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Abstract. Nowadays there is a large amount of demographic data which should 

be analysed and interpreted. From accumulated demographic data, more useful 

information can be extracted by applying modern methods of data mining. The 

aim of this study is to compare the methods of classification of demographic da-

ta by customising the SVM kernels using various similarity measures. Since 

demographers are interested in sequences without discontinuity, formulas for 

such sequences similarity measures were derived. Then they were used as ker-

nels in the SVM method, which is the novelty of this study. Recurrent neural 

network algorithms, such as SimpleRNN, GRU and LSTM, are also compared. 

The best classification result with SVM method is obtained using a special ker-

nel function in SVM by transforming sequences into features, but recurrent neu-

ral network outperforms SVM.  

Keywords: data mining, demographics, support vector machines, neural net-

works, classification, sequences similarity. 

1 Introduction 

Nowadays researchers from different countries have access to a large amount of de-

mographic data about important demographic events and their sequences. More useful 

information from accumulated demographic data can be extracted by applying mod-

ern methods of data mining. 

The main task of this study is to find the most accurate classification method for 

analysing demographic sequences. For classification, various methods such as: deci-

sion trees, support vector machines (SVM), k nearest-neighbours (kNN), neural net-

works and others are used. This paper is a continuation of [9], in which decision trees, 

kNN and SVM were compared. The purpose of this paper is to compare methods for 

classifying demographic data by customising the SVM kernel using various similarity 

measures for sequences of events. Neural network algorithms are also compared. 

Alternative treatment of the problem by means of Pattern Mining [15], Formal Con-

cept Analysis [12] and Pattern Structures [10,11], in particular, is given in [13,14]. 
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Data were obtained from the scientific laboratory of socio-demographic policy at 

HSE and contain results of a survey of 6,626 people, including 3,314 men and 3,312 

women. In the database, the dates of significant events in respondents’ lives are indi-

cated, such as partner, marriage, break up, divorce, education, work, separation from 

parents and birth of a child. Also, there are features of people: type of education (gen-

eral, higher, professional), location (city, town, country), religion, frequency of 

church attendance, generation (Soviet, 1930-1969; modern, 1970-1986) and gender. 

Chapter 2 presents a brief theoretical framework on sequence similarity measures, 

namely “the longest common subsequence” LCS and “all common subsequences” 

ACS. Chapter 3 presents the results of the work on the classification of demographic 

data by sequences of events without discontinuities. In Section 3.1, the special core 

variants are used in the SVM method (Support Vector Machines), and in Section 3.2 

the results of recurrent neural networks (SimpleRNN, LSTM, GRU) are presented. 

Section 4 is devoted to comparing different classification methods and Section 5 pre-

sents the conclusions of the work. 

The novelty of this work lies in the use of special kernel variants in the SVM 

method. In addition, the results are improved with the help of recurrent neural net-

work algorithms. 

2 Sequence similarity measures 

Sequence analysis is an important task in data analysis and machine learning [1-4]. 

Pairwise relations between sequences are often used for them. For example, methods 

such as clustering and kernels depend on the calculation of distances and similarity 

measures between sequences. When calculating measures of similarity, it is necessary 

to take into account complex combinatorial aspects, since the sequences look like 

ordered sets of objects. Below we will consider measures of sequence similarity from 

objects on the basis of common subsequences contained in them.  

The measure of similarity between two sequences S and T “all common subse-

quences” (ACS) [3] is defined as 

 𝑠𝑖𝑚𝐴𝐶𝑆(𝑆, 𝑇) =
𝜙(𝑆, 𝑇)

𝑚𝑎𝑥{𝜙(𝑆), 𝜙(𝑇)}
 (1) 

The measure of similarity “longest common subsequence” (LCS) is calculated by the 

formula 

 𝑠𝑖𝑚𝐿𝐶𝑆𝑠𝑖𝑧𝑒
(𝑆, 𝑇) =

|𝐿𝐶𝑆(𝑆, 𝑇)|

𝑚𝑎𝑥{|𝑆|, |𝑇|}
 (2) 

Demographers are interested in sequences without discontinuity (gaps). We are in-

terested in two options: common prefixes and common subsequences without discon-

tinuity. Let us transform the original formulas. 

First consider the prefixes. In this case, the number of common prefixes of two se-

quences is equal to the length of the largest prefix of these sequences. Prefixes of 
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length zero are not considered. The number of prefixes of the sequence S is equal to 

the length of the sequence |S|. 

Thus, the formulas for all common prefixes and for the longest common prefix of 

two sequences are the same and equal 

 𝑠𝑖𝑚𝐴𝐶𝑆𝑃(𝑆, 𝑇) = 𝑠𝑖𝑚𝐿𝐶𝑆𝑃(𝑆, 𝑇) = 𝑠𝑖𝑚𝐶𝑃(𝑆, 𝑇) =
|𝐿𝐶𝑆𝑃(𝑆, 𝑇)|

𝑚𝑎𝑥{|𝑆|, |𝑇|}
 (3) 

where LCSP is the longest common sequence prefix, ACSP is the set of all common 

prefixes of sequences S and T and CP is the set of common prefixes. 

Now consider subsequences without discontinuities. First consider the case of the 

longest common subsequence. Like the previous case, we get: 

 𝑠𝑖𝑚𝐿𝐶𝑆 (𝑆, 𝑇) =  
|𝐿𝐶𝑆(𝑆, 𝑇)|

𝑚𝑎𝑥{|𝑆|, |𝑇|}
 (4) 

where LCS is the longest common subsequence of S and T without discontinuities. 

Now let us look at all common subsequences without discontinuities. For this we 

consider all common subsequences S and T of different lengths without discontinui-

ties. The number of subsequences of the sequence S without discontinuities is 

 
|𝑆|(|𝑆| + 1)

2
 (5) 

Since a longer sequence has more subsequences, we obtain the formula: 

 
𝑠𝑖𝑚𝐴𝐶𝑆(𝑆, 𝑇) =

2 ∙ ∑ 𝜙(𝑆, 𝑇, 𝑘)𝑘≤𝑙

𝑙(𝑙 + 1)
 

𝑙 = 𝑚𝑎𝑥{|𝑆|, |𝑇|} 

(6) 

where ACS is the set of all common subsequences of S and T without discontinuities, 

k is the length of the common subsequence and 𝜙(S, T, k) is the number of common 

subsequences S and T without discontinuities of length k. 

3 Classification results 

3.1 Using a special kernel in the SVM method 

The SVM method is implemented in the scikit-learn library [6]. The functions of the 

method support the data classification by features. There are no functions for se-

quence analysis. The implementation of the method provides the ability to connect 

custom kernel functions. We use this feature to code and connect functions that ana-

lyse sequences.  

Kernels of the SVM method based on sequence similarity measures without dis-

continuity. In this paper, the previously calculated Gram matrix was transmitted to 
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the SVM method. Each element of the matrix in row i and column j corresponds to 

the calculated measure of the similarity of the two sequences with the numbers i, j. 

The size of the matrix is 𝑛2, where n is the number of sequences. Accordingly, the 

calculation time has a quadratic dependence on the number of sequences. 

The following functions for calculating sequence similarity without discontinuity 

were used: ACS, LCS and CP. Functions are written in Python.  

The values of the functions ranged from 0 to 1. The value 1 is obtained for equal 

sequences, in particular, for the diagonal elements of the matrix. The value 0 is ob-

tained when there is no similarity between sequences.  

To evaluate classification quality by different methods, the class of sex for the test 

sample was used. The initial data were divided into training and test sets according to 

the ratio 80/20. Previously, the rows of data were shuffled for a more even distribu-

tion between the training and test sets. Calculation time and accuracy results for simi-

larity functions are presented in Table 1. 

Table 1. Classification using special functions of the SVM method with kernels based on se-

quence similarity measures without discontinuity 

Parameter CP ACS LCS 

Model fitting time, sec 400.97 1580.86 1544.21 

Prediction time, sec 98.66 394.20 388.06 

Total time, sec 499.62 1975.06 1932.27 

Accuracy 0.648 0.659 0.490 

Classification accuracy of functions CP and ACS differ slightly, and the calcula-

tion time for the CP is much less; the quality of the LCS prediction is not satisfactory. 

In this table and in all of the following tables methods are compared by accuracy, 

time is shown for information. 

Classification by features using the SVM method. For comparison, we will classify 

not according to the sequences, but on the basis of the respondents’ features: type of 

education, place of residence, religiosity, frequency of church attendance and genera-

tion. We use the SVM method with default parameters (kernel function - RBF). Re-

sults are presented in Table 2. 

Table 2. Classification by features using the SVM method 

Parameter Value 

Model fitting time, sec 3.62 

Prediction time, sec 0.52 

Total time, sec 4.14 

Accuracy 0.615 
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The results in the table show that the accuracy is worse than with the classification 

by sequence of events. The built-in function is much faster, since it is implemented in 

C and does not calculate the sequences similarity function.   

Classification by sequences, by features and by weighted sum of probabilities of 

sequences and features. We can try to improve the result by combining two methods 

of classification: by sequences and by features. This can be done using the probabili-

ties of referring to a certain class, calculated by the SVM method. To get the probabil-

ity values, you need to specify the qualifier parameter “probability = True”: 

 clf = svm.SVC(probability=True) 

As a result, the method returns a matrix with the number of columns equal to the 

number of classes. In each position, there will be a probability of assigning a se-

quence to the corresponding class.  

Having obtained the probability tables for each method, we can classify based on 

the weighted sum of the probabilities of the two methods. Since the methods give 

different classification accuracies, the final probability of assigning an object to a 

class is calculated by the formula:  

 𝑃 =  
𝐴𝑠 ∙  𝑃𝑠 +  𝐴𝑓 ∙  𝑃𝑓

𝐴𝑠 + 𝐴𝑓
 (7) 

where   

As — accuracy by sequences, 

Af — accuracy by features, 

Ps — probability by sequences, 

Pf — probability by features.  

 

Formula (7) takes into account the accuracy of the method for the final probability 

calculation. The probability calculated by each method will be included in the final 

result with a coefficient equal to the method accuracy. Results are presented in Table 

3. 

Table 3. Classification by sequences, by features and by weighted sum of probabilities of se-

quences and features 

Parameter CP ACS LCS 

Accuracy of sequence classification 

(SVM, custom kernel functions: CP, 

ACS, LCS) 

0.648 0.659 0.490 

Accuracy of classification by features 

(SVM default - RBF) 

0.615 0.615 0.615 

Accuracy of classification by 

weighted sum of probabilities (7) 
0.678 0.670 0.612 
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The table shows a noticeable improvement in the final result when two methods 

are combined.   

Classification by features and sequences transformed into features. Another pos-

sible method of classification by sequences is by bringing each sequence to a set of 

features. After that, existing methods of classification by features could be used.  

We consider as features a set of subsequences without discontinuity no greater than 

a certain length, such that one can compose all the sequences from them. We compose 

a dictionary from all possible subsequences without discontinuity for the available 

sequences. Such subsequences will be regarded as features of the sequence. We re-

place each sequence with a set of attributes corresponding to the subsequences that 

appear in it. It is possible to apply the SVM method to the set of attributes.  

The maximum number of different subsequences of sequences without discontinui-

ty is 

 
𝑛 ∙  (𝑛 +  1)

2
 (8) 

where n is the length of the sequence. 

The dependence of the number of subsequences without discontinuity on the length 

of the sequence is quadratic. For large sequences, it is necessary to introduce con-

straints. Let us consider subsequences without discontinuity no greater than a certain 

length.  

This algorithm is similar to the ACS method used in the kernel function; however, 

in the kernel function only the number of common subsequences without discontinui-

ty between the two sequences is considered. This algorithm takes into account their 

quality – each unique subsequence is considered as a feature of the sequence. Let us 

investigate the work of algorithms with existing sequences of demographic events. In 

the provided initial data, the maximum length of the sequence is eight, hence the max-

imum possible number of subsequences without discontinuity is 36, according to (8). 

We will not consider all subsequences, but only one subsequence of maximum length 

for each sequence. In this case, there will be only one feature for each sequence, 

which will significantly reduce the amount of computation. Results are presented in 

Table 4. 
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Table 4. Classification by features and sequences transformed into features 

 

Parameter 

 

Classification 

by sequences 

only (as 

features) 

Classification 

by features only 

Classification by 

sequences and 

features 

Number of sequences 6626 0 6626 

The number of unique 

sequences of maximum 

length (number of features 

values) 

1228 0 1228 

Number of initial features 0 5 5 

Number of generated 

features (from sequences) 

1 0 1 

Model fitting time, sec 4.80 3.62 5.79 

Prediction time, sec 0.79 0.52 0.91 

Total time, sec 5.59 4.14 6.70 

Accuracy 0.675 0.615 0.716 

It turned out that the classification according to the sequences transformed into fea-

tures, in combination with the initial features, renders the best result in comparison 

with the above methods. 

3.2 Recurrent neural network algorithms 

We performed classification according to sequences using recurrent neural networks 

from Keras and Tensorflow software [7]. Keras, a top-level software, is used to de-

scribe the structure of a neural network as an add-on over the Tensorflow software, 

which performs the simulation of the neural network. The simulation was performed 

on the GeForce GT 710 GPU. 

Recurrent Neural Network - RNN allows us to reveal regularities in sequences [8]. 

Three types of recurrent layers were compared in Keras: SimpleRNN, GRU and 

LSTM [5]. GRU and LSTM, in comparison with SimpleRNN, have more complex 

algorithms for detecting regularities. However, on sequences in the original demo-

graphic data, because of their small lengths, LSTM and GRU did not show any ad-

vantage in classification over SimpleRNN. At the same time, the simulation time for 

GRU and LSTM was several times larger. Therefore for subsequent classification by 

sequences, together with the features, only the SimpleRNN algorithm was used. The 

results are shown in the Table 5. 
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Table 5. Classification using recurrent neural networks (Keras, Tensorflow) 

Method of 

classification 

By sequences 

 

By features 

 

By sequences 

and features 

 Neural network layers (number) 

Parameter 

 

SimpleRNN 

Dense 

GRU  

Dense 

LSTM  

Dense 

Dense 

Dropout 

SimpleRNN 

Dense 

 Dropout 

The number of 

events in the 

sequences 

(maximum) 

8 8 8 0 8 

Number of 

features 

0 0 0 5 5 

Model fitting 

time, sec 

168.80 452.27 585.73 348.49 418.05 

Prediction time, 

sec 

2.28 3.38 3.93 0.68 1.36 

Total time, sec 171.07 455.66 585.73 349.17 419.40 

Accuracy 0.676 0.672 0.675 0.626 0.754 

Recurrent neural networks give the best result, since they are better than other al-

gorithms at accounting for the dependencies in the sequences. 

4 Comparison of all methods 

Table 6 shows a comparison of the accuracies of classification methods. The table is 

supplemented by the result obtained by the algorithm of article [9] on the same data.  

Table 6. Comparison of the accuracy of classification methods 

 

Methods 

 

Classification 

by sequences 

only 

Classification 

by features 

only 

Classification by 

sequences and 

features 

Methods based on the SVM 

kernel custom functions 

   

Common Prefix similarity 

(CP) 

0.648 0.615 0.678 

All Common Subsequences 

similarity (ACS) 

0.659 0.615 0.670 
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Thus, the best result of classification of demographic data is given by recurrent 

neural networks (Keras, Tensorflow) on sequences with features, and the accuracy is 

0.754. 

5 Conclusion 

In the course of the work, we derived formulas for calculating measures of sequence 

similarity without discontinuity; these were then incorporated to the kernels of the 

SVM method. We have studied several methods for classifying demographic data by 

sequences of events without discontinuities, namely variants of a custom kernel in the 

SVM method and recurrent neural networks. Also, we made a comparison of these 

methods with the algorithm from the earlier paper [9]. To complete our work, we 

wrote programmes in Python, with the help of which we processed the initial demo-

graphic data. We obtained solid classification results by using the custom kernel func-

tion in SVM by transforming sequences into features and even better results with 

recurrent neural network SimpleRNN. These two methods take into account event 

regularities in the sequences, unlike most other methods which work only with fea-

tures. This work can be applied to the analysis of various sequences. Of course, many 

other classification methods based on different similarity measures of demographic 

sequences can be used. These may be statistical methods or other types of neural net-

works, such as convolutional neural networks (CNN). Those methods may be investi-

gated in future research.  
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0.490 0.615 0.612 

Using sequences transformed 

into features 

0.675 0.615 0.716 

Recurrent neural networks 

(Keras, Tensorflow) 

   

SimpleRNN, Dense 0.676 0.626 0.754 

GRU, Dense 0.672 0.626  

LSTM, Dense 0.675 0.626  

Decision trees [9]    

Time coding   0.661 
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