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MORRISON-KAWAMATA CONE CONJECTURE
FOR HYPERKÄHLER MANIFOLDS

 E AMERIK  M VERBITSKY

A. – Let M be a simple hyperkähler manifold, that is, a simply connected compact
holomorphically symplectic manifold of Kähler type with h2;0 D 1. Assuming b2.M/ ¤ 5, we
prove that the group of holomorphic automorphisms of M acts on the set of faces of its Kähler
cone with finitely many orbits. This statement is known as Morrison-Kawamata cone conjecture for
hyperkähler manifolds. As an implication, we show that a hyperkähler manifold has only finitely many
non-equivalent birational models. The proof is based on the following observation, proven with ergodic
theory. Let M be a complete Riemannian manifold of dimension at least three, constant negative
curvature and finite volume, and fSi g an infinite set of complete, locally geodesic hypersurfaces. Then
the union of Si is dense in M .

R. – Soit M une variété hyperkählérienne irréductible. En supposant b2.M/ ¤ 5, nous
montrons que le groupe d’automorphismes de M n’a qu’un nombre fini d’orbites sur l’ensemble des
faces du cône de Kähler. Cet enoncé est une version de la conjecture de Morrison-Kawamata pour
les variétés hyperkählériennes. Une conséquence en est la finitude du nombre des modèles birationnels
pour une telle variété. La preuve s’appuie sur l’observation suivante, qui se démontre dans le cadre
de la théorie ergodique : soient M une variété riemanienne complète de dimension au moins trois, de
courbure constante négative et de volume fini, et fSi g un ensemble infini d’hypersurfaces localement
géodésiques. Alors la réunion des Si est dense dans M .

1. Introduction

1.1. Kähler cone and MBM classes

LetM be a hyperkähler manifold, that is, a compact, holomorphically symplectic Kähler
manifold. We assume that �1.M/ D 0 and H 2;0.M/ D C: the general case reduces
to this by Bogomolov decomposition (2.3). Such hyperkähler manifolds are known as
simple hyperkähler manifolds, or IHS (irreducible holomorphic symplectic) manifolds. The
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974 E. AMERIK AND M. VERBITSKY

known examples of such manifolds are deformations of punctual Hilbert scheme of K3
surfaces, deformations of generalized Kummer varieties and two sporadic ones discovered
by O’Grady. In [1] we gave a description of the Kähler cone of M in terms of a set of
cohomology classes S � H 2.M;Z/ called MBM classes (2.14). This set depends only on the
deformation type of M .

Recall that on the second cohomology of a hyperkähler manifold, there is an integral
quadratic form q, called the Beauville-Bogomolov-Fujiki form (see Section 2 for details).
This form is of signature .C;�; : : : ;�/ on H 1;1.M/. Let Pos � H 1;1.M/ be the positive
cone, and S.I / the set of all MBM classes which are of type (1,1) onM with its given complex
structure I . Then the Kähler cone is a connected component of Pos nS.I /?, where S.I /? is
the union of the orthogonal complements to all z 2 S.I /.

1.2. Morrison-Kawamata cone conjecture for hyperkähler manifolds

The Morrison-Kawamata cone conjecture for Calabi-Yau manifolds was stated in [27].
For K3 surfaces it was already known since mid-eighties by the work of Sterk [33]. Kawamata
in [16] proved the relative version of the conjecture for Calabi-Yau threefolds admitting a
holomorphic fibration over a positive-dimensional base.

In this paper, we concentrate on the following version of the cone conjecture (see Subsec-
tion 5.2 for its relation to the classical one, formulated for the ample cone of a projective
variety).

D 1.1. – LetM be a compact, Kähler manifold, Kah � H 1;1.M;R/ the Kähler
cone, and Kah its closure in H 1;1.M;R/, called the nef cone. A face of the Kähler cone is the
intersection of the boundary of Kah and a hyperplane V � H 1;1.M;R/ which has non-empty
interior.

C 1.2 (Morrison-Kawamata cone conjecture, Kähler version)

LetM be a Calabi-Yau manifold. Then the group Aut.M/ of biholomorphic automorphisms
of M acts on the set of faces of Kah with finite number of orbits.

The original Morrison-Kawamata cone conjecture is formulated for projective Calabi-
Yau manifolds and has two versions: the weak one states that Aut.M/ acts with finitely many
orbits on the set of faces of the ample cone and the strong one states that Aut.M/ has a finite
polyhedral fundamental domain on the ample cone, or, more precisely, on the cone NefC.M/

obtained from the ample cone by adding the “rational part” of its boundary (see [27, 34, 22]
for details).

We shall be interested in the case when the manifoldM is simple hyperkähler (that is, IHS).
Our main purpose is to prove 1.2. Notice that the stronger version involving fundamental
domains cannot be true in this Kähler setting, as for a very general IHS M the Kähler cone
is equal to the positive cone whereas Aut.M/ is trivial. However when M is projective IHS,
the Kähler version of the conjecture implies almost immediately not only the weak, but also
the strong original version (see Section 5).

In [1], we have shown that the Kähler version of the Morrison-Kawamata cone conjecture
holds whenever the Beauville-Bogomolov square of primitive MBM classes is bounded. This
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THE CONE CONJECTURE 975

is known to be the case for deformations of punctual Hilbert schemes of K3 surfaces and for
deformations of generalized Kummer varieties.

The strong version of the cone conjecture for projective IHS under the boundedness
assumption for primitive MBM classes has been proved by Markman and Yoshioka in [22].
In Section 5 we suggest a rapid alternative way to deduce this strong version from ours:
the tools are Borel and Harish Chandra theorem on arithmetic subgroups and geometric
finiteness results from hyperbolic geometry. To apply the first one, we have to suppose that the
Picard number is at least three. The case of Picard number two has to be treated separately,
but the argument is fairly easy. Thus it is the boundedness (in absolute value) of squares of
primitive MBM classes which is at the heart of all versions of Morrison-Kawamata cone
conjecture for IHS.

Let us also briefly mention that this conjecture has a birational version, proved for projec-
tive hyperkähler manifolds by E. Markman in [21] and generalized in [1] to the non-projective
case. In this birational version, the nef cone is replaced by the birational nef cone (that is,
the closure of the union of pullbacks of Kähler cones on birational models of M ) and the
group Aut.M/ is replaced by the group of birational automorphisms Bir.M/.

The key point of the proof of [1] is the observation that the orthogonal group O.H 1;1
Z .M/; q/

of the lattice H 1;1
Z .M/ D H 1;1.M/ \ H 2.M;Z/, and therefore the Hodge monodromy

group �Hdg (see 2.12) which is a subgroup of finite index inO.H 1;1
Z .M/; q/, acts with finitely

many orbits on the set of classes of fixed square r ¤ 0. When the primitive MBM classes
have bounded square, we conclude that the monodromy acts with finitely many orbits on
the set of MBM classes. As those are precisely the classes whose orthogonal hyperplanes
support the faces of the Kähler cone, it is not difficult to deduce that there are only finitely
many, up to the action of the monodromy group, faces of the Kähler cone, and also finitely
many oriented faces of the Kähler cone (an oriented face is a face together with the choice
of normal direction). An element of the monodromy which sends a face F to a face F 0, with
both orientations pointing towards the interior of the Kähler cone, must preserve the Kähler
cone. On the other hand, Markman proved ([21], Theorem 1.3) that an element of the Hodge
monodromy which preserves the Kähler cone must be induced by an automorphism, so that
the cone conjecture follows.

1.3. Main results

The main point of the present paper is that the finiteness of the set of primitive MBM
classes of type .1; 1/, up to the monodromy action, can be obtained without the boundedness
assumption on their Beauville-Bogomolov square.

Our main technical result is the following

T 1.3. – Let L be a lattice of signature .1; n/ where n > 3, V D L ˝ R. Let
� be an arithmetic subgroup in SO.1; n/. Let Y WD

S
Si be a �-invariant union of rational

hyperplanes Si orthogonal to negative vectors zi 2 L in V . Then either � acts on fSig with
finitely many orbits, or Y is dense in the positive cone in V .

Proof. – See 4.11.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



976 E. AMERIK AND M. VERBITSKY

R 1.4. – The assumption n > 3 is important for our argument which is based
on Ratner theory. We shall see that Ratner theory applies to our problem as soon as the
connected component of the unity of SO.1; n�1/ is generated by unipotents, that is, for n >
3.

TakingH 1;1
Z .M/ D H 1;1.M/\H 2.M;Z/ forL and the Hodge monodromy group for �,

we easily deduce:

T 1.5. – Assume that M is projective, of Picard rank at least 4. The monodromy
group acts with finitely many orbits on the set of MBM classes which are of type .1; 1/.

Proof. – See 5.1.

Note that, by a result of Huybrechts, the projectivity assumption for M is equivalent to
the signature .1; n/ assumption for its Picard lattice L.

The boundedness follows as an obvious corollary.

C 1.6. – On a projective M with Picard number at least 4, primitive MBM
classes of type .1; 1/ have bounded Beauville-Bogomolov square.

Proof. – Indeed, the monodromy acts by isometries.

Using the deformation invariance of MBM property, we can actually drop the assumption
that M is projective and has Picard rank at least four. Indeed, if M is a simple hyperkähler
manifold with b2.M/ > 6, we can always deform it to a projective manifold M 0 on which
all classes from H

1;1
Z .M/ stay of type .1; 1/ (see 2.31). Since the square of a primitive MBM

class is bounded on M 0, the same is true for M .
The Morrison-Kawamata cone conjecture is then deduced as we have sketched it above,

exactly in the same way as in [1].

T 1.7. – Let M be a simple hyperkähler manifold with b2.M/ > 6. The group
of automorphisms Aut.M/ acts with finitely many orbits on the set of faces of the Kähler
cone Kah.M/.

Proof. – See 5.4.

R 1.8. – The theorem holds trivially for M with b2.M/ < 5, so that our result is
valid as soon as b2.M/ ¤ 5. This remaining case can probably be handled using methods of
hyperbolic geometry (completely different from those of the present paper; we hope to return
to this question in a forthcoming note). One would, though, believe that simple hyperkähler
manifolds with b2 D 5 do not exist.

Finally, as observed by Markman and Yoshioka, the boundedness of squares of primitive
MBM classes implies the following theorem (we thank Y. Kawamata for indicating us the
statement).

T 1.9. – LetM be a simple hyperkähler manifold with b2.M/ > 6. Then there are
only finitely many simple hyperkähler manifolds birational to M .

4 e SÉRIE – TOME 50 – 2017 – No 4



THE CONE CONJECTURE 977

Proof. – This is just [22], Corollary 1.5. Indeed, the classes emenitioned in Conjecture 1.1
from [22] (that is, the classes generating the extremal rays of the Mori cone on the simple
hyperkähler birational models of M ) are MBM classes in the sense of our 2.14.

The crucial tool for the proof of 1.3 is Ratner theory. We recall this and some other rele-
vant information from ergodic theory in Section 3, after some preliminaries on hyperkähler
manifolds in Section 2. In Section 4 we deduce 1.3 from Mozes-Shah and Dani-Margulis
theorems. Finally, in the last section we apply this to hyperkähler manifolds and prove 1.7.

2. Preliminaries

2.1. Hyperkähler manifolds, monodromy and MBM classes

D 2.1. – A hyperkähler manifold is a compact, Kähler, holomorphically
symplectic manifold.

D 2.2. – A hyperkähler manifold M is called simple, or IHS, if �1.M/ D 0,
H 2;0.M/ D C.

This definition is motivated by Bogomolov’s decomposition theorem:

T 2.3 ([5]). – Any hyperkähler manifold admits a finite covering which is a product
of a torus and several simple hyperkähler manifolds.

R 2.4. – The Bogomolov decomposition theorem can be obtained by applying
the de Rham holonomy decomposition theorem and Berger’s classification of manifolds
with special holonomy to the Ricci-flat hyperkähler metric on a compact holomorphically
symplectic Kähler manifold. Then, a hyperkähler manifold is simple if and only if its hyper-
kähler metric has maximal holonomy group Hol.M/ allowed by the hyperkähler structure,
that is Hol.M/ D Sp.n/, where n D 1

2
dimCM .

R 2.5. – Further on, we shall assume that all hyperkähler manifolds we consider
are simple.

The Bogomolov-Beauville-Fujiki form was defined in [6] and [4], but it is easiest to
describe it using the Fujiki theorem, proved in [12].

T 2.6 (Fujiki). – Let M be a simple hyperkähler manifold, � 2 H 2.M/, and
n D 1

2
dimM . Then

R
M
�2n D cq.�; �/n, where q is a primitive integral quadratic form

on H 2.M;Z/, and c > 0 a constant (depending on M).

R 2.7. – Fujiki formula (2.6) determines the form q uniquely up to a sign. For
odd n, the sign is unambiguously determined as well. For even n, one needs the following
explicit formula, which is due to Bogomolov and Beauville.

(2.1)
�q.�; �/ D

Z
X

� ^ � ^�n�1
^�

n�1
�

�
n � 1

n

�Z
X

� ^�n�1
^�

n
��Z

X

� ^�n
^�

n�1
�

where � is the holomorphic symplectic form, and � > 0.
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978 E. AMERIK AND M. VERBITSKY

D 2.8. – A cohomology class � 2 H 1;1
R .M/ is called negative if q.�; �/ < 0,

and positive if q.�; �/ > 0. Since the signature of q on H 1;1.M/ is .1; b2 � 3/, the set of
positive vectors is disconnected. The positive cone Pos.M/ is the connected component of the
set f� 2 H 1;1

R .M/ j q.�; �/ > 0g which contains the classes of the Kähler forms. Using the
Cauchy-Schwarz inequality, it is easy to check that the positive cone is convex.

D 2.9. – Let M be a hyperkähler manifold. The monodromy group of M is
a subgroup of GL.H 2.M;Z// generated by the monodromy transforms for all Gauss-Manin
local systems, that is, local systems of cohomologies associated to smooth families of Kähler
manifolds over a connected base (cf. [21]).

It is often enlightening to consider this group in terms of the mapping class group action
(and this is also the present paper’s approach). In the following paragraphs, we recall this
description.

D 2.10. – Let M be a compact complex manifold, and Diff0.M/ a connected
component of its diffeomorphism group (the group of isotopies). Denote by Comp the space
of complex structures of Kähler type on M (remark here that the set of complex structures of
Kähler type is open in the space of all complex structures by Kodaira-Spencer stability theorem),
and let Teich WD Comp =Diff0.M/. We call it the Teichmüller space.

For hyperkähler manifolds, this is a finite-dimensional complex non-Hausdorff mani-
fold ([9, 35]).

D 2.11. – The mapping class group is Diff.M/=Diff0.M/. It naturally acts
on Teich. The quotient of Teich by this action may be viewed as the “moduli space” for M .
However, this space is too non-Hausdorff to be useful: any two open subsets of a connected
component of Teich =Diff intersect ([36, 37]).

It follows from a result of Huybrechts (see [14]) that in the hyperkähler case Teich has only
finitely many connected components. Therefore, the subgroup of the mapping class group
which fixes the connected component of our chosen complex structure is of finite index in
the mapping class group.

D 2.12. – The monodromy group � is the image of this subgroup in AutH 2.M;Z/.
The Hodge monodromy group is the subgroup �Hdg � � preserving the Hodge decomposition.

The following theorem is crucial for the Morrison-Kawamata cone conjecture.

T 2.13 ([35], Theorem 3.5). – The monodromy group is a finite index subgroup
in O.H 2.M;Z/; q/ (and the Hodge monodromy is therefore an arithmetic subgroup of the
orthogonal group of the Picard lattice).

Next, we recall from [1] the definition of MBM classes. Remark that any birational map
between hyperkähler manifolds ' W M 99K M 0 is an isomorphism in codimension one (in
general this easily follows from the nefness of the canonical class, which yields that the sets
of exceptional divisors for the projections from the resolution of singularitiesM 00 of ' toM
andM 0 coincide; see for instance [17] for details of this argument in a more general situation)

4 e SÉRIE – TOME 50 – 2017 – No 4



THE CONE CONJECTURE 979

and therefore induces an isomorphism on the second cohomology. We say that M and M 0

are birational models of each other.

D 2.14. – A non-zero negative rational homology class z 2 H 1;1.M/ is called
monodromy birationally minimal (MBM) if for some isometry 
 2 O.H 2.M;Z// belonging
to the monodromy group, 
.z/? � H 1;1.M/ contains a face of the pull-back of the Kähler cone
of one of birational models M 0 of M .

R 2.15. – Here the orthogonal is taken with respect to the Beauville-Bogomolov
form. A face of Kah.M/ is, by definition, of maximal dimension h1;1.M/ � 1. So the
definition of z being MBM means that 
.z/?\@Kah.M 0/ contains an open subset of 
.z/?.
The MBM classes, or more precisely the rays they generate, are natural analogs of “extremal
rays” from projective geometry, up to monodromy and birational equivalence; hence the
name. In fact whenM is projective, those are exactly the monodromy transforms of extremal
rays on birational models of M ; this is already implicit in [1], but see [19], Proposition 2.3
and Remark 2.4, for an explicit formulation. At this point one should also mention that the
MBM classes have been independently considered by G. Mongardi in [24] under the name
of “wall divisors”; though the equivalence of the two notions was not completely clear from
Mongardi’s original definition, it became so later. See also [3] for some results similar to those
of the present paper in the special case of K3 type manifolds.

The following theorem has been proved in [1, Corollary 5.14].

T 2.16. – LetM be a hyperkähler manifold, z 2 H 1;1.M/ an integral cohomology
class, q.z; z/ < 0, andM 0 a deformation ofM such that z remains of type (1,1) onM 0. Assume
that z is monodromy birationally minimal on M . Then z is monodromy birationally minimal
on M 0.

R 2.17. – Keeping this theorem in mind, we say that a class z 2 H 2.M;Z/ is
MBM if such is the case on a deformation M 0 of M where z becomes of type .1; 1/.

The MBM classes can be used to determine the Kähler cone of M explicitly.

T 2.18 ([1], Theorem 6.2). – Let M be a hyperkähler manifold, and S �

H 1;1.M/ the set of all MBM classes of type .1; 1/. Consider the corresponding set of hyper-
planes S? WD fz? j z 2 Sg inH 1;1.M/. Then the Kähler cone ofM is a connected component
of Pos.M/n [ S?, where Pos.M/ is the positive cone of M . Moreover, for any connected
component K of Pos.M/n [ S?, there exists 
 2 O.H 2.M;Z// in the Hodge monodromy
group of M and a birational model M 0 such that 
.K/ is the Kähler cone of M 0.

R 2.19. – The main point of this theorem is that for a negative integral class
z 2 H 1;1.M/, the orthogonal hyperplane z? either passes through the interior of some
Kähler-Weyl chamber and then it contains no face of a Kähler-Weyl chamber (that is, z is
not MBM), or its intersection with the positive cone is a union of faces of such chambers
(when z is MBM). This is illustrated by a picture taken from [1]:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



980 E. AMERIK AND M. VERBITSKY

Allowed partition Prohibited partition

2.2. Global Torelli theorem and deformations

In this subsection, we recall a number of results about deformations of hyperkähler mani-
folds used further on in this paper. For more details and references, see [35].

Let M be a hyperkähler manifold (as usual, we assume M to be simple). Any deforma-
tionM 0 ofM is also a simple hyperkähler manifold, because the Hodge numbers are constant
in families and thusH 2;0.M 0/ is one-dimensional. Let us viewM 0 as a couple .M; J /, where
J is a new complex structure on M , that is, a point of the Teichmüller space Teich.

D 2.20. – Let

Per W Teich �! PH 2.M;C/

map J to the line H 2;0.M; J / 2 PH 2.M;C/. The map Per is called the period map.

R 2.21. – The period map Per maps Teich into an open subset of a quadric,
defined by

Per WD fl 2 PH 2.M;C/ j q.l; l/ D 0; q.l; l/ > 0g:
It is called the period domain ofM . Indeed, any holomorphic symplectic form l satisfies the
relations q.l; l/ D 0; q.l; l/ > 0, as follows from (2.1).

D 2.22. – Let M be a topological space. We say that x; y 2 M are non-
separable (denoted by x � y) if for any open sets V 3 x; U 3 y, U \ V ¤ ;.

By a result of Huybrechts [13], non-separable points of Teich correspond to birational
hyperkähler manifolds.

D 2.23. – The space Teichb WD Teich=� is called the birational Teichmüller
space of M .

R 2.24. – This terminology is slightly misleading since there are non-separable
points of the Teichmüller space which correspond to biregular, not just birational, complex
structures. Even for K3 surfaces, the Teichmüller space is non-Hausdorff.

T 2.25 (Global Torelli theorem; [35]). – The period map Teichb

Per
�! Per is an

isomorphism on each connected component of Teichb .
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By a result of Huybrechts ([14]), Teich has only finitely many connected components.
We shall fix the component Teich0 containing the parameter point for our initial complex
structure, and denote by e� the subgroup of finite index in the mapping class group fixing
this component.

It is natural to view the quotient of Teich by the mapping class group as a moduli space
forM and the quotient of Teichb by the mapping class group as a “birational moduli space”:
indeed its points are in bijective correspondence with the complex structures of hyperkähler
type on M up to a bimeromorphic equivalence.

R 2.26. – The word “space” in this context is misleading. In fact, outside of a
countable subset, the quotient Teich0

b =
e� has codiscrete topology. ([36]).

The Global Torelli theorem can be stated as a result about the birational moduli space.

T 2.27 ([35, Theorem 7.2, Remark 7.4, Theorem 3.5]). – Let .M; I / be a hyper-
kähler manifold, and W a connected component of its birational moduli space. Then W is
isomorphic to Per=�, where � is an arithmetic subgroup in O.H 2.M;R/; q/, called the
monodromy group of .M; I /. In fact � is the image of e� in O.H 2.M;R/; q/.

R 2.28. – As we have already mentioned, the monodromy group of .M; I / can
be also described as a subgroup of the group O.H 2.M;Z/; q/ generated by monodromy
transform maps for Gauss-Manin local systems obtained from all deformations of .M; I /
over a complex base ([35, Definition 7.1]). This is how this group was originally defined by
Markman ([20, 21]).

D 2.29. – Let z 2 H 2.M;Z/ be an integral cohomology class. The space
Teichz is the part of Teich where the class z is of type .1; 1/.

The following proposition is well-known.

P 2.30. – Teichz is the inverse image under the period map of the subset
Perz � Per which consists of l with q.l; z/ D 0.

Proof. – This is clear sinceH 1;1.M/ is the orthogonal, under q, toH 2;0.M/˚H 0;2.M/.

By a theorem of Huybrechts, a holomorphic symplectic manifold M is projective if and
only if it has an integral .1; 1/-class with strictly positive Beauville-Bogomolov square. In
this case, the Picard latticeH 1;1

Z .M/ D H 2.M;Z/\H 1;1.M/, equipped with the Beauville-
Bogomolov form q, is a lattice of signature .C;�;�; : : : ;�/. If M is not projective, the
Picard lattice can be either negative definite, or degenerate negative semidefinite with one-
dimensional kernel. In both cases, its rank cannot be maximal (i.e., equal to the dimension
of H 1;1.M/), since the signature of q on H 1;1.M/ is .C;�;�; : : : ;�/. Together with this
observation, 2.30 easily implies the following

P 2.31. – Let M be an irreducible holomorphic symplectic manifold. There
exists a deformationM 0 ofM which is projective and such that all integral .1; 1/-classes onM
remain of type .1; 1/ on M 0. Moreover one can take M 0 of maximal Picard rank h1;1.M/.
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Proof. – By 2.30, the locusC where all integral .1; 1/-classes onM remain of type .1; 1/ is
the preimage of the intersection of N complex hyperplanes and Per, where N is strictly
less than the (complex) dimension of Per. It is therefore strictly positive-dimensional. For
M 0 representing a general point of this locus, the Picard lattice is the same as that of M ,
but at a special point the Picard number jumps. Namely it jumps along the intersection with
each hyperplane of the form z?, where z is an integral .1; 1/-class. In particular, there are
isolated points inside C where the Picard rank is maximal. By the observations above, the
corresponding variety M 0 must be projective.

This proposition shall be useful in reducing the cone conjecture to the projective case with
high Picard number (see 5.3).

3. Ergodic theory and its applications

3.1. Ergodic theory: basic definitions and facts

D 3.1. – Let .M;�/ be a space with a measure, and G a group acting on M
preserving �. This action is ergodic if all G-invariant measurable subsets M 0 � M satisfy
�.M 0/ D 0 or �.MnM 0/ D 0.

The following claim is well-known and its proof is straightforward (cf. e.g., [36], Claim
3.3).

C 3.2. – LetM be a manifold (with a countable base), � a Lebesgue measure, andG
a group acting on .M;�/ ergodically. Then the set of points with non-dense orbits has measure 0.

D 3.3. – Let G be a Lie group, and � � G a discrete subgroup. Consider
the pushforward of the Haar measure to G=�. Here, by abuse of terminology, “taking the
pushforward” of a measure means measuring the intersection of the inverse image with a fixed
fundamental domain. We say that � has finite covolume if the Haar measure of G=� is finite.
In this case � is called a lattice, or sometimes a lattice subgroup (to distinguish it from free
Z-modules with a quadratic form, which are also often mentioned in this paper).

R 3.4. – Borel and Harish-Chandra proved that an arithmetic subgroup of a
reductive group G defined over Q is a lattice whenever G has no non-trivial characters
over Q (see [7], Theorem 7.8 for the semisimple case and Theorem 9.4 for the general case).
In particular, all arithmetic subgroups of a semi-simple group are lattices. Therefore the
monodromy and the Hodge monodromy groups from the previous section are lattices in the
corresponding orthogonal groups, which is a very important point for us.

In this paper, we deal with the following example of an ergodic action.

T 3.5 (Calvin C. Moore, [25, Theorem 4]). – Let� be a lattice subgroup (such as
an arithmetic subgroup) in a non-compact simple Lie group G with finite center, and H � G
a Lie subgroup. Then the left action of H on G=� is ergodic if and only if the closure of H is
non-compact.

Let us also state the following classical result.
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T 3.6 (Birkhoff ergodic theorem, see for example [38], 1.6)
Let � be a probability measure on a manifold X , and let gt be an ergodic flow preserving �

(in the sense of Definition 3.1). Then for almost all x 2 X and any f 2 L1.�/, the limit
of mT .f / D

1
T

R T

0
f .gtx/dt as T ! C1 exists and equals

R
X
fd�. In particular, for any

measurable subset K and almost all x, the part of time that the orbit of x spends in K is equal
to �.K/.

3.2. Lie groups generated by unipotents

Here we state some of the main results of Ratner theory. We follow [18] and [26].

D 3.7. – Let G be a Lie group, and g 2 G any element. We say that g is
unipotent if g D eh for a nilpotent element h in its Lie algebra. A group G is generated by
unipotents if G is multiplicatively generated by unipotent one-parameter subgroups.

T 3.8 (Ratner orbit closure theorem, [31]). – LetH � G be a Lie subroup gener-
ated by unipotents, and � � G a lattice. Then the closure of anyH -orbitHx inG=� is an orbit
of a closed, connected subgroup S � G, such that S \ x�x�1 � S is a lattice in S .

For an accessible account, see [26], especially Theorem 1.1.15 (the formulation slightly
differs from the above, but see 3.12).

For arithmetic groups Ratner orbit closure theorem can be stated in a more precise way,
as follows.

T 3.9. – Let G be a real algebraic group defined over Q and with no non-trivial
characters,W � G a subgroup generated by unipotents, and � � G an arithmetic lattice. For a
given g 2 G, letH be the smallest real algebraic Q-subgroup ofG containing g�1Wg. Then the
closure of the image of Wg in G=� is the image of .gHg�1/g (i.e., the closure of the W -orbit
of the class of g is its gHg�1-orbit).

Proof. – See [18, Proposition 3.3.7] or [32, Proposition 3.2].

Ratner orbit closure theorem is a consequence of her fundamental result on ergodic
measures [30], known as Ratner measure classification theorem, which we recall below.

D 3.10. – Let G be a Lie group, � a lattice, and G=� the quotient space,
considered as a space with Haar measure. Consider an orbit Sx � G of a closed subgroup
S � G, put the Haar measure (of S) on Sx, and assume that the Haar measure of its image
in G=� is finite (this means that S \ x�x�1 is a lattice in S). A measure on G=� is called
algebraic if it is proportional to the pushforward of the Haar measure on some orbit Sx=�
to G=� with S and x satisfying the above assumption.

Let G be a non-compact simple Lie group with finite center and H � G a Lie subgroup
with non-compact closure, as in Moore’s theorem (3.5). If H is generated by unipotents,
consider the algebraic measure on G=� which is proportional to the pushforward of the
Haar measure of S , where S is taken from the Ratner’s orbit closure theorem. It follows from
Moore’s theorem that the action of H on G=� is ergodic. Ratner’s measure classification
theorem states that all invariant ergodic measures under the action of subgroups generated
by unipotents arise in this way.
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T 3.11 (Ratner’s measure classification theorem, [30]). – Let G be a connected
Lie group, � a lattice, and G=� the quotient space, considered as a space with Haar measure.
Consider a finite measure � on G=�. Assume that � is invariant and ergodic with respect to an
action of a subgroup H � G generated by unipotents. Then � is algebraic.

Proof. – See [26, 1.3.7].

R 3.12. – In most texts, Ratner theorems are formulated for unipotent flows, that
is,H is assumed to be a one-parameter unipotent subgroup fu.t/jt 2 Rg. One gets rid of this
assumption using the following lemma.

L 3.13 ([28, Lemma 2.3] or [18, Corollary 3.3.5]). – Let H be a subgroup of G
generated by unipotent one-parameter subgroups. Then any finite H -invariant H -ergodic
measure on G=� is ergodic with respect to some one-parameter unipotent subgroup of H .

4. Algebraic measures on homogeneous spaces

The main result of this section (4.11) follows from a theorem of Mozes and Shah [28,
Theorem 1.1].

4.1. Limits of ergodic measures

D 4.1. – Recall that a Polish topological space is a metrizable topological
space with countable base. Let V be the set of all finite Borel measures (that is, � -additive
measures on the Borel � -algebra) on a Polish topological space M , and C 0.M/ the space of
bounded continuous functions. The weak topology on V is the weakest topology in which for all
f 2 C 0.M/ the map V �! R given by � �!

R
M
f� is continuous. If one identifies V with a

subset in C 0.M/�, the weak topology is identified with the weak-* topology on C 0.M/�. This
is why it is also called the weak-* topology.

R 4.2. – It is not hard to prove that the space of probability measures on a
compact Polish space is compact in weak topology. This explains the usefulness of this
notion.

T 4.3 (Mozes-Shah theorem). – Let G be a connected Lie group, � a lattice, ui

a sequence of unipotent one-parameter subgroups in G, and �i a sequence of ui -invariant,
ui -ergodic probability measures onG=�, associated with orbitsSixi � G=� as in 3.10. Assume
that lim�i D � with respect to the weak topology, with � a probability measure on X , and
let x 2 Supp.�/. Then

(i) � is an algebraic measure, associated with an orbit Sx as in 3.10.
(ii) Let gi 2 G be elements which satisfy gixi D x, and assume that gi ! e in G (so that

xi converge to x). Then there exists i0 2 N such that for all i > i0, S � x � giSi � xi .

Proof. – The statement (i) follows from [28, Theorem 1.1 (3)] and Ratner measure clas-
sification theorem, and (ii) is [28, Theorem 1.1 (2)].
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R 4.4. – More precisely, in [28, Theorem 1.1] there is an additional condition that
the trajectories fui .t/gxi ; t > 0 should be uniformly distributed with respect to �i . But
this is automatic by another theorem of Ratner (Ratner equidistribution theorem, see e.g.,
[26], Theorem 1.3.4), and in fact already by Birkhoff ergodic theorem (3.6), which states the
uniform distribution of orbits of one-parameter subgroups for almost all starting points.

The following theorem is an interpretation of Dani-Margulis theorem as stated in [10,
Theorem 6.1] obtained by applying Birkhoff ergodic therorem.

T 4.5 (Dani-Margulis theorem). – Let G be a connected Lie group, � a lattice,
X WD G=�, C � X a compact subset, and " > 0. Then there exists a compact subset K � X
such that for any algebraic probability measure � on X , satisfying �.C/ ¤ 0 and associated
with a group generated by unipotents (as in Ratner theorems), one has �.K/ > 1 � ".

Proof. – By 3.13, � is invariant and ergodic with respect to a one-parameter unipotent
subgroup u.t/. Now apply [10, Theorem 6.1] to a starting point x which is one of “almost all
points” of Supp.�/ \ C in the sense of Birkhoff theorem.

Combining Dani-Margulis theorem and Mozes-Shah theorem, one gets the following
useful corollary ([28, Corollary 1.1, Corollary 1.3, Corollary 1.4]).

C 4.6. – Let G be a connected Lie group, � a lattice, P.X/ be the space of
all probability measures on X D G=�, and Q.X/ � P.X/ the space of all algebraic
probability measures associated with all subgroups H � G generated by unipotents (as in
Ratner theorems). Then Q.X/ is closed in P.X/ with respect to weak topology. Moreover,
let X [ f1g denote the one-point compactification of X , so that P.X [ f1g/ is compact. If
for a sequence �i 2 Q.X/, �i ! � 2 P.X [ f1g/, then either � 2 Q.X/, or � is supported
at infinity.

4.2. Rational hyperplanes intersecting a compact set

D 4.7. – LetVZ be annC1-dimensional lattice with a scalar product of signature
.C;�;�; : : : ;�/, VQ D VZ ˝ Q and V WD VZ ˝ R. We consider the projectivization of the
positive cone PCV as the hyperbolic space of dimension n. Given a kC 1-dimensional subspace
WQ � VQ such that the restriction of the scalar product toWQ still has signature .1; k/, we may
associate the projectivized positive cone PCW � PCV with W D WQ˝Q R. When k D n� 1,
we shall call PCW � PCV a rational hyperplane in PCV .

Let � be an arithmetic lattice subgroup in the group of isometries of PCV , and fSig a
set of rational hyperplanes. We are interested in the images of Si in PCV=�. The following
theorem can be used to show that these images all intersect a compact subset of PCV=�.

T 4.8. – Let fSig be a set of rational hyperplanes in PCV , P � V a rational
subspace of signature .1; 2/, and PCP � PCV the corresponding 2-dimensional hyperbolic
subspace. Consider an arithmetic lattice � � SO.V;Z/, and let �P be the subgroup of �
leaving the subspace P invariant. Then there exists a compact subset K � PCP such that
�P �K intersects all the hyperplanes Si .
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Proof. – Since� has finite index inO.V;Z/, the image rP .�P / of�P under the restriction
map rP has finite index inO.P;Z/. One may view rP .�P / as a multi-dimensional analog of a
Fuchsian or Kleinian group, acting properly discontinuously on the hyperbolic plane. Then
rP .�P / acts with finite stabilizers, and the quotient of the hyperbolic plane by rP .�P / is a
hyperbolic orbifoldX . We must prove that there is a compact subset ofX such that its inter-
section with the image of any line Li D Si \ PCP is non-empty. But any arithmetic lattice
has a finite index subgroup which is torsion-free (for instance, the congruence subgroup
formed by integer matrices which are identity modulo N for N big enough). Therefore, our
orbifold X has a finite covering eX which is a hyperbolic Riemann surface, and it suffices
to prove that there is a compact eK � eX such that �.Li / intersects eK for any i , where
� W PCP �! eX denotes the projection (quotient by a finite index subgroup f�P � rP .�P /).

Let�Li
be the stabilizer ofLi in�P . Since the image of�Li

has finite index in the isometry
group of the sublattice underlying toLi , there are two possible cases: either this sublattice has
rational isotropic lines, i.e., the geodesic Li has its ends in cusps of eX , or the isotropic lines
are irrational, the image of �Li

is infinite, and �.Li / has finite length in eX . In this last case,
since �.Li / are isometric images of Li , they are compact; in other words, these are closed
geodesics on eX . We have reduced 4.8 to the following well-known lemma.

L 4.9. – Let S be a complete hyperbolic Riemann surface (of constant negative
curvature and finite volume). Then there exists a compact subset K � X intersecting each
closed geodesic l � S and each geodesic with ends in cusps.

Proof. – It is well-known that a finite volume hyperbolic surface has only finitely many
cusps. To obtain K, it suffices to remove from S a suitable neighborhood of each of them.
Indeed, there are no closed geodesics around cusps. This is an elementary exercise, apparently
well known; see e.g., [23, Theorem 1.2] which is in the same spirit. For the convenience of the
reader, we sketch an argument here.

Let H D fx 2 C j Im.x/ > 0g be a hyperbolic half-plane, equipped with a Poincare
metric, t > 0 a real number, andHt D fx 2 C j t > Im.x/ > 0g a strip consisting of all x 2 C
with 0 < Im.x/ < t . In a neighborhood of a cusp point, S is isometric to a quotient Ht=Z,
where the action of Z is generated by the parallel transport 
r .x/ D x C r , where r 2 R is a
fixed number. A geodesic is a half-circle perpendicular to the line Im x D 0; closed geodesic
in Ht=Z is a half-circle which is mapped to itself by a power of 
r . Such half-circles clearly
do not exist (see the picture).

The same picture shows that one can’t have geodesics with both ends in the same cusp
which are entirely contained in a small neighborhood of the cusp. Indeed a geodesic with
both ends in the cusp contained in a neighborhood of the cusp comes from a half-circle with
ends at points of the same Z-orbit, so that the radius of the circle is bounded from below and
by shrinking the neighborhood we can achieve that it contains no such geodesics.

A neighborhood of a cusp point in dimension 2
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R 4.10. – The result of this subsection shall be used in the next one to justify that
a certain sequence of ergodic measures does not have a subsequence going to infinity. Since all
the measures in question come from orbits of the same subgroup, this is also a consequence
of [11], Corollary 1.10. We prefer nevertheless to keep our simple observations on hyperbolic
geometry which might have some independent interest.

4.3. Measures and rational hyperplanes in the hyperbolic space

The hyperbolic space, that is, the projectivization of the positive cone in a real vector
space V D VZ ˝ R with a quadratic form of signature .1; n/, is a homogeneous space in an
obvious way. Indeed it is an orbit of any positive line by the connected component of the unity
of SO.1; n/, and the stabilizer is isomorphic to SO.n/. If z is a negative vector, then z? is a
hyperplane which intersects the positive cone; as in the previous paragraph, by a hyperplane
in the hyperbolic space we shall mean the projectivization of this intersection.

T 4.11. – Let G be the connected component of the unity SOC.1; n/ of SO.1; n/,
where n > 3, H WD SO.n/, and � � GZ a discrete subgroup of finite index (and therefore
of finite covolume, 3.4). Consider the hyperbolic space H D HnG D SO.n/nSOC.1; n/. Let
Y WD

S
Si be a �-invariant union of rational hyperplanes. Then either � acts on fSig with

finitely many orbits, or Y is dense in H.

Proof. – Let V D R1;n be a real vector space with a quadratic form of signature .1; n/ on
which we fix an orientation, andH the projectivisation of the positive cone, so thatH D HnG
whereG D SOC.V / and SO.n/ Š H � G is the stabilizer of a positive vector, and also H is
identified with the space of positive vectors x 2 V , .x; x/ D 1. In order to apply ergodic
theory, we replace H by the “incidence variety”X of pairs .HW � H; x 2 HW /, where HW is
an oriented hyperplane in the hyperbolic space and x 2 HW . Clearly, a point ofX is uniquely
determined by a pair of orthogonal vectors x; y 2 V , where x is positive, .x; x/ D 1, and
.y; y/ D �1 (note that the pairs x; y and x;�y give different points of the incidence variety
since there are two possible orientations on the same hyperplane). Therefore, X D H0nG,
whereH0 D SO.n�1/. The important point is thatX is a quotient ofG by a compact group
(and so is H). Moreover X is fibered over H in spheres of dimension n � 1.

We can lift our hyperplanes Si to X in the tautological way (because of the two orien-
tations, each one is lifted in two possible ways; we take both). To make the picture trans-
parent, we first treat the case n D 2, where H is the hyperbolic plane (since in the theorem
we have n > 3, this is just to describe the lifting and see a certain well-known analogy).
Here X D SOC.1; 2/ is the unit tangent bundle over H, and a point x 2 Si lifts as .x; z/
where z is a unit tangent vector to Si (there are of course again two choices and making one
amounts to fixing an orientation on the ambient vector space and on each hyperplane). If we
lift all possible (not necessarily rational) hyperplanes to X in this way (or rather, in each of
the two possible ways), we obtain a foliation known as the geodesic flow: our liftings never
intersect and are tangent to an invariant vector field on X D SOC.1; 2/. Therefore all the
lifting are orbits of the same Lie subgroup H1 � G (this one-parameter subgroup, isomor-
phic to SOC.1; 1/, can be identified with the group of diagonal two-by-two matrices with et

and e�t on the diagonal under an isomorphism between SOC.1; 2/ and PSL.2;R/, see the
first chapter of Morris’ book [26]).
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For n > 3, we first tautologically lift the (oriented) hyperplanes to X (which also may
be viewed as the unit tangent bundle to H) and then take preimages under the projection
fromG toX . Since our construction is equivariant under the action ofG by left translations,
we obtain a translation-invariant foliation on G, which means that the liftings and their
preimages are orbits of the same subgroup H1 � G (containing H0). This subgroup is
isomorphic to SOC.1; n� 1/, that is, generated by unipotents (in contrast with n D 2 case),
so that ergodic theory applies.

(Note added in the refereeing process in order to clarify the argument: this is a partial
case of a very general construction, as we have understood in a later article [2]: special type
orbits of certain maximal subgroups on the homogeneous spaceK nG (whereK is maximal
compact) yield an invariant foliation on G. This is visible by identifying the homogeneous
space with the set of maximal compact subgroups and considering a compatibility relation
between maximal P and maximal compacts K; then the incidence variety is identified with
the set of compatible pairs and the leaves of the foliation, to the connected components of
fibers over a given maximal subgroup; see [2], Proposition 2.1, for details.)

Let us now denote by Ri the preimage in G of the lifting of Si to X . Each Ri is an orbit
ofH1. By 4.8, there is a compact setC in H such that the �-orbit of any Si intersectsC . Since
the projection fromG to H is proper, the same is true for the set ofRi . Suppose that � acts on
the set ofSi (and thusRi ) with infinitely many orbits. Consider the homogeneous spaceG=�.
Each �-orbit on the set of Ri corresponds to an algebraic probability measure �i on G=�
(note that since the hyperplanes Si are rational, the quotient of each H1-orbit Ri over its
stabilizer in � has finite Haar volume by Borel and Harish-Chandra theorem). The support
of �i is the image ofRi inG=�. Since the union ofRi is �-invariant, to prove 4.11, it suffices
to show that the union of Supp.�i / is dense in G=�: this will imply the density of Ri in G
and therefore the density of Si in H.

By 4.6, the sequence �i has an accumulation point which is either a probability measure,
or is supported at infinity. But the latter option is impossible. Indeed, by 4.8 all Supp.�i /

intersect the same compact subset of G=�. Thus there is a (slightly larger) compact C 0

in G=� such that �i .C
0/ > 0 for all i , and by Dani-Margulis theorem, for another

compact K" and all i , �i .K"/ > 1 � ".

Taking a suitable subsequence, we may therefore suppose that lim�i D � where � is an
algebraic probability measure.

We have reduced 4.11 to the following lemma.

L 4.12. – Let G be the connected component SOC.1; n/ of SO.1; n/, where n > 3,
and � � GZ a discrete subgroup of finite index (and therefore of finite covolume). Let �i be a
sequence of algebraic probability measures on G=� associated with the orbits of a subgroup
H1 � G isomorphic to SOC.1; n � 1/. Suppose �i converges to an algebraic probability
measure�. Then either�i are finitely many, or Supp.�/ isG=�, so that the union of Supp.�i / is
dense in G=�.

Proof. – By 4.3 (ii), the support of � contains a right translate by gi ! e of the support
of infinitely many of �i . Moreover, � is an algebraic measure associated with an orbit of a
closed subgroup F � G. But there are no closed intermediate connected subgroups between
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G D SOC.1; n/ and H1, which stabilizes a hyperplane. Therefore, F is either equal to G, or
is the stabilizer H of a hyperplane HW .

In the first case, the support of � D lim�i is G=� and thus Supp.�i / are dense in G=�.

In the second case, for i � 0, Supp.�/ D gi Supp.�i /, that is, Hx D giH1xi where
gixi D x (where x, xi , gi are as in 4.3). That is,Hx D Hgi

1 x and thereforeHgi

1 D H D H1.
SinceH1 has finite index in its normalizer, this means that there are only finitely many�i .

5. The proof of Morrison-Kawamata cone conjecture

5.1. Morrison-Kawamata conjecture for the Kähler cone

The following theorem is an immediate consequence of 4.11.

T 5.1. – Let M be a projective simple hyperkähler manifold which has Picard
number at least 4. Then the Hodge monodromy group acts with finitely many orbits on the set
of MBM classes of type .1; 1/.

Proof. – This is the same as to say that the Hodge monodromy group acts with finitely
many orbits on the set of their orthogonal hyperplanes, which by [1] are exactly the hyper-
planes supporting the faces of the Kähler chambers.

Since the Hodge monodromy group is of finite index in the orthogonal group of the Picard
lattice, which is of signature .C;�; : : : ;�/, one can apply 4.11 to the Picard lattice, with� the
Hodge monodromy group. One concludes that if the number of �-orbits is infinite, then the
hyperplanes orthogonal to MBM classes should be dense in the positive cone. This is clearly
absurd, as they should bound the ample cone, so the number of �-orbits is finite.

C 5.2. – On an M as above, the primitive MBM classes of type .1; 1/ have
bounded Beauville-Bogomolov square.

Proof. – Indeed, the monodromy acts by isometries.

T 5.3. – Let M be a simple hyperkähler manifold such that b2.M/ > 6. Then the
primitive MBM classes of type .1; 1/ have bounded Beauville-Bogomolov square.

Proof. – IfM is not projective or the Picard number ofM is less than four, apply 2.31 to
get a projective deformationM 0 with Picard number at least four such that all MBM classes
of type .1; 1/ on M remain of type .1; 1/ on M 0. Then use the deformation invariance of
MBM property proved in [1] to conclude that these MBM classes remain MBM on M 0 and
therefore the primitive ones must have bounded square by the preceding theorem.

The Morrison-Kawamata conjecture for the Kähler cone now follows in the same way as
in [1].

T 5.4. – Let M be a simple hyperkähler manifold with b2.M/ > 6. Then the
automorphism group of M acts with finitely many orbits on the set of faces of its Kähler cone.
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Proof. – The argument is the same as in [1] where the theorem has been obtained under
the boundedness assumption on squares of primitive MBM classes, which we have just
proved: see [1, Theorem 6.6] there for an outline of the argument and [1, Theorem 3.14, 3.29]
for technicalities.

5.2. Morrison-Kawamata conjecture for the ample cone

Recall from e.g., [22] that the classical Morrison-Kawamata cone conjecture is formulated
in the projective case and treats the ample cone rather than the Kähler cone. It also states
something a priori stronger than the finiteness of the number of orbits of the action of auto-
morphism group on the set of faces of the cone, namely the existence of a finite polyhedral
fundamental domain.

More precisely, following [27, 22], let Nef.M/ be the nef cone (that is, the closure of the
ample cone of M ) and define the cone NefC.M/ as the convex hull of Nef.M/ \H

1;1
Q .M/

in H
1;1
Q .M/ ˝ R. One has Amp.M/ � NefC.M/ � Nef.M/; the cone NefC.M/ is

just Amp.M/ to which one has attached the rationally defined part of the boundary (such
as the boundary given by the hyperplanes orthogonal to MBM classes).

C 5.5 (Morrison-Kawamata cone conjecture for the ample cone)
The automorphism group Aut.M/ has a finite polyhedral fundamental domain on NefC.M/.

Markman and Yoshioka have observed in [22], Theorem 1.3, that the boundedness of the
Beauville-Bogomolov square of primitive MBM classes implies 5.5. Therefore we deduce
from 5.3 that the stronger version of the Morrison-Kawamata cone conjecture as above is
true for all projective simple hyperkähler manifolds with b2 ¤ 5.

In this subsection we would like to sketch a shorter deduction of 5.5 from the finiteness of
the number of orbits of the Hodge monodromy on the set of primitive MBM classes, which
uses some fundamental results in hyperbolic geometry.

Suppose first that the Picard number of X is at least three. Denote by C .M/ the inter-
section of Pos.M/ with NS.X/˝ R. The Hodge monodromy group � acts on P C .M/ with
finite stabilizers (since the stabilizer of a point x in P C .M/must also stabilize the orthogonal
hyperplane to the line corresponding to x, and our form is negative definite on such a hyper-
plane). By its arithmeticity, replacing if necessary the group � by a finite index subgroup,
we may assume there are no stabilizers at all. Indeed, an arithmetic lattice has a finite index
torsion-free subgroup, which can be obtained by taking a congruence subgroup formed
by integer matrices which are identity modulo N for N big enough. Consider the quotient
S WD P C .M/=�. Since � is arithmetic, Borel and Harish-Chandra theorem implies that S is
a complete hyperbolic manifold of finite volume. The image of Amp.M/ in S is a hyperbolic
manifold T with finite (that is, consisting of finitely many geodesic pieces) boundary, by 5.4.
It is known (see [8, Proposition 4.7 and 5.6] or [15, Theorem 2.6]) that such manifolds
are geometrically finite, that is, they admit a finite cell decomposition with finite piecewise
geodesic boundary (in fact one even has a decomposition with a single cell of maximal
dimension, the Dirichlet-Voronoi decomposition). Thus T becomes a union of finitely many
cells with finite piecewise geodesic boundary. Now compactify S to S by adding a point at
each of the finitely many cusps. Since the cusps correspond to �-orbits of rational points on
the boundary of P C .M/, the closed cells in T (the closure of T ) naturally lift to PNefC.M/.
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Taking the union of suitable liftings, we obtain a finite polyhedron which is a fundamental
domain for the subgroup of � preserving Amp.M/, that is, of the automorphism group
of M . We thus have proved the following

T 5.6. – Let M be a projective simple hyperkähler manifold with b2 ¤ 5 and
Picard number at least three. The automorphism group has a finite polyhedral fundamental
domain on NefC.M/.

It remains to treat the manifolds with Picard number two, where Borel and Harish
Chandra theorem does not apply. For this one observes (cf. [29]) that the boundary of the
ample cone is either rational, and then the cone conjecture is a tautology; or it is irrational,
meaning that there are no MBM classes, the ample cone is equal to the positive cone and
Aut.M/ Š Z is the same as the Hodge monodromy (a finite index subgroup in the orthog-
onal group of the Neron-Severi lattice) and acts by translations on P C .M/. In this case, the
existence of a fundamental domain which is an interval is also clear.
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