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Preface

This book gives a concise exposition of the fundamentals of the theory of topo-
logical vector spaces, complemented by a survey of the most important results of a
more subtle nature, which cannot be qualified as basic, but knowledge of which is
useful for applications, and, finally, some of such applications connected with dif-
ferential calculus in infinite-dimensional spaces and measure theory. Almost half
of the book is devoted to these applications, which makes it very different from
the whole series of known texts on topological vector spaces. Another notable dif-
ference between this book and known treatises like Bourbaki [87], Edwards [150],
Grothendieck [207], Jarchow [237], Kelley, Namioka [270], Köthe [292], Nar-
ici, Beckenstein [365], Pérez Carreras, Bonet [385], Robertson, Robertson [420],
Schaefer [436], Trèves [530], and Wilansky [567] is that we decided to include also
some results without proofs (this does not concern the fundamentals, of course)
with references instead, which enables us to inform the reader about many rela-
tively recent achievements; some of them are disguised as exercises (with refer-
ences to the literature), such exercises should not be confused with usual exercises
marked by the symbol ◦. Thus, with respect to the presented information, our book
is not covered by any other book on this subject (though, we cannot claim that it
covers any such book).

Chapter 1 contains the fundamentals of the theory, including a large list of
concrete examples, some general concepts (convex sets, seminorms, linear map-
pings) and a number of facts, the most important of which is the Hahn–Banach
theorem on extensions of functionals in its diverse versions.

The main material of Chapter 2 is connected with projective and inductive
limits (including strict inductive limits and inductive limits with compact em-
beddings, which is not sufficiently discussed in the existing literature), and also
Grothendieck’s method of constructing Banach spaces embedded into locally con-
vex spaces.

Chapter 3 contains the classical material related to the so-called duality theory,
i.e., introduction of different locally convex topologies on a given space giving the
same set of continuous linear functionals. The central topics here are the Mackey–
Arens theorem on topologies compatible with duality, the results on weak com-
pactness, including the Eberlein–Šmulian and Krein–Šmulian theorems, and also
some concepts and facts connected with completeness of locally convex spaces.
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x Preface

Chapter 4 is devoted to the fundamentals of the differentiation theory in lo-
cally convex spaces. It presents a general scheme of differentiability with respect
to a system of sets (partial cases of which are Gâteaux, Hadamard and Fréchet
differentiabilities) and a thorough discussion of important for applications differ-
entiabilities with respect to systems of bounded and compact sets.

Chapter 5 gives a concise introduction to measure theory on locally convex
spaces. Here we discuss extensions of cylindrical measures, the Fourier trans-
form and conditions for the countable additivity in its terms (in particular, the
Minlos and Sazonov theorems and their generalizations), covariance operators,
measurable linear functionals and operators, measurable polynomials, and some
important classes of measures (such as Gaussian, stable, and convex).

Each chapter opens with a brief synopsis of its content. All chapters contain
many additional subsections with some more specialized information related to
the main themes of the chapter, and also many exercises are given (more difficult
ones are provided with hints or references). The book ends with the historic-
bibliographic comments, the list of references (with indication of page numbers of
citing the included works), and the author and subject indices.

The prerequisites for the first chapter of this book are just a grasp knowledge
of calculus and linear algebra and some experience with basic concepts of topol-
ogy, but for a thorough study it is advisable to be acquainted with a university
course of functional analysis (following any text, e.g., Kolmogorov, Fomin [284]
or Rudin [425]).

We are very grateful to T.O. Banakh, E.D. Kosov, I. Marshall, S.N. Popova,
A.V. Shaposhnikov, A.S. Tregubov and E.V. Yurova for useful remarks and cor-
rections.

Our work on this book began 25 years ago by the initiative of Vladimir
Ivanovich Sobolev (1913–1995), the author of a series of widely known texts on
functional analysis (including one of the first Russian texts, published as early as
in 1951), and its completion is a tribute to the memory of this remarkable scientist
and teacher.
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