

Black-Box Classification Techniques for Demographic

Sequences: from Customised SVM to RNN

Anna Muratova
1
, Pavel Sushko

2
, Thomas H. Espy

3

1 National Research University Higher School of Economics, Moscow, Russia

amuratova@hse.ru
2 Institute of Sociology of the Russian Academy of Sciences, Moscow, Russia

sushkope@mail.ru
3 University of Pittsburgh, USA

the7@pitt.edu

Abstract. Nowadays there is a large amount of demographic data which should

be analysed and interpreted. From accumulated demographic data, more useful

information can be extracted by applying modern methods of data mining. The

aim of this study is to compare the methods of classification of demographic da-

ta by customising the SVM kernels using various similarity measures. Since

demographers are interested in sequences without discontinuity, formulas for

such sequences similarity measures were derived. Then they were used as ker-

nels in the SVM method, which is the novelty of this study. Recurrent neural

network algorithms, such as SimpleRNN, GRU and LSTM, are also compared.

The best classification result with SVM method is obtained using a special ker-

nel function in SVM by transforming sequences into features, but recurrent neu-

ral network outperforms SVM.

Keywords: data mining, demographics, support vector machines, neural net-

works, classification, sequences similarity.

1 Introduction

Nowadays researchers from different countries have access to a large amount of de-

mographic data about important demographic events and their sequences. More useful

information from accumulated demographic data can be extracted by applying mod-

ern methods of data mining.

The main task of this study is to find the most accurate classification method for

analysing demographic sequences. For classification, various methods such as: deci-

sion trees, support vector machines (SVM), k nearest-neighbours (kNN), neural net-

works and others are used. This paper is a continuation of [9], in which decision trees,

kNN and SVM were compared. The purpose of this paper is to compare methods for

classifying demographic data by customising the SVM kernel using various similarity

measures for sequences of events. Neural network algorithms are also compared.

Alternative treatment of the problem by means of Pattern Mining [15], Formal Con-

cept Analysis [12] and Pattern Structures [10,11], in particular, is given in [13,14].

mailto:amuratova@hse.ru
mailto:sushkope@mail.ru

32

Data were obtained from the scientific laboratory of socio-demographic policy at

HSE and contain results of a survey of 6,626 people, including 3,314 men and 3,312

women. In the database, the dates of significant events in respondents’ lives are indi-

cated, such as partner, marriage, break up, divorce, education, work, separation from

parents and birth of a child. Also, there are features of people: type of education (gen-

eral, higher, professional), location (city, town, country), religion, frequency of

church attendance, generation (Soviet, 1930-1969; modern, 1970-1986) and gender.

Chapter 2 presents a brief theoretical framework on sequence similarity measures,

namely “the longest common subsequence” LCS and “all common subsequences”

ACS. Chapter 3 presents the results of the work on the classification of demographic

data by sequences of events without discontinuities. In Section 3.1, the special core

variants are used in the SVM method (Support Vector Machines), and in Section 3.2

the results of recurrent neural networks (SimpleRNN, LSTM, GRU) are presented.

Section 4 is devoted to comparing different classification methods and Section 5 pre-

sents the conclusions of the work.

The novelty of this work lies in the use of special kernel variants in the SVM

method. In addition, the results are improved with the help of recurrent neural net-

work algorithms.

2 Sequence similarity measures

Sequence analysis is an important task in data analysis and machine learning [1-4].

Pairwise relations between sequences are often used for them. For example, methods

such as clustering and kernels depend on the calculation of distances and similarity

measures between sequences. When calculating measures of similarity, it is necessary

to take into account complex combinatorial aspects, since the sequences look like

ordered sets of objects. Below we will consider measures of sequence similarity from

objects on the basis of common subsequences contained in them.

The measure of similarity between two sequences S and T “all common subse-

quences” (ACS) [3] is defined as

 𝑠𝑖𝑚𝐴𝐶𝑆(𝑆, 𝑇) =
𝜙(𝑆, 𝑇)

𝑚𝑎𝑥{𝜙(𝑆), 𝜙(𝑇)}
 (1)

The measure of similarity “longest common subsequence” (LCS) is calculated by the

formula

 𝑠𝑖𝑚𝐿𝐶𝑆𝑠𝑖𝑧𝑒
(𝑆, 𝑇) =

|𝐿𝐶𝑆(𝑆, 𝑇)|

𝑚𝑎𝑥{|𝑆|, |𝑇|}
 (2)

Demographers are interested in sequences without discontinuity (gaps). We are in-

terested in two options: common prefixes and common subsequences without discon-

tinuity. Let us transform the original formulas.

First consider the prefixes. In this case, the number of common prefixes of two se-

quences is equal to the length of the largest prefix of these sequences. Prefixes of

33

length zero are not considered. The number of prefixes of the sequence S is equal to

the length of the sequence |S|.

Thus, the formulas for all common prefixes and for the longest common prefix of

two sequences are the same and equal

 𝑠𝑖𝑚𝐴𝐶𝑆𝑃(𝑆, 𝑇) = 𝑠𝑖𝑚𝐿𝐶𝑆𝑃(𝑆, 𝑇) = 𝑠𝑖𝑚𝐶𝑃(𝑆, 𝑇) =
|𝐿𝐶𝑆𝑃(𝑆, 𝑇)|

𝑚𝑎𝑥{|𝑆|, |𝑇|}
 (3)

where LCSP is the longest common sequence prefix, ACSP is the set of all common

prefixes of sequences S and T and CP is the set of common prefixes.

Now consider subsequences without discontinuities. First consider the case of the

longest common subsequence. Like the previous case, we get:

 𝑠𝑖𝑚𝐿𝐶𝑆 (𝑆, 𝑇) =
|𝐿𝐶𝑆(𝑆, 𝑇)|

𝑚𝑎𝑥{|𝑆|, |𝑇|}
 (4)

where LCS is the longest common subsequence of S and T without discontinuities.

Now let us look at all common subsequences without discontinuities. For this we

consider all common subsequences S and T of different lengths without discontinui-

ties. The number of subsequences of the sequence S without discontinuities is

|𝑆|(|𝑆| + 1)

2
 (5)

Since a longer sequence has more subsequences, we obtain the formula:

𝑠𝑖𝑚𝐴𝐶𝑆(𝑆, 𝑇) =

2 ∙ ∑ 𝜙(𝑆, 𝑇, 𝑘)𝑘≤𝑙

𝑙(𝑙 + 1)

𝑙 = 𝑚𝑎𝑥{|𝑆|, |𝑇|}

(6)

where ACS is the set of all common subsequences of S and T without discontinuities,

k is the length of the common subsequence and 𝜙(S, T, k) is the number of common

subsequences S and T without discontinuities of length k.

3 Classification results

3.1 Using a special kernel in the SVM method

The SVM method is implemented in the scikit-learn library [6]. The functions of the

method support the data classification by features. There are no functions for se-

quence analysis. The implementation of the method provides the ability to connect

custom kernel functions. We use this feature to code and connect functions that ana-

lyse sequences.

Kernels of the SVM method based on sequence similarity measures without dis-

continuity. In this paper, the previously calculated Gram matrix was transmitted to

34

the SVM method. Each element of the matrix in row i and column j corresponds to

the calculated measure of the similarity of the two sequences with the numbers i, j.

The size of the matrix is 𝑛2, where n is the number of sequences. Accordingly, the

calculation time has a quadratic dependence on the number of sequences.

The following functions for calculating sequence similarity without discontinuity

were used: ACS, LCS and CP. Functions are written in Python.

The values of the functions ranged from 0 to 1. The value 1 is obtained for equal

sequences, in particular, for the diagonal elements of the matrix. The value 0 is ob-

tained when there is no similarity between sequences.

To evaluate classification quality by different methods, the class of sex for the test

sample was used. The initial data were divided into training and test sets according to

the ratio 80/20. Previously, the rows of data were shuffled for a more even distribu-

tion between the training and test sets. Calculation time and accuracy results for simi-

larity functions are presented in Table 1.

Table 1. Classification using special functions of the SVM method with kernels based on se-

quence similarity measures without discontinuity

Parameter CP ACS LCS

Model fitting time, sec 400.97 1580.86 1544.21

Prediction time, sec 98.66 394.20 388.06

Total time, sec 499.62 1975.06 1932.27

Accuracy 0.648 0.659 0.490

Classification accuracy of functions CP and ACS differ slightly, and the calcula-

tion time for the CP is much less; the quality of the LCS prediction is not satisfactory.

In this table and in all of the following tables methods are compared by accuracy,

time is shown for information.

Classification by features using the SVM method. For comparison, we will classify

not according to the sequences, but on the basis of the respondents’ features: type of

education, place of residence, religiosity, frequency of church attendance and genera-

tion. We use the SVM method with default parameters (kernel function - RBF). Re-

sults are presented in Table 2.

Table 2. Classification by features using the SVM method

Parameter Value

Model fitting time, sec 3.62

Prediction time, sec 0.52

Total time, sec 4.14

Accuracy 0.615

35

The results in the table show that the accuracy is worse than with the classification

by sequence of events. The built-in function is much faster, since it is implemented in

C and does not calculate the sequences similarity function.

Classification by sequences, by features and by weighted sum of probabilities of

sequences and features. We can try to improve the result by combining two methods

of classification: by sequences and by features. This can be done using the probabili-

ties of referring to a certain class, calculated by the SVM method. To get the probabil-

ity values, you need to specify the qualifier parameter “probability = True”:

 clf = svm.SVC(probability=True)

As a result, the method returns a matrix with the number of columns equal to the

number of classes. In each position, there will be a probability of assigning a se-

quence to the corresponding class.

Having obtained the probability tables for each method, we can classify based on

the weighted sum of the probabilities of the two methods. Since the methods give

different classification accuracies, the final probability of assigning an object to a

class is calculated by the formula:

 𝑃 =
𝐴𝑠 ∙ 𝑃𝑠 + 𝐴𝑓 ∙ 𝑃𝑓

𝐴𝑠 + 𝐴𝑓
 (7)

where

As — accuracy by sequences,

Af — accuracy by features,

Ps — probability by sequences,

Pf — probability by features.

Formula (7) takes into account the accuracy of the method for the final probability

calculation. The probability calculated by each method will be included in the final

result with a coefficient equal to the method accuracy. Results are presented in Table

3.

Table 3. Classification by sequences, by features and by weighted sum of probabilities of se-

quences and features

Parameter CP ACS LCS

Accuracy of sequence classification

(SVM, custom kernel functions: CP,

ACS, LCS)

0.648 0.659 0.490

Accuracy of classification by features

(SVM default - RBF)

0.615 0.615 0.615

Accuracy of classification by

weighted sum of probabilities (7)
0.678 0.670 0.612

36

The table shows a noticeable improvement in the final result when two methods

are combined.

Classification by features and sequences transformed into features. Another pos-

sible method of classification by sequences is by bringing each sequence to a set of

features. After that, existing methods of classification by features could be used.

We consider as features a set of subsequences without discontinuity no greater than

a certain length, such that one can compose all the sequences from them. We compose

a dictionary from all possible subsequences without discontinuity for the available

sequences. Such subsequences will be regarded as features of the sequence. We re-

place each sequence with a set of attributes corresponding to the subsequences that

appear in it. It is possible to apply the SVM method to the set of attributes.

The maximum number of different subsequences of sequences without discontinui-

ty is

𝑛 ∙ (𝑛 + 1)

2
 (8)

where n is the length of the sequence.

The dependence of the number of subsequences without discontinuity on the length

of the sequence is quadratic. For large sequences, it is necessary to introduce con-

straints. Let us consider subsequences without discontinuity no greater than a certain

length.

This algorithm is similar to the ACS method used in the kernel function; however,

in the kernel function only the number of common subsequences without discontinui-

ty between the two sequences is considered. This algorithm takes into account their

quality – each unique subsequence is considered as a feature of the sequence. Let us

investigate the work of algorithms with existing sequences of demographic events. In

the provided initial data, the maximum length of the sequence is eight, hence the max-

imum possible number of subsequences without discontinuity is 36, according to (8).

We will not consider all subsequences, but only one subsequence of maximum length

for each sequence. In this case, there will be only one feature for each sequence,

which will significantly reduce the amount of computation. Results are presented in

Table 4.

37

Table 4. Classification by features and sequences transformed into features

Parameter

Classification

by sequences

only (as

features)

Classification

by features only

Classification by

sequences and

features

Number of sequences 6626 0 6626

The number of unique

sequences of maximum

length (number of features

values)

1228 0 1228

Number of initial features 0 5 5

Number of generated

features (from sequences)

1 0 1

Model fitting time, sec 4.80 3.62 5.79

Prediction time, sec 0.79 0.52 0.91

Total time, sec 5.59 4.14 6.70

Accuracy 0.675 0.615 0.716

It turned out that the classification according to the sequences transformed into fea-

tures, in combination with the initial features, renders the best result in comparison

with the above methods.

3.2 Recurrent neural network algorithms

We performed classification according to sequences using recurrent neural networks

from Keras and Tensorflow software [7]. Keras, a top-level software, is used to de-

scribe the structure of a neural network as an add-on over the Tensorflow software,

which performs the simulation of the neural network. The simulation was performed

on the GeForce GT 710 GPU.

Recurrent Neural Network - RNN allows us to reveal regularities in sequences [8].

Three types of recurrent layers were compared in Keras: SimpleRNN, GRU and

LSTM [5]. GRU and LSTM, in comparison with SimpleRNN, have more complex

algorithms for detecting regularities. However, on sequences in the original demo-

graphic data, because of their small lengths, LSTM and GRU did not show any ad-

vantage in classification over SimpleRNN. At the same time, the simulation time for

GRU and LSTM was several times larger. Therefore for subsequent classification by

sequences, together with the features, only the SimpleRNN algorithm was used. The

results are shown in the Table 5.

38

Table 5. Classification using recurrent neural networks (Keras, Tensorflow)

Method of

classification

By sequences

By features

By sequences

and features

 Neural network layers (number)

Parameter

SimpleRNN

Dense

GRU

Dense

LSTM

Dense

Dense

Dropout

SimpleRNN

Dense

 Dropout

The number of

events in the

sequences

(maximum)

8 8 8 0 8

Number of

features

0 0 0 5 5

Model fitting

time, sec

168.80 452.27 585.73 348.49 418.05

Prediction time,

sec

2.28 3.38 3.93 0.68 1.36

Total time, sec 171.07 455.66 585.73 349.17 419.40

Accuracy 0.676 0.672 0.675 0.626 0.754

Recurrent neural networks give the best result, since they are better than other al-

gorithms at accounting for the dependencies in the sequences.

4 Comparison of all methods

Table 6 shows a comparison of the accuracies of classification methods. The table is

supplemented by the result obtained by the algorithm of article [9] on the same data.

Table 6. Comparison of the accuracy of classification methods

Methods

Classification

by sequences

only

Classification

by features

only

Classification by

sequences and

features

Methods based on the SVM

kernel custom functions

Common Prefix similarity

(CP)

0.648 0.615 0.678

All Common Subsequences

similarity (ACS)

0.659 0.615 0.670

39

Thus, the best result of classification of demographic data is given by recurrent

neural networks (Keras, Tensorflow) on sequences with features, and the accuracy is

0.754.

5 Conclusion

In the course of the work, we derived formulas for calculating measures of sequence

similarity without discontinuity; these were then incorporated to the kernels of the

SVM method. We have studied several methods for classifying demographic data by

sequences of events without discontinuities, namely variants of a custom kernel in the

SVM method and recurrent neural networks. Also, we made a comparison of these

methods with the algorithm from the earlier paper [9]. To complete our work, we

wrote programmes in Python, with the help of which we processed the initial demo-

graphic data. We obtained solid classification results by using the custom kernel func-

tion in SVM by transforming sequences into features and even better results with

recurrent neural network SimpleRNN. These two methods take into account event

regularities in the sequences, unlike most other methods which work only with fea-

tures. This work can be applied to the analysis of various sequences. Of course, many

other classification methods based on different similarity measures of demographic

sequences can be used. These may be statistical methods or other types of neural net-

works, such as convolutional neural networks (CNN). Those methods may be investi-

gated in future research.

Acknowledgments. We would like to thank our colleagues from the research and

study group “Models and Methods of Demographic Sequence Analysis” Dmitry Igna-

tov and Danil Gizdatullin for their piece of advice and Ekaterina Mitrofanova for the

obtained data.

This article was prepared within the framework of the Academic Fund Program at

the National Research University Higher School of Economics (HSE) in 2016-2017

Longest Common

Subsequence similarity (LCS)

0.490 0.615 0.612

Using sequences transformed

into features

0.675 0.615 0.716

Recurrent neural networks

(Keras, Tensorflow)

SimpleRNN, Dense 0.676 0.626 0.754

GRU, Dense 0.672 0.626

LSTM, Dense 0.675 0.626

Decision trees [9]

Time coding 0.661

40

(grant № 16-05-0011 “Development and testing of demographic sequence analysis

and mining techniques”) and by the Russian Academic Excellence Project "5-100".

References

1. Elzinga, C.H., Liefbroer A.C.: De-standardization of Family-Life Trajectories of Young

Adults. A Cross-National Comparison Using Sequence Analysis. European Journal of

Population 23(3), 225-250 (2007).

2. Elzinga, C.H., Rahmann, S., Wang, H.: Algorithms for subsequence combinator-

ics. Theoretical Computer Science 409(3), 394-404 (2008).

3. Egho, E., Raïssi, C., Calders, T., Jay, N., Napoli, A.: On measuring similarity for sequenc-

es of itemsets. Data Mining Knowledge Discovery 29(3), 732-764 (2015).

4. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.:

Text Classification using String Kernels. Journal of Machine Learning

Research 2, 419-444 (2002).

5. Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-

LSTMs/, last accessed 2017/02/15.

6. Scikit-learn: Scientific library for Machine Learning in Python, http://scikit-learn.org/, last

accessed 2017/01/28.

7. Keras: Deep Learning library for Theano and TensorFlow, https://keras.io/, last accessed

2017/02/17.

8. The Unreasonable Effectiveness of Recurrent Neural Networks,

http://karpathy.github.io/2015/05/21/rnn-effectiveness/, last accessed 2016/12/20.

9. Ignatov, D.I., Mitrofanova, E.S., Muratova A.A., Gizdatullin D.K.: Pattern Mining and

Machine Learning for Demographic Sequences. In: Knowledge Engineering and Semantic

Web: 6th International Conference, KESW 2015, vol. 518, pp. 225-243. Springer, Switzer-

land (2015).

10. Buzmakov, A., Egho, E., Nicolas, J., Kuznetsov, S.O., Napoli, A., Raïssi, Ch.: On mining

complex sequential data by means of FCA and pattern structures. Int. J. General Sys-

tems 45(2), 135-159 (2016)

11. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S.,

Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer,

Heidelberg (2001)

12. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)

13. Gizdatullin, D., Baixeries, J., Ignatov, D., Mitrofanova, E., Muratova, A., Thomas H. Es-

py: Learning Patterns from Demographic Sequences. In.: Intelligent Data Processing, IDP

2016, Springer (to appear)

14. Gizdatullin,D., Ignatov, D., Mitrofanova, E., Muratova, A.: Classification of Demographic

Sequences Based on Pattern Structures and Emerging Patterns. In.:14th International Con-

ference on Formal Concept Analysis, Supplementary proceedings, ICFCA 2017, Rennes,

France (2017)

15. Aggarwal, Ch. C., Han, J.: Frequent Pattern Mining. Springer (2014)

https://pure.knaw.nl/portal/en/publications/destandardization-of-familylife-trajectories-of-young-adults-a-crossnational-comparison-using-sequence-analysis(8162467e-f924-4f8f-8364-47b61d11cda5).html
https://pure.knaw.nl/portal/en/publications/destandardization-of-familylife-trajectories-of-young-adults-a-crossnational-comparison-using-sequence-analysis(8162467e-f924-4f8f-8364-47b61d11cda5).html
http://compalg.inf.elte.hu/~tony/Kutatas/PerfectArrays/Elzinga-AlgorithmsSubsequenceCombinatorics.pdf
http://compalg.inf.elte.hu/~tony/Kutatas/PerfectArrays/Elzinga-AlgorithmsSubsequenceCombinatorics.pdf
http://compalg.inf.elte.hu/~tony/Kutatas/PerfectArrays/Elzinga-AlgorithmsSubsequenceCombinatorics.pdf
https://hal.archives-ouvertes.fr/file/index/docid/740231/filename/RR-8086.pdf
https://hal.archives-ouvertes.fr/file/index/docid/740231/filename/RR-8086.pdf
https://hal.archives-ouvertes.fr/file/index/docid/740231/filename/RR-8086.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://scikit-learn.org/stable/supervised_learning.html
https://keras.io/layers/recurrent/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.hse.ru/en/org/persons/228204
https://www.hse.ru/en/org/persons/12150362
https://publications.hse.ru/view/159509246
https://publications.hse.ru/view/159509246
http://dblp.uni-trier.de/db/journals/ijgs/ijgs45.html#BuzmakovEJKNR16
http://dblp.uni-trier.de/db/journals/ijgs/ijgs45.html#BuzmakovEJKNR16
http://dblp.uni-trier.de/pers/hd/h/Han_0001:Jiawei

