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Abstract

In this paper we present the scenario of the occurrence of strongly
dissipative mixed dynamics in two-dimensional reversible diffeomor-
phisms, using as an example the system describing a motion of two
point vortices under the influence of wave perturbation and shear flow.
For mixed dynamics of this type the chaotic attractor intersects with
the chaotic repeller, but their intersection forms a “thin” set. The
main stage of this scenario is the appearance of homoclinic structures
for a symmetric saddle orbit which arise after crisis of a homoclinic
attractor and repeller.

1 Introduction

On three types of chaos

Until recently, it was believed that chaos in dynamical systems can be
only of two forms: conservative and dissipative chaos. Conservative (Hamil-
tonian) chaos is typical for systems preserving the phase volume, while, the
dissipative chaos is often observed in systems in which the phase volume is
compressed. It follows from the well-known theorem of Conley [1] that in any
dynamical system defined on a compact manifold there exists an attractor
and a repeller. There are many different definitions of an attractor. Here, as
usual, by an attractor we will mean a stable closed invariant set of a system,
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and be a repeller – an attractor under the time reversal. However, following
Conley [1], Ruelle [2], and Hurley [3] under stability we will mean the so-
called stability under permanent acting perturbations, which is also called
total stability or Lyapunov stability by ε-orbits, see more details in [4].

We note, that such defined attractors (repellers) are in a good agreement
with numerics and, what is important, allow to distinguish three types of
chaos: conservative, dissipative and mixed dynamics [4]. So, if we denote the
attractor in the system by A and the repeller by R then the condition A = R
holds for conservative chaos (moreover in this case, the attractor / repeller is
the whole phase space), while the condition A∩R = ∅ takes always place for
dissipative chaos. The mixed dynamics is characterized by the fact, that the
attractor and the repeller intersect, but do not coincide [4], i.e. A ∩ R 6= ∅,
and A 6= R. It is worth noticing that, from a logical point of view, this is
the third and final possibility and, thus, a fourth type chaos does not exists.

For the first time the term “mixed dynamics” for this phenomenon was
introduced in [5] (and later was used, e.g. in the papers, [6, 7]). However,
the phenomenon associated with the possibility of intersecting attractors and
repellers was discovered earlier in the paper [8] where it was proved that near
any two-dimensional diffeomorphism with a non-transverse heteroclinic cycle
containing 2 saddle points with Jacobians less and greater than one1 there
exist open regions (Newhouse domains) in which there are dense diffeomor-
phisms with infinitely many stable, completely unstable, and saddle periodic
orbits whose closures have non-empty intersections, which, in fact, means
that attractors are not separable from repellers. Later, in the paper [9], an
analogous theorem was proved in the case when a diffeomorphism f with
such a non-transverse heteroclinic cycle is reversible, i.e., when f and f−1

are conjugated by means of some involution h for which h◦h = id. However,
in contrast to the general case, symmetric periodic orbits of conservative type
(with the Jacobian J = 1), such as elliptic and area-preserving saddles, also
arise here in addition to periodic sinks and sources. Note, that such symmet-
ric periodic orbits intersect the set Fix(h) of fixed points of the involution h
(i.e. the set of such points x that h(x) = x). Such orbits appear due to the
reversible Newhouse phenomenon [9].

Mixed dynamics in reversible systems

1Here, under non-transverse heteroclinic cycle we mean a contour containing 2 saddle
periodic points for which one pair of stable and unstable invariant manifolds intersects
transversally and the other pair have a heteroclinic tangency.
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The phenomenon, when the dissipative dynamics in the system coexist
with the conservative dynamics, was previously discovered in the papers [10,
11, 12], where it was found that the phase space for reversible two-dimensional
diffeomorphisms can be divided into invariant domains with conservative
dynamics2 and invariant domains containing pairs of attractor–repeller. The
possibility of intersecting an attractor and a repeller in physical systems
was (as we know) first found numericaly in [13], where for the model of
four coupled rotators was observed that the attractor and the repeller “may
overlap”. Later, in [14] such “overlaping” was explained by the emergence of
the mixed dynamics in this model. Moreover, in [14] two different scenarios of
the occurrence of mixed dynamics were also described. According to the first
scenario, mixed dynamics appear in a “soft” manner, due to a sequence of
local and global bifurcations of symmetry breaking. According to the second
scenario, mixed dynamics can arise by explosion due to the emergence of
heteroclinic structures, which appear after crisis of a simple attractor and a
simple repeller.

Among the studies of mixed dynamics in systems from applications, here
we would like to note the papers [15, 16, 17] in which mixed dynamics were
found in nonholonomic models of the Celtic stone, rubber Chaplygin top,
and Suslov top respectively.

We note that in almost all cases listed above, mixed dynamics appears
in reversible systems, which are obtained as a result of small perturbation of
conservative systems. As a result of such perturbations the conservativity is
destroyed, in general. Thus, the phase portraits of attractors and repellers
will be slightly different but, due to reversibility, they remains to be sym-
metric with respect to Fix(h) (see e.g. Fig. 1, where the phase portraits of
the attractor and the repeller in the nonholonomic model of Suslov top [17]
are presented).

Strongly dissipative mixed dynamics

In this paper we present the scenario of the appearance of strongly dissi-
pative mixed dynamics in reversible two-dimensional diffeomorphisms, using
as an example the system describing the motions of two point vortices per-
turbed by a wave and a shear flow [19]. For mixed dynamics of this type
the attractor and the repeller are very different from each other, and their

2Probably, inside such invariant domains there exist inseparable sets of stable and
completely unstable periodic orbits. But the dynamics in such areas looks conservative
due to the fact that the absolute values of Jacobians for such orbits are very close to 1.
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a) Attractor A b) Repeller R

Figure 1: The phase portraits of the attractor A and the repeller R in the nonholonomic

model of Suslov top [18]. The line ω1 = 0 forms the set of fixed points of the involution

h : ω1 → −ω1 in this model. It is clearly seen that A ∩R 6= ∅,A 6= R.

intersection forms a “thin” set (see. Fig. 2b). The main stage of this scenario
is the appearance of homoclinic structures (for a symmetrical saddle orbit
s1) which arise after the crisis of a homoclinic attrator and repeller. Recall,
that under the homoclinic attractor here we mean a chaotic attractor which
contains a fixed point of a saddle type [23]. In the case under consideration,
the attractor A contains a saddle point with very small Jacobian J and the
repeller R – with very large Jacobian J−1 (for example, in the case presented
in Fig. 2a, J = 1/88 for the attractor, while J−1 = 88 for the repeller). After
the appearance of mixed dynamics, both the attractor and the repeller also
contain a symmetrical saddle point s1 with J = 1 (see. Fig. 2b).

We note that, in accordance with Theorem 1 from [4], the set belonging
to the the intersection of an attractor and a repeller (also called the reversible
core) is the limit of an infinite sequence of attractors, and also of an infinite
sequence of repellers. Therefore, when the saddle point s1 belongs to the
reversible core, it can be argued that strongly dissipative mixed dynamics
also contain countable sets of stable, as well as completely unstable periodic
orbits.

However, in contrast to previously investigated cases ([15, 16, 17, 14])
where stable, as well as completely unstable periodic orbits, belonging to the
regions with mixed dynamics, have Jacobians close to 1, strongly dissipative
mixed dynamics contains periodic saddles, sinks and sources with various Ja-
cobians (large, small, close, and equal to 1). In our opinion, the existence of
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a) ε = 0.1463 b) ε = 0.14815

Figure 2: The phase portraits of the attractor A and the repeller R in the model of

two point vortices perturbed by a wave and a shear flow. Fix(h) – is the line of fixed

points of the involution h : {S → 2π − S, R → R}, s1 – is a symmetrical saddle point

(with Jacobian J = 1). (a) A ∩ R = ∅. Saddle point sa with Jacobian J = 1/88 belongs

to the attractor, while the saddle point sr with J = 88 belongs to the repeller. (b)

A ∩ R 6= ∅,A 6= R. Mixed dynamics contain dissipative and also conservative periodic

orbits.

such dissipative orbits is explained by the fact that the system strongly con-
tracts volumes in some regions of phase space and strongly expands volumes
in other (symmetrical) regions. We also suppose, that such a property of the
system leads to a large differences between numerically obtained attractor
and repeller after their intersection (when mixed dynamics appears)3.

The work is organized as follows: the scenario of the appearance of
strongly dissipative mixed dynamics in two-dimensional reversible diffeomor-
phisms is described in Sec. 2, the example of the implementation of such a
scenario in the equations describing the motions of two point vortices per-
turbed by a wave and a shear flow is given in Sec. 4, and the equations
governing the motions in this model are presented in Sec. 3.

3We note, that in this case, theoretically, the attractor should be slightly different from
the repeller due to appearance of “homoclinic tangle” [4]. But due to finiteness of the
numerical calculation, the difference between attractor and repeller remains noticeable.
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2 Scenario of the appearance of strongly dis-

sipative mixed dynamics in reversible sys-

tems

Let us consider a one-parameter family of two-dimensional reversible diffeo-
morphisms X̄ = F (X, ε) defined on a compact manifold and depending on
the parameter ε. For simplicity we suppose that this family has a symmetric
elliptic fixed point e for ε < ε0 and this point (at ε = ε0) undergoes reversible
pitch-fork bifurcation [20] after which this point becomes a symmetric saddle
point s and a pair of stable f s and completely unstable fu points (one point
is symmetric to another) appears in a neighborhood of s (see Fig. 3, near
ε = ε0). We also suppose that, with further increase of ε, a Feigenbaum-like
attractor AF [21] is born as a result of the cascade of period-doubling bifur-
cations of the point f s. In the same way, a Feigenbaum-like repeller RF is
born from fu. We note, that after the first period doubling bifurcation the
points f s and fu become saddle: we denote these fixed points as ha and hr.

Recall that immediately after the onset of chaotic dynamics through the
cascade of period-doubling bifurcations, the Feigenbaum-like attractor con-
sists of a set of components. With the change of the parameter the com-
ponents of this attractor pairwise merge (as a result of the occurrence of
heteroclinic intersections between manifolds of the saddle orbits belonging
to the components of the attractor and manifolds of the saddle orbits lying
between these components). Finally, two last components separated by ha

are merged and the homoclinic Henon-like attractor AH appears [22] (see
Fig. 3a at ε = εH and Fig. 3b). Symmetrically the homoclinic Henon-like
repeller RH containing the fixed point hr occurs.

With a further increase in ε, the Henon-like attractor AH becomes larger
and approaches the boundary of its basin of attraction which is formed by
the stable manifold W s of the saddle point s (accordingly, the basin for the
Henon-like repeller RH is bounded by the unstable manifold W u of the same
point s). Also we note that starting with a certain value of the parameter
the pairs of manifolds W s and W u intersects transversally, i.e. formed the
homoclinic structure. (see Fig. 3b).

When ε = εMD, the crisis of the attractor AH and the repeller RH
appears (AH collides with the boundary of its basin of attraction W s, while
RH collides with W u), after which both these sets capture the homoclinic
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Figure 3: The scenario of the appearance of strongly dissipative mixed dynamics in

reversible two-dimensional diffeomorphisms.

structure of the saddle point s (see Fig. 3b)4. In the case when trajectories
in the system do not tend (in forward time) to other attractors5, since both
the attractor and the repeller contain this homoclinic structure, it can be
stated that the attractor intersects with the repeller, i.e. mixed dynamics
appears.

3 The model under consideration

We consider a system describing the motion of two identical point vortices
under the influence of a wave perturbation and external shear flow with a
uniform distribution of vorticity [19] as an example of a model in which the
scenario described above is realized and strongly dissipative mixed dynamics

4Similarly, the crisis of the homoclinic attractor in Henon map appears [22]. However,
in the case of Henon map, after the intersection of the attractor with the stable manifold
bounding its basin of attraction, almost all trajectories go to infinity.

5When the system is multistable, trajectories from the neighborhood of just collapsed
attractor can tend to other attractors that coexist with AH . In this case mixed dynamics
exist but do not manifest itself.
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appears.











Ṙ = 1

2
AR sin 2ϕ− ε sinϕ sinS sin(R sinϕ)

Ṡ = −1 + ε cosS cos(R sinϕ)

ϕ̇ = κ

R2 + A cos2 ϕ− ε

R
cosϕ sinS sin(R sinϕ).

(1)

Here R ∈ (0,∞), S ∈ [0, 2π), ϕ ∈ [0, 2π) are the phase variables and A, ε, κ
are the parameters of the system. Note that this model is a generalization
of the system describing the motions of two point vortices which interact
with a potential wave [24, 25]6. In this system the parameter ε specifies the
amplitude of a wave, A is the vorticity of the external flow, and κ is the sum
of intensities of the vortices.

Note that the equations (1) are invariant with respect to the substitution

H1 : {R → R, S → −S, ϕ → −ϕ, t → −t},

H2 : {R → R, S → 2π − S, ϕ → 2π − ϕ, t → −t}.
(2)

Thus, the system under consideration is reversible and H = H1 ∪H2 is the
involution of this system. Also we note, that the variable ϕ can be chosen
as a secant in the system. In the case ϕ = 0 (or ϕ = π) the involution H
defines the involution h = h1∪h2 for the Poincaré map of the system, where:

h1 : {R → R, S → −S}

h2 : {R → R, S → 2π − S},
(3)

and the set Fix(h) of fixed points of this involution consists of two lines:

Fix(h) = {S = 0} ∪ {S = π}.

Hereafter we choose the variable ϕ = 0 as a secant for the system and
perform one-parameter analysis by varying ε, assuming that other parameters
are fixed as follows:

A = 0.1, κ = 4.65.

6The author of the system is E.V. Vetchanin [19]. In contrast to the system investigated
in [24, 25], here the vortices also perturbed by an external flow with constant vorticitiy A
in addition to the interaction with a potential wave.
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4 A description of a scenario of occurrence of

strongly dissipative mixed dynamics in the

vortex model under consideration

For ε = 0 the system (1) describing the motion of unperturbed vortices is
integrable [26] and its phase space foliated into invariant tori. When ε > 0
some tori become resonance and the pair of symmetric saddle and elliptic
orbits appear, see Fig. 4a. With a further increase in the parameter ε
elliptic points ei undergo symmetry breaking bifurcations due to which these
points become symmetric saddles and in their neighborhood stable f s

i
and

completely unstable fu

i
fixed points appear (see, Fig. 4b). Note, that for

sufficiently large values of the parameter ε there are coexist 8 stable f s

i
(and

also 8 completely unstable fu

i
) fixed points, see Fig. 4c.

With increasing of ε Henon-like attractors AHi and Henon-like repellers
RHi are born from points f s

i
and fu

i
due to scenario presented in Sec. 2.

Figure 4d shows the coexisting of two Henon-like attractors AH1 and AH2

with stable fixed (and periodic) points for ε = 0.146. In this Figure sa
i
and

sr
i
– saddle point which appear after period doubling bifurcation of stable f s

i

and completely unstable points fu

i
, respectively. We note, that saddle points

sa
i
have Jacobian less than 1, while saddle points sr

i
have Jacobian greater

than one.
When ε = εcris1 ≈ 0.14635 the attractor AH1 and the repeller RH1

undergo crisis due to which these two sets begin to intersect. It is important
to note, that the intersections of attractors and repellers in the system appear
due to homoclinic bifurcations. Further we will describe such bifurcations in
details, but first, let us recall two well-known facts related to an evolution of
homoclinic attractors:

• in many cases the boundary of basins of attraction for homoclinic at-
tractors is formed by stable manifolds of some saddle points;

• a homoclinic attractor is the closure of the unstable manifold of one of
its saddle points.

Remark 1. Both these properties hold for homoclinic Henon-like attractors.
In particular, in the Henon map x̄ = y, ȳ = M − bx − y2 with |b| < 1 the
exact boundary of absorbing domain for the attractor is composed by one
(or two, if b < 0) of stable manifolds of the saddle fixed point O1 having
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a) ε = 0.01 b) ε = 0.015

c) ε = 0.1 c) ε = 0.146

Figure 4: The phase spaces of the system (1) for different ε. (a) Resonant tori for small

ε; (b) elliptic points e2 and e3 undergo symmetry breaking bifurcations due to which

symmetric saddles s02, s
π

3 and also pairs (f s

2 , f
u

2 ) and (f s

3 , f
u

3 ) of stable and completely

unstable points appear; (c) 8 stable f s

i
and 8 completely unstable fu

i
fixed points coexist

in the system; (d) Henon-like attractors AH1 and AH2 (together with Henon-like repellers

RH1 and RH2) born from stable points f s

1 f s

2 (completely unstable points fu

1 fu

2 ).

a positive unstable multiplier, while the homoclinic attractor contains other
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saddle fixed point O2 with negative unstable multiplier. Here the homoclinic
Henon-like attractor AH can be defined as a the prolongation of the point O2,
what means that AH contains (or coincide with) the closure of the unstable
manifold WU(O2)

7.

b) ε = 0.1463 d) ε = 0.1464

Figure 5: The location of manifolds of the saddle points sπ1 , s
π

2 , s
a

1 and sr1. Wu

a1 is the

unstable manifold of the saddle point sa1 belonging to the attractor AH1; W
s

1 and W s

2 are

the stable manifolds forming the boundary of the basin of attraction for this attractor.

W s

r1 is the stable manifold of sr1 belonging to the repeller RH1, while Wu

1 and Wu

2 are

unstable manifolds forming the “basin of repulsion” for RH1.

In the case under consideration the attractor AH1 belongs to the closure
of the unstable manifold W u

a1
of the saddle fixed point sa

1
. The basin of

attraction of AH1 is bounded from above by the stable manifold W s

1
of the

symmetric saddle point sπ
1
, and from below – by the stable manifold W s

2
of

the saddle point sπ
2
(see Fig. 5a). We also note that the manifolds W s

1
and

W u

1
intersect transversally.
When ε > εcris1, intersections between W s

1
and W u

a1
, as well as W u

1
and

W s

r1
appear (see Fig. 5b when ε = 0.1464) and, as a result, the attractor

AH1 collides with the upper boundary of its basin of attraction while the
repeller RH1 collides with the upper boundary of its “basin of repulsion”.
We note that after this collision the transversal intersection between W s

1
and

7Recall that the prolongation of a set Q is a closed, invariant stable set consisting of
all points attainable from Q by ε+-orbits for arbitrarily small ε [4]. Here ε+-orbits are
ε-orbits for forward iteration of the map; ε > 0.
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W u

1
remains and thus we can state here that the attractor AH1 intersects

with the repeller RH1. But in this case such an intersection is not visible due
to the existing of homoclinic Henon-like attractor AH2 which attracts almost
all trajectories from the neighborhood of AH1 in forward time and RH2 which
attracts trajectories in backward time (here after the collision of AH1 and
RH1 the unstable manifold W u

a1
also intersects with the stable manifold W s

2

of the symmetric saddle point sπ
2
, see Fig. 6a, and this intersection gives a

transition mechanism from AH1 to AH2).

b) ε = 0.1465 d) ε = 0.1482

Figure 6: The location of manifold of the saddle points sπ1 , s
π

2 , s
a

1 and sr1. Wu

a1 is the

unstable manifold of the saddle point sa1 belonging to the attractor AH1; W
s

1 and W s

2 are

the stable manifolds forming the boundary of the basin of attraction for this attractor.

W s

r1 is the stable manifold of sr1 belonging to the repeller RH1, while Wu

1 and Wu

2 are

unstable manifolds forming the “basin of repulsion” for RH1.

When ε = εcris2 the unstable manifold W u

a2
of sa

2
, belonging to the at-

tractor AH2 touches the stable manifold W s

2
which forms the boundary of

the basin of attraction for AH2. The same non-transversal heteroclinic tan-
gency appears between another pair of manifolds: W s

r2
and W u

2
, one of which

compose the repeller RH2, while another forms the boundary of the basin
for RH2. Thus, for ε > εcris2 the attractor AH2 intersects with the repeller
RH2, and moreover, due to homoclinic tangle, these two sets intersect with
AH1 ∩ RH2 and we have an intersection of two attractors (AH1 and AH2)
with two repellers (RH1 and RH2).

But this intersection also is not visible due to existing of other Henon-like
attractor AH3 and Henon-like repeller RH3, which appear from f s

3
and fu

3
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and, in its turn, collide by the same way as AH1, RH1, AH2 and RH2, giving
more complex global connection between different homoclinic attractors and
repellers, see Fig. 2b.

Such a joining of attractors and repellers ends at ε > εcris8 ≈ 0.206, when
all 8 attractors AHi and repellers RHi undergo crisis and form a complex set
consisting of the intersection of all these attractors and repellers. Since there
are no other attractors in the neighborhood of this intersection, the mixed
dynamics becomes visible8, see Fig. 7a.

b) ε = 0.23 d) ε = 0.14655

Figure 7: (a) Mixed dynamics after the collion of all homoclinic Henon-
like attractors AHi and all Henon-like repellers RHi; (b) non-transversal
heteroclinic cycle containing a pair of non-conservative saddles sa

1
, sr

1
with

J < 1 and J > 1, respectively.

Finally we note, that after each attractor-repeller collision heteroclinic
cycles, containing a pair of non-conservative saddles sa

i
, sr

i
with J < 1 and

J > 1, appears (see, for example, Fig. 7b, after the collision of AH1 and
RH1, when ε = 0.14655). In the accordance with theorems from [9, 7] the
bifurcations of such cycles lead to a simultaneous birth of infinitely many
periodic attractors, repellers and elliptic orbits. Moreover, the closures of

8It is possible, that mixed dynamics manifests itself before the collision of all 8 attrac-
tors and repellers. For example, Fig. 2b shows mixed dynamics which we obtain with
50000 forward and backward iterations after collision of 3 attractors AHi, i = 1, 2, 3 and
3 repellers AHi, i = 1, 2, 3. In this case it is difficult to understand either we have a coex-
isting of mixed dynamics with other (in particular, Henon-like) attractors and repeller or
mixed dynamics here is transient chaos and finally trajectories evolve to other attractor.
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these sets have non-empty intersection. From the other hand, at least one
area-preserving saddle point sπ

i
(or s0

i
) belongs to the intersection of AHi

and RHi after their collision. As it is known from the paper [4], such points
belong to a reversible core, which, by theorem 1 from this paper, contains
a limit of an infinite sequence of attractors and repellers. So this theorem
gives us another evidence of infiniteness and inseparability of attractors and
repellers in the system.

5 Conclusion

In this paper, a phenomenological scenario of the emergence of mixed dy-
namics of a new, strongly dissipative, type is proposed for two-dimensional
reversible maps. For this type of mixed dynamics the numerically obtatined
chaotic attractor and the chaotic repeller are very different from each other,
and their intersection forms a “thin” set. The implementation of such a
scenario is demonstrated on a system describing the motion of two point
vortices perturbed by a wave and external shear flow. It is shown that mixed
dynamics in this system contain both conservative and dissipative periodic
orbits, while closures of orbits of different types have non-empty intersection.
Moreover, in contrast to previously observed types of mixed dynamics, the
Jacobians of dissipative orbits in this case can be essentially differ from 1.
Thus, it can be argued that strongly dissipative mixed dynamics obviously
can not be regarded as quasi-conservative chaos, but represents a new, third
(along with conservative and dissipative) type of chaos. Moreover, we assume
that this type of chaotic behavior is typical for strongly dissipative reversible
systems.
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