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Abstract We re-examine the physics of supercritical nuclei,
specially focusing on the scattering phase δ� and its depen-
dence on the energy ε of the diving electronic level, for which
we give both exact and approximate formulas. The Coulomb
potential Zα/r is rounded to the constant Zα/R for r < R.
We confirm the resonant behavior of δ� that we investigate in
detail. In addition to solving the Dirac equation for an elec-
tron, we solve it for a positron, in the field of the same nucleus.
This clarifies the interpretation of the resonances. Our results
are compared with claims made in previous works.

1 Introduction

The Coulomb problem for a nucleus with charge Z > Zcr

was recently analyzed [1] by solving the Dirac equation for
an electron in the external field of this nucleus. Because of the
specificity of the Dirac equation that accounts simultaneously
for electrons and positrons this problem gets connected to the
scattering of positrons (holes in the Dirac sea) on the nucleus
(see below). The behavior of the scattering amplitude was
found to be very peculiar: it contains resonances and their
energies, obtained from an analytical formula found in [1],

ε = −ξ + i

2
γ, ξ > m, γ > 0, (1)

correspond to poles of the S matrix located above the left
cut, on the second (unphysical) sheet of the energy plane.
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The resonances in positron scattering were discussed in Refs.
[2,3].

At Z < Zcr, the width γ vanishes, and this equation
describes the usual bound states of electrons in the Coulomb
field of the nucleus.

When Z > Zcr, γ �= 0 makes these states quasistationary
[4,5].

For electrons, as Z increases, the transition from bound
states to resonant states corresponds to the diving of the
bound states, which start at ε = +m, downwards into the
lower continuum.

In the present paper, in order to clarify the situation, we
will also study “the Dirac equation for positron”. By this we
mean here the standard Dirac equation with the substitution
of the electron charge e by − e.

Now, as Z increases, bound states increase from ε = −m
and become resonant in the upper continuum.

For Z < Zcr, the interpretation of these bound states (also
noted in [6] Chapt. 4.3) is the following. For obvious reasons
they cannot be (e+N+) bound states, but are just our previous
(e−N+) bound states. There is no more information in there.1

1 The reader can be convinced as regards this interpretation as follows.
In the present simple formalism, which only uses the Dirac equation,
the energy of a bare positron, which is obtained by simply taking the
limit Z → 0, is found to be −m. Since the “production” of such a
particle costs at least the energy +m, the result that is obtained can
only be interpreted in terms of an electron with energy − (−m) =
+m. This is what we mean by the statement that “there is no more
information”. A more satisfying description of positrons can only be
achieved in the framework of Quantum Field Theory, where creating
(annihilating) an electron and annihilating (creating) a positron both
occur in the expansion of the field operator ψ in terms of creation and
annihilation operators.
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For Z > Zcr, we find that (e+N+) resonances occur at
the energies

εp = ξ − i

2
γ, ξ > m, γ > 0, (2)

which now correspond to poles of the S matrix below the right
cut of the energy plane, also, as it should be, on the second,
unphysical, sheet. This result confirms the proposal made in
[1] that the sign of the energy in (1) should be reversed.

This change of sign we are accustomed to when dealing
with holes in the lower continuum: the absence of an elec-
tron with energy − ε is then interpreted as the presence of a
positron with energy ε. It is now to be operated on the empty
states of the energy levels that dive into the lower continuum.
Our consideration of the Dirac equation for positrons there-
fore helps to clarify the nature and position of the resonances.

No physical interpretation for them was suggested in [1].
It was only claimed that spontaneous e+e− pair production
by naked nuclei at Z > Zcr, as discussed in [2,3,6–20], does
not occur.

We, however, do not see any sensible objection to the
occurrence of this process: an empty state diving into the
lower continuum gets filled by one electron of the Dirac sea;
the resulting hole in the sea is the positron that gets ejected by
the nucleus the charge of which has become Z −1. The char-
acteristic time of this emission process is 1/γ , in agreement
with the results obtained in [2,3,6–20].

Furthermore, spontaneous production of e+e− pairs was
recently observed in the numerical solution of the Dirac equa-
tion in the case of heavy ion collisions [21,22].

The plan of the paper is as follows. In Sect. 2, following
[1] and using the Dirac equation, we study the scattering of
states of the lower continuum on a supercritical nucleus. In
addition to reproducing the approximate results obtained in
[1] we get explicit results without using an expansion over
the parameter m × R, where R is the nucleus radius. Such
an expansion, being good for electrons, does not work for
heavy particles, for example, muons [4,5]. In Sect. 3, we
use instead the Dirac equation for positrons (see above) and
study the scattering of states of its upper continuum on a
supercritical nucleus. We conclude in Sect. 4.

2 Lower continuum wave functions and scattering
phases in the Coulomb field of a supercritical nucleus

The radial functions of the Dirac equation F(r) ≡ r f (r) and
G(r) ≡ rg(r) are determined by the following differential
equations [23–25]:

⎧
⎪⎨

⎪⎩

dF

dr
+ �

r
F − (ε + m − V (r))G = 0,

dG

dr
− �

r
G + (ε − m − V (r))F = 0,

(3)

where � = −( j + 1/2) = −1,−2, . . . for j = l + 1/2 and
� = ( j + 1/2) = 1, 2, 3 . . . for j = l − 1/2 and the ground
state corresponds to � = −1 (let us note that in [1] the Dirac
equation with the substitution F ⇒ −F is used).

In order to deal with the case Zα > 1 the Coulomb poten-
tial should be regularised at r = 0 [26]. To do this we shall
approximate the nucleus as a homogeneous charged sphere
with radius R (the so-called rectangular cutoff). Thus, the
potential in which the Dirac equation should be solved looks
like:

V (r) =

⎧
⎪⎨

⎪⎩

− Zα

R
, r < R, (4a)

− Zα

r
, r > R. (4b)

At small distances r < R, substituting Eq. (4a) into (3),
we obtain the Dirac equation with a constant potential, the
solution of which is expressed through Bessel functions. In
order to obtain finite f and g at r = 0 among the two sets of
solutions the one with a positive index of the Bessel function
should be selected2:
(
F
G

)

= const · √
βr ·

( ∓J∓(1/2+�)(βr)
J±(1/2−�)(βr)

β

ε+m+ Zα
R

)

, r < R, (5)

where β = √
(ε + Zα/R)2 − m2. The upper (lower) signs

should be taken for � < 0 (� > 0).
For r > R, we need the solution of the Dirac equation for

the Coulomb potential. We introduce the standard quantity λ

which, for −m < ε < m, equals λ = √
(m − ε)(m + ε) ≡

−ik, where k is the electron momentum. Here we have to
make an important remark. Since later we are going to look
for resonances in the complex ε plane, we must carefully
define the square roots used here. Each of them,

√
m − ε and√

m + ε, are defined on two Riemann sheets of the complex
ε plane. To avoid ambiguous expressions let us introduce a
uniquely defined function sqrt(z) as follows:

sqrt(|z|eiArg(z)) = √|z|eiArg(z)/2, for Arg(z) ∈ (−π;π ].
(6)

For example

sqrt (z) =

⎧
⎪⎨

⎪⎩

i for z = −1 + i · 0,

i for z = −1,

−i for z = −1 − i · 0.

(7)

It is therefore the first branch of the function
√
z with the

cut (−∞; 0). The second branch is given by −sqrt(z). This

2 Any solution with a negative index of the Bessel function is not nor-
malizable, so it should be discarded.
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Fig. 1 The plane of complex energy ε

definition is also very convenient because the square root is
defined in this way in many numerical tools for computers.

Switching branches of both square roots,
√
m − ε and√

m + ε, leads to the same value of λ. Therefore, λ is defined
on the two Riemann sheets according to

λ =
{

sqrt(m − ε) · sqrt(m + ε) on the physical sheet,

−sqrt(m − ε) · sqrt(m + ε) on the unphysical sheet,

(8)

with two cuts originating, respectively, from each of the
square roots (see Fig. 1).3 From general arguments of scat-
tering theory, we know that electron bound states are located
at real ε in the interval −m < ε < m. Unbound electron
states are located above the right cut and unbound positron
states below the left cut.

In what follows we shall use the following conventions
for the “√ ” symbol:

√
m + ε =

{
sqrt(m + ε) on the physical sheet,

−sqrt(m + ε) on the unphysical sheet,
(9)

√
m − ε = sqrt(m − ε) on both sheets. (10)

It does not matter which root changes sign when we go to
the second sheet since we can always also change the signs
of both.

3 The procedure used in [1] amounts to stating that, below the left cut,
λ = −i

√
(m − ε)(−m − ε). So doing,

√−m − ε is defined with the
same cut (−∞; −m) as

√
m + ε, with positive values below the cut.

With such a definition, −i
√−m − ε = sqrt(m + ε) everywhere on the

physical sheet, not only below the left cut. There is no need to rewrite
formulas in this way since, when numerical outputs are needed, we
should return to the original definition (8). Let us note that on the first
sheet formulas (17) and (26) from [1] are exactly the same.

We are looking for solution written in the standard form
[25]4:

(
F
G

)

=
( √

m + ε

−√
m − ε

)

exp(−ρ/2)ρiτ
(
Q1 + Q2

Q1 − Q2

)

, (11)

where τ = √
(Zα)2 − �2, ρ = 2λr = −2ikr , Q1 and

Q2 are determined by differential equations, the solutions
of which are Kummer confluent hypergeometric functions

1F1(α, β, z) (also sometimes noted F(α, γ, z) like in [25]).
In textbooks dealing with the case Zα < 1, R = 0, only
solutions regular at r = 0 are considered. We must instead
here take into account both type of solutions of the equa-
tions for Q1 and Q2. The formulas for the Qi are derived in
Appendix A. From (A6) to (A8) we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = C · − i Zαm
k + �

−iτ + i Zαε
k

· 1F1

(

iτ − i Zαε

k
, 2iτ + 1, ρ

)

+ D · − i Zαm
k + �

iτ + i Zαε
k

ρ−2iτ
1F1

(

−iτ − i Zαε

k
, −2iτ + 1, ρ

)

,

Q2 = C · 1F1

(

1 + iτ − i Zαε

k
, 2iτ + 1, ρ

)

+ Dρ−2iτ
1F1

(

1 − iτ − i Zαε

k
, −2iτ + 1, ρ

)

,

(12)

where C and D are arbitrary coefficients.5

The scattering phase δ�(ε, Z) is determined by investi-
gating the behavior of the wave function at large r . To this
purpose, the asymptotic expansion of 1F1 at large |z|

1F1(α, γ, z)
∣
∣
∣|z|→∞ = �(γ )

�(γ − α)
(−z)−α[1 + O(1/z)]

+�(γ )

�(α)
ezzα−γ [1 + O(1/z)] (13)

is very useful.
Using the asymptotic expansion (13) for the Kummer

functions occurring in (12) gives
(
F
G

)∣
∣
∣
∣
r→∞

= A ·
( √

m + ε

−√
m − ε

)

(14)

×
(

C

[

e− ρ
2

� (2iτ + 1)

�
(
1 + iτ + i Zαε

k

)

i Zαm
k − �

iτ − i Zαε
k

ρiτ

× (−ρ)−iτ (−ρ)
i Zαε
k ± e

ρ
2

� (2iτ + 1)

�
(
1 + iτ − i Zαε

k

)ρ− i Zαε
k

]

(15)

+D

[

e− ρ
2

� (−2iτ + 1)

�
(
1 − iτ + i Zαε

k

)

i Zαm
k − �

−iτ − i Zαε
k

ρ−iτ (−ρ)iτ

4 Let us note that changing the signs of both square roots is still per-
mitted since it leads to changing the sign of the full wave function.
5 Unlike in [1] we did not feel necessary to use Tricomi functions.
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× (−ρ)
i Zαε
k ± e

ρ
2

� (−2iτ + 1)

�
(
1 − iτ − i Zαε

k

)ρ− i Zαε
k

])

,

(16)

where the upper sign corresponds to F and the lower sign
corresponds to G.

The ratio

(−ρ)
i Zαε
k

ρ− i Zαε
k

(17)

yields the Coulomb logarithm (for real ε below the left cut
it gives exp

[ 2i Zαε
k ln (2kr)

]
). Since the latter does not con-

tribute to the differential scattering cross section at nonzero
angle θ , we will omit this term in our further calculations.

From the general formula

(
F
G

)∣
∣
∣
∣
r→∞

∝
( √

m + ε

−√
m − ε

)

× {ei(kr+ Zαε
k ln(2kr))e2iδ ± e−i(kr+ Zαε

k ln(2kr))}
(18)

it follows that the ratio of the remaining coefficients define
the scattering phase δ� (on the real axis below the left cut
e−ρ/2 ≡ eikr corresponds to the outgoing wave and eρ/2 ≡
e−ikr corresponds to the incoming wave):

e2iδ� = − 1

� + i Zαm
k

·
C
D · �(2iτ)

�
(
iτ+ i Zαε

k

)ρiτ (−ρ)−iτ − �(−2iτ)

�
(
−iτ+ i Zαε

k

)ρ−iτ (−ρ)iτ

C
D · �(2iτ)

�
(

1+iτ− i Zαε
k

) − �(−2iτ)

�
(

1−iτ− i Zαε
k

)
,

(19)

where

ρiτ (−ρ)−iτ = exp [iτ ln (ρ) − iτ ln (−ρ)]

= exp
[−τ (Arg [ρ] − Arg [−ρ])

]

= e−πτ ·sign[Arg[ρ]]. (20)

The resonance of the scattering amplitude corresponds to
the pole of the S-matrix element S ≡ e2iδ and from (19) we
immediately get an equation for the position of this pole in
the ε-plane:

C

D
· �(2iτ)

�
(
1 + iτ − i Zαε

k

) − �(−2iτ)

�
(
1 − iτ − i Zαε

k

) = 0. (21)

In what follows we will match the solutions at r < R and
r > R to obtain the ratioC/D, such that we can calculate the
phase δ� and find the poles of the S matrix which correspond
to the energy levels. This procedure can be performed both
exactly and approximately.

2.1 Exact results

With the help of the exact formulas (5), (11), and (12) we
get the ratio C/D from matching F/G at r = R + 0 and
r = R − 0:

C

D
= −ρ−2iτ

0 · F
−
g − MF−

f

F+
g − MF+

f

, (22)

where

M = ±
√
m + ε√
m − ε

· J±(1/2−�)(βR)

J∓(1/2+�)(βR)
· β

ε + m + Zα
R

, (23)

F±
f = 1F1(α

±
1 , γ ±, ρ0)

i Zαm
k − �

α±
1

+ 1F1(α
±
2 , γ ±, ρ0),

(24)

F±
g = 1F1(α

±
1 , γ ±, ρ0)

i Zαm
k − �

α±
1

− 1F1(α
±
2 , γ ±, ρ0),

(25)

and

α±
1 = ±iτ − i Zαε

k
,

α±
2 = 1 ± iτ − i Zαε

k
, γ ± = ±2iτ + 1, ρ0 = −2ikR. (26)

The numerical evaluation of the square roots in (23) and
of k in (26) for real ε is somewhat tricky since one
should carefully choose the side of the cut to use. Due to
the definition (6)–(7) of the sqrt() function the expression
sqrt (m + ε) gives, for real ε, the values above the cut such
that −sqrt (m + ε) should be used. It corresponds formally to
calculating the scattering phase on the second (unphysical)
sheet. The same holds for k. For any real ε it is also possible
to use k = sqrt

(
ε2 − m2

)
, which chooses the correct side of

the cut; then
√
m + ε/

√
m − ε = −ik/ (m − ε).

With the help of (22) we can calculate the scattering phase
δ� defined by (19).

In the domain ε < −m, δ�(ε, Z) gives the scattering phase
of a positron with energy εp = −ε > m on the nucleus (for
real ε < −m we get Arg [ρ] < 0). Its dependence on εp

for � = −1 and Z = 232 is shown in Fig. 2 (compare with
Fig. 3 of [1]). The scattering phase δ� exhibits a resonance
behavior; it goes through π/2 at εp/m ≈ 5.06.

We obtain the equation for the position of the poles by
substituting (22) into (21)

� (−2iτ)

� (2iτ)
· �

(
1 + iτ − i Zαε

k

)

�
(
1 − iτ − i Zαε

k

) = −ρ−2iτ
0 · F

−
g − MF−

f

F+
g − MF+

f

.

(27)
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The solutions of (27) can be found by scanning the complex
ε plane. This is the method that we used to find the exact
positions6 of the S-matrix poles (see Fig. 3 and Table 1). The
energies ε of the quasistationary states are located above the
left cut on the second sheet of the complex ε plane7:

ε = −ξ + i

2
γ, ξ > m, γ > 0. (28)

2.2 Approximate results

In [1] the approximation 1/R � ε,m was used. In this sec-
tion we are going to reproduce their results and compare them
to the exact ones.

Being interested in the case Zα � 1 and taking into
account the smallness of the nucleus radius in compari-
son with the electron Compton wavelength 1/m we obtain
β ≈ Zα/R in (5).

The solution of the system (3) at r > R should match (5)
at r = R, in particular the ratio F/G of both solutions at
r = R should coincide. Substituting (4b) in (3) at r → 0 we
easily get

(
F
G

)∣
∣
∣
∣
r→0

= ησ r
σ

( −1
Zα

σ−�

)

+ η−σ r
−σ

( −1
Zα

−σ−�

)

, (29)

where σ = √
�2 − Z2α2 and ησ and η−σ are arbitrary con-

stants. Matching the ratios F/G from (29) and (5) at r = R
we obtain

ησ

η−σ

= σ − �

σ + �

· Zα J∓(1/2+�)(Zα) ± (σ + �)J±(1/2−�)(Zα)

Zα J∓(1/2+�)(Zα) ∓ (σ − �)J±(1/2−�)(Zα)

· R
−σ

Rσ
= tan θ, (30)

which coincides with Eq. (13) from [1]. In the case Zα >

|�| one should substitute σ by iτ (where, as before, τ =√
Z2α2 − �2):

ητ

η−τ

= iτ − �

iτ + �

· Zα J∓(1/2+�)(Zα) ± (iτ + �)J±(1/2−�)(Zα)

Zα J∓(1/2+�)(Zα) ∓ (iτ − �)J±(1/2−�)(Zα)

· R
−iτ

Riτ
= e2iθ . (31)

6 Due to the unitarity of the S matrix, there is a zero of e2iδ� at ε =
−ξ − i

2 γ that is symmetric to the pole ε = −ξ + i
2 γ with respect to

the real axis. It corresponds to incoming waves instead of the outgoing
waves that we selected.
7 It corresponds to Re[k] > 0, Im[k] = Re[ε]Im[ε]

Re[k] < 0. In [2,3,16]
the resonance in positron scattering on a supercritical nucleus was dis-
cussed.

The modulus of the r.h.s. of (31) can easily be checked to be
unity, this is why we can rewrite it as an exp (2iθ) with real
θ .

The expansion of (11) at small ρ contains terms ∼ ρiτ and
ρ−iτ . Comparing this expansion with (29) and substituting
σ → iτ , ησ → ητ , η−σ → η−τ yields

ητ = C · (−2ik)iτ
iτ − � + Zα

√
m−ε
m+ε

iτ − i Zαε
k

,

η−τ = D · (−2ik)−iτ
−iτ − � + Zα

√
m−ε
m+ε

−iτ − i Zαε
k

. (32)

Getting an equation for C/D needs matching (31) with
ητ /η−τ obtained from (32):

C

D
= e2iθ · (−2ik)−iτ

(−2ik)iτ

· Zα
√
m − ε + (−iτ − �)

√
m + ε

Zα
√
m − ε + (iτ − �)

√
m + ε

· iτ − i Zαε
k

−iτ − i Zαε
k

. (33)

Two sets of approximations were made in deriving (33):
(i) to get ητ /η−τ at r = R − 0 we replaced βR with Zα

and used (29) which was itself derived for Zα/r � ε,m;
(ii) to get ητ /η−τ at r = R + 0 we expanded (11) and (12)
at ρ � 1. For m · R = 0.031 one cannot expect an accuracy
better than 3% and, with growing |ε| it can even get worse.
The accuracy of the final result is not easy to guess from
the start, and the best way is to compare it with the exact
solution which was found in the previous section. Note that
all results in [1] are based on the asymptotic behavior (29)
and are therefore approximate by default.

Substituting (33) into (19) we obtain the approximate
expression for the scattering phase δ� . Its dependence on
εp ≡ −ε for � = −1 and Z = 232 is shown in Fig. 2 (com-
pare with Fig. 3 of [1]). The scattering phase δ� exhibits a
resonance behavior; it goes through π/2 at εp/m ≈ 4.88.

Let us note that on the real axis of ε the expression for the
scattering phase δ� can be written in the same form as in [1]
(see Appendix B).

The positions of the S matrix poles are defined by the same
equality (21) with C/D given by (33):

e2iθ = (−2ik)iτ

(−2ik)−iτ
· �(−2iτ)

�(2iτ)

· �
(
1 + iτ − i Zαε

k

)

�
(
1 − iτ − i Zαε

k

)

· Zα
√
m − ε + (−iτ + �)

√
m + ε

Zα
√
m − ε + (iτ + �)

√
m + ε

, (34)
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Fig. 2 Dependence on εp of the
scattering phase δ−1(εp, 232)

(Z = 232 and � = −1) for a
nucleus with radius
R = 0.031/m. The blue solid
line corresponds to the exact
phase, the green dashed line
corresponds to the approximate
one

1 2 3 4 5 6 7 8
εp

0

π
2

π

3π
2

2π

δ κ
(ε

p
)

where the l.h.s. is defined by (31). The r.h.s. coincides with
Eq. (26) from [1]. The exact expression (27) is, of course,
more complicated, but, anyhow, special functions have to be
evaluated numerically in both cases.

The accuracy of Re[ε] obtained by the approximate pro-
cedure is quite reasonable (see Fig. 3 and Table 1); however,
it is much worse for Im[ε], for example ≈ 15% at Z = 186.
This is why it is worth getting the exact values of the energies
ε.

The question that we want to address now is the origin of
the resonance and how it transforms for Z < Zcr.

At Z < Zcr the resonances become bound states, the ener-
gies of which are determined by the same type of matching
at r = R as before (it is convenient to replace now, in (34),
k by iλ, since on the real axis, for −m < ε < +m, λ is real
positive):

exp(2iθ) = (2λ)iτ

(2λ)−iτ
· �(−2iτ)

�(2iτ)
· �(1 + iτ − Zαε

λ
)

�(1 − iτ − Zαε
λ

)

· Zα
√
m − ε + (� − iτ)

√
m + ε

Zα
√
m − ε + (� + iτ)

√
m + ε

. (35)

Last, for Zα < |�| we must change iτ into σ =√
�2 − Z2α2:

tan θ = (2λ)σ

(2λ)−σ
· �(−2σ)

�(2σ)
· �

(
1 + σ − Zαε

λ

)

�
(
1 − σ − Zαε

λ

)

· Zα
√
m − ε + (� − σ)

√
m + ε

Zα
√
m − ε + (� + σ)

√
m + ε

. (36)

Let us consider for example Zα < 1, for which taking a
point-like nucleus is reliable. At the limit R → 0, the r.h.s. of
(30) becomes infinite. Therefore, the spectrum of the Dirac
equation is given by the poles of (36). They are given by the

poles of �
(
1 + σ − Zαε

λ

)
:

√
�2 − Z2α2 − Zαε√

m2 − ε2
= −1,−2, . . . ≡ −nr , (37)

to which must be added, for � < 0, the zero of the last term
in the denominator of (36)8:

Zα
√
m − ε + (� + σ)

√
m + ε = 0

⇒
√

�2 − Z2α2 − Zαε√
m2 − ε2

= 0 ≡ nr . (38)

The electron bound states at Z < Zcr become therefore
resonances at Z > Zcr; the poles of the S matrix corre-
sponding to the latter describe positron–nucleus scattering.
The trajectory of the ground state energy with growing Z is
shown in Fig. 3 (see also Table 1).

Let us notice the unusual signs of both real and imaginary
parts of the resonance energy. It was suggested in [1] that the
sign of the energy should be reversed, under the claim that
the corresponding state is a resonance in the positron–nucleus
system. Such a sign reversal is usual for holes in the lower
continuum of the Dirac equation: the absence of an electron
of energy − ε is equivalent to the presence of a positron
with energy ε. Advocating for the same procedure in the
case at hands looks a priori suspicious since the resonances
that we found originate from electron bound energy levels
(however, also empty) that dive from ε = +m downwards
into the lower continuum (and will return upwards to +m if
Z decreases). An interpretation of the phenomenon in terms

8 This term is proportional to the sum
(√

�2 − (Zα)2 − Zαε√
m2−ε2

)
+

(� + Zαm√
m2−ε2 ). It is easy to check that, when the first term vanishes, so

does the second. Their sum, increasing monotonically when ε increases,
can vanish only once.
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Fig. 3 The dependence of the
ground state energy on Z . The
square markers are for the exact
values of the energy (see (27))
and the round markers are for
the approximate ones calculated
with the help of (34). The
correspondence between color
and Z is shown in the legend
(the real part of the energy is
monotonically decreasing). At
Z = Zcr the bound states
become resonances with
positive Im[ε]
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Z = 180.0
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Table 1 The dependence of the ground state energy on Z for m · R =
0.031. The ground energy level enters the lower continuum at Z = 178
(though the imaginary part of ε is much smaller than the accuracy of the
calculation). We see that for Z = 232 the accuracy of the approximate
formula is about 10% for the Im[ε]
Z Re

(
εappr

)
Im

(
εappr

)
Re (ε) Im (ε)

160 −0.297 0 −0.296 0

170 −0.662 0 −0.664 0

175 −0.879 0 −0.883 0

177 −0.972 0 −0.978 0

178 −1.020 0 −1.026 0

180 −1.118 5.375e−07 −1.127 9.229e−07

181 −1.169 6.644e−06 −1.178 9.475e−06

182 −1.220 3.198e−05 −1.231 4.168e−05

183 −1.273 9.562e−05 −1.284 1.183e−04

184 −1.326 2.164e−04 −1.338 2.591e−04

185 −1.380 4.097e−04 −1.394 4.794e−04

186 −1.435 6.863e−04 −1.450 7.903e−04

187 −1.491 1.053e−03 −1.507 1.198e−03

188 −1.548 1.515e−03 −1.565 1.707e−03

189 −1.605 2.071e−03 −1.625 2.318e−03

190 −1.664 2.723e−03 −1.685 3.030e−03

195 −1.971 7.335e−03 −2.001 8.031e−03

200 −2.300 1.394e−02 −2.341 1.517e−02

210 −3.023 3.188e−02 −3.094 3.464e−02

232 −4.885 8.773e−02 −5.057 9.638e−02

of electrons looks therefore more intuitive. In order to resolve
this (apparent) puzzle, we shall solve in the next section the
Dirac equation for positrons, which describes the scattering
of a positron in the upper continuum on a nucleus.

3 The Dirac equation for positrons: upper continuum
wave functions and scattering phases in the Coulomb
field of a supercritical nucleus

Changing the sign of Zα in (4), we get instead of (3)

⎧
⎪⎪⎨

⎪⎪⎩

dF̃

dr
+ �

r
F̃ − (ε + m − Ṽ (r))G̃ = 0,

dG̃

dr
− �

r
G̃ + (ε − m − Ṽ (r))F̃ = 0,

(39)

where

Ṽ (r) =

⎧
⎪⎨

⎪⎩

Zα

r
, r > R, (40a)

Zα

R
, r < R. (40b)

Notice that (3) gives (39) by the set of transformations � →
−�, ε → −ε, F → G̃ and G → F̃ .

The states in the upper continuum (ε > m) describe
positron scattering on a nucleus. Since a positron cannot
form a bound state with a positively charged nucleus, one
could think that no resonance at Z > Zcr will occur, nor the
resonant behavior of the scattering phase found in [1] and
reproduced in Sect. 2.

The central issue is therefore to investigate whether bound
states and resonances arise or not in the Dirac equation for
positrons (39).

Solving (39) at r < R we obtain

(
F̃
G̃

)

= const ·
√

β̃r ·
(±J∓(1/2+�)(β̃r)

J±(1/2−�)(β̃r)
β̃

ε+m− Zα
R

)

, r < R,

(41)
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where β̃ = √
(ε − Zα/R)2 − m2 and, at small distances,

where the solution (41) will be used, β̃ ≈ β ≈ Zα/R. The
upper (lower) signs in (41) should be taken for � < 0 (� > 0).
Note that the sign of F̃ is opposite to that of F in (5), while
the signs of G̃ and G coincide.

Substituting in (39) the Coulomb potential (40a) and going
to the limit r → 0 we get

(
F̃
G̃

)∣
∣
∣
∣
r→0

= η̃σ r
σ

( −1
−Zα
σ−�

)

+ η̃−σ r
−σ

( −1
−Zα

−σ−�

)

. (42)

Note that the sign of G̃ is opposite to that of G in (29), while
the signs of F̃ and F coincide. Thus, when matching the ratios
of F̃/G̃ from (41) and (42) at r = R we obtain equations
identical to (30), (31) with the change η → η̃.

Like in (11), we look for solutions of the form

(
F̃
G̃

)

=
( √

m + ε

−√
m − ε

)

exp(−ρ/2)ρiτ
(
Q̃1 + Q̃2

Q̃1 − Q̃2

)

, (43)

where as before ρ = 2λr = −2ikr . The expressions for Q̃1

and Q̃2 are given by (12), where Zα should be substituted
by −Zα:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̃1 = C ·
i Zαm

k + �

−iτ − i Zαε
k

· 1F1

(

iτ + i Zαε

k
, 2iτ + 1, ρ

)

+ D ·
i Zαm

k + �

iτ − i Zαε
k

· ρ−2iτ · 1F1

(

−iτ + i Zαε

k
,−2iτ + 1, ρ

)

,

Q̃2 = C · 1F1

(

1 + iτ + i Zαε

k
, 2iτ + 1, ρ

)

+ Dρ−2iτ · 1F1

(

1 − iτ + i Zαε

k
,−2iτ + 1, ρ

)

.

(44)

Since we are interested in resonant states, we demand that
only terms ∝ exp[ikr ] (outgoing waves) survive at r → ∞.
For ε < m, exp[ikr ] becomes exp[−λr ], which describes
bound states. In Q̃1, the coefficient of the exp[−ikr ] term,
being damped by an extra 1/r , does not contribute, and the
condition for the terms proportional to exp[−ikr ] to be absent
in Q̃2 is

C · �(2iτ)

�
(
1 + iτ + i Zαε

k

) − D · �(−2iτ)

�
(
1 − iτ + i Zαε

k

) = 0. (45)

Substituting (44) into (43) at the limit r → 0, we repro-
duce (42) for

η̃τ

η̃−τ

= (−2ik)iτ

(−2ik)−iτ
· �(−2iτ)

�(2iτ)
· �

(
1 + iτ + i Zαε

k

)

�
(
1 − iτ + i Zαε

k

)

· Zα
√
m − ε − (−iτ + �)

√
m + ε

Zα
√
m − ε − (iτ + �)

√
m + ε

. (46)

Matching Eqs. (46) and (31) yields an equation for the
energies of the resonant states. After the substitution of (�, ε)
by (−�,−ε), it coincides with a similar equation that we
obtained in Sect. 2. Thus, resonances also arise as solutions of
the Dirac equation for positrons, at energies ε = ξ− i

2γ, ξ >

m, γ > 0.9

After making the same substitutions as in Sect. 2, we get
equations that coincide with (35), (36)). This clears the mys-
tery concerning the resonances that we have found there.
Positrons states of negative energies should be interpreted
in terms of electrons. At Z < Zcr we just found electron–
nucleus bound states—with growing Z , the energy of the
bound particle moves from −m (at Z = 0) to +m (see also
footnote 1) and, at Z > Zcr it becomes complex and located
on the second sheet below the right cut.

Equations for the scattering phase δ� analogous to
(19), (31), (33) in Sect. 2 can be written. They coincide with
these equations after changing � → −� and ε → −ε.

It is therefore not necessary to solve the Dirac equation
for positrons as we did in this section. It is enough to note
that, after substitution of ε by −ε, � by −�, F by G̃ and G
by F̃ , Eq. (3) becomes (39) with V (r) converted to Ṽ (r).
In this way, the formulas of Sect. 3 can be directly deduced
from the ones of Sect. 2.

4 Conclusions

In Sects. 2 and 3, the scattering of positrons on a supercrit-
ical nucleus was studied. It has the spectacular resonance
behavior discovered in [1–3]. In the present paper, results
with an exact dependence on the parameter m× R have been
obtained on both sheets of the complex energy plane in the
form convenient for numerical evaluation. However, one can
hardly hope to study this phenomenon experimentally: even
if a supercritical nucleus can be produced in heavy ions col-
lisions, its life time will be so short that one cannot scatter
a positron on it, not to mention the still bigger challenge of
making a target with supercritical nuclei. Let us note that
since the elastic scattering matrix was found to be unitary
(the scattering phase is real) there are no inelastic processes
in the positron scattering on supercritical nucleus.

More realistic is the hope to detect the emission of
positrons from a short-lived supercritical nucleus eventually
produced in heavy ions collisions. Indeed we do not agree
with the claim made in the abstract of [1] (and in contradic-
tion with [16] in particular) that the spontaneous production
of e+e− pairs from a supercritical nucleus does not occur.
On the contrary, we believe that the resonance found in [1] in

9 One may wonder how a positron, being repelled from the positively
charged nucleus, can form a quasistationary resonance state with it. This
unusual phenomenon is explained in Appendix C.
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the system positron—supercritical nucleus is precisely the
signal for pair production. It occurs when, as Z grows, an
empty electron level dives into the lower continuum of the
Dirac equation. In the absence of the nucleus, this empty state
in the lower continuum would just mean the presence of a
positron. The presence of the nucleus makes the energy of
this state complex, and its lifetime is precisely 1/γ . In this
lapse of time, an electron from the sea with the same energy
−ξ located far from the nucleus can penetrate in its vicinity.
It partially screens the charge of the nucleus and, at the same
time, an empty electron state arises in the Dirac sea. This is
the positron which gets repulsed to infinity by the nucleus.

Let us suppose that solutions of the Dirac equation we
get are approximately valid also when an electron screens
nuclear potential, being embedded in the lower continuum.
It means our solutions for the resonance energy and width
are almost valid. It well can be so, since electric charge of
one electron is small and it is situated far from nucleus, r ≈
1/m. So, the obtained width (imaginary part of energy) is
the lifetime of positron in the vicinity of nucleus, which is
already surrounded by diving electron. Therefore this is the
lifetime of the system of nucleus, electron and positron with
respect to positron emission to infinity, so it is an average time
of e+e− pair production (in reality two independent pairs are
produced because of electron spin degeneracy).

The potential barrier which holds the positron in the vicin-
ity of the nucleus is shown in Fig. 2 of [16]; its penetration
time is given by the analytical formulas (4.14, 4.15), and the
results of numerical calculations are shown in Fig. 13 of the
same review paper. We reproduced the curve shown in Fig. 13
from the dependence γ (Z) that we obtained in Sect. 2 for the
energy of the Gamov (quasistationary) state.

Let us finally mention that we agree with the descrip-
tion of the stable states of a supercritical nucleus made in
Sect. 6 of [1]: empty states in the upper continuum, empty
discrete levels, and occupied states in the lower continuum.
The levels of the lower continuum that get occupied by elec-
trons after the diving process form the so-called “charged
vacuum”; it has charge −n, where n is the number of these
levels. The n positrons that get emitted compensate for this
negative charge. A supercritical nucleus is no longer naked
and its electric charge is partially screened by these electrons.

Indirect evidence of such a phenomenon is found in
graphene physics [27,28].
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Appendix A: Functions Q1 and Q2

Substituting (11) into the Dirac equations (3) we get

ρ(Q′
1 + Q′

2) + (iτ + �)(Q1 + Q2) − ρQ2

+ Zα

√
m − ε

m + ε
(Q1 − Q2) = 0,

ρ(Q′
1 − Q′

2) + (iτ − �)(Q1 − Q2) + ρQ2

− Zα

√
m + ε

m − ε
(Q1 + Q2) = 0,

(A1)

where a prime means the derivative with respect to ρ.
The sum and difference of the two equations (A1) give

(compare with Eq. (36.5) from [25])

ρQ′
1 +

(

iτ − i Zαε

k

)

Q1 +
(

� − i Zαm

k

)

Q2 = 0,

ρQ′
2 +

(

iτ − ρ + i Zαε

k

)

Q2 +
(

� + i Zαm

k

)

Q1 = 0.

(A2)

Eliminating Q1 or Q2 gives

ρQ′′
1 + (2iτ + 1 − ρ)Q′

1 +
(
i Zαε

k
− iτ

)

Q1 = 0,

ρQ′′
2 + (2iτ + 1 − ρ)Q′

2 +
(
i Zαε

k
− 1 − iτ

)

Q2 = 0.

(A3)

Unlike in the case of a point-like nucleus, we do not demand
here that the solutions of (A3) be regular at ρ = 0. We accord-
ingly consider linear superpositions of the two independent
solutions of the second order differential equations (A3) with
arbitrary coefficients.

First let us recall that the general solution of the equation

zu′′ + (γ − z)u′ − αu = 0 (A4)
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is

u = C1 · 1F1(α, γ, z) +C2 · z1−γ
1F1(α − γ + 1, 2 − γ, z),

(A5)

where C1 and C2 are arbitrary coefficients while the 1F1 are
the Kummer confluent hypergeometric functions. Thus for
the solutions of (A3) we obtain

Q1 = A · 1F1

(

iτ − i Zαε

k
, 2iτ + 1, ρ

)

+ B · ρ−2iτ
1F1

(

−iτ − i Zαε

k
,−2iτ + 1, ρ

)

,

Q2 = C · 1F1

(

1 + iτ − i Zαε

k
, 2iτ + 1, ρ

)

+ D · ρ−2iτ
1F1

(

1 − iτ − i Zαε

k
,−2iτ + 1, ρ

)

,

(A6)

where A, B, C , and D are arbitrary coefficients.
At small z, 1F1 = 1 + O(z). Substituting the expansions

of (A6) at small ρ into the first equation in (A2) determines
A and B, respectively, in terms of C and D:

(

iτ − i Zαε

k

)

A +
(

� − i Zαm

k

)

C = 0, (A7)

(

−iτ − i Zαε

k

)

B +
(

� − i Zαm

k

)

D = 0. (A8)

Plugging A and B obtained from (A7) and (A8) into (A6)
yields (12).

Appendix B: The scattering phase according to [1]

Considering real ε < −m below the left cut we can rewrite
the expression for the scattering phase in a more compact
form.

Let us introduce the following notations equivalent to
those used in [1]:

exp(iϕ) = e2iθ (2k)−iτ�(2iτ)

(2k)iτ�(−2iτ)
, (B1)

a = Zα
√
m − ε + (−iτ + �)

√
m + ε

�
(
1 − iτ − i Zαε

k

) , (B2)

b = Zα
√
m − ε − (−iτ + �)

√
m + ε

�
(
1 − iτ + i Zαε

k

) . (B3)

With these notations the approximate ratio C/D defined
by (33) can be written in the following way:

C/D = eiϕ−πτ · a
∗

b
· � (−2iτ)

� (2iτ)
· �

(
iτ + i Zαε

k

)

�
(−iτ + i Zαε

k

) (B4)

= eiϕ−πτ · b
∗

a
· � (−2iτ)

� (2iτ)
· �

(
1 + iτ − i Zαε

k

)

�
(
1 − iτ − i Zαε

k

) ,

(B5)

where we used

(−i)−iτ

(−i)iτ
= e−πτ (B6)

and

(

−iτ − i Zαε

k

)
(
Zα

√
m − ε + (iτ − �)

√
m + ε

)

= −iτ
(
Zα

√
m − ε + (iτ − �)

√
m + ε

)

− i Zαε

(
Zα

i
√
m + ε

+ iτ − �

i
√
m − ε

)

= −iτ (iτ − �) (m + ε) − (Zα)2 ε√
m + ε

+ −iτ (Zα) (m − ε) − Zαε (iτ − �)√
m − ε

= (Zα)2 m + � (iτ − �) (m + ε)√
m + ε

+ − (iτ − �) Zαm − �Zα (m − ε)√
m − ε

= Zαm

(
Zα√
m + ε

+ −iτ + �√
m − ε

)

− �
(
Zα

√
m − ε + (−iτ + �)

√
m + ε

) =
= (

Zα
√
m − ε + (−iτ + �)

√
m + ε

)
(
i Zαm

k
− �

)

,

(B7)

where we used the relation

(−iτ − �) (iτ − �) = τ 2 + �2 = (Zα)2 . (B8)

Then the scattering phase δ� can be written as follows
(by substituting (B4) and (B5) into the numerator and the
denominator of (19), respectively):

e2iδ� = −
exp

(
πτ
2 + iϕ

2

)
a∗ − exp

(
−πτ

2 − iϕ
2

)
b

exp
(

πτ
2 − iϕ

2

)
a − exp

(
−πτ

2 + iϕ
2

)
b∗

. (B9)

In Eq. (22) of [1] the phase δ� is expressed through the
ratio f ∗/ f , where f is the Jost function. Our result differs
from eq. (23) of [1] by the substitution ϕ → ϕ/2 (it seems
that there is a misprint in [1]).
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Appendix C: Qualitative explanation of the resonance
phenomenon in the e+N+ system

The effective potential for an electron in the field of a super-
critical nucleus is derived in [16] from the Dirac equation, for
ε ≈ −m. It is attractive at short distances, repulsive at large
distances, with a Coulomb barrier in between. We derive
below, in a similar way, the effective potential for a positron
in the field of a similar nucleus, in the vicinity of ε = +m.

As already noticed at the beginning of Sect. 3, the Dirac
equation (3) for electrons becomes (39) for positrons after
the following substitutions:

� → −�, ε → −ε, F

→ G̃, G → F̃, V (r) → Ṽ (r) = −V (r). (C1)

To proceed like in [16], we deduce the second order differ-
ential equation satisfied by G̃ from (39), which is

G̃ ′′ + Ṽ ′

ε − m − Ṽ

(
G̃ ′ − �

r
G̃

)

+
((

ε − Ṽ
)2 − m2 + � (1 − �)

r2

)

G̃ = 0, (C2)

in which “ ′ ” means here derivation with respect to r . In order
to transform this equation into a Schrödinger-like equation,
the following change of variables must be performed:

G̃ = χ

√

m − ε + Ṽ . (C3)

Thus, we get

χ ′′ + k2χ = 0, (C4)

where k2 = 2m (E −U ), E = ε2−m2

2m . The effective poten-
tial is seen to be made of two terms: U = U1 + U2, where

U1 = ε

m
Ṽ − 1

2m
Ṽ 2 − � (1 − �)

2mr2 (C5)

and

U2 = Ṽ ′′

4m
(
ε − m − Ṽ

)

+ 3

8m

(
Ṽ ′

)2

(
ε − m − Ṽ

)2 + � Ṽ ′

2mr
(
ε − m − Ṽ

) . (C6)

It coincides with the equation obtained in [16] after the sub-
stitution ε → −ε, � → −� and Ṽ → −V .

We are interested in positrons with ε ≈ m. At large dis-
tances the first term inU1 dominates, and describes the repul-
sion of the positron by the nucleus. For the ground state � = 1

the centrifugal term in U1 vanishes. Finally, for ε = m and
� = 1, we get from (C5) and (C6)

U = Zα

r
+ 3 − 4(Zα)2

8mr2 . (C7)

At short distances the terms ∝ 1/r2 dominates and, for
a supercritical nucleus, they lead to attraction, while the
Coulomb term dominates at r ≥ 1/m. This attractive force
explains the existence of resonances in the e+N+ system,
while a bound state cannot exist due to the narrowness of the
well.

Let us note that the fall to the center occurs only for Zα >

1 when the coefficient in front of the term ∝ −1/r2 becomes
larger than 1/8m (see [29], eq. (35.10)). We are grateful to
V.A. Novikov who brought our attention to this feature. In the
problem under consideration the finite nucleus size prevents
the fall to the center.
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