes: 

Zk × Zl zk,l−−−−→ Zk+l⏐⏐�Υ×Υ Υ
⏐⏐�

◦
Zk × ◦

Zl μ−−−−→ ◦
Zk+l

.

Proof. The space Zn is equipped with a Poisson structure by construction (in fact, it 
is symplectic). The space 

◦
Zn is also equipped with a Poisson (symplectic) structure, 

see e.g. [8]. The isomorphism Υ: Zn ∼−→ ◦
Zn is Poisson according to [4, Proposition 3.18]

(more precisely, both SpecΞ and ι are anti-Poisson, and Specβ is Poisson). The upper 
arrow in the diagram of Theorem 2.8 is a Poisson morphism by construction.
Lemma 2.9. μ is Poisson.
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Proof. The rational R-matrix formula for the Poisson bracket {Tij(u), Tkl(v)} =
1

u−v (Til(u)Tkj(v) − Til(v)Tkj(u)) is well-defined on matrix-valued polynomials and com-

patible with the multiplication of matrices. Note that Ψ( ◦
Zn) ⊂ SL(2, C[z]) forms a 

Poisson subvariety with respect to this bracket. Hence we get a well-defined Poisson 

structure on 
◦
Zn compatible with μ. On the other hand this bracket on 

◦
Zn is op-

posite to the standard one [8]. Indeed, it follows from [8] that {Q(u), Q(v)} = 0, 
{Q(u), R(v)} = −1

u−v (Q(u)R(v) − Q(v)R(u)) and {R(u), R(v)} = 0, hence on the co-
efficients of Q and R the Poisson brackets in question are opposite. On the other hand 

the field of rational functions on 
◦
Zn is generated by the coefficients of Q and R. �

Hence it suffices to check the commutativity of the diagram of Theorem 2.8 on an 

appropriate set of Poisson generators of the coordinate rings. Let R(z) =
n∑

k=1
rkz

n−k, 

R′(z) =
n∑

k=1
r′kz

n−k and Q(z) = zn +
n∑

k=1
qkz

n−k. Clearly, the functions qk, rk, r′k (for 

k = 1, . . . , n − 1) generate C[ ◦Zn] as a commutative ring. We will also need the functions 

yk, y′k for k = 1, 2, . . . defined as R(z)
Q(z) =

∞∑
k=1

ykz
−k and R

′(z)
Q(z) =

∞∑
k=1

y′kz
−k. Finally, we set 

1
Q2(z) =

∞∑
k=1

xkz
−k; note that x1 = x2 = . . . = x2n−1 = 0, and x2n = 1.

Lemma 2.10. The elements r1, r′1, q1, q2 generate the coordinate ring C[ ◦Zn] as a Poisson 

algebra.

Proof. It is easy to see that yk, y′k, xk, k = 1, 2, . . ., generate C[ ◦Zn] as a commutative 

ring. We have y1 = r1, y′1 = r′1, x2n+1 = −2q1, x2n+2 = 3q2
1−2q2. We have {x2n+2, yk} =

2yk+1+2x2n+1yk and {x2n+2, y′k} = −2y′k+1−2x2n+1y
′
k, and hence all the functions yk, y′k

are Poisson expressions of the above generators. Also, we have {ym, y′l} = xm+l−1, and 
hence by induction we conclude that xk are Poisson expressions of the above generators 
as well. �

Now we can finish the proof of the theorem. By direct computation we have Υ∗(r1) =
−Δ, Υ∗(r′1) = Δ′, Υ∗(q1) = C1, Υ∗(q2) = C2 (we denote the specializations of the 
elements from Tn

�
at � = 0 by the same symbols for brevity). Also, from the 2 ×2-matrix 

multiplication we see that μ∗(r1) = r1 ⊗ 1, μ∗(r′1) = 1 ⊗ r′1, μ∗(q1) = q1 ⊗ 1 + 1 ⊗ q1, 
μ∗(q2) = q2⊗1 +1 ⊗q2+q1⊗q1+r′1⊗r1. So the theorem follows from Proposition 2.4. �
Remark 2.11. We assume now G is semisimple, and T ⊂ L ⊂ G is a Levi subgroup con-
taining a Cartan torus. The classical Toda system is the projection Z(L) → h∗/WL

(where h is the Lie algebra of T ). Let ΓG
L ⊂ Z(L) × Z(G) be the graph of zGL . 
Then the projection prL,G : ΓG
L → h∗/WL × h∗/WG is generically finite. If L ⊂ G =
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SL(n) corresponds to a decomposition n = k + l, the degree of prL,G equals 
(
n−2
k−1

)
(D. Gaiotto, private communication). If L = T ⊂ G = SL(n), the degree of prT,SL(n)
equals 1, 1, 2, 4, 11, 33, 120, 470, 2107, 10189 for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively 
(E. Rains, private communication).

2.12. Some equivariant homology classes

We will need a special case of Lemma 2.6. Recall the setup of Section 2.5, and let 
G = GL(n) ∼= G∨. Let Gr�1

G (resp. Gr−�1
G ) be the closed GO-orbit in GrG formed by all 

the lattices L such that zOn ⊂ L ⊂ On and dimC On/L = 1 (resp. On ⊂ L ⊂ z−1On and 
dimC L/On = 1). The fundamental class of Gr�1

G (resp. Gr−�1
G ) in HGO�C

×
• (GrG) will 

be denoted [Gr�1
G ] (resp. [Gr−�1

G ]).
Recall the elements Δ′, Δ ∈ Tn

�
introduced in Section 2.3.

Lemma 2.13. We have β[Gr�1
G ] = Δ′ and β[Gr−�1

G ] = (−1)n−1Δ.

Proof. This follows from Lemma 2.6 up to a multiplicative constant. To determine the 
constants, recall that we have chosen the principal nilpotent e ∈ n to be the sum of 
elementary matrices e =

n∑
i=1

ei+1,i ∈ g = gln. The operator of multiplication by the first 

Chern class of the tautological G∨-bundle is identified with the action of the principal 
nilpotent e ∈ g via the isomorphism H•

G∨
O�C×(GrλG∨ , ICλ) = Vλ. For λ = ±1 we have 

GrλG∨ 
 P
n−1, hence the top-dimensional fundamental class of GrλG∨ gets identified with 

en−1vw0λ. The latter is vn for λ = 1, and (−1)n−1v∗1 for λ = −w01. �
2.14. Bispectrality

This section is not used in what follows.
We will need the homomorphism (ι∗)−1 from HGO�C

×
• (GrG) to a certain localization 

of 
(
HTO�C

×
• (GrT )

)Sn

, see [4, A(i)]. The convolution algebra A�(T, 0) := HTO�C
×

• (GrT )
is a C[�]-algebra generated by wr, u±1

r , 1 ≤ r ≤ n, with relations [u±1
r , ws] = ±δr,s�u±r . 

It satisfies the Ore condition with respect to the set {wr−ws +m�, 1 ≤ r �= s ≤ n, m ∈
Z}, and the corresponding localization is denoted Ã�. So we have the homomorphism 
(ι∗)−1 : HGO�C

×
• (GrG) → (Ã�)Sn .

We define a certain space of formal functions on the diagonal torus T ⊂ G, containing 
Whittaker functions. Let t1, . . . , tn be the diagonal matrix elements considered as func-
tions on the diagonal torus T . Let h (resp. b) stand for the Lie algebra of T (resp. B). 
Let R := C(h∗ × A

1
t1 × A

1
�
)[[t1t−1

2 , . . . , tn−1t
−1
n ]] be the ring of formal Taylor series in 

t1t
−1
2 , . . . , tn−1t

−1
n with coefficients in the field of rational functions on the product of h∗

and a line with coordinate t1 and a line with coordinate �. The ring Tn
�
⊂ D�(T ) acts on 

R naturally. Also, the ring Ã� acts on R via its action on C(h∗ × A
1
�
) by the difference 
operators. Namely, let w1 = e11, . . . , wn = enn be the elementary matrices considered as 
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elements of the diagonal Cartan Lie algebra h, i.e. linear functions on h∗. Then we set 
u±1
r (ws) = ws ± �δrs, 1 ≤ r, s ≤ n. Let R be a free rank one R-module with generator 

t
w1/�
1 · · · twn/�

n . Then Tn
�
⊂ D�(T ) and Ã� act on R.

We consider the generic universal Verma module M�(−ρ) = U�(g) ⊗U�(b) C(h∗ ×
A

1
�
)(−ρ) where C(h∗ × A

1
�
)(−ρ) is a U�(b)-module which factors through the U�(h) =

C[h∗ × A
1
�
]-module where x ∈ h acts by multiplication by x − �ρ(x) (and ρ ∈ h∗ is 

the halfsum of the positive roots). It is equipped with the C(h∗ × A
1
�
)-valued Shapo-

valov form (, ). The C(h∗ × A
1
�
)-vector space of (U�(n−), ψ)-coinvariants in M�(−ρ) is 

1-dimensional, and any coinvariant is proportional to the Shapovalov scalar product with 
the Whittaker vector w in a completion of M�(−ρ). More precisely, let ψ+ : U�(n) → C[�]
be a homomorphism such that ψ+(ei+1,i) = 1 for any i = 1, . . . , n − 1. Then there is a 
unique vector w =

∑
d∈Nn−1 wd ∈ M̂�(−ρ) (an infinite sum of the weight components) 

such that the highest weight component w0 of w is 1 ∈ C(h∗ × A
1
�
), and uw = ψ+(u)w

for any u ∈ U�(n). Finally, the Whittaker function W is defined as the Shapovalov scalar 
product W :=

∏n
r=1 t

wr/�+r−1
r

∑
d∈Nn−1(wd, wd) 

∏n−1
s=1 (ts/ts+1)ds ∈ R.

Proposition 2.15. We have β(h)W = (ι∗)−1(h)W for any h ∈ HGO�C
×

• (GrG).

Proof. We have C1W = (
∑n

r=1 wr)W, C2W = (
∑

1≤r<s≤n wrws + (ρn, ρn)�2)W (nota-
tions of Section 2.3; ρn := (n−1

2 , n−3
2 , . . . , 1−n

2 )). Also, we have Δ′W = (
∑n

r=1
∏

s �=r(wr−
ws)−1ur)W, ΔW = (

∑n
r=1

∏
s �=r(wr − ws)−1u−1

r )W according to [20, Theorem 3 
and (6.7)]. According to [4, (A.3), (A.4)], (ι∗)−1[Gr�1

G ] =
∑n

r=1
∏

s �=r(wr − ws)−1ur,
(ι∗)−1[Gr−�1

G ] =
∑n

r=1
∏

s �=r(ws − wr)−1u−1
r . Since C1, C2, Δ′, Δ generate Tn

h [�−1], the 
proposition follows from Lemma 2.13. �
3. Shifted Yangians

In this section we consider the family of algebras known as shifted Yangians, following 
[4, Appendix B]. Our main goal is to prove a PBW theorem for these algebras.

Let g denote a simply-laced semisimple Lie algebra (of finite type) with simple roots 
{αi}i∈I . We write αi · αj for the usual inner product of these simple roots.

Definition 3.1. The Cartan doubled Yangian Y∞ := Y∞(g) is defined to be the C-algebra 
with generators E(q)

i , F (q)
i , H(p)

i for i ∈ I, q > 0 and p ∈ Z, with relations

[H(p)
i , H

(q)
j ] = 0,

[E(p)
i , F

(q)
j ] = δijH

(p+q−1)
i ,

[H(p+1)
i , E

(q)
j ] − [H(p)

i , E
(q+1)
j ] = αi · αj

2 (H(p)
i E

(q)
j + E

(q)
j H

(p)
i ),

[H(p+1)
i , F

(q)
j ] − [H(p)

i , F
(q+1)
j ] = −αi · αj

2 (H(p)
i F

(q)
j + F

(q)
j H

(p)
i ),

αi · αj
[E(p+1)
i , E

(q)
j ] − [E(p)

i , E
(q+1)
j ] = 2 (E(p)

i E
(q)
j + E

(q)
j E

(p)
i ),
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[F (p+1)
i , F

(q)
j ] − [F (p)

i , F
(q+1)
j ] = −αi · αj

2 (F (p)
i F

(q)
j + F

(p)
j F

(q)
i ),

i �= j,N = 1 − αi · αj ⇒ sym[E(p1)
i , [E(p2)

i , · · · [E(pN )
i , E

(q)
j ] · · · ]] = 0,

i �= j,N = 1 − αi · αj ⇒ sym[F (p1)
i , [F (p2)

i , · · · [F (pN )
i , F

(q)
j ] · · · ]] = 0.

Remark 3.2. Although we have assumed g to be simply-laced and finite type, we expect 
that our results hold in greater generality (e.g. certain Kac–Moody algebras). Indeed, 
we make use of two results for the ordinary Yangian Y = Y (g): (1) the PBW theorem 
for Y , and (2) the existence of a coproduct Δ : Y → Y ⊗ Y . If g is such that (1) and 
(2) are known to hold, then the results in this section and the next should hold. We will 
not pursue this direction further here.

We denote by Y >
∞ , Y ≥

∞ the subalgebras of Y∞ generated by the E(q)
i (resp. E(q)

i and 
H

(p)
i ). Likewise we denote by Y <

∞ , Y ≤
∞ the subalgebras generated by the F (q)

i (resp. 
F

(q)
i , H(p)

i ). Also denote by Y =
∞ the subalgebra generated by the H(p)

i . We will use similar 
notation for the various quotients of Y∞ that we define below.

Remark 3.3. There is a surjective homomorphism Y > � Y >
∞ , where Y > is the analogous 

subalgebra of the ordinary Yangian Y . This map is defined by E(q)
i 	→ E

(q)
i .

Remark 3.4. Consider a positive root β, and pick any decomposition β = αi1 + . . .+αi�

into simple roots so that the element [ei1 , [ei2 , . . . , [ei�−1 , ei� ] · · · ] is a non-zero element 
of the root space gβ. Consider also q > 0 and a decomposition q + � − 1 = q1 + . . . + q	
into positive integers. Then we define a corresponding element of Y∞:

E
(q)
β := [E(q1)

i1
, [E(q2)

i2
, . . . [E(q�−1)

i�−1
, E

(q�)
i�

] · · · ]. (3.1)

This element, which we call a PBW variable, depends on the choices above. However, 
we will fix arbitrarily such a choice for each β and q.

Similarly, we define PBW variables F (q)
β .

Definition 3.5. For any coweight μ, the shifted Yangian Yμ is defined to be the quotient 
of Y∞ by the relations H(p)

i = 0 for all p < −〈μ, αi〉 and H(−〈μ,αi〉)
i = 1.

Remark 3.6. The algebra Y = Y0 is the usual Yangian with its standard Drinfeld pre-
sentation (except that upper indices are shifted by 1).

Remark 3.7. The homomorphism from Remark 3.3 can be extended to a surjection Y ≥ �
Y ≥
μ , defined by E(q)

i 	→ E
(q)
i and H(q)

i 	→ H
(−〈μ,αi〉+q)
i for q > 0. Similarly, there is a 

surjection Y ≤ � Y ≤
μ .
There are natural “shift homomorphisms” between these algebras:



M. Finkelberg et al. / Advances in Mathematics 327 (2018) 349–389 361
Proposition 3.8. Let μ be a coweight, and μ1, μ2 be antidominant coweights. Then there 
exists a homomorphism ιμ,μ1,μ2 : Yμ −→ Yμ+μ1+μ2 defined by

H
(r)
i 	→ H

(r−〈μ1+μ2,αi〉)
i , E

(r)
i 	→ E

(r−〈μ1,αi〉)
i , F

(r)
i 	→ F

(r−〈μ2,αi〉)
i . (3.2)

Proof. Immediate from Definition 3.5. �
Remark 3.9. Given our present conventions, for μ dominant, the shifted Yangian as 
defined in [12, Section 3.6] as a subalgebra of Y , can be identified with the image of the 
shift homomorphism ιμ,0,−μ : Yμ −→ Y0 = Y (here we use Corollary 3.16 to see that the 
map is injective). On the other hand, when μ is not dominant, these shifted Yangians 
are not subalgebras of Y and their definition first appeared [4, Appendix B].

The definition of shifted Yangians was originally inspired by the work of Brundan–
Kleshchev [5], who considered shifted Yangians inside the gln Yangian.

Remark 3.10. Set S(−〈μ,αi〉+1)
i = H

(−〈μ,αi〉+1)
i and

S
(−〈μ,αi〉+2)
i = H

(−〈μ,αi〉+2)
i − 1

2
(
H

(−〈μ,αi〉+1)
i

)2 (3.3)

For r ≥ 1, it is not hard to check that

[S(−〈μ,αi〉+2)
i , E

(r)
j ] = (αi · αj)E(r+1)

j ,

[S(−〈μ,αi〉+2)
i , F

(r)
j ] = −(αi · αj)F (r+1)

j .

Lemma 3.11. Let μ be an antidominant coweight. As a unital associative algebra, Yμ is 
generated by E(1)

i , F (1)
i , S(−〈μ,αi〉+1)

i = H
(−〈μ,αi〉+1)
i and S(−〈μ,αi〉+2)

i = H
(−〈μ,αi〉+2)
i −

1
2(H(−〈μ,αi〉+1)

i )2. Alternatively, Yμ is also generated by E(1)
i , F (1)

i , H(−〈μ,αi〉+k)
i (k =

1, 2). In particular, Yμ is finitely generated.

Proof. For the first assertion, it is enough to show that E(r)
i , F (r)

i H
(s)
i lie in the subalge-

bra generated by E(1)
i , F (1)

i , S(−〈μ,αi〉+k)
i (k = 1, 2) for all r ≥ 1, s ≥ −〈μ, αi〉 +1. This is 

clear since E(r)
i = 1

2 [S(−〈μ,αi〉+2)
i , E(r−1)

i ], F (r)
i = −1

2 [S(−〈μ,αi〉+2)
i , F (r−1)

i ] for all r ≥ 2
and since H(s)

i = [E(1)
i , F (s)

i ] for all s ≥ −〈μ, αi〉 + 1.
The second assertion follows immediately from the first since the subalgebra generated 

by E(1)
i , F (1)

i , S(−〈μ,αi〉+k)
i (k = 1, 2) is contained in the subalgebra generated by the 

E
(1)
i , F (1)

i , H(−〈μ,αi〉+k)
i (k = 1, 2). �

3.12. PBW theorem

In this section we will prove the PBW theorem for the algebras Yμ. This generalizes 
the well-known case of the ordinary Yangian Y due to Levendorskii [16], as well as the 

case when μ is dominant [11, Proposition 3.11].
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For each positive root β and q > 0, consider elements E(q)
β , F (q)

β ∈ Yμ defined as 
images under Y∞ � Yμ of those described in Remark 3.4. Choose a total order on the 
set of PBW variables{

E
(q)
β : β ∈ Δ+, q > 0

}
∪

{
F

(q)
β : β ∈ Δ+, q > 0

}
∪

{
H

(p)
i : i ∈ I, p > −〈μ, αi〉

}
(3.4)

If μ = 0, then ordered monomials in these PBW variables form a basis of Y by [16].
For simplicity we will assume that we have chosen a block order with respect to the 

three subsets above, i.e. ordered monomials have the form EFH.

Proposition 3.13. Yμ is spanned by ordered monomials in the PBW variables.

Proof. We first claim that Yμ is spanned by elements of the form xy, with x ∈ Y >
μ and 

y ∈ Y ≤
μ . Indeed, the relation [E(p)

i , F (q)
j ] = δijH

(r+s−1)
i allows us to reorder products of 

the generators E(p)
i and F (q)

j , while the surjection Y ≥ → Y ≥
μ from Remark 3.7 shows 

that we may reorder products of the generators E(p)
i and H(q)

i (as this is true for the 
ordinary Yangian Y ).

Next, we claim that Y >
μ is spanned by ordered monomials in the elements E(q)

β . To see 
this, we can again appeal to the surjection Y > → Y >

μ together with the PBW theorem 

for Y >. Similarly, Y ≤
μ is spanned by ordered monomials in the elements F (q)

β and H(p)
i . 

Altogether, this proves the proposition. �
Theorem 3.14. Let μ be antidominant. Then the set of ordered monomials in the PBW 
variables forms a basis for Yμ over C.

The proof of the above theorem will be given in Section 3.21. For now we give two 
important corollaries:

Corollary 3.15. For μ arbitrary, the set of ordered monomials in the PBW variables forms 
a basis for Yμ over C.

Proof. We may choose a shift homomorphism ι : Yμ −→ Yμ′ from Proposition 3.8 such 
that μ′ is antidominant. Under ι, the images of the elements E(q)

β , F (q)
β ∈ Yμ have the 

form (3.1), i.e. we may consider these images as PBW variables for Yμ′ . In particular, 
we may extend these images to a full set of PBW variables for Yμ′ .

It follows from Theorem 3.14 that the set of ordered monomials in the PBW variables 
for Yμ map bijectively under ι onto a subset of a basis for Yμ′ , so in particular they are 
linearly independent in Yμ. Combined with Proposition 3.13, this implies that the PBW 
monomials for Yμ form a basis (and also that ι is injective). �
Corollary 3.16. For any μ and antidominant μ1, μ2, the shift homomorphism ιμ,μ1,μ2 :

Yμ −→ Yμ+μ1+μ2 from Proposition 3.8 is injective.
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Proof. Analogous to the proof of the previous corollary. �
3.17. The algebra Ỹ

Definition 3.18. The algebra Ỹ is defined to be the quotient of Y∞ by the relations 
H

(p)
i = 0 for all i ∈ I and p < 0.

To distinguish the generators of Ỹ , we will denote them by Ẽ(q)
i , F̃ (q)

i , H̃(p)
i . The 

following result is a key tool in proving Theorem 3.14:

Lemma 3.19.

(a) There is an embedding of algebras Ỹ ↪→ Y ⊗C C[H(0)
i : i ∈ I], defined by

Ẽ
(q)
i 	−→ E

(q)
i ⊗H

(0)
i , F̃

(q)
i 	−→ F

(q)
i ⊗ 1, H̃

(p)
i 	−→ H

(p)
i ⊗H

(0)
i . (3.5)

(b) Ordered monomials in the elements of the set{
Ẽ

(q)
β : β ∈ Δ+, q > 0

}
∪

{
F̃

(q)
β : β ∈ Δ+, q > 0

}
∪

{
H̃

(p)
i : i ∈ I, p ≥ 0

}
(3.6)

form a basis for Ỹ over C.

Proof. Using the relations for Ỹ as inherited from Y∞, one can verify that (3.5) is a 
homomorphism.

The remainder of the proof is analogous to that of Corollary 3.15: first one shows that 
PBW monomials span Ỹ by using the relations among its generators, and second one 
observes that these monomials map bijectively under (3.5) onto a subset of a basis for 
Y ⊗C C[H(0)

i ] (using the PBW theorem for Y ). �
Corollary 3.20. Let μ be an antidominant coweight. Then Ỹ is free as a right module 
over the polynomial ring

C[H̃(s)
i : i ∈ I, 0 ≤ s ≤ −〈μ, αi〉], (3.7)

with basis consisting of ordered monomials in the set

{Ẽ(r)
γ : γ ∈ Δ+, r ≥ 1} ∪ {F̃ (r)

γ : γ ∈ Δ+, r ≥ 1} ∪ {H̃(s)
i : i ∈ I, s > −〈μ, αi〉}. (3.8)

3.21. The PBW theorem in the antidominant case

Let μ be antidominant. The following result is immediate from the definitions of Yμ
and Ỹ as quotients of Y∞:
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Lemma 3.22. There is a surjective homomorphism Ỹ � Yμ defined by Ẽ(q)
i 	→ E

(q)
i ,

F̃
(q)
i 	→ F

(q)
i and H̃(p)

i 	→ H
(p)
i . The kernel of this homomorphism is the ideal

Iμ :=
〈
H̃

(s)
i − δs,−〈μ,αi〉 : i ∈ I, 0 ≤ s ≤ −〈μ, αi〉

〉
two-sided

. (3.9)

Lemma 3.23. Iμ is equal to the left ideal

〈
H̃

(s)
i − δs,−〈μ,αi〉 : i ∈ I, 0 ≤ s ≤ −〈μ, αi〉

〉
left

. (3.10)

Proof. Denote this left ideal by I left
μ . We will prove the claim by showing that I left

μ is 
also a right ideal.

In Ỹ , we have the relations

[H̃(0)
i , Ẽ

(r)
j ] = 0, [H̃(1)

i , Ẽ
(r)
j ] = (αi, αj)Ẽ(r)

j H̃
(0)
i , (3.11)

[H̃(s+1)
i , Ẽ

(r)
j ] = [H̃(s)

i , Ẽ
(r+1)
j ] + (αi,αj)

2 [H̃(s)
i , Ẽ

(r)
i ] + (αi, αj)Ẽ(r)

j H̃
(s)
i . (3.12)

By induction on s, it follows that for any r ≥ 1,

[H̃(s)
i , Ẽ

(r)
j ] ∈

〈
H̃

(0)
i , . . . , H̃

(s−1)
i

〉
left

. (3.13)

For 0 ≤ s ≤ −〈μ, αi〉, we therefore have

(
H̃

(s)
i − δs,−〈μ,αi〉

)
Ẽ

(r)
j ∈ Ẽ

(r)
j

(
H̃

(s)
i − δs,−〈μ,αi〉

)
+ I left

μ = I left
μ . (3.14)

It follows that right multiplication by Ẽ(r)
j preserves I left

μ . Similarly for F̃ (r)
j , while for 

H̃
(r)
j this is clear. These elements generate Ỹ , so I left

μ is a right ideal. �
Proof of Theorem 3.14. Consider the homomorphism

C[H̃(s)
i : i ∈ I, 0 ≤ s ≤ −〈μ, αi〉] −→ C, (3.15)

defined by H̃(s)
i 	→ δs,−〈μ,αi〉. By Lemma 3.23, we see that Yμ is the base change of the 

right module Ỹ with respect to the map (3.15):

Yμ = Ỹ ⊗
C[H̃(s)

i :i∈I,0≤s≤−〈μ,αi〉] C. (3.16)

Recall that Ỹ is a free right module over C[H̃(s)
i : i ∈ I, 0 ≤ s ≤ −〈μ, αi〉], so the 

basis from Corollary 3.20 yields a basis for Yμ over C. This completes the proof of 

Theorem 3.14. �
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4. Coproduct

We continue with g a simply-laced semisimple Lie algebra.
In this section we will describe a family of coproducts for shifted Yangians. For any 

splitting μ = μ1+μ2, in Theorem 4.12 we will establish the existence of a homomorphism

Δμ1,μ2 : Yμ −→ Yμ1 ⊗ Yμ2 (4.1)

This generalizes the coproduct for the ordinary Yangian Y = Y0.

4.1. A new presentation

Let μ be an antidominant coweight. We will follow [15] and define another presentation 
for Yμ.

Fix a decomposition μ = μ1 + μ2 where the μi’s are antidominant coweights.
Denote by Yμ1,μ2 the algebra generated by: S(−〈μ,αi〉+1)

i , S(−〈μ,αi〉+2)
i , E(r)

i (1 ≤ r ≤
−〈μ1, αi〉 + 2), F (r)

i (1 ≤ r ≤ −〈μ2, αi〉 + 2) for all i ∈ I, with the following relations:

[S(k)
i , S

(l)
j ] = 0; (4.2)

[S(−〈μ,αi〉+1)
i , E

(r)
j ] = (αi · αj)E(r)

j , 1 ≤ r ≤ 〈μ1, αj〉 + 1; (4.3)

[S(−〈μ,αi〉+1)
i , F

(r)
j ] = −(αi · αj)F (r)

j , 1 ≤ r ≤ 〈μ2, αj〉 + 1; (4.4)

[S(−〈μ,αi〉+2)
i , E

(r)
j ] = (αi · αj)E(r+1)

j , 1 ≤ r ≤ 〈μ1, αj〉 + 1; (4.5)

[S(−〈μ,αi〉+2)
i , F

(r)
j ] = −(αi · αj)F (r+1)

j , 1 ≤ r ≤ 〈μ2, αj〉 + 1; (4.6)

[E(r)
i , F

(s)
j ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 i �= j

0 i = j, r + s < −〈μ, αi〉 + 1
1 i = j, r + s = −〈μ, αi〉 + 1
S

(−〈μ,αi〉+1)
i i = j, r + s = −〈μ, αi〉 + 2

S
(−〈μ,αi〉+2)
i + 1

2
(
S

(−〈μ,αi〉+1)
i

)2
i = j, r + s = −〈μ, αi〉 + 3

(4.7)

[E(r+1)
i , E

(s)
j ] = [E(r)

i , E
(s+1)
j ] + αi · αj

2 (E(r)
i E

(s)
j + E

(s)
j E

(r)
i ); (4.8)

[F (r+1)
i , F

(s)
j ] = [F (r)

i , F
(s+1)
j ] − αi · αj

2 (F (r)
i F

(s)
j + F

(s)
j F

(r)
i ); (4.9)

ad(E(1)
i )1−(αi·αj)(E(1)

j ) = 0; (4.10)

ad(F (1)
i )1−(αi·αj)(F (1)

j ) = 0; (4.11)[ (−〈μ,αi〉+2) (−〈μ1,αi〉+2) (−〈μ2,αi〉+2) ]

Si ,[Ei , Fi ] = 0. (4.12)
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For r ≥ 2 and s ≥ 1, set

E
(r)
i = 1

2[S(−〈μ,αi〉+2)
i , E

(r−1)
i ];

F
(r)
i = −1

2 [S(−〈μ,αi〉+2)
i , F

(r−1)
i ];

H
(s)
i = [E(1)

i , F
(s)
i ].

Remark 4.2. Note that H(s)
i = 0 if s < −〈μ, αi〉 and H(−〈μ,αi〉)

i = 1.

Next, we have the following theorem, whose proof is almost exactly the same as in [15].

Theorem 4.3. There exists an isomorphism Yμ −→ Yμ1,μ2 of unital associative algebras 
given by

E
(r)
i 	→ E

(r)
i , F

(r)
i 	→ F

(r)
i , H

(s)
i 	→ H

(s)
i ,

for r ≥ 1 and s ≥ −〈μ, αi〉 + 1.

4.4. The coproduct for the ordinary Yangian

Recall the following theorem going back to Drinfeld [6]:

Theorem 4.5. There is a homomorphism Δ: Y −→ Y ⊗Y , defined on the generators (see 
Lemma 3.11) by

Δ(X(1)
i ) = X

(1)
i ⊗ 1 + 1 ⊗X

(1)
i , for X = E,F, S,

Δ(S(2)
i ) = S

(2)
i ⊗ 1 + 1 ⊗ S

(2)
i −

∑
γ>0

〈αi, γ〉F (1)
γ ⊗ E(1)

γ

This formula for the coproduct was given without a proof in [13, (2.8)–(2.11)]. The 
proof is given in a recent paper of Guay–Nakajima–Wendlandt [10, Theorem 4.1].

4.6. The coproduct in the antidominant case

Let μ, μ1, μ2 be antidominant coweights with μ = μ1 + μ2. We wish to define a 
homomorphism Δμ1,μ2 : Yμ −→ Yμ1 ⊗Yμ2 (we will denote Δ = Δμ1,μ2 when the algebras 
involved are clear). To do so, we define it on generators as follows:

Δ(E(r)
i ) = E

(r)
i ⊗ 1, 1 ≤ r ≤ −〈μ1, αi〉;

Δ(E(−〈μ1,αi〉+1)
i ) = E

(−〈μ1,αi〉+1)
i ⊗ 1 + 1 ⊗E

(1)
i ;
Δ(E(−〈μ1,αi〉+2)
i ) = E

(−〈μ1,αi〉+2)
i ⊗ 1 + 1 ⊗E

(2)
i + S

(−〈μ1,αi〉+1)
i ⊗ E

(1)
i
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−
∑
γ>0

F (1)
γ ⊗ [E(1)

i , E(1)
γ ];

Δ(F (r)
i ) = 1 ⊗ F

(r)
i , 1 ≤ r ≤ −〈μ2, αi〉;

Δ(F (−〈μ2,αi〉+1)
i ) = 1 ⊗ F

(−〈μ2,αi〉+1)
i + F

(1)
i ⊗ 1;

Δ(F (−〈μ2,αi〉+2)
i ) = 1 ⊗ F

(−〈μ2,αi〉+2)
i + F

(2)
i ⊗ 1 + F

(1)
i ⊗ S

(−〈μ2,αi〉+1)
i

+
∑
γ>0

[F (1)
i , F (1)

γ ] ⊗E(1)
γ ;

Δ(S(−〈μ,αi〉+1)
i ) = S

(−〈μ1,αi〉+1)
i ⊗ 1 + 1 ⊗ S

(−〈μ2,αi〉+1)
i ;

Δ(S(−〈μ,αi〉+2)
i ) = S

(−〈μ1,αi〉+2)
i ⊗ 1 + 1 ⊗ S

(−〈μ2,αi〉+2)
i −

∑
γ>0

〈αi, γ〉F (1)
γ ⊗E(1)

γ .

Remark 4.7. When μ = μ1 = μ2 = 0, it is not hard to see that Δ0,0 agrees with the 
coproduct from Theorem 4.5, and hence is well-defined.

Recall that there are shift maps ι0,μ1,0 and ι0,0,μ2 , by Proposition 3.8. It is not hard 
to see that, for k = 1, 2,

Δ(S(−〈μ,αi〉+k)
i ) = (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(S(k)

i ),

Δ(E(−〈μ1,αi〉+k)
i ) = (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(E(k)

i ),

Δ(F (−〈μ2,αi〉+k)
i ) = (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(F (k)

i ).

Theorem 4.8. Δ: Yμ −→ Yμ1 ⊗ Yμ2 is a well-defined map.

Proof. We have to check that Δ preserves the defining relations. By Theorem 4.3 it 
suffices to check the relations (4.2)–(4.12).

First, we check relation (4.2). For 1 ≤ k, l ≤ 2,

[Δ(S(−〈μ,αi〉+k)
i ),Δ(S(−〈μ,αj〉+l)

j )] =

= [(ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(S(k)
i ), (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(S(l)

j )] = 0.

We check relation (4.3). For 1 ≤ r ≤ −〈μ1, αj〉,

[Δ(S(−〈μ,αi〉+1)
i ),Δ(E(r)

j )] = [S(−〈μ1,αi〉+1)
i , E

(r)
j ] ⊗ 1 = (αi · αj)Δ(E(r)

j ).

For r = −〈μ1, αj〉 + 1,

[Δ(S(−〈μ,αi〉+1)
i ),Δ(E(−〈μ1,αj〉+1)

j ] = (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0([S(1)
i , E

(1)
j ])

= (αi · αj)(ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(E(1)
j )

(−〈μ1,αj〉+1)
= (αi · αj)Δ(Ej ).
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The proof for relation (4.4) is similar to that of relation (4.3).
We check relation (4.5). For 1 ≤ r ≤ −〈μ1, αj〉,

[Δ(S(−〈μ,αi〉+2)
i ),Δ(E(r)

j )] = [S(−〈μ1,αi〉+2)
i , E

(r)
j ] ⊗ 1 +

∑
γ>0

〈αi, γ〉[E(r)
j , F (1)

γ ] ⊗E(1)
γ

= (αi · αj)E(r+1)
j ⊗ 1 +

∑
γ>0

〈αi, γ〉[E(r)
j , F (1)

γ ] ⊗E(1)
γ .

Note that if r < −〈μ1, αi〉, then [E(r)
j , F (1)

l ] = 0 for all l. Then, by induction, 
[E(r)

j , F (1)
γ ] = 0 for all γ > 0. The result follows in this case. If r = −〈μ1, αi〉, then 

[E(r)
j , F (1)

i ] = δij1. Then, by induction, [E(r)
j , F (1)

γ ] = 0 for all γ of height greater than 

or equal to 2. The second summand becomes (αi ·αj)1 ⊗E
(1)
j . Hence, the result follows.

For r = −〈μ1, αj〉 + 1,

[Δ(S(−〈μ,αi〉+2)
i ),Δ(E(−〈μ1,αj〉+1)

j )] = (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0([S(2)
i , E

(1)
j ])

= (αi · αj)(ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(E(2)
j )

= (αi · αj)Δ(E(−〈μ1,αj〉+2)
j ).

Similarly, Δ preserves relation (4.6).
Next, we check relation (4.7). If 1 ≤ r ≤ −〈μ1, αi〉 and 1 ≤ s ≤ −〈μ2, αj〉, then

[Δ(E(r)
i ),Δ(F (s)

j )] = [E(r)
i ⊗ 1, 1 ⊗ F

(s)
j ] = 0.

For r = −〈μ1, αi〉 + 1 and 1 ≤ s ≤ −〈μ2, αj〉,

[Δ(E(−〈μ1,αi〉+1)
i ),Δ(F (s)

j )] = 1 ⊗ [E(1)
i , F

(s)
j ] = δij1 ⊗H

(s)
i .

The result follows for this case.
The case where r ≤ −〈μ1, αi〉 and s = −〈μ2, αj〉 + 1 is similar.
Consider the case where r = −〈μ1, αi〉 + 2 and 1 ≤ s ≤ −〈μ2, αj〉,

[Δ(E(−〈μ1,αi〉+2)
i ),Δ(F (s)

j )] =

= 1 ⊗ [E(2)
i , F

(s)
j ] + S

(−〈μ1,αi〉+1)
i ⊗ [E(1)

i , F
(s)
j ] −

∑
γ>0

F (1)
γ ⊗ [[E(1)

i , E(1)
γ ], F (s)

j ]

= δij1 ⊗H
(s+1)
i + δijS

(−〈μ1,αi〉+1)
i ⊗H

(s)
i −

∑
γ>0

F (1)
γ ⊗ [[E(1)

i , E(1)
γ ], F (s)

j ].

Note that

(1) (1) (s) (1) (1) (s) (1) (s) (1)
[[Ei , Eγ ], Fj ] = [Ei , [Eγ , Fj ]] + [Eγ , [Fj , Ei ]].
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Since s ≤ −〈μ2, αj〉, by induction, [E(1)
γ , F (s)

j ] ∈ C1. Hence, [E(1)
i , [E(1)

γ , F (s)
j ]] = 0. 

Again, since s ≤ −〈μ2, αj〉, [F (s)
j , E(1)

i ] = δijH
(s)
j ∈ C1. So, [E(1)

γ , [F (s)
j , E(1)

i ]] = 0. 
Hence, the last sum is 0. Moreover, it is straightforward to check that the first two 
summands are consistent with the relation.

The case where 1 ≤ r ≤ −〈μ1, αi〉 and s = −〈μ2, αj〉 + 2 is similar.
Next, for 1 ≤ k, l ≤ 2 not both equal to 2, we have that

[Δ(E(−〈μ1,αi〉+k)
i ),Δ(F (−〈μ2,αj〉+l)

j ] = (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0([E(k)
i , F

(l)
j ])

= δij(ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0(H(k+l−1)
i )

= δijΔ(H(−〈μ,αi〉+k+l−1)
i ).

Next, we check relation (4.8).
First, consider the case 1 ≤ r < −〈μ1, αi〉 and 1 ≤ s < −〈μ1, αj〉. Then, we have

[Δ(E(r+1)
i ),Δ(E(s)

j )] = [E(r+1)
i , E

(s)
j ] ⊗ 1 =

=
(
[E(r)

i , E
(s+1)
j ] + αi · αj

2 (E(r)
i E

(s)
j + E

(s)
j E

(r)
i )

)
⊗ 1

= [E(r)
i ⊗ 1, E(s+1)

j ⊗ 1] + αi · αj

2
(
(E(r)

i ⊗ 1)(E(s)
j ⊗ 1) + (E(s)

j ⊗ 1)(E(r)
i ⊗ 1)

)
.

Consider the case 1 ≤ r < −〈μ1, αi〉 and s = −〈μ1, αj〉.

[Δ(E(r+1)
i ),Δ(E(−〈μ1,αj〉)

j )] − [Δ(E(r)
i ),Δ(E(−〈μ1,αj〉+1)

j )]

= ([E(r+1)
i , E

(−〈μ1,αj〉)
j ] − [E(r)

i , E
(−〈μ1,αj〉+1)
j ]) ⊗ 1

= αi · αj

2
(
(E(r)

i ⊗ 1)(E(−〈μ1,αj〉)
j ⊗ 1) + (E(−〈μ1,αj〉)

j ⊗ 1)(E(r)
j ⊗ 1)

)
.

The case where r = −〈μ1, αi〉 and 1 ≤ s < −〈μ1, αj〉 is similar.
Next, consider the case 1 ≤ r < −〈μ1, αi〉 and s = −〈μ1, αj〉 + 1.

[Δ(E(r+1)
i ),Δ(E(−〈μ1,αj〉)+1

j )] − [Δ(E(r)
i ),Δ(E(−〈μ1,αj〉+2)

j )]

= [E(r+1)
i , E

(−〈μ1,αj〉+1)
j ] ⊗ 1 − [E(r)

i , E
(−〈μ1,αj〉+2)
j ] ⊗ 1 − [E(r)

i , S
(−〈μ1,αj〉+1)
j ] ⊗E

(1)
j

+
∑
γ>0

[E(r)
i , F (1)

γ ] ⊗ [E(1)
j , E(1)

γ ]

= αi · αj

2 (E(r)
i E

(−〈μ1,αj〉+1)
j + E

(−〈μ1,αj〉+1)
j E

(r)
i ) ⊗ 1 + (αi · αj)E(r)

i ⊗ E
(1)
j

+
∑
γ>0

[E(r)
i , F (1)

γ ] ⊗ [E(1)
j , E(1)

γ ].

Since r < −〈μ1, αi〉, by induction, [E(r)
i , F (1)

γ ] = 0 for all γ > 0. The current case follows. 

The proof for r = −〈μ1, αi〉 + 1 and s < −〈μ1, αj〉 is similar.
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Next, let us look at the case r = −〈μ1, αi〉 and s = −〈μ1, αj〉.

[Δ(E(−〈μ1,αi〉+1)
i ),Δ(E(−〈μ1,αj〉)

j )] − [Δ(E(−〈μ1,αi〉)
i ),Δ(E(−〈μ1,αj〉+1)

j )]

= ([E(−〈μ1,αi〉)
i , E

(−〈μ1,αj〉)
j ] − [E(−〈μ1,αi〉)

i , E
(−〈μ1,αj〉+1)
j ]) ⊗ 1

= αi · αj

2
(
(E(−〈μ1,αi〉)

i ⊗ 1)(E(−〈μ1,αj〉)
j ⊗ 1) + (E(−〈μ1,αj〉)

j ⊗ 1)(E(−〈μ1,αi〉)
i ⊗ 1)

)
.

Next, for r = −〈μ1, αi〉 and s = −〈μ1, αj〉 + 1.

[Δ(E(−〈μ1,αi〉+1)
i ),Δ(E(−〈μ1,αj〉)+1

j )] − [Δ(E(−〈μ1,αi〉)
i ),Δ(E(−〈μ1,αj〉+2)

j )] =

= [E(−〈μ1,αi〉+1)
i , E

(−〈μ1,αj〉+1)
j ] ⊗ 1 + 1 ⊗ [E(1)

i , E
(1)
j ] − [E(−〈μ1,αi〉)

i , E
(−〈μ1,αj〉+2)
j ] ⊗ 1

− [E(−〈μ1,αi〉)
i , S

(−〈μ1,αj〉+1)
j ] ⊗E

(1)
j +

∑
γ>0

[E(−〈μ1,αi〉)
i , F (1)

γ ] ⊗ [E(1)
j , E(1)

γ ]

= αi · αj

2
(
E

(−〈μ1,αi〉)
i E

−〈μ1,αj〉+1)
j ⊗ 1 + E

(−〈μ1,αj〉+1)
j E

(−〈μ1,αi〉+1)
i ⊗ 1

+ 2E(−〈μ1,αi〉)
i ⊗ E

(1)
j

)
+ 1 ⊗ [E(1)

i , E
(1)
j ] +

∑
γ>0

[E(−〈μ1,αi〉)
i , F (1)

γ ] ⊗ [E(1)
j , E(1)

γ ].

Note that [E(−〈μ1,αi〉)
i , F (1)

l ] ∈ C1. So, if γ is of height greater than or equal to 2, 
then [E(−〈μ1,αi〉)

i , F (1)
γ ] = 0 by induction. Hence, the only term that survives in the last 

summand is 1 ⊗[E(1)
j , E(1)

i ] and we are done. The case r = −〈μ1, αi〉 +1 and s = −〈μ1, αj〉
is totally analogous.

Lastly, consider the case r = −〈μ1, αi〉 + 1 and s = −〈μ1, αj〉 + 1.

[Δ(E(−〈μ1,αi〉+2)
i ),Δ(E(−〈μ1,αj〉)+1

j )] − [Δ(E(−〈μ1,αi〉+1)
i ),Δ(E(−〈μ1,αj〉+2)

j )] =

= (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0
(
[E(2)

i , E
(1)
j ] − [E(1)

i E
(2)
j ]

)
= αi · αj

2 (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0
(
E

(1)
i E

(1)
j + E

(1)
j E

(1)
i

)
= αi · αj

2
(
Δ(E(−〈μ1,αi〉+1)

i )Δ(E(−〈μ1,αj〉+1)
j ) + Δ(E(−〈μ1,αj〉+1)

j )Δ(E(−〈μ1,αi〉+1)
i )

)
.

Relation (4.9) can be checked in the same fashion.
We now check relation (4.10). Set N = 1 − αi · αj . First, if 1 ≤ −〈μ1, αi〉 and 

1 ≤ −〈μ1, αj〉, then

ad(Δ(E(1)
i ))N (Δ(E(1)

j )) = ad(E(1)
i ⊗ 1)N (E(1)

j ⊗ 1) =
(
(adE

(1)
i )N (E(1)

j )
)
⊗ 1 = 0.

For 1 ≤ −〈μ1, αi〉 and 1 = −〈μ1, αj〉 + 1.

ad(Δ(E(1)
i ))N (Δ(E(1)

j )) = ad(E(1)
i ⊗ 1)N (E(1)

j ⊗ 1 + 1 ⊗ E
(1)
j )

=
(
(adE

(1)
i )N (E(1)

j )
)
⊗ 1 = 0,
since E(1)
i ⊗ 1 commutes with 1 ⊗E

(1)
j .
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Next, suppose 1 = −〈μ1, αi〉 + 1. Since [E(1)
i ⊗ 1, 1 ⊗E

(1)
i ] = 0,

(ad(Δ(E(1)
i )))N = (ad(E(1)

i ⊗ 1) + ad(1 ⊗E
(1)
i ))N

=
N∑
l=0

(
N

l

)
ad(E(1)

i ⊗ 1)i ad(1 ⊗E
(1)
i )N−i.

Now, if 1 ≤ −〈μ1, αj〉, then

(ad(Δ(E(1)
i )))N (Δ(E(1)

j ) =
N∑
l=0

(
N

l

)
ad(E(1)

i ⊗ 1)i ad(1 ⊗ E
(1)
i )N−i(E(1)

j ⊗ 1)

= ad(E(1)
i )N (E(1)

j ) ⊗ 1 = 0.

If 1 = −〈μ1, αj〉 + 1, then

ad(Δ(E(1)
i ))N (Δ(E(1)

j )) =
N∑
l=0

(
N

l

)
ad(E(1)

i ⊗ 1)i ad(1 ⊗E
(1)
i )N−i(E(1)

j ⊗ 1 + 1 ⊗ E
(1)
j )

= ad(E(1)
i )N (E(1)

j ) ⊗ 1 + 1 ⊗ ad(E(1)
i )N (E(1)

j ) = 0.

The proof for (4.11) is similar to that of (4.10).
Finally, we check relation (4.12).[

Δ(S(−〈μ,αi〉+2)
i ), [Δ(E(−〈μ1,αi〉+2)

i ),Δ(F (−〈μ2,αi〉+2)
i )]

]
= (ι0,μ1,0 ⊗ ι0,0,μ2)Δ0,0

(
[S(2)

i , [E(2)
i , F

(2)
i ]

)
= 0.

This proves that Δ is well-defined. �
By Lemma 3.11, we have the following:

Lemma 4.9. The coproduct Δ: Yμ −→ Yμ1 ⊗ Yμ2 is uniquely determined by

Δ(E(1)
i ) = E

(1)
i ⊗ 1 + δ〈μ1,αi〉,01 ⊗E

(1)
i ;

Δ(F (1)
i ) = δ〈μ2,αi〉,0F

(1)
i ⊗ 1 + 1 ⊗ F

(1)
i ;

Δ(S(−〈μ,αi〉+1)
i ) = S

(−〈μ1,αi〉+1)
i ⊗ 1 + 1 ⊗ S

(−〈μ2,αi〉+1)
i ;

Δ(S(−〈μ,αi〉+2)
i ) = S

(−〈μ1,αi〉+2)
i ⊗ 1 + 1 ⊗ S

(−〈μ2,αi〉+2)
i −

∑
γ>0

〈αi, γ〉F (1)
γ ⊗E(1)

γ .

Proposition 4.10. Let μ = μ1 +μ2 +μ3 where the μi’s are antidominant coweights. Then, 

we have the following commutative diagram



372 M. Finkelberg et al. / Advances in Mathematics 327 (2018) 349–389
Yμ

Δμ1,μ2+μ3

Δμ1+μ2,μ3

Yμ1 ⊗ Yμ2+μ3

1⊗Δμ2,μ3

Yμ1+μ2 ⊗ Yμ3 Δμ1,μ2⊗1
Yμ1 ⊗ Yμ2 ⊗ Yμ3

Proof. By Lemma 4.9, it is enough to check for S(−〈μ,αi〉+k)
i (k = 1, 2), E(1)

i and F (1)
i .

(1 ⊗ Δμ2,μ3)Δμ1,μ2+μ3(E
(1)
i ) = E

(1)
i ⊗ 1 ⊗ 1 + δ〈μ1,αi〉,01 ⊗E

(1)
i ⊗ 1

+ δ〈μ1,αi〉,0δ〈μ2,αi〉,01 ⊗ 1 ⊗E
(1)
i ,

(Δμ1,μ2 ⊗ 1)Δμ1+μ2,μ3(E
(1)
i ) = E

(1)
i ⊗ 1 ⊗ 1 + δ〈μ1,αi〉,01 ⊗E

(1)
i ⊗ 1

+ δ〈μ1+μ2,αi〉1 ⊗ 1 ⊗ E
(1)
i .

The result follows for E(1)
i since δ〈μ1+μ2,αi〉,0 = δ〈μ1,αi〉,0δ〈μ2,αi〉,0. The computation for 

F
(1)
i is totally analogous. The computation S(−〈μ,αi〉+1)

i is straightforward.
Finally, we have that

(1 ⊗ Δμ2,μ3)Δμ1,μ2+μ3(S
(−〈μ,αi〉+2)
i ) =

= 1 ⊗ S
(−〈μ2,αi〉+2)
i ⊗ 1 + 1 ⊗ 1 ⊗ S

(−〈μ3,αi〉+2)
i −

∑
β>0

〈αi, β〉1 ⊗ F
(1)
β ⊗E

(1)
β )

+ S
(−〈μ1,αi〉+2)
i ⊗ 1 ⊗ 1 −

∑
γ>0

〈αi, γ〉F (1)
γ ⊗ Δμ2,μ3(E(1)

γ ),

(Δμ1,μ2 ⊗ 1)Δμ1+μ2,μ3(S
(−〈μ,αi〉+2)
i ) =

= S
(−〈μ1,αi〉+2)
i ⊗ 1 ⊗ 1 + 1 ⊗ S

(−〈μ2,αi〉+2)
i ⊗ 1 −

∑
β>0

〈αi, β〉F (1)
β ⊗E

(1)
β ⊗ 1

+ 1 ⊗ 1 ⊗ S
(−〈μ3,αi〉+2)
i −

∑
γ>0

〈αi, γ〉Δμ1,μ2(F (1)
γ ) ⊗E(1)

γ .

For a positive root γ =
∑

i niαi, by a simply induction, we can show that 
Δμ2,μ3(E

(1)
γ ) = E

(1)
γ ⊗ 1 + Cγ1 ⊗ E

(1)
γ and that Δμ1,μ2(F

(1)
γ ) = 1 ⊗ F

(1)
γ + CγF

(1)
γ ⊗ 1

where Cγ =
∏

i δ
ni

〈μ2,αi〉,0. The result follows. �
4.11. The coproduct in the general case

Theorem 4.12. Let μ = μ1 + μ2 where μ, μ1, μ2 are arbitrary coweights. There exists a 
coproduct Δμ1,μ2 : Yμ −→ Yμ1 ⊗ Yμ2 such that, for all antidominant coweights η1, η2, the 

following diagram is commutative
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Yμ

ιμ,η1,η2

Δμ1,μ2
Yμ1 ⊗ Yμ2

(ιμ1,η1,0)⊗(ιμ2,0,η2 )

Yμ+η1+η2 Δμ1+η1,μ2+η2

Yμ1+η1 ⊗ Yμ2+η2

Proof. First, we need to define the map Δμ1,μ2 . Let η1, η2 be antidominant coweights 
such that μ1 + η1 and μ2 + η2 are also antidominant. We see that μ + η1 + η2 is also 
antidominant.

Consider the diagram

Yμ

ιμ,η1,η2

Yμ1 ⊗ Yμ2

(ιμ1,η1,0)⊗(ιμ2,0,η2 )

Yμ+η1+η2 Δ=Δμ1+η1,μ2+η2

Yμ1+η1 ⊗ Yμ2+η2

In order to define Δμ1,μ2 , we need to show that

Δ(ιμ,η1,η2(Yμ)) ⊆ (ιμ1,η1,0 ⊗ ιμ2,0,η2)(Yμ1 ⊗ Yμ2).

Note that Y ≤
μ1+η1

⊗ Y ≥
μ2+η2

⊆ ιμ1,η1,0 ⊗ ιμ2,0,η2(Yμ1 ⊗ Yμ2).
First, for r ≥ 1, we claim that

Δ(E(r)
i ) ∈ E

(r)
i ⊗ 1 + Y ≤

μ1+η1
⊗ Y >

μ2+η2
,

Δ(F (r)
i ) ∈ 1 ⊗ F

(r)
i + Y <

μ1+η1
⊗ Y ≥

μ2+η2
.

We prove the claim for E, the proof for F is similar. We proceed by induction.
If 1 ≤ −〈μ1 + η1, αi〉, then it is clear since Δ(E(1)

i ) = E
(1)
i ⊗ 1.

If 0 = 〈μ1 + η1, αi〉, then it is also clear since Δ(E(1)
i ) = E

(1)
i ⊗ 1 + 1 ⊗E

(1)
i and since 

1 ⊗E
(1)
i ∈ Y ≤

μ1+η1
⊗ Y >

μ2+η2
.

The induction step follows from the fact that Δ is a homomorphism and the fact that 
[S(−〈μ+η1+η2,αi〉+2)

i , E(r)
i ] = 2E(r+1)

i . This proves the claim.
Note that ιμ,η1,η2(Yμ) is generated by E(r)

i (r > −〈η1, αi〉), F (s)
i (s > −〈η2, αi〉) and 

H
(t)
i (t > −〈μ + η1 + η2, αi〉).
Applying the claim for r > −〈η1, αi〉, we get Δ(E(r)

i ) ∈ (ιμ1,η1,0 ⊗ ιμ2,0,η2)(Yμ1 ⊗ Yμ2)
since E(r)

i ⊗ 1 = (ιμ1,η1,0 ⊗ ιμ2,0,η2)(E
(r+〈η1,αi〉)
i ⊗ 1).

Similarly, we obtain Δ(F (r)
i ) ∈ (ιμ1,η1,0 ⊗ ιμ2,0,η2)(Yμ1 ⊗ Yμ2) for s > −〈η2, αi〉.
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Finally, for t > −〈μ + η1 + η2, αi〉,

Δ(H(t)
i ) = [Δ(E(t)

i ),Δ(F (1)
i )]

∈ [E(t)
i ⊗ 1, Y <

μ1+η1
⊗ Y ≥

μ2+η2
] + [Y ≤

μ1+η1
⊗ Y >

μ2+η2
, 1 ⊗ F

(1)
i ]

⊆ Y ≤
μ1+η1

⊗ Y ≥
μ2+η2

.

Therefore, we have a coproduct Δμ1,μ2 : Yμ −→ Yμ1 ⊗ Yμ2 .
Next, we show that Δμ1μ2 is independent of the choice of η1, η2, i.e., for all η1, η2 such 

that μ1 + η1, μ2 + η2 are antidominant, the diagram in the statement of the theorem 
is commutative. To see this, let η′1, η′2 be another such pair of coweights. Consider the 
diagram

Yμ

ιμ,η1,η2

Yμ1 ⊗ Yμ2

(ιμ1,η1,0)⊗(ιμ2,0,η2 )

Yμ+η

ιμ+η,η′
1,η′

2

Δμ1+η1,μ2+η2

Yμ1+η1 ⊗ Yμ2+η2

(ιμ1+η1,η′
1,0)⊗(ιμ2+η2,0,η′

2
)

Yμ+η+η′
Δμ1+η1+η′

1,μ2+η2+η′
2

Yμ1+η1+η′
1
⊗ Yμ2+η2+η′

2

We see that ιμ+η,η′
1,η

′
2
◦ ιμ,η1,η2 = ιμ,η1+η′

1,η2+η′
2

and ιμ1+η1,η′
1,0 ◦ ιμ1,η1,0 = ιμ,η1+η′

1,0 and 
ιμ2+η2,0,η′

2
◦ ιμ2,0,η2 = ιμ2,0,η2+η′

2
. Moreover, it is not hard to check on generators that 

the lower square commutes.
Therefore, the choice of Δμ1,μ2 is the same for the pairs of coweights (η1, η2) and 

(η1 + η′1, η2 + η′2). By swapping the roles of η and η′ in the above, the choice of Δμ1,μ2

is also the same for the pairs (η′1, η′2) and (η1 + η′1, η2 + η′2).
Finally, we check that the diagram in the statement of the theorem commutes for any 

pair of antidominant coweights η1, η2. Let η′1, η′2 be antidominant coweights such that 
μk + ηk + η′k (k = 1, 2) are antidominant. Consider the diagram

Yμ

ιμ,η1,η2

Δμ1,μ2
Yμ1 ⊗ Yμ2

(ιμ1,η1,0)⊗(ιμ2,0,η2 )

Yμ+η

ιμ+η,η′
1,η′

2

Δμ1+η1,μ2+η2

Yμ1+η1 ⊗ Yμ2+η2

(ιμ1+η1,η′
1,0)⊗(ιμ2+η2,0,η′

2
)

Yμ+η+η′
Δμ1+η1+η′

1,μ2+η2+η′
2

Yμ1+η1+η′
1
⊗ Yμ2+η2+η′

2

Since ιμ+η,η′
1,η

′
2
◦ ιμ,η1,η2 = ιμ,η1+η′

1,η2+η′
2

and ιμ1+η1,η′
1,0 ◦ ιμ1,η1,0 = ιμ,η1+η′

1,0 and 
ιμ2+η2,0,η′ ◦ ιμ2,0,η2 = ιμ2,0,η2+η′ , the outer square and the lower square are commu-
2 2
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tative. Since ιμ1+η1,η′
1,0 ⊗ ιμ2+η2,0,η′

2
is injective, we see that the upper square is also 

commutative. �
Remark 4.13. Brundan and Kleshchev define a coproduct for shifted gln-Yangians in [5, 
Theorem 11.9], which is analogous to our coproduct in the sln case when μ = μ1 + μ2
are all dominant. Namely, form the associated lower (resp. upper) triangular shift ma-
trices σ′, σ′′ by extending s′i+1,i = μ1,i and s′′i,i+1 = μ2,i, and take σ = σ′ + σ′′. Then 
Brundan and Kleshchev’s coproduct Yn(σ) → Yn(σ′) ⊗ Yn(σ′′) is defined by embed-
ding into Y (gln) → Y (gln) ⊗ Y (gln). However, the standard inclusion of Hopf algebras 
Y (sln) ↪→ Y (gln) is not compatible with our shift map ιμ,−μ1,−μ2 .

Proposition 4.14. Suppose that μ = μ1 + μ2 + μ3 where μ2 is antidominant. Then, the 
following diagram is commutative:

Yμ

Δμ1,μ2+μ3

Δμ1+μ2,μ3

Yμ1 ⊗ Yμ2+μ3

1⊗Δμ2,μ3

Yμ1+μ2 ⊗ Yμ3 Δμ1,μ2⊗1
Yμ1 ⊗ Yμ2 ⊗ Yμ3

Proof. Let η1, η3 be antidominant coweights such that μ′
1 = μ1 + η1 and μ′

3 = μ3 + η3
are antidominant. Consider the diagram

Yμ′
1+μ2+μ′

3

Δ

Δ

Yμ′
1
⊗ Yμ2+μ′

3

1⊗ΔYμ
Δ

Δ

ιμ,η1,η3

Yμ1 ⊗ Yμ2+μ3

1⊗Δ

ιμ1,η1,0⊗ιμ2+μ3,0,η3

Yμ′
1+μ2 ⊗ Yμ′

3

Δ⊗1
Yμ′

1
⊗ Yμ2 ⊗ Yμ′

3

Yμ1+μ2 ⊗ Yμ3 Δ⊗1

ιμ1+μ2,η1,0⊗ιμ3,0,η3

Yμ1 ⊗ Yμ2 ⊗ Yμ3

ιμ1,η1,0⊗1⊗ιμ3,0,η3

We have the commutativity of all faces of this cube except for that of

Yμ

Δμ1,μ2+μ3

Δμ1+μ2,μ3

Yμ1 ⊗ Yμ2+μ3

1⊗Δμ2,μ3

Y ⊗ Y Y ⊗ Y ⊗ Y
μ1+μ2 μ3 Δμ1,μ2⊗1
μ1 μ2 μ3
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Using the commutativity of the other faces and injectivity of shift maps, we see that the 
above square also commutes. �
Remark 4.15. In general, the coproducts are not coassociative. More precisely, when μ2
is not antidominant, the diagram from Proposition 4.14 does not commute. This can 
already be seen for g = sl2, μ1 = μ3 = 0, μ2 = 2.

5. Classical limit

In this section, we continue with g as simply-laced semisimple Lie algebra and we let 
G be the semisimple complex group of adjoint type whose Lie algebra is g.

5.1. Generalities on filtrations

Let A be an algebra and let F •A = · · · ⊆ F−1A ⊆ F 0A ⊆ F 1A ⊆ . . . be a separated 
and exhaustive filtration, meaning that ∩kF

kA = 0 and ∪kF
kA = A. We assume that 

this filtration is compatible with the algebra structure in the sense that F kA · F lA ⊂
F k+lA and 1 ∈ F 0A.

In this case, we define the Rees algebra of A to be the graded C[�]-algebra ReesFA :=
⊕k�

kF kA, viewed as a subalgebra of A[�, �−1]. We also define the associated graded of 
A to be the graded algebra grFA :=

⊕
F kA/F k−1A. Note that we have a canonical 

isomorphism of graded algebras ReesFA/�ReesFA ∼= grFA.
We say that the filtered algebra A is almost commutative if grFA is commutative.
Now suppose that our algebra A is also graded, A = ⊕nAn and define F kAn :=

F kA ∩An. Assume that for each k, F kA = ⊕nF
kAn. Define a new filtration G on A by 

setting GkA = ⊕n+r=kF
rAn.

Lemma 5.2. With the above setup, we have canonical algebra isomorphisms ReesFA ∼=
ReesGA and grFA ∼= grGA.

Proof. We prove the isomorphism for the associated graded (the Rees one is similar). De-
fine Bk,n = F kAn/F

k−1An. Then grFA = ⊕k,nBk,n. Now Bk,n = Gk+nAn/G
k+n−1An. 

Thus we also see that grGA = ⊕Bk,n. This gives us the isomorphism of vector spaces 
grFA → grGA which is easily seen to be an algebra isomorphism as well. �
Remark 5.3. We say that the filtration F •A admits an expansion as a filtered C-vector 
space, if there exists a filtered vector space isomorphism grF A → A (this condition is 
always satisfied if the filtration is bounded below). In this case, it is easy to see that 
ReesFA is a free C[�]-module.

Moreover, suppose we have two filtered algebras F •A and F •B. We can define a 
filtration on A ⊗ B by Fn(A ⊗ B) = +k+l=nF

kA ⊗ F lB. If the filtrations of A and B
both admit expansions, then we have Rees(A ⊗B) ∼= ReesA ⊗ ReesB and gr(A ⊗B) ∼=

grA ⊗ grB.
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5.4. Filtrations on the shifted Yangian

Let μ be any coweight.
Given any pair of coweights ν1, ν2 such that ν1+ν2 = μ, we define a filtration Fν1,ν2Yμ

by defining degrees on the PBW variables as follows

degE(q)
α = 〈ν1, α〉 + q, degF (q)

β = 〈ν2, β〉 + q, degH(p)
i = 〈μ, αi〉 + p (5.1)

More precisely, we define F k
ν1,ν2

Yμ to be the span of all ordered monomials in the PBW 
variables whose total degree is at most k. A priori it is not clear that this filtration 
is independent of the choice of PBW variables, nor that it is independent of the order 
used to form the monomials, nor that it is even an algebra filtration. We establish these 
properties in Proposition 5.7 below.

Our goal now is to prove that grFν1,ν2Yμ is commutative and to construct an isomor-
phism between this ring and the coordinate ring of a certain infinite type affine variety.

Now, assume that μ is antidominant. Define a filtration Fμ on Y ⊗ C[H(0)
i : i ∈ I]

by taking a tensor product of the filtration F0,0Y with the filtration on C[H(0)
i : i ∈ I]

given by setting degH(0)
i = 〈μ, αi〉.

Define a filtration Fμ on Ỹ by defining degrees on the PBW variables as follows

deg Ẽ(q)
α = 〈μ, α〉 + q, deg F̃ (q)

β = q, deg H̃(p)
i = 〈μ, αi〉 + p

As above, the filtered piece F k
μ Ỹ is defined to be the span of those ordered monomials 

in the PBW variables whose total degree is at most k.

Lemma 5.5. The inclusion Ỹ ↪→ Y ⊗C C[H(0)
i : i ∈ I] is compatible with the filtrations 

Fμ on both algebras. Moreover, this inclusion is strict, i.e. for each k,

F k
μ (Ỹ ) = F k

μ (Y ⊗ C[H(0)
i : i ∈ I]) ∩ Ỹ .

Thus the resulting map

grFμ Ỹ → grFμ(Y ⊗ C[H(0)
i : i ∈ I])

is injective.

Proof. Both filtrations are defined by the degrees of monomials, and therefore it suffices 
to verify that the degree of a monomial from Ỹ is equal to the degree of its image in 
Y ⊗ C[H(0)

i ]. �
Corollary 5.6. The filtration FμỸ is an algebra filtration, and Ỹ is almost commutative. 
Moreover, FμỸ is independent of the choice of PBW variables and is also independent 

of the order used to form the monomials.
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Proof. Since Ỹ ↪→ Y ⊗ C[H(0)
i ] is an inclusion of algebras, it follows immediately from 

Lemma 5.5 that FμỸ is an algebra filtration. We know from [11] that grF0,0Y is com-
mutative. (In fact, it is isomorphic to C[G1[[z−1]]].) Thus grFμ(Y ⊗ C[H(0)

i : i ∈ I]) is 
commutative, so Lemma 5.5 implies that grFμ Ỹ is commutative. Finally, independence 
of choice of PBW monomials also follows for the corresponding property for F0,0Y . �

Now, we show that Yμ is almost commutative.

Proposition 5.7. The filtration Fμ,0Yμ is an algebra filtration, and Yμ is almost com-
mutative. Moreover, Fμ,0Yμ is independent of the choice of PBW variables and is also 
independent of the order used to form the monomials.

Proof. First consider the case of μ antidominant. We then have a surjective map of alge-
bras Ỹ � Yμ, under which Fμ,0Yμ is the quotient filtration of FμỸ . All three properties 
follow from Corollary 5.6.

Next, consider the case of general μ. Choose μ1 antidominant such that μ + μ1

is antidominant, and consider the shift homomorphism ιμ,μ1,0 : Yμ → Yμ+μ1 . This 
map is injective by Corollary 3.16, and it is compatible with the filtrations Fμ,0Yμ →
Fμ+μ1,0Yμ+μ1 . Moreover it is strict, by the same reasoning as Lemma 5.5. We now reason 
as in the proof of Corollary 5.6, proving the claim. �

Now, let ν2 be any coweight and let ν1 = μ − ν2. Define a grading on Yμ by setting 
the graded degree of the generators as follows

degE(q)
i = 〈−ν2, αi〉, degF (q)

i = 〈ν2, αi〉, degH(p)
i = 0 (5.2)

This is easily seen to be a grading on Yμ. (This grading is the eigenspaces of the adjoint 
action of the element 

∑
i〈−ν2, ωi〉H(−〈μ,αi〉+1)

i where ωi is a fundamental weight.)
The filtration Fν1,ν2Yμ comes from the filtration Fμ,0Yμ and the above grading using 

the construction given in Section 5.1. Thus, we get a canonical isomorphism grFν1,ν2Yμ
∼=

grFμ,0Yμ by Lemma 5.2 and in particular the former is commutative. Since all grFν1,ν2Yμ

are canonically isomorphic (as algebras, but not as graded algebras), we will write grYμ to 
denote any one of them, when we are not concerned with the grading. Similarly, all Rees 
algebras ReesFν1,ν2Yμ are all canonically isomorphic and we will write Yμ := ReesYμ.

Corollary 5.8. The algebra grYμ is a polynomial ring in the PBW variables.

5.9. The variety Wμ

For any algebraic group H, we write H1[[z−1]] for the kernel of the evaluation map 

H[[z−1]] → H.
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We define the (infinite type) scheme

Wμ := U1[[z−1]]T1[[z−1]]zμU−,1[[z−1]] ⊂ G((z−1)) (5.3)

We will also need a different description of this scheme. The inclusion U1[[z−1]] →
U((z−1)) gives rise to an isomorphism U1[[z−1]] ∼= U((z−1))/U [z]. Thus we can identify 
Wμ with the quotient U [z] \U((z−1))T1[[z−1]]zμU−((z−1))/U−[z] and we write π for this 
isomorphism.

The scheme Wμ is the moduli space of the following data (cf. [4, 2(ii)]): (a) a G-bundle 
P on P1; (b) a trivialization σ : Ptriv|P̂1

∞

∼−→P|
P̂1
∞

in the formal neighborhood of ∞ ∈ P
1; 

(c) a B-structure φ on P of degree w0μ having fiber B− ⊂ G at ∞ ∈ P
1 (with respect 

to the trivialization σ of P at ∞ ∈ P
1). This is explained in [4, 2(xi)]. In particular, Wμ

contains the finite dimensional affine varieties Wλ
μ (generalized slices) for the dominant 

coweights λ, and the closed subvariety Wλ
μ ⊂ Wμ is cut out by the condition that σ

extends as a rational trivialization with a unique pole at 0 ∈ P
1, and the order of the 

pole of σ at 0 ∈ P
1 is ≤ λ.

For μ1, μ2 antidominant, we define shift maps ιμ,μ1,μ2 : Wμ+μ1+μ2 → Wμ by g 	→
π(z−μ1gz−μ2).

Remark 5.10. Note that W0 is the group G1[[z−1]]. Moreover, for μ dominant, we 
can identify Wμ with the G1[[z−1]] orbit of zμ in the thick affine Grassmannian 
G((z−1))/G[z]. In this case, the shift map ιμ,0,−μ : W0 → Wμ is exactly the action map. 
In fact, Wμ = Gμz

μ, where Gμ is the subgroup of G1[[z−1]] defined in [4, B(viii)(a)].

Recall the multiplication morphisms mλ1,λ2
μ1,μ2

: Wλ1
μ1

×Wλ2
μ2

→ Wλ1+λ2
μ1+μ2

constructed in [4, 
2(vi)]. We define the multiplication morphism mμ1,μ2 : Wμ1 × Wμ2 → Wμ1+μ2 by the 
formula mμ1,μ2(g1, g2) = π(g1g2). Comparing the constructions of [4, 2(vi) and 2(xi)], 
we see that mλ1,λ2

μ1,μ2
is the restriction of mμ1,μ2 .

Lemma 5.11. The shift maps and multiplication maps are compatible. More precisely, let 
μ1, μ2 be any coweights and let ν1, ν2 be antidominant coweights. The following diagram 
commutes.

Wμ1+ν1 ×Wμ2+ν2

ιμ1,ν1,0×ιμ2,0,ν2

Wμ1+μ2+ν1+ν2

ιμ1+μ2,ν1,ν2

Wμ1 ×Wμ2 Wμ1+μ2

Proof. A simple diagram chase show that for (g1, g2) ∈ Wμ1+ν1×Wμ2+ν2 , both paths are 

computed by π(z−ν1g1g2z

−ν2). (Here we use that if u ∈ U [z], then z−ν1uzν1 ∈ U [z].) �
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For s ∈ C
×, and g(z) ∈ G((z−1)), we define κs(g(z)) = g(sz). This loop rotation 

action does not preserve Wμ ⊂ G((z−1)). But given a pair of coweights ν1, ν2 such that 
ν1 + ν2 = μ, we define an action κν1,ν2 of C× on Wμ by

κν1,ν2
s (g) = s−ν1κs(g)s−ν2

5.12. Classical limit

Let pi : U → C, p−i : U− → C, pi : T → C
× be the projections according to a simple 

root αi. Then we get maps p(r)
i : U1[[z−1]] → C given by taking the coefficient of z−r

in pi. Similarly, we get functions p−i
(r) and p(r)

i . Using the Gauss decomposition of an 

element uhzμu− ∈ Wμ, we get functions p(r)
i , p−i

(r) and p(r)
i on Wμ by

p
(r)
i (g) := p

(r)
i (u), p−i

(r)(g) := p−i
(r)(u−), p(r)

i (g) := p(r)
i (hzμ) (5.4)

These functions can also be described using generalized minors (i.e. matrix coefficients), 
analogously to [11].

As described in [11], W0 = G1[[z−1]] can be given the structure of a Poisson–Lie 
group, corresponding to Yang’s Manin triple. The ring of functions C[W0] is graded via 
the loop rotation action. The following result is a reformulation of [11, Theorem 3.9]:

Theorem 5.13. There is an isomorphism of graded Poisson–Hopf algebras grF0,0Y ∼=
C[W0], such that

H
(r)
i 	→ p(r)

i , E
(r)
i 	→ p

(r)
i , F

(r)
i 	→ p−i

(r) (5.5)

Proposition 5.14.

(a) For any coweight ν, there is an isomorphism of graded Poisson algebras grFν,−νY ∼=
C[W0] such that (5.5) holds, and where the grading on C[W0] comes from the κν,−ν

action.
(b) This restricts to a graded isomorphism

grFν,−νY > ∼
C[U1[[z−1]]]

grFν,−νY
∼

C[W0]

where the right-hand vertical arrow corresponds to the map W0 → U1[[t−1]], 
uhu− 	→ u. Similarly, there are isomorphisms

Fν,−ν = ∼ −1 Fν,−ν < ∼ −1
gr Y = C[T1[[z ]]], gr Y = C[U−,1[[z ]]]
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Part (b) reflects the triangular decomposition Y on the one hand, and the Gauss 
decomposition of W0 on the other.

Proof. For (a), it suffices to show that the grading (5.2) corresponds to the C×-action 
on W0 given by s · g = s−νgsν . First, we claim that the latter is a Poisson action: this 
follows from the explicit formula [11, Proposition 2.13] for the Poisson bracket in terms 
of generalized minors. Now, under the corresponding grading on C[W0] the degrees of 
generators p(r)

i , p−i
(r)

, p(r)
i agree with the grading (5.2). Since both are Poisson gradings, 

and these are Poisson generators of C[W0], the two gradings agree.
We now prove (b), in the case of Y >. Recall that G1[[z−1]] is a Poisson algebraic 

group, so z−1g[[z−1]] is a Lie bialgebra (see [11, 2C]). Under its cobracket, we have

δ(z−1b−[[z−1]]) ⊂ (z−1b−[[z−1]]) ⊗ (z−1g[[z−1]]) + (z−1g[[z−1]]) ⊗ (z−1b−[[z−1]])

By [18, Theorem 6], this implies that there is an induced structure of Poisson homo-
geneous space on G1[[z−1]]/B−

1 [[z−1]]. In other words, C[G1[[z−1]]]B−
1 [[z−1]] is a Poisson 

subalgebra of C[G1[[z−1]].
The map G1[[z−1]] →U1[[z−1]], uhu− 	→u identifies C[U1[[z−1]]] ∼=C[G1[[z−1]]]B−

1 [[z−1]]. 
Since the functions p(r)

i lie in this subalgebra, C[U1[[z−1]]] contains the Poisson subal-
gebra that they generate. Therefore we can identify grFν,−νY > ⊂ C[U1[[z−1]]]. We will 
prove equality by a dimension count. It suffices to consider the filtration F 0,0Y > and 
the loop rotation action κ0,0. By the PBW theorem, grF0,0Y > has Hilbert series

∞∏
i=1

1
(1 − qi)dim n

(5.6)

Since U1[[z−1]] is a pro-unipotent group, the Hilbert series of C[U1[[z−1]]] for the loop 
rotation is the same as that of Sym(z−1n[[z−1]]). This is also given by (5.6), proving the 
claim. �

Consider a coweight μ. By Remark 3.7, there is a surjection of algebras Y > � Y >
μ

defined by E(p)
i 	→ E

(p)
i . By the PBW theorem for Yμ, it follows that this map is an 

isomorphism. Moreover, for any coweights ν1, ν2 such that ν1 +ν2 = μ, we see from (5.1)
that it is an isomorphism of filtered algebras F ν1,−ν1Y > ∼−→ F ν1,ν2Y >

μ , where these 
filtrations are inherited as subspaces of Y and Yμ, respectively.

By the Gauss decomposition there is a projection map Wμ � U1[[z−1]], uhzμu− 	→ u. 
This provides an embedding C[U1[[z−1]]] ↪→ C[Wμ]. Consider the composition of maps:

grFν1,ν2Y >
μ

∼→ grFν1,−ν1Y > ∼→ C[U1[[z−1]]] ↪→ C[Wμ] (5.7)

where the second map comes from Proposition 5.14. Note that under this composition, 

E

(r)
i 	→ p

(r)
i . This map is graded, where C[Wμ] is graded by the action κν1,ν2 .
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Analogously, there are compositions

grFν1,ν2Y <
μ

∼→ grF−ν2,ν2Y < ∼→ C[U−,1[[z−1]]] ↪→ C[Wμ], (5.8)

grFν1,ν2Y =
μ

∼→ grF0,0Y = ∼→ C[T1[[z−1]]] ↪→ C[Wμ] (5.9)

which take F (r)
i 	→ p−i

(r) and H(r)
i 	→ p(r)

i .
From Corollary 5.8, there is a triangular decomposition (of algebras)

grFν1,ν2Yμ
∼= (grFν1,ν2Y >

μ ) ⊗ (grFν1,ν2Y =
μ ) ⊗ (grFν1,ν2Y <

μ )

By the Gauss decomposition Wμ, we get:

Theorem 5.15. For any coweights ν1, ν2 such that ν1 + ν2 = μ, the tensor product of the 
maps (5.7), (5.8) and (5.9) yields an isomorphism of graded algebras

grFν1,ν2Yμ
∼−→ C[Wμ] (5.10)

Here the grading on C[Wμ] comes from the κν1,ν2 action. Moreover, the isomorphism is 
compatible with the shift maps ιμ,μ1,μ2 on both sides.

Proof. The only thing left to prove is the compatibility of the shift maps ιμ,μ1,μ2 : Yμ →
Yμ+μ1+μ2 and ιμ,μ1,μ2 : Wμ+μ1+μ2 → Wμ with the above isomorphism grYμ

∼= C[Wμ]. 
Since this isomorphism is constructed using the Gauss decomposition, it suffices to prove 
the compatibility on each piece separately. For Y =

μ and T1[[z−1]] it follows from the con-
struction of (5.9). Now it suffices to check the compatibility with the isomorphisms (5.7)
and (5.8). Since these are similar, we will just concentrate on the isomorphism (5.8).

For any η antidominant, define a map ψη : U−,1[[z−1]] → U−,1[[z−1]] by ψη(u) =
π(zηuz−η), where as usual π denotes the projection π : U−((z−1)) → U−((z−1))/U−[z] ∼=
U−,1[[z−1]].

For any coweight μ and any antidominant μ1, μ2 we have the commutativity of the 
diagram

Wμ+μ1+μ2

ιμ,μ1,μ2

U−,1[[z−1]]

ψμ2

Wμ U−,1[[z−1]]

On the other hand, consider the shift map ψη : Y < → Y < given by F (q)
i 	→ F

(q−〈η,αi〉)
i . 

Then ψμ2 is the restriction of the shift map ιμ,μ1,μ2 to Y < ∼= Y <
μ .

Thus, in order to show that (5.8) is compatible with the shift ιμ,μ1,μ2 , is suffices to 
show that the isomorphism grY < ∼= C[U−,1[[z−1]]] is compatible with the two ψη maps, 

for any antidominant η.
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Since −η is dominant, it follows from [11, Theorem 3.12], that we have a commutative 
diagram

grY−η

ι−η,0,η

C[W−η]

grY C[G1[[z−1]]

where the right vertical arrow is just (dual to) the action map g 	→ gz−η. This action map 
is compatible with the shift map ψη on U−,1[[z−1]]. Thus we deduce that the isomorphism 
grY < ∼= C[U−,1[[z−1]]] is compatible with the two shift maps ψη and this completes the 
proof. �
Remark 5.16. The above theorem provides Wμ with a Poisson structure. It is compat-
ible with the Poisson structure on Wλ

μ constructed in [4]. This is because the Poisson 
structure on Wλ

μ comes from its quantization (the quantized Coulomb branch) and we 
have a surjective map from ReesYμ to this quantized Coloumb branch provided by [4, 
Theorem B.18].

Lemma 5.17. Let μ be an antidominant coweight. Then the classical shifted Yangian 
grFYμ

∼= C[Wμ] is generated by E(1)
i = p

(1)
i , F (1)

i = p−i
(1), H(−〈μ,αi〉+1)

i = p(1)
i and 

H
(−〈μ,αi〉+2)
i = p(2)

i as a Poisson algebra.

Proof. From the PBW theorem, grFYμ is generated by the PBW variables. These vari-
ables are all constructed from the generators E(r)

i , F (r)
i , H(r)

i using Poisson brackets. So 
it suffices to show that we can construct these generators.

Indeed, {H(−〈μ,αi〉+2)
i , E(r)

i } is 2E(r+1)
i plus some expression in H(−〈μ,αi〉+1)

i and E(r)
i , 

and the same holds for F (r)
i , hence the algebra generated by the above elements contains 

E
(r)
i , F (r)

i for all r ∈ Z>0. Every H(s)
i with positive s is a bracket of some E and F , 

hence we have H(−〈μ,αi〉+r)
i for all r ∈ Z>0. �

5.18. Classical multiplication and the coproduct

Let μ1, μ2 be coweights.
The multiplication map m : Wμ1 ×Wμ2 → Wμ1+μ2 gives us an algebra map

Δ1
μ1,μ2

: C[Wμ1+μ2 ] → C[Wμ1 ] ⊗ C[Wμ2 ]

On the other hand, the coproduct
Yμ1+μ2 → Yμ1 ⊗ Yμ2
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is compatible with the filtrations Fμ1,μ2Yμ1+μ2 , Fμ1,0Yμ1 , F0,μ2Yμ2 and thus gives rise to 
a map

Δ2
μ1,μ2

: grYμ1+μ2 → grYμ1 ⊗ grYμ2

Under the isomorphism Theorem 5.15, this gives us another map C[Wμ1+μ2 ] →
C[Wμ1 ] ⊗ C[Wμ2 ].

When μ1 = μ2 = 0, we have Wμ1 = Wμ2 = Wμ1+μ2 = G1[[z−1]] and the multiplica-
tion map is just the ordinary multiplication map on G1[[z−1]]. On the other hand, the 
Drinfeld–Gavarini duality (also called Quantum Duality Principle; see [11]) shows us that 
the coproduct on grY is just the usual coproduct on C[G1[[z−1]]]. Thus we conclude that 
Δ1

0,0 = Δ2
0,0. So it is natural to expect that for all μ1, μ2, we have Δ1

μ1,μ2
= Δ2

μ1,μ2
. (In 

Corollary 6.5, we will show that this holds when g = sl2 and μ1, μ2 are antidominant.)

Proposition 5.19. If μ1, μ2 are antidominant, then the Δ1
μ1,μ2

and Δ2
μ1,μ2

agree on the 

Poisson generators p(1)
i , p−i

(1)
, p(1)

i , p(2)
i .

Proof. Let μ1 and μ2 be both antidominant. Then the multiplication map Wμ1×Wμ2 →
Wμ1+μ2 is given just by multiplication in G((z−1)). Let ukhkzμkuk

−, k = 1, 2 be any 
elements of Wμk

. Then the product is

u1zμ1h1u1
−u

2h2zμ2u2
−.

We take the Gaussian decomposition of the middle part of this expression, i.e. we write

h1u1
−u

2h2 = u′h′u′
−,

where u′ ∈ U1[[z−1]], u′
− ∈ U−,1[[z−1]], h′ ∈ T1[[z−1]]. Then the product is

u1(zμ1u′z−μ1
)
h′zμ1+μ2

(
z−μ2u′

−z
μ2

)
u2
−.

The first and second Fourier coefficients of u′, u′
− and h′ are easy to compute. To 

write the answer we need to define the functions p(r)
γ , p−(r)

γ for any positive root γ. 
Fix an isomorphism c : n → U between the formal neighborhood of 0 ∈ n and the 
formal neighborhood of e ∈ U such that d0c = Id: n → n (e.g. c = exp: n → U). Let 
Pγ : n → nγ = C be the projection to the corresponding root space. Define p(r)

γ as the 
coefficient of z−r in the composite map Pγ ◦ c−1 : U1[[z−1]] → C, and similarly for p−(r)

γ . 
Note that p(1)

γ and p−(1)
γ do not depend on the choice of c. We get the following formulas

Δ1(p(1)
i ) = p(1)

i ⊗ 1 + 1 ⊗ p(1)
i , (5.11)

Δ1(p(2)) = p(2) ⊗ 1 + 1 ⊗ p(2) + p(1) ⊗ p(1) −
∑

〈αi, γ〉p−
(1) ⊗ p(1), (5.12)
i i i i i

γ>0
γ γ
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Δ1(p(1)
i ) = p

(1)
i ⊗ 1 + δ〈μ1,αi〉,01 ⊗ p

(1)
i , (5.13)

Δ1(p−i
(1)) = δ〈μ2,αi〉,0p

−
i

(1) ⊗ 1 + 1 ⊗ p−i
(1)

. (5.14)

Note that p(1)
γ is the image of E(1)

γ under the isomorphism from Theorem 5.15 (and 
similarly p−γ

(1)).
Comparing with Lemma 4.9 gives the desired result. �

Conjecture 5.20. The multiplication map Wμ1 ×Wμ2 → Wμ1+μ2 is Poisson.

We know that it is true when μ1 = μ2 = 0, since in this case it is just the usual 
multiplication in the Poisson group G1[[z−1]].

Proposition 5.21. If Conjecture 5.20 holds, then the two maps Δ1 and Δ2 agree.

Proof. If μ1, μ2 are antidominant, then Proposition 5.19 shows that Δ1
μ1,μ2

and Δ2
μ1,μ2

agree on the Poisson generators for the algebra C[Wμ1+μ2 ]. Since both maps are Poisson, 
they must agree.

Now, suppose that μ1, μ2 are arbitrary. As in the proof of Theorem 4.12, we can embed 
C[Wμ1+μ2 ] into an antidominant situation. Both Δ1 and Δ2 are compatible with this 
embedding. For Δ1, this follows from Lemma 5.11, while for Δ2 this follows from the 
construction in Theorem 4.12. Thus the result follows. �
6. Toda and comultiplication

Throughout this section we work with shifted Yangians of sl2 and the Toda lattice for 
GL(n).

6.1. A presentation of sl2 shifted Yangians

Following [17, Definition 2.24], we can write down the defining relations of the shifted 
Yangian Ym(sl2) of sl2 in current form. In this case μ = m ∈ Z, and from now on 
we assume m ≤ 0, i.e. our Yangian is antidominantly shifted. We introduce the series 
E(u) :=

∞∑
p=1

E(p)u−p, F (u) :=
∞∑
p=1

F (p)u−p, H(u) := um +
∞∑

p=−m+1
H(p)u−p. Then the 

defining relations can be written in the following form:

[H(u), H(v)] = 0, (6.1)

[E(u), F (v)] = −�
H(u) −H(v)

u− v
, (6.2)

[E(u), E(v)] = −�
(E(u) − E(v))2

u− v
, (6.3)

(F (u) − F (v))2
[F (u), F (v)] = �
u− v

, (6.4)
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[H(u), E(v)] = −�
H(u)(E(u) −E(v)) + (E(u) −E(v))H(u)

u− v
, (6.5)

[H(u), F (v)] = �
H(u)(F (u) − F (v)) + (F (u) − F (v))H(u)

u− v
. (6.6)

6.2. Some automorphisms of Ym(sl2)

It is clear from the formulas above that the additive shifts of the variable u act on the 
shifted Yangian Ym by automorphisms. We denote the corresponding automorphisms 
by Tε : E(u) 	→ E(u − ε), F (u) 	→ F (u − ε), H(u) 	→ H(u − ε).

6.3. Coproduct on Ym(sl2) for m ≤ 0

The following formulas define the coproduct Δ on the usual Yangian Y(sl2) = Y0(sl2)
(see [17, Definition 2.24]).

Δ: E(u) 	→ E(u) ⊗ 1 +
∞∑
j=0

(−1)jF (u + �)jH(u) ⊗ E(u)j+1; (6.7)

Δ: F (u) 	→ 1 ⊗ F (u) +
∞∑
j=0

(−1)jF (u)j+1 ⊗H(u)E(u + �)j ; (6.8)

Δ: H(u) 	→
∞∑
j=0

(−1)j(j + 1)F (u + �)jH(u) ⊗H(u)E(u + �)j . (6.9)

Proposition 6.4. Let l, k ≤ 0 and m = l + k. Then the coproduct Δ: Ym(sl2) →
Yl(sl2) ⊗ Yk(sl2) is also given by the formulas (6.7)–(6.9), where by abuse of notation 
E(u), F (u), H(u) denote the generating series for each respective algebra.

Proof. We make use of the following commutative diagram:

Y0
Δ−−−−→ Y0 ⊗ Y0⏐⏐�ι0,l,k

⏐⏐�ι0,l,0⊗ι0,0,k

Ym
Δ−−−−→ Yl ⊗ Yk

(6.10)

from the statement of Theorem 4.12. By commutativity, we may compute the coproduct 
of any elements in the image of ι0,l,k : Y0 → Ym by passing around the top of the 
diagram. Modulo accounting for the shift homomorphisms involved, this is given by 
Molev’s formulas (6.7)–(6.9).

Note that the homomorphism ι0,l,k : Y0 → Ym is not surjective: the generators 
E(r), F (s) are not in its image for 1 ≤ r ≤ l and 1 ≤ s ≤ k. However, the coprod-
ucts of these elements were explicitly described in Section 4.6. Piecing these coproducts 

together with those computed above, the claim follows. �
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Corollary 6.5. In this case, the comultiplication Δ: Ym(sl2) → Yl(sl2) ⊗ Yk(sl2) quan-
tizes the multiplication map Wk × Wl → Wm. (In other words, in the notation of 
Section 5.18, we have Δ1

k,l = Δ2
k,l.)

Proof. For the ordinary Yangian Y (sl2), the classical limit of the formulas (6.7)–(6.9)
corresponds to multiplication in the group (PGL2)1[[z−1]], written with respect to Gauss 
decompositions. Explicitly, any element of (PGL2)1[[z−1]] can be written uniquely in the 
form

g =
(

1 0
e 1

)(
1 0
0 h

)(
1 f
0 1

)
(6.11)

with e, f ∈ z−1
C[[z−1]] and h ∈ 1 + z−1

C[[z−1]]. The product of two such elements, 
rewritten in the above form, is

g1g2 =
( 1 0
e1 + h1e2

1+f1e2
1

)(1 0
0 h1h2

(1+f1e2)2

)(
1 f1h2

1+f1e2
+ f2

0 1

)
(6.12)

On the level of coordinate rings, this corresponds precisely to (6.7)–(6.9) with � = 0.
Any g ∈ Wn can also be written uniquely in the form (6.11), but where now we take 

h ∈ zn + zn−1
C[[z−1]]. When k, l ≤ 0 the multiplication map Wk ×Wl → Wm is given 

by matrix multiplication, and (6.12) generalizes immediately. This proves the claim. �
Remark 6.6. Assuming one has explicit formulas for the coproduct Δ: Y0(g) → Y0(g) ⊗
Y0(g), a similar logic to Proposition 6.4 gives explicit formulas for the coproduct 
Δ: Yμ(g) → Yμ1(g) ⊗ Yμ2(g) in the case when μ, μ1, μ2 are all antidominant.

6.7. Shifted Yangian of sl2 and Toda

According to [4, Theorem B.18], for a simple simply laced g, there is a homomorphism 
from the shifted Yangian Yμ(g) to a quantized Coulomb branch. Let us describe it in 
the simplest case g = sl2, μ = −2n, λ = 0 where n is a positive integer.

Proposition 6.8. ([4, Theorem B.18]) There is a homomorphism Φ0
−2n : Y−2n(sl2) →

H
G∨

O�C
×

• (GrG∨) for G = G∨ = GLn. We have

Φ0
−2n(A(p)) = ep ∈ H•

G∨
O�C×(pt) ⊂ H

G∨
O�C

×

• (GrG∨),

Φ0
−2n(F (1)) = [Gr�1

G∨ ], Φ0
−2n(E(1)) = (−1)n[Gr−�1

G∨ ]

Note that according to Lemma 2.10 and the paragraph following it, the homomorphism 
Φ0

−2n is surjective.
The ring H•

G∨
O�C×(pt) gets identified with the center of the universal enveloping 
algebra ZU�(g) via the Satake correspondence. The Harish-Chandra homomorphism 
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identifies the center ZU�(g) with the algebra C[h∗]W of W -invariant polynomials with 
respect to the W -action shifted by −�ρ. Here we write ep for the p-th elementary sym-
metric function in C[h∗]W (shifted by −�ρn where ρn := (n−1

2 , n−3
2 , . . . , −n+1

2 )). So we 
can compute the images of A(1) and A(2) as elements of the center of the universal 
enveloping algebra ZU�(g). Combining it with β : HG∨

O�C
×

• (GrG∨) ∼−→Tn
�

we get

Proposition 6.9. There is a surjective homomorphism β ◦ Φ0
−2n : Y−2n(sl2) → Tn

�
which 

takes the subalgebra generated by the A(p) to ZU�(g). In particular, we can see that the 
homomorphism takes A(1) to C1, A(2) to C2 − (ρn, ρn)�2, E(1) to −Δ and F (1) to Δ′.

Remark 6.10. In section 6 of [9], the authors construct certain elements An(λ), Bn(λ),
Cn(λ) ∈ Tn

�
[[λ]]. They observe that these elements satisfy some (but not all) of the 

relations of the sl2 Yangian.
It is easy to see that the elements An(λ), Bn(λ), Cn(λ) defined in [9] are the images 

of the same named elements of Y−2n(sl2)[[λ]] under the homomorphism β ◦ Φ0
−2n. This 

explains why these elements satisfy the relations from [9, (6.5)].
Moreover, the formulas (6.7) from [9] are special cases of the formulas from [4, Corol-

lary B.17].

6.11. Compatibility of the coproducts

According to Proposition 6.9 there is a homomorphism β ◦ Φ0
−2n : Y−2n(sl2) → Tn

�
. 

Twisting by the additive shift automorphisms Tε (notations of Section 6.2) gives a family 
of homomorphisms β ◦ Φ0

−2n[ε] := β ◦ Φ0
−2n ◦ Tε : Y−2n(sl2) → Tn

�
.

We have the following quantum version of Theorem 2.8:

Theorem 6.12. The following diagram commutes:

Y−2k−2l(sl2)
Δ−−−−→ Y−2k(sl2) ⊗ Y−2l(sl2)⏐⏐�β◦Φ0

−2k−2l

⏐⏐�β◦Φ0
−2k[ l�2 ]⊗β◦Φ0

−2l[− k�

2 ]

Tk+l
�

τk,l−−−−→ Tk
�
⊗ Tl

�

.

Proof. Follows from Proposition 2.4 and Lemma 4.9. �
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