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1 Introduction

Let A ∈ Z
d×n be an integer matrix. We denote by Ai j the i j-th element of the matrix,

by Ai∗ its i-th row, and by A∗ j its j-th column. The set of integer values starting
from i and ending in j is denoted by i : j = {i, i + 1, . . . , j}. Additionally, for
subsets I ⊆ {1, . . . , d} and J ⊆ {1, . . . , n}, AI J denotes the submatrix of A that was
generated by all rows with numbers in I and all columns with numbers in J . When I
or J are replaced by ∗, that implies that all rows or columns (respectively) are selected.
By 0m×n , we mean a m × n-matrix with the zeroes entries only, 0 also means the zero
vector of the corresponding dimension. For example, AI∗ is the submatrix consisting
of all rows in I and all columns. Let ||A||max denote the maximum absolute value of
any element in A. Let Δk(A) denote the greatest absolute value of determinants of all
k × k submatrices of A, respectively. Additionally, let Δ(A) = Δrank(A)(A).

Definition 1 For a vector b ∈ Z
n , by P(A, b) we denote a polyhedron {x ∈ R

n :
Ax ≤ b}. The set of all vertices of a polyhedron P is denoted by vert(P).

Definition 2 For a matrix B ∈ R
d×n , cone. hull(B) = {Bt : t ∈ R

n+} is the cone
spanned by columns of B, conv. hull(B) = {Bt : t ∈ R

n+,
∑n

i=1 ti = 1} is the convex
hull spanned by columns of B, par(B) = {x ∈ R

d : x = Bt, t ∈ [0, 1)n} is the
parallelepiped spanned by columns of B, and Λ(B) = {Bt : t ∈ Z

n} is the lattice
spanned by columns of B.

We refer to Cassels (1971), Gruber and Lekkerkerker (1987), Siegel (1989) for
mathematical introductions to lattices.

Definition 3 The width of a convex body P is defined as

width(P) = min
c∈Zn\{0}

(

max
x∈P

c�x − min
x∈P

c�x
)

.

A vector cminimizing the difference maxx∈P c�x −minx∈P c�x on Zn \ {0} is called
the flat direction of P .

Definition 4 Following Schrijver (1998), we define the sizes of an integer number x ,
a rational number r = p

q , a rational vector v ∈ Q
n , and a rational matrix A ∈ Q

d×n

in the following way:

size(x) = 1 + �log2(x + 1)�,
size(r) = 1 + �log2(p + 1)� + �log2(q + 1)�,

size(v) = n +
n∑

i=1

size(vi ),

size(A) = dn +
d∑

i=1

n∑

j=1

size(Ai j ).
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Definition 5 An algorithm parameterized by a parameter k is called fixed-parameter
tractable (FPT-algorithm) if its complexity can be estimated by a function from the
class f (k) nO(1), where n is the input size and f (k) is a computable function that
depends on k only. A computational problem parameterized by a parameter k is called
fixed-parameter tractable (FPT-problem) if it can be solved by a FPT-algorithm. For
more information about the parameterized complexity theory, see Cygan et al. (2015),
Downey and Fellows (1999).

1.1 The shortest lattice vector problem

The Shortest Lattice Vector Problem (the SLVP) consists in finding x ∈ Z
n \ {0}

minimizing ||Hx ||, where H ∈ Q
d×n is given as an input. The SLVP is known to be

NP-hard with respect to randomized reductions, cf. Ajtai (1996). The first polynomial-
time approximation algorithm for the SLVP was proposed by Lenstra et al. (1982).
Shortly afterwards, Fincke and Pohst (1983, 1985), Kannan (1983, 1987) described
the first exact SLVP solvers. Kannan’s solver has a computational complexity of
2O(n log n) poly(size(H)), where poly(·)means some polynomial on its argument. The
first SLVP solvers that achieve the complexity 2O(n) poly(size(H)) were proposed by
Ajtai et al. (2001, 2002), Micciancio and Voulgaris (2010). The previously discussed
SLVP solvers are used for the Euclidean norm. Recent results about SLVP-solvers for
more general norms are presented in Blömer and Naewe (2009), Dadush et al. (2011),
Eisenbrand et al. (2011). The paper of Hanrot et al. (2011) is a good survey about
SLVP-solvers.

Recently, a novel polynomial-time approximation SLVP-solver was proposed by
Cheon and Lee (2015). The algorithm is parameterized by the lattice determinant, its
time-complexity and the approximation factor are the best to date for lattices with a
sufficiently small determinant.

In our work, we consider only integer lattices, whose generating matrices are near
square. The first aim of this paper is to present an exact FPT-algorithm for the SLVP
parameterized by the lattice determinant (see Sect. 3). Additionally, we develop a FPT-
algorithm for lattices, whose generating matrices have no singular rank submatrices.
The proposed algorithms work for the l p norm for any finite p ≥ 1 and also for the
l∞ norm.

1.2 The integer linear programming problem

The Integer Linear Programming Problem (the ILPP) can be formulated as min{c�x :
x ∈ P(H, b) ∩ Z

n} for integer vectors c, b and an integer matrix H .
There are several polynomial-time algorithms for solving linear programs.Wemen-

tion Khachiyan’s algorithm (Khachiyan 1980), Karmarkar’s algorithm (Karmarkar
1984), and Nesterov’s algorithm (Nesterov and Nemirovsky 1994; Pardalos et al.
1991). Unfortunately, it is well known that the ILPP is NP-hard, in the general case.
Therefore, it would be interesting to reveal polynomially solvable cases of the ILPP.
An example of this type is the ILPP with a fixed number of variables, for which
a polynomial-time algorithm is given by Lenstra (1983). Another examples can be
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obtained, when we add some restrictions to the structure of constraints matrices. A
square integer matrix is called unimodular if its determinant equals + 1 or − 1. An
integer matrix is called totally unimodular if all its minors are + 1 or − 1 or 0. It is
well known that all optimal solutions of any linear program with a totally unimodular
constraints matrix are integer. Hence, for any linear program and the corresponding
integer linear program with a totally unimodular constraints matrix, the sets of their
optimal solutions coincide. Therefore, any polynomial-time linear optimization algo-
rithm (like the ones in Karmarkar 1984; Khachiyan 1980; Nesterov and Nemirovsky
1994; Pardalos et al. 1991) is also an efficient algorithm for the ILPP.

The next natural step is to consider the totally bimodular case, i.e. the ILPP having
constraints matrices with the absolute values of all rank minors in the set {0, 1, 2}. The
first paper that discovers fundamental properties of the bimodular ILPP is the paper
of Veselov and Chirkov (2009). Very recently, using results of Veselov and Chirkov
(2009), a strong polynomial-time solvability of the bimodular ILPP was proved by
Artmann et al. (2017). A matrix will be called totally Δ-modular if all its rank minors
are at most Δ in the absolute value.

More generally, it would be interesting to investigate the computational complexity
of the problems with bounded minors constraints matrices. The maximum absolute
value of rank minors of an integer matrix can be interpreted as a proximity measure
to the class of totally unimodular matrices. Let the symbol ILPPΔ denote the ILPP
with constraints matrix, each rank minor of which has the absolute value at mostΔ. In
Shevchenko (1996), a conjecture is presented that for each fixed natural numberΔ the
ILPPΔ can be solved in polynomial-time. There are variants of this conjecture, where

the augmented matrices

(
c�

A

)

and (A b) are considered (Alekseev and Zakharova

2011; Shevchenko 1996).
Unfortunately, not much is known about the computational complexity of the

ILPPΔ. For example, the complexity status of the ILPP3 is unknown. A step towards
deriving the its complexity was done by Artmann et al. (2016). Namely, it has been
shown that if the constraints matrix, additionally, has no singular rank submatrices,
then the ILPPΔ can be solved in polynomial-time. Some results about polynomial-time
solvability of the boolean ILPPΔ were obtained in Alekseev and Zakharova (2011),
Bock et al. (2014), Gribanov and Malyshev (2017). Eisenbrand and Vempala (2016)
presented a randomized simplex-type linear programming algorithm, whose expected
running time is strongly polynomial if all minors of the constraints matrix are bounded
by a fixed constant.

InGribanov (2013),Gribanov andVeselov (2016), it has been shown that any lattice-
free polyhedron of the ILPPΔ has a relatively small width, i.e., the width is bounded
by a function that is linear on the dimension and exponential on Δ. Interestingly,
due to Gribanov and Veselov (2016), the width of any empty lattice simplex can be
estimated by Δ, for this case. In Gribanov and Chirkov (2016), it has been shown that
the width of any simplex induced by a system, having the absolute values of minors
bounded by a fixed constant, can be computed by a polynomial-time algorithm. As
it was mentioned in Artmann et al. (2017), due to E. Tardos’ results (Tardos 1986),
linear programs with constraints matrices, whose all minors are bounded by a fixed
constant, can be solved in strongly polynomial time. Bonifas et al. (2014) showed that
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any polyhedron defined by a totally Δ-modular matrix has a diameter bounded by a
polynomial on Δ and the number of variables.

The second aim of our paper is to improve results of Artmann et al. (2016). Namely,
in Sect. 4, we will present a FPT-algorithm for the ILPPΔ, when the constraints matrix
is close to a square matrix, i.e. it has a fixed number of additional rows. This fact
gives us a FPT-algorithm for the case, when the problem’s constraints matrix has no
singular rank submatrices. Indeed, such matrices can have only one additional row
if the dimension is sufficiently large, due to Artmann et al. (2016). In this paper, we
present an algorithm with a better complexity bound. Additionally, we improve some
inequalities established in Artmann et al. (2016).

1.3 Computing the simplex lattice width

Sebö (1999) shown that the problem of computing the rational simplices width is
NP-hard. Gribanov and Chirkov (2016) shown that the problem can be solved by a
polynomial-time algorithm in the case, when the simplex is defined by a bounded
minors constraints matrix. The final aim of this paper is to present a FPT-algorithm
for the simplex width computation problem (see Sect. 5).

2 Some auxiliary results

Let H be a d×n matrix of rank n that has already been reduced to the Hermite normal
form (the HNF) (Schrijver 1998; Storjohann and Labahn 1996; Zhendong 2005). Let
us assume, without loss of generality, that the matrix HB = H1:n ∗ is non-singular,
and let HN be the m × n matrix generated by the remaining columns of H . In other

words, H =
(
HB

HN

)

and d = n + m.

Using additional permutations of rows and columns, we can transform H , such that
the matrix HB has the following form:

HB =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 . . . 0
Hs+1 1 Hs+2 2 . . . Hs+1 s Hs+1 s+1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hn 1 Hn 2 . . . . . . . . . . . . . . . . . . . . . . . Hn n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1)

where s is the number of 1’s on the diagonal. Hence, Hi i ≥ 2, for i ∈ (s + 1) : n.
Let, additionally, k = n − s be the number of diagonal elements that are not equal to
1, Δ = Δ(A) and δ = | det(HB)|.

The following properties are known for the HNF:

(1) 0 ≤ Hi j < Hi i , for any i ∈ 1 : n and j ∈ 1 : (i − 1),
(2) Δ ≥ δ =∏n

i=s+1 Hi i , and, hence, k ≤ log2 Δ,
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(3) since Hi i ≥ 2, for i ∈ (s + 1) : n, we have
n∑

i=s+1

Hi i ≤ δ

2k−1 + 2(k − 1) ≤ δ.

In Artmann et al. (2016), it was shown that ||HN ||max ≤ aq , where q = �log2 Δ�,
and the sequence {ai } is defined, for i ∈ 0 : q, as follows:

a0 = Δ, ai = Δ +
i−1∑

j=0

a jΔ
log2 Δ(log2 Δ)(log2 Δ/2).

It is easy to see that aq = Δ(Δlog2 Δ(log2 Δ)(log2 Δ/2) + 1)�log2 Δ�.
We will show that the estimate on ||HN ||max can be significantly improved.

Lemma 1

||HN ||max ≤ Δ

δ

(
δ

2k−1 + k − 1

)

≤ Δ.

Hence, ||H ||max ≤ Δ.

Proof Let h = Hi ∗, for i ∈ (n + 1) : d, and h = t�HB , for some t ∈ R
n . Let H( j)

be the matrix obtained from HB by replacing j-th row with row h. For any j ∈ 1 : n,
we have det(H( j)) = t j det(HB), hence, |t j | ≤ Δ

δ
. Using the property 3) of the HNF,

we have

|Hi j | = |h j | ≤
n∑

l=1

|tl Hl j | <
Δ

δ

(

1 +
n∑

l=s+1

Hl l − k

)

≤ Δ

δ

(
δ

2k−1 + k − 1

)

.

�
We also need the following technical lemma:

Lemma 2 Let H be an (n + 1) × n integer matrix of rank n that has already been

reduced to the HNF, and it has the form (1). Then Δn−1(H) ≤ Δ2

2 (1 + log2 Δ).

Proof Let the matrix A be obtained from H by deleting any two rows and any column.
It is easy to see that A is a lower triangular matrix with at most one additional diagonal.
We can expand the determinant of A by the first row, using the Laplace theorem. Then,
| det(A)| ≤ 2k |d1d2 . . . dk−1c|, where k is the number of non-zero diagonal elements
in HB , {d1, d2, . . . , dk} is the sequence of diagonal elements resp., and c = dk or c is
some element of the last row of H . Since |dk | ≥ 2, we have |d1d2 . . . dk−1| ≤ δ/2.
Lemma 1 provides us with an estimate on |c|. Finally, we have

| det(A)| ≤ 2k−1Δ

(
δ

2k−1 + k − 1

)

≤ δΔ

2
(1 + log2 δ).

�

123



1134 J Comb Optim (2018) 35:1128–1146

Let the matrix H have the additional property, such that H has no singular n × n
submatrices. One result of Artmann et al. (2016) states that if n ≥ f (Δ), then the
matrix H has at most n + 1 rows, where f (Δ) is a function that depends on Δ only.
The paper (Artmann et al. 2016) contains a super-polynomial estimate on the value of
f (Δ). Here, we will show the existence of a polynomial estimate.

Lemma 3 If n > Δ(2Δ + 1)2 + log2 Δ, then H has at most n + 1 rows.

Proof Our proof of the theorem has the same structure and ideas as in Artmann et al.
(2016). We employ Lemma 1 with a slight modification.

Let the matrix H be defined as illustrated in (1). Recall that H has no singular
n × n submatrices. For the purpose of deriving a contradiction, assume that n >

Δ(2Δ + 1)2 + log2 Δ and H has exactly n + 2 rows. Let again, as in Artmann et al.
(2016), H̄ be the submatrix of H without rows indexed by numbers i and j , where
i, j ≤ s and i > j . Observe, that

| det H̄ | =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Hs+1 i Hs+1 j Hs+1 s+1
...

...
. . .

Hn i Hs j . . . . . . . . . . . Hn n

Hn+1 i Hn+1 j . . . . . . . . . . . Hn+1 n
Hn+2 i Hn+2 j . . . . . . . . . . . Hn+2 n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
:=H̄ i j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The matrix H̄ i j is a non-singular (k+2)×(k+2)-matrix. This implies that the first
two columns of H̄ i j must be different, for any i and j . By Lemma 1 and the structure
of the HNF, there are at most Δ · (2Δ + 1)2 possibilities to choose the first column
of H̄ i j . Consequently, since n > Δ(2Δ + 1)2 + log2 Δ, then s > Δ(2Δ + 1)2, and
there must exist two indices i �= j , such that det H̄ i j = 0. This is a contradiction. �

3 A FPT-algorithm for the shortest lattice vector problem

Let H ∈ Z
d×n . The SLVP related to the l p norm can be formulated as follows:

min
x∈Λ(H)\{0} ||x ||p, (2)

or equivalently

||x ||p → min
{
x = Ht

t ∈ Z
n \ {0}.

Since there is a polynomial-time algorithm to compute the HNF, we can assume
that H has already been reduced to the form (1).
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Theorem 1 If n > Δ(2Δ + 1)m + log2 Δ, then there exists a polynomial-time algo-
rithm to solve the problem (2) with a bit-complexity of O(n log n · logΔ(m + logΔ)).

Proof Since n = s + k and k ≤ log2 Δ, we have s > Δ(2Δ + 1)m . Consider the
matrix H̄ = H∗ 1:s that consists of the first s columns of the matrix H . By Lemma 1,
there are strictly less than Δ · (2Δ+ 1)m possibilities to generate a column of H̄ , so if
s > Δ(2Δ+1)m , then H̄ has twoequivalent columns.Hence, the latticeΛ(H) contains
the vector v, such that ||v||p = p

√
2 (and ||v||∞ = 1). We can find equivalent rows

of H̄ , using any sorting algorithm with the number of lexicographical comparisons
O(n log n), where a bit-complexity of the two vectors lexicographical comparison
operation is of O(logΔ(m + logΔ)). Finally, it is easy to see that the lattice Λ(H)

contains a vector of the l p norm 1 (for p �= ∞) if and only if the matrix H̄ contains
the zero column. �

In the case, when m = 0 and H is a square non-singular matrix, we have the
following trivial corollary:

Corollary 1 If n ≥ Δ + log2 Δ, then there exists a polynomial-time algorithm to
solve problem (2) with a bit-complexity of O(n log n · log2 Δ).

Let x∗ be an optimal vector of the problem (2). The classical Minkowski’s theorem
in geometry of numbers states that:

||x∗||p ≤ 2

(
detΛ(H)

Vol(Bp)

)1/n
,

where Bp is the unit sphere for the l p norm.

Using the inequalities detΛ(H) = √
det H�H ≤ Δ

√(
d

n

)

≤ Δ

(
ed

n

)n/2

, we

can conclude that ||x∗||p ≤ 2

√
ed

n
n

√
Δ

Vol(Bp)
.

On the other hand, by Lemma 1, the last column of H has the norm equals
Δ p

√
m + 1. Let

M = min

{

Δ
p
√
m + 1, 2

√
ed

n
n

√
Δ

Vol(Bp)

}

(3)

be the minimum value between these two estimates.

Theorem 2 There is an algorithm with a complexity of

O((logΔ + m) · nm+1 · Δm+1 · Mm+1 · mult(logΔ + log n + logM))

to solve the problem (2). Since M ≤ Δ p
√
m + 1 (cf. (3)), the problem (2) parameterized

by Δ is included in the FPT-complexity class, for any fixed m.
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Proof After splitting the variables x into two groups xB and xN with relation to HB

and HN , the problem (2) becomes:

||x ||pp → min
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xB − HBt = 0

xN − HN t = 0

xB ∈ Z
n, xN ∈ Z

m

t ∈ Z
n \ {0}.

Using the formula t = H−1
B xB , we can eliminate the variables t from the restriction

xN − HN t = 0. The restriction can be additionally multiplied by δ to become integer,
where H∗

B = δH−1
B is the adjoint matrix for B.

||x ||pp → min
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xB − HBt = 0

δxN − HN H∗
BxB = 0

xB ∈ Z
n, xN ∈ Z

m

t ∈ Z
n \ {0}.

Finally, we transform the matrix HB into the Smith normal form (the SNF) (Schri-
jver 1998; Storjohann 1996; Zhendong 2005), such that HB = P−1SQ−1, where
P−1, Q−1 are unimodular matrices and S is the SNF of HB . After applying the trans-
formation t → Qt , the initial problem becomes equivalent to the following problem:

||x ||pp → min
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GxB ≡ 0(mod S)

RxB = δxN
xB ∈ Z

n \ {0}, xN ∈ Z
m

||x ||∞ ≤ M,

whereG = P mod S, R = HN H∗
B . The inequality ||x ||∞ ≤ M is an additional tool to

localize an optimal integer solution. We also have that ||R||max = ||HN H∗
B ||max ≤ Δ.

Actually, the considered problem is the classical Gomory’s group minimization
problem (Gomory1965) (cf.Hu1970)with additional linear constraints.As inGomory
(1965), it can be solved using the dynamic programming approach.

To this end, let us define the subproblems Prob(l, γ, η):

||x ||pp → min
⎧
⎪⎨

⎪⎩

G∗ 1:l x ≡ γ (mod S)

R∗ 1:l x = η

x ∈ Z
l \ {0},
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where l ∈ 1 : n, γ ∈ Z
n mod S, η ∈ Z

m , and ||η||∞ ≤ nMΔ.
Let σ(l, γ, η) be the objective function optimal value of Prob(l, γ, η). When the

problem Prob(l, γ, η) is unfeasible, we put σ(l, γ, η) = +∞. In the beginning, we
put σ(l, γ, η) = +∞, for all values l, γ �= 0, η �= 0 and σ(l, 0, 0) = 0. Trivially, the
optimum of (2) is

min
η:||η||∞≤M

{
σ(n, 0, δη) + ||η||pp

}
.

The following formula gives the relation between σ(l, ·, ·) and σ(l − 1, ·, ·):
σ(l, γ, η) = min{ f (z) : |z| ≤ M},

where

f (z) =
{

σ(l − 1, γ, η), for z = 0

|z|p + [zR∗ l �= η] · σ(l − 1, γ − zG∗ l , η − zR∗ l),

where the symbol [zR∗ l �= η] equals 1 if and only if the condition zR∗ l �= η is true.
The value of σ(1, γ, η) can be computed using the following formula:

σ(1, γ, η) = min{|z|p : zG∗ 1 ≡ γ (mod S), zR∗ 1 = η, 0 < |z| ≤ M}.
Both the computational complexity of computing σ(1, γ, η) and the reduction com-

plexity of σ(l, γ, η) to σ(l − 1, ·, ·), for all γ and η, can be roughly estimated as:

O((logΔ + m) · ΔM · (nMΔ)m · mult(logΔ + log n + logM)).

The final complexity result can be obtained by multiplying the last formula by n. �
Let us consider the special case, when all n× n submatrices of H are non-singular.

In this case, by Lemma 3, for n > Δ(2Δ + 1)2 + log2 Δ, the matrix H can have at
most n + 1 rows (m ≤ 1), and we have the following corollary.

Corollary 2 Let H be the matrix defined as illustrated in (1). Let also H have no
singular n × n submatrices. If n > Δ(2Δ + 1)2 + log2 Δ, then there is an algorithm
with a complexity of O(n log n · log2 Δ) that solves the problem (2).

Proof Wehave n > Δ(2Δ+1)2+log2 Δ > Δ(2Δ+1)m+log2 Δ. The last inequality
meets the conditions of Theorem 1, and the corollary follows. �
Note 1 Due to the objective function separability, it is easy to see that the same
approach is applicable for the Closest Lattice Vector problem (cf. Hanrot et al. 2011),
that can be formulated as follows:

min
x∈Λ(H)

||x − r ||p,

where r ∈ Q
n . The resulting algorithm has the same complexity on n and Δ, and it is

polynomial-time on size(H) and size(r).

123
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4 The integer linear programming problem

Let H ∈ Z
d×n , c ∈ Z

n , b ∈ Z
d , rank(H) = n. Let us consider the ILPP:

max{c�x : x ∈ P(H, b) ∩ Z
n}. (4)

Since there is a polynomial-time algorithm to compute the HNF, we can assume that
H has already been reduced to the form (1).

Theorem 3 The problem (4) can be solved by an algorithm with a complexity of

O((logΔ + m) · n2(m+1) · Δ2(m+1) · mult(size(c) + logΔ)).

Proof Let v be an optimal solution of the linear relaxation of the problem (4). We can
suppose without loss of generality that HBv = b1:n . As in Artmann et al. (2016), after
an introduction of the slack variables y ∈ Z

n+, the problem (4) becomes:

c�x → max
⎧
⎪⎨

⎪⎩

HBx + y = b1:n
HN x ≤ b(n+1):m
x ∈ Z

n, y ∈ Z
n+.

Due to the classical result of Cook et al. (1986), Schrijver (1998), we have that

||y||∞ ≤ nΔ. (5)

Now, using the formula x = H−1
B (b1:n − y), we can eliminate the x variables from

the last constraint and from the objective function:

c�H−1
B b1:n − c�H−1

B y → min
⎧
⎪⎨

⎪⎩

HBx + y = b1:n
−HN H∗

B y ≤ δb(n+1):m − HN H∗
Bb1:n

x ∈ Z
n, y ∈ Z

n+,

where the last line was additionally multiplied by δ to become integer, and where
H∗
B = δH−1

B is the adjoint matrix for B.
Finally, we transform the matrix HB into the SNF, such that HB = P−1SQ−1,

where P−1, Q−1 are unimodular matrices and S is the SNF of HB . After making
the transformation x → Qx , the initial problem becomes equivalent to the following
problem:
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w�x → min (6)
⎧
⎪⎨

⎪⎩

Gx ≡ g (mod S)

Rx ≤ r

x ∈ Z
n+, ||x ||∞ ≤ nΔ,

where w� = −c�H−1
B , G = P mod S, g = Pb1:n mod S, R = −HN H∗

B , and
r = δb(n+1):m − HN H∗

Bb1:n . The inequalities ||x ||∞ ≤ nΔ are additional tools to
localize an optimal integer solution that follows from inequality (5). Additionally, we
have that ||R||max = ||HN H∗

B ||max ≤ Δ.
Actually, the problem (6) is the classical Gomory’s group minimization problem

(Gomory 1965) (cf. Hu 1970) with an additional linear constraints. As in Gomory
(1965), it can be solved using the dynamic programming approach. To this end, let us
define the subproblems Prob(l, γ, η):

w�
1:l x → min
⎧
⎪⎨

⎪⎩

G∗ 1:l x ≡ γ (mod S)

R∗ 1:l x ≤ η

x ∈ Z
l+,

where l ∈ 1 : n, γ ∈ Λ(G) mod S, η ∈ Z
m , and ||η||∞ ≤ n2Δ2.

Let σ(l, γ, η) be the objective function optimal value of Prob(l, γ, η). When the
problem Prob(l, γ, η) is unfeasible, we put σ(l, γ, η) = +∞. In the beginning, we
put σ(l, γ, η) = +∞, for all values l, γ �= 0, η �= 0. Trivially, the optimum of (4) is

σ(n, g,min{r, n2Δ21}).

The following formula gives the relation between σ(l, ·, ·) and σ(l − 1, ·, ·):

σ(l, γ, η) = min{σ(l − 1, γ − zG∗ l , η − zR∗ l) + zwl : |z| ≤ nΔ}.

The value of σ(1, γ, η) can be computed using the following formula:

σ(1, γ, η) = min{zw1 : zG∗ 1 ≡ γ (mod S), zR∗ 1 ≤ η, |z| ≤ nΔ}.

Both, the computational complexity of computing σ(1, γ, η) and the reduction
complexity of σ(l, γ, η) to σ(l − 1, ·, ·), for all γ and η, can be roughly estimated as:

O((logΔ + m) · nΔ2 · (n2Δ2)m · mult(logΔ + log n + log ||w||∞)).

By Lemma 2, ||w||∞ ≤ ||c||1δ log δ and log ||w||∞ = O(logΔ + size(c)). Finally,
the result can be obtained multiplying the last formula by n. �

Let us consider the special case, when all n× n submatrices of H are non-singular.
In this case, by Lemma 3, for n > Δ(2Δ + 1)2 + log2 Δ, the matrix H can have at
most n + 1 rows (m ≤ 1), and we have following corollary.
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Corollary 3 If all n × n submatrices of H are non-singular and n > Δ(2Δ + 1)2 +
log2 Δ, then the problem (4) can be solved by an algorithm with a complexity of

O(logΔ · n4 · Δ4 · mult(size(c) + logΔ)).

5 Simplex width computation

Let H ∈ Z
(n+1)×n , b ∈ Z

n+1, rank(H) = n, and P(H, b) be a simplex. Let us
consider the problem of finding the width(P(H, b)) and a flat direction of P(H, b).

The main result in Gribanov and Chirkov (2016) states that width(P(H, b)) can be
computed by an algorithm with a complexity of

O
(
n2 logΔn−1(H) · Δ(H) · Δ(H, b) · poly(n, logΔ(H, b))

)
,

whereΔ(H, b) is the maximum absolute value of n×n minors of the extended matrix
(H b).

In this section, we are going to develop an FPT-algorithm for the simplex width
computation problem. Let us discuss our main tool.

Let C ∈ Z
n×n , p ∈ Q

n , det(C) �= 0, A ∈ Z
m×n , b ∈ Z

n , and c ∈ Z
n . Suppose, for

any i ∈ 1 : m, one of the following equivalent conditions is true.

(1) (Ai ∗)� ∈ cone. hull((C−1)
�
) and c ∈ cone. hull(−(C−1)

�
), (7)

(2) p = argmin{(Ai ∗)x : x ∈ p + cone. hull(C)} =
= argmax{c�x : x ∈ p + cone. hull(C)}, (8)

(3) c�C ≤ 0 and AC ≥ 0m×n . (9)

Let us consider the following problem that depends on the input vectors and the
matrices p, C, A, b, c with the conditions (7)–(9).

c�x → max
{
x ∈ p + cone. hull(C)

x ∈ P(A, b) ∩ Z
n (10)

The following lemma was proved in Gribanov and Chirkov (2016), and it gives an
algorithm for the problem (10).

Lemma 4 There is an algorithm with a complexity of

O
(
n2 logΔ(C) · poly(n, logΔ(C), size(A), log ||b||∞, log ||c||∞)

)

to solve the problem (10).
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The main idea of the algorithm is the unimodular decomposition procedure from
Gribanov andChirkov (2016).Actually, the technique based on the unimodular decom-
position is very redundant, and it is better to use a simple procedure of enumerating
integer points in some rational n-dimensional parallelepiped.

The following lemma (and the corresponding proof) is required to estimate the
complexity of the enumeration procedure.

Lemma 5 Let A ∈ Q
n×n, p ∈ Q

n, | det(A)| = Δ > 0, and M = p + par(A). Let,
additionally, A = QH, where Q ∈ Z

n×n is an unimodular matrix and H� is the HNF
for A� of the form (1).

Then
n∏

i=1

�Hi i� ≤ |M ∩ Z
n| ≤

n∏

i=1

�Hi i�. (11)

Proof After the unimodular map x → Q−1x the set M becomes M = r + {x ∈ R
n :

x = Ht, t ∈ [0, 1)n}, where r = Qp. Let y ∈ M ∩ Z
n , then

yn = rn + Hn ntn, tn = yn − rn
Hn n

,

tn ∈ Sn =
{�rn� − rn

Hn n
,

�rn� − rn + 1

Hn n
, . . . ,

�rn� − rn + �Hn n�
Hn n

}

.

If �rn� − rn ≥ {Hn n}, then the last element must be deleted from the set Sn , and
�Hn n� ≤ |Sn| ≤ �Hn n�. Let s = n − k, for k ∈ 1 : n. Then

ys = Hs sts + τs, ts = ys − τs

Hs s
,

where τs = rs +∑k
i=1 Hs s+i ts+i . Finally, we have:

ts ∈ Ss =
{�τs� − τs

Hs s
,

�τs� − τs + 1

Hs s
, . . . ,

�τs� − τs + �Hs s�
Hs s

}

.

If �τs� − τs ≥ {Hs s}, then the last element must be deleted from the set Ss , and
�Hs s� ≤ |Ss | ≤ �Hs s�. �
Lemma 6 Let A be the integral n×n matrix, p ∈ Q

n, | det(A)| = Δ > 0. Then there
is an algorithm with a complexity of

O(logΔ · nΔ · mult(n size(p) + size(A) + n logΔ) + TH (A))

to enumerate all integer points of the set M = p + par(A), where TH (·) is the HNF
computational complexity.

Proof The proof of previous Lemma 5 contains the enumeration algorithm, sowe need
only to estimate its complexity. Let A = QH and r = Qp as in the proof of Lemma 5.
Since Q = AH−1, by Lemma 2, we have size(r) = O(n logΔ+n size(p)+size(A)).
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Since |yi | ≤ |Hi ∗t | ≤ i |Hi i |, we have size(y) = O(n log n + logΔ) and size(y −
r) = O(size(r) + n log n + logΔ) = O(size(A) + n size(p) + n logΔ).

Let H ′ be the matrix obtained from H by replacing j-th column with column
y−r . By Lemma 2, we have size(det H ′) = O(n size(p)+ size(A)+n logΔ). Since
t j = det(H ′)

det(H)
, we have size(t j ) = O(n logΔ+ n size(p)+ size(A)), for any j ∈ 1 : n.

Let k be the number of diagonal elements of H that are not equal to 1, and s = n−k.
Due to the proof of Lemma 5, we need

O

⎛

⎝
k∑

i=0

i
n∏

j=n−i

H j j

⎞

⎠ = O(Δk2)

arithmetic operations to determine all possible values of the variables yi and τi , for
any i ∈ (s + 1) : n. When the values of yi have already been determined, for any
i ∈ (s+1) : n, then we can determine values of τi and yi = �τi�, for any i ∈ 1 : s. The
number of arithmetic operations for the last observation is O(Δsk) = O(Δ(n− k)k).
Totally, we have

O(Δk2 + Δ(n − k)k) = O(logΔ · Δn)

arithmetic operations with values of a size of O(n size(p) + size(A) + n logΔ). So,
the total complexity becomes O(logΔ · nΔ ·mult(n size(p)+ size(A)+ n logΔ)). �

Now, we can give a simple algorithm to determine the feasibility of the problem
(10).

Lemma 7 There is an algorithm with a complexity of

O(Δ · n2 · mult(n size(p) + size(C) + log ||A||max + n logΔ) + Δ size(b) + TH (C))

to determine the feasibility of the problem (10), where Δ = | det(C)| and m = O(n).

Proof Let us show that the set p + par(C) contain an optimal point of the problem
(10), if the set of feasible integer points is not empty. Let us consider the following
decomposition:

p + cone. hull(C) =
⋃

z∈Zn+

(p + Cz + par(C)).

For the purpose of deriving a contradiction, assume that the set p+par(C) contains no
optimal points. Let x∗ be an optimal point of the problem and x∗ ∈ p+Cz + par(C),
for z �= 0. Then we have y ∈ p+par(C), for the point y = x∗ −Cz. By the condition
(9), we have c�C ≤ 0 and AC ≥ 0m×n . Since AC ≥ 0m×n and x∗ ∈ P(A, b), we
have y ∈ P(A, b). Since c�C ≤ 0, we have c�y ≥ c�x∗. The last two statements
provide the contradiction.
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Finally, we can use Lemma 6 to find an optimal point in the set p + par(C). Each
point x ∈ p + par(C) must be checked by the condition x ∈ P(A, b). The total
complexity of the checking procedure is

O(Δ · nm · mult(log ||A||max + logΔ) + Δ size(b)).

�
It was shown in Gribanov and Chirkov (2016) (cf. Theorem 8 and Lemmas 4,5)

that the width computation problem for the simplex P(H, b) is equivalent to O(n2)
feasibility problems of the following type:

(
p(i) + cone. hull(C)

)
∩
(
q(i) − cone. hull(C)

)
∩ Z

n−1, (12)

where p(i), q(i) ∈ Q
n−1, for i ∈ 1 : γ , C ∈ Z

(n−1)×(n−1) and

γ = O(nΔ(H, b)Δ(H)), (13)

| det(C)| ≤ Δn−1(H). (14)

The sizes, for p(i), g(i), and C , satisfy the following formulae:

(1) size(p(i)) = O(n log n + n logΔ(H, b)),

(2) the same relation is true for size(q(i)), (15)

(3) ||C ||max ≤ nΔ4(H, b),

(4) size(C) = O(n2 logΔ(H, b)). (16)

Now, we can prove the main result of the section.

Theorem 4 Let H be an (n + 1) × n integral matrix of the rank n that have already
been reduced to the HNF. Let P(H, b) be a simplex, for b ∈ Z

n+1, Δ = Δ(H), and
Δ(H, b) be the maximum absolute value of n × n minors of the augmented matrix
(H b).

The problem to compute width(P(H, b)) and a flat direction of P(H, b) can be
solved by an algorithm with a complexity of

O
(
logΔ · n5 · Δ3 · Δ(H, b) · mult

(
n3 logΔ(H, b) + n3 log n

))
.

Proof Let C∗ = det(C)C−1 be the adjoint matrix of C . Since

q(i) − cone. hull(C) = P(C∗,C∗q(i)),

the problem (12) is equivalent to the problem

(p(i) + cone(C)) ∩ P(C∗,C∗q(i)) ∩ Z
n−1. (17)

123



1144 J Comb Optim (2018) 35:1128–1146

By Lemma 2 and the estimates (15), (16), we have

||C∗||max ≤ Δ2
n−1(H) logΔn−1(H) ≤ 3Δ4 log3 Δ,

size(C∗) = O(n2 logΔ) and

size(C∗q(i)) = O(n logΔ + n size(q(i))) = O(n2 log n + n2 logΔ(H, b)).

Hence, by Lemma 7, the feasibility problem (17) can be solved by an algorithm
with a complexity of

O
(
TH (C) + logΔ · n2 · Δ2 · mult(n3 logΔ(H, b) + n3 log n)

)
.

Let us note that the computational complexity for computing C∗ is O(TH (C)), so
we did not include it to the formula. There are γ = O(nΔ(H, b)Δ) (cf. (13)) problems
of that type, for any i ∈ 1 : γ . And we are need to compute the HNF only one time,
for each C . Therefore, the complexity becomes:

O
(
TH (C) + logΔ · n3 · Δ3 · Δ(H, b) · mult

(
n3 logΔ(H, b) + n3 log n

))
.

Due to Storjohann and Labahn (1996), TH (C) = O∼(nΘ mult(n log ||C ||max)),
where Θ is the matrix multiplication exponent and the symbol O∼ means that we
omit some logarithmic factor. Hence, we can eliminate TH (C) from the complexity
estimation. The final complexity result can be obtained multiplying the last formula
by n2, since the problem is equivalent to O(n2) subproblems of the type (12). �

Due to Gribanov and Chirkov (2016) (cf. Theorem 9), if additionally the simplex
P(H, b) is empty, or in other words P(H, b) ∩ Z

n = ∅, then γ ≤ Δ (cf. (13)). This
fact gives us a possibility to avoid an exponential dependence on size(b).

Theorem 5 If P(H, b) ∩ Z
n = ∅, then the problem to compute width(P(H, b)) and

a flat direction of P(H, b) can be solved by an algorithm with a complexity of

O(logΔ · n4 · Δ4 · mult(n3 logΔ(H, b) + n3 log n)).

6 Conclusion

In Sect. 3, we presented FPT-algorithms for SLVP instances parameterized by the lat-
tice determinant on lattices induced by near square matrices and on lattices induced by
matrices without singular submatrices. Both algorithms can be applied to the l p norm,
for any p > 0, and to the l∞ norm. In the future work, it could be interesting to develop
FPT-algorithms for the SLVP formore general classes of norms defined by gauge func-
tions || · ||K , where ||x ||K = inf{s ≥ 0 : x ∈ sK }, K is a convex body and 0 ∈ int(K ).

In Sect. 4, we presented a FPT-algorithm for ILPP instances with near square
constraints matrices parameterized by the maximum absolute value of rank minors
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of constraints matrices. Additionally, the last result gives us a FPT-algorithm for the
case, when the ILPP constraints matrix has no singular rank submatrices, since these
matrices can have only one additional row if the dimension is sufficiently large, due
to Artmann et al. (2016). It is an interesting open problem to avoid the restriction for
constraints matrices to be almost square and develop a FPT-algorithm for this case.
It was mentioned in Artmann et al. (2017) that the ILPP is NP-hard for values of
parameterΔ = Ω(nε), for ε > 0. So, the existence of a FPT-algorithm for the general
class of matrices is unlikely.

In Sect. 5, we presented a FPT-algorithm for the simplex width computation prob-
lem parameterized by the maximum absolute value of rank minors of the augmented
constraints matrix. The dependence on the augmented matrix minors can be avoided
for empty lattice simplices. In the future work, it could be interesting to develop
polynomial-algorithms or FPT-algorithms for wider types of polyhedra.
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